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ABSTRACT 
 
 This paper is concerned with inference about a function g  that is identified by a 
conditional moment restriction involving instrumental variables.  The paper presents a test of the 
hypothesis that g  belongs to a finite-dimensional parametric family against a nonparametric 
alternative.  The test does not require nonparametric estimation of g  and is not subject to the ill-
posed inverse problem of nonparametric instrumental variables estimation.  Under mild 
conditions, the test is consistent against any alternative model and has asymptotic power 
advantages over existing tests.  Moreover, it has power arbitrarily close to 1 uniformly over a 
class of alternatives whose distance from the null hypothesis is , where  is the sample 
size. 

1/ 2(O n− ) n
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TESTING A PARAMETRIC MODEL AGAINST A NONPARAMETRIC 
ALTERNATIVE WITH IDENTIFICATION THROUGH INSTRUMENTAL VARIABLES 
 
 

1.  INTRODUCTION 

 Let Y  be a scalar random variable, X  and W  be continuously distributed random 

scalars or vectors, and g  be a function that is identified by the relation 

(1.1) . [ ( ) | ]Y g X W− =E 0

In (1.1), Y  is the dependent variable, X  is a possibly endogenous explanatory variable, and W  

is an instrument for X .  This paper presents a test of the null hypothesis that g  in (1.1) belongs 

to a finite-dimensional parametric family against a nonparametric alternative hypothesis.  

Specifically, let  be a compact subset of  for some finite integer .  The null 

hypothesis, H

Θ d 0>d

0, is that 

(1.2) ( ) ( , )g x G x θ=  

for some θ ∈Θ  and almost every x , where  is a known function.  The alternative hypothesis, 

H

G

1, is that there is no θ ∈Θ  such that (1.2) holds for almost every x .  Under mild conditions, the 

test presented here is consistent against any alternative model and has asymptotic power 

advantages over existing tests.  In large samples its power is arbitrarily close to 1 uniformly over 

a class of alternative models whose “distance” from H0 is O n , where  is the sample size.   1/ 2( − ) n

 There has been much recent interest in nonparametric estimation of g  in (1.1).  See, for 

example, Newey, Powell and Vella (1999); Newey and Powell (2003); Darolles, Florens, and 

Renault (2002); Blundell, Chen, and Kristensen, (2003); and Hall and Horowitz (2003).  Methods 

for testing (1.2) against a nonparametric alternative have been developed by Donald, Imbens, and 

Newey (2003) and Tripathi and Kitamura (2003).  In addition, the test of a conditional mean 

function developed by Bierens (1990) and Bierens and Ploberger (1997) can be modified to 

provide a test of (1.2).  Horowitz and Spokoiny (2001,2002) provide extensive references to other 

tests for conditional mean and quantile functions.  The test presented here has asymptotic power 

advantages over existing tests that permit X  to have endogenous components.  In addition, 

among existing tests of (1.2) against a nonparametric alternative, only the test presented here is 

uniformly consistent at a known rate over a known set of alternative hypotheses.  Uniform 

consistency is important because it provides some assurance that there are not alternatives against 

which a test has low power even with large samples.  If a test is not uniformly consistent over a 

specified set, then that set contains alternatives against which the test has low power. 
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Testing is particularly important in (1.1) because it provides the only currently available 

form of inference about g  that does not require g  to be known up to a finite-dimensional 

parameter.  Obtaining the asymptotic distribution of a nonparametric estimator of g  is very 

difficult, and no existing estimator has a known asymptotic distribution.  Nor is there a currently 

known method for obtaining a nonparametric confidence band for g .  By contrast, the test 

statistic described in this paper has a relatively simple asymptotic distribution, and 

implementation of the test is not difficult.    

 The test developed here is not affected by the ill-posed inverse problem of nonparametric 

instrumental variables estimation.  Consequently, the test’s “precision” exceeds that of any 

nonparametric estimator of g .  The rate of convergence of a nonparametric estimator of g  is 

always slower than  and, depending on the details of the distribution of ( , 

may be slower than O n

1/ 2

)

(pO n−

(p

) , )Y X ,W

ε−  for any 0ε >

)

 (Hall and Horowitz 2003).  In contrast, the test 

described here can detect a large class of nonparametric alternative models whose distance from 

the null-hypothesis model is .  Nonparametric estimation and testing of conditional 

mean and median functions is another setting in which the rate of testing is faster than the rate of 

estimation.  See Guerre and Lavergne (2002) and Horowitz and Spokoiny (2001, 2002).   

1/ 2(O n−

 Section 2 describes the test statistic and its properties.  Section 3 presents the results of a 

Monte Carlo investigation of the finite-sample performance of the test, and Section 4 presents an 

illustrative application to real data.  The proofs of theorems are in the appendix. 

2.  THE TEST STATISTIC AND ITS PROPERTIES 

Rewrite (1.1) as  

(2.1) , ( , ) ; ( | , ) 0Y g X Z U U Z W= + E =

where  and U  are scalar random variables, Y X  and W  are random variables whose supports 

are contained in [0,1]p  ( 1p ≥ ), and Z  is a random variable whose support is contained in  

( 0 ).  If , then 

[0,1]r

r ≥ 0=r Z  is not included in (2.1).  X  and Z , respectively, are endogenous and 

exogenous explanatory variables.  W  is an instrument for X .  The assumption that 

20,1]supp( , , ) [ p r+X Z

,

W ⊂  can always be satisfied by carrying out a monotone transformation of 

( , )X Z W .  The inferential problem is to test the null hypothesis, H0, that 

(2.2) ( , ) ( , , )g x z G x z θ=  
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for some unknown θ ∈Θ , known function G , and almost every ( , ) [0,1]p rx z +∈ .  The alternative 

hypothesis, H1 is that there is no θ ∈Θ  such that (2.2) holds for almost every ( , ) [0,1]p rx z +∈ .  

The data, { , are a simple random sample of ( .   , , 1,..., }i iY X n=, :i iZ W i , , , )Y X Z W

2.1  The Test Statistic 

To form the test statistic, let  denote the probability density function of (XZWf , , )X Z W , 

and let Zf  denote the probability density function of Z .  Let ν  be any function in 2[0,1]p rL + .  

For each  define the operator T  on [0,1]r∈z z 2[0,1]pL  by 

 ( , ) ( , ) ( , )z zT x z t x z dν ξ ν ξ ξ= ∫ , 

where for each ( , 2
1 2 ) [0,1] px x ∈ , 

1 2 1 2( , ) ( , , ) ( , , )z XZW XZWt x x f x z w f x z w dw= ∫ . 

Assume that T  is nonsingular for each .  Then Hz [0,1]rz∈ 0 is equivalent to  

(2.3)  ( , ) [ ( , ) ( , , )]( , ) 0zS x z T g G x zθ≡ ⋅ ⋅ − ⋅ ⋅ =

for some θ ∈Θ  and almost every ( , ) [0,1]p rx z +∈ .  H1 is equivalent to the statement that there is 

no θ ∈Θ  such that (2.3) holds.  A test statistic can be based on a sample analog of 

 , 2( , )S x z dxdz∫
but the resulting rate of testing is slower than  if .  A rate of  can be achieved by 

carrying out an additional smoothing step.  To this end, let  denote the kernel of a 

nonsingular integral operator, , on  if .  That is, the operator  defined by 

1/ 2n−

r >

0r > 1/ 2n−

2 )

L

1( ,z z

L 2[0,1]rL 0

( ) ( , ) ( )L z z dν ζ ν ζ ζ= ∫  

is nonsingular.  Let  be the identity operator if L 0r = .  Define the operator  on T 2[0,1]p rL +  by 

( , ) ( ,zT x z LT x )zν ν= .  Then T  is non-singular.  H0 is equivalent to  

(2.4) ( , ) [ ( , ) ( , , )]( , ) 0S x z T g G x zθ≡ ⋅ ⋅ − ⋅ ⋅ =  

for some θ ∈Θ  and almost every ( , ) [0,1]p rx z +∈ .  H1 is equivalent to the statement that there is 

no θ ∈Θ  such that (2.4) holds.  The test statistic is based on a sample analog of 

2( , )S x z dxdz∫ . 

 To form the analog, observe that under H0, 
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[ ( , , )]( , ) {[ ( , , )] ( , , ) ( , }XWT g G x z Y G X Z f x z W Z zθ θ− ⋅ ⋅ = −E . 

Therefore, it suffices to form a sample analog of {[ ( , , )] ( , , ) ( , }XWY G X Z f x z W Z zθ−E

XZWf

.  To do 

this, let  denote a leave-observation-i-out kernel estimator of .  That is, for 

 and  a kernel function of a 

( )ˆ i
XZWf −

,iZ W( ,i iV X≡ )i κ 2 p r+ -dimensional argument, 

( )
2

1

1ˆ ( )
n

i i
XZW p r

j
j i

v Vf v
hnh

κ−
+

=
≠

− =  
 

∑ , 

where  is the bandwidth.  Let h n̂θ  be an estimator of θ .  The sample analog of  is ( , )S x z

 . ( )1/ 2

1

ˆˆ( , ) [ ( , , )] ( , , ) ( , )
n

i
n i i i n i iXZW

i
S x z n Y G X Z f x Z W Z zθ −−

=

= −∑ i

The test statistic is 

(2.5)  2 ( , )n nS x z dxdzτ = ∫
H0 is rejected if nτ  is large.   

2.2  Regularity Conditions 

This section states the assumptions that are used to obtain the asymptotic properties of nτ  

under the null and alternative hypotheses.  Let 1 1 1 2 2 2( , , ) ( , , )x z w x z w−  denote the Euclidean 

distance between ( ,1 1 1, )x z w  and 2 2 2( , , )x z w

0 ( , ,XZWf x z

.  Let  denote any ’th partial or mixed 

partial derivative of .  Let 

j XZWD f

( , , )XZWf x z w

j

XZWf )D w = .   

 1.  (i) The support of ( , , )X Z W  is contained in [0 2,1] p r+ .  (ii) ( , , )X Z W  has a 

probability density function  with respect to Lebesgue measure.  (iii) There is a constant 

 such that |

XZWf

(ZWfC < ∞ , , ) |j X fD f x z w C≤  for all 2) [0,1]( , , p rx z w +∈  and . (iv) 0,1,2j =

2 1 1| ( , ,x z w −1)XZWD f 2 2W x

1)

2 2( , , ) |z w 1( ,fC x z≤ 1 1 2, ) (w 2 2, , )x z w−XZD f

1 1( , ,

 for any second 

derivative and any x z w  and 2 2( , , 2 )x z w  in [0 2,1] p r+ .  (v) The operator T  is nonsingular 

for almost every .  

z

[z∈ 0,1]r

 2.  (i)  and  for each (( | , ) 0U Z z W w= = =E 2( | , ) UU Z z W w C= = ≤E , ) [0,1]p rz w +∈  

and some constant .  (ii) |UC < ∞ ( , ) | gg x z C≤  for some constant  and all g < ∞C

( , ) [0,1]p rx z +∈ . 
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 3.  (i) As , n →∞ 0
p

nθ θ→  for some 0θ ∈Θ , a compact subset of .  If Hd
0 is true, 

then 0, , )x z( , ) (g x z G θ= , 0 int( )θ ∈ Θ , and 

(2.6)  1/ 2 1/ 2
0 0

1

ˆ( ) ( , , , , )
n

n i i i i
i

n n U X Z Wθ θ γ θ−

=

− = +∑ (1)po

for some function γ  taking values in  such that d
0( , , , , ) 0U X Z Wγ θ =E  and 

0[ ( , , , , )]Var U X Z Wγ θ  is a finite, non-singular matrix.   

 4.  (i) | ( , , ) | GG x z Cθ ≤  for all ( , ) [0,1]p rx z +∈ , all θ ∈Θ , and some constant CG < ∞ .  

(ii) The first and second derivatives of G x( , , )z θ  with respect to θ  are bounded by C  uniformly 

over (

G

, ) [0,1]p r+x z ∈  and θ ∈Θ .   

 5.  (i) The kernel function used to estimate  has the form , 

where  is the ’th component of  and  is a symmetrical, twice continuously differentiable 

probability density function on [ .  (ii) The bandwidth, , satisfies , where 

 is a constant and .  (iii) The operator  is nonsingular. 

XZWf 2
1

( ) ( )p r
jj

v Kκ
+

=
=∏

1/(2 4)p r
hh c n− + +=

v

)

jv j v

,1]

K

1−

∞

h

hc 0 hc< < L

 The representation (2.6) of 1/ 2
0

ˆ( nn θ θ−  holds, for example, if n̂θ  is a generalized 

method of moments estimator 

2.3  The Asymptotic Distribution of the Test Statistic under the Null Hypothesis 

 To obtain the asymptotic distribution of nτ  under H0, define 

( , , ) ( , , ) /G x z G x zθ θ θ θ= ∂ ∂ , 0( , ) [ ( , , ) ( , , , )]XZW ) (x z G X Z f x Z Zθ W zθΓ = E ,  

1/ 2
0

1
( , ) [ ( , , ) ( , ) ( , ) ( , , , , )]

n

n i XZW i i i i i i
i

B x z n U f x Z W Z z x z U X Z Wiγ θ−

=

′= − Γ∑ , 

and V x .  Define the operator 1 1 2 2 1 1 2 2( , ; , ) [ ( , ) ( , )]n nz x z B x z B x z= E Ω  on  by 2[0,1]q rL +

(2.7) 
1

0
( )( , ) ( , ; , ) ( , )x z V x z d dν ξ ζ ν ξ ζ ξ ζΩ = ∫ . 

Let { : 1,2,...}j jω =  denote the eigenvalues of Ω  sorted so that 1 2 ... 0ω ω≥ ≥ ≥

n

.  Let 

 denote independent random variables that are distributed as chi-square with one 

degree of freedom.  The following theorem gives the asymptotic distribution of 

2
1{ jχ : 1,2,...}j =

τ  under H0. 

 Theorem 1:  If 0H  is true and assumptions 1-5 hold, then 
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2
1

1

d
n j

j
jτ ω χ

∞

−

→ ∑ . 

2.4  Obtaining the Critical Value 

The statistic nτ  is not asymptotically pivotal, so its asymptotic distribution cannot be 

tabulated.  This section presents a method for obtaining an approximate asymptotic critical value 

for the nτ  test.  The method replaces the asymptotic distribution of nτ  with an approximate 

distribution.  The difference between the true and approximate distributions can be made 

arbitrarily small under both the null hypothesis and alternatives.  Moreover, the quantiles of the 

approximate distribution can be estimated consistently as .  The approximate 1n →∞ α−  critical 

value of the nτ  test is a consistent estimator of the 1 α−  quantile of the approximate distribution.   

The approximate critical value is obtained under sampling from a pseudo-true model that 

coincides with (2.1) if H0 is true and satisfies a version of 0[ ( , ) | , ]Y G X Z W 0θ− =E  if H0 is 

false.  The critical value for the case of a false H0 is used later to establish the properties of nτ  

under H1.  The pseudo-true model is defined by  

(2.8) , ( , , )Y G X Z Uθ= +

where , U Y0[ ( , , ) | ,Y Y Y G X Z Z Wθ= − −E ] 0( , , )G X Z θ= − , and 0θ  is the probability limit of 

n̂θ .  This model coincides with (2.1) when H0 is true. Moreover, H0 holds for the pseudo-true 

model in the sense that , regardless of whether H0[ ( ,Y G X Z θ−E , ) | , ] 0Z W = 0 holds for (2.1).  

To describe the approximation to the asymptotic distribution of nτ , let { : 1,2,...}j jω =  

be the eigenvalues of the version of Ω  (denoted Ω ) that is obtained by replacing model (2.1) 

with model (2.8).  Order the jω ’s such that 1 2 ... 0ω ω≥ ≥ ≥ .  Then under sampling from (2.8), 

nτ  is asymptotically distributed as 

2
1

1
j j

j
τ ω χ

∞

=

≡∑ . 

Given any 0ε > , there is an integer Kε < ∞  such that  

2
1

1
0 (

K

j j
j

t t
ε

)ω χ τ
=

 
 < ≤ − ≤
 
 
∑P P ε< . 

uniformly over t .  Define 
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2
1

1

K

j j
j

ε

ετ ω χ
=

=∑ . 

Let zεα  denote the 1 α−  quantile of the distribution of ετ .  Then 0 ( )zεατ α ε< > − <P .  Thus, 

using zεα  to approximate the asymptotic 1 α−  critical value of nτ  creates an arbitrarily small 

error in the probability that a correct H0 is rejected.  Similarly, use of the approximation creates 

an arbitrarily small change in the power of the nτ  test when H0 is false.  However, the 

eigenvalues jω  are unknown.  Accordingly, the approximate 1 α−  critical value for the nτ  test 

is a consistent estimator of the 1 α−  quantile of the distribution of ετ .  Specifically, let ˆ jω  

( 1,j 2,..., )Kε=  be a consistent estimator of jω  under sampling from (2.8).  Then the 

approximate critical value of nτ  is the 1 α−  quantile of the distribution of  

2
1

1

ˆ ˆ
K

n j
j

ε

jτ ω χ
=

=∑ . 

This quantile, which will be denoted ẑεα , can be estimated with arbitrary accuracy by simulation. 

 The remainder of this section describes how to obtain the estimated eigenvalues { ˆ }jω .  

Define , where  is a known, vector-valued function whose components are 

linearly independent, and c H .  Assume that 

[ ( ) , ]i iW H W Z ′′= i ′

d

H

dim rθ ≡ + ≥ n̂θ  is the GMM estimator 

(2.9) 
1 1

ˆ arg min [ ( , , )] [ ( , , )]
n n

n i i i i n i i i
i i

Y G X Z W A Y G X Z W
θ

θ θ
∈Θ = =

iθ
     ′= − − 
   
    
∑ ∑


, 

where {  is a sequence of possibly stochastic c}nA cθ θ× weight matrices converging in probability 

to a finite, non-stochastic matrix .  Define the A cθ d×  matrix  and the 0[ ( , , )D WG X Zθ θ ′= E ]

d cθ×  matrix 1( )D AD D Aγ −′ ′= .  Then standard calculations for GMM estimators show that  

0( , , , , )i i i i iU X Z W W Uγ θ = iγ

Γ

. 

Therefore,  

}

1 2
1 1 2 2 1 1 1 1

1

2 2 2 2

(2.10) ( , ; , ) [ ( , , ) ( , ) ( , ) ]

[ ( , , ) ( , ) ( , ) ] .

n

XZW i i i i i
i

XZW i i i i

V x z x z n f x Z W Z z x z W U

f x Z W Z z x z W

γ

γ

−

=

 ′= −


′× − Γ

∑E
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A consistent estimator of V  can be obtained by replacing unknown quantities on the 

right-hand side of (2.10) with estimators.  To this end, define 1
1

ˆˆ ( , , )n
i ni

D n W G X Zθ θ−
=

′= ∑ , 

, and  1ˆ ˆ ˆˆ ( )n nD A D D Aγ −′= ′

1
1

ˆˆˆ ( , ) ( , , ) ( , , ) ( , )n
i i n XZW i i ii

x z n G X Z f x Z W Z zθ θ−
=

Γ = ∑ , 

where  is a kernel estimator of .  Also define U Y , 

where  is the leave-observation i -out kernel regression estimator of Y G

ˆ
XZWf

( )ˆ iq −

XZWf ( )ˆˆ ˆ( , , ) ( ,i
i i i i n i iG X Z q Z Wθ −= − −

ˆ( , , nX Z

)

( , )z w )θ−  

on ( , )Z W .  Then V x  is estimated consistently by 1 1 2 2( , ; , )z x z

}

1 2
1 1 2 2 1 1 1 1

1

2 2 2 2

ˆˆ ˆˆ ˆ( , ; , ) [ ( , , ) ( , ) ( , ) ]

ˆ ˆ ˆ[ ( , , ) ( , ) ( , ) ] .

n

XZW i i i i i
i

XZW i i i i

V x z x z n f x Z W Z z x z W U

f x Z W Z z x z W

γ

γ

−

=

 ′= −


′× − Γ

∑ Γ

 

Let  be the integral operator whose kernel is V x .  The Ω̂ 1 1 2 2
ˆ( , ; , )z x z ˆ jω ’s are the eigenvalues of 

.   Ω̂

Theorem 2:  Let assumptions 1-5 hold.  Then as , (i) supn →∞ 1 ˆ| |j K j jε
ω ω≤ ≤ − =  

 almost surely and (ii) 2 1/ 2[(log ) /( ) ]p rO n nh + ˆ pz zεα ε→ α . 

To obtain an accurate numerical approximation to the ˆ jω ’s, let ˆ ( , )F x z  denote the 1n×  

vector whose i ’th component is ˆ ( , , ) ( , )XW i i if x Z W Z z , Ĝθ  denote the n d×  matrix whose (  

element is G X

, )i j

ˆ( , ,i i nZ )θ θ ,  denote the ϒ n n×  diagonal matrix whose  element is U , and 

 denote the  matrix .  Finally, define the matrix 

( , )i i

n

2ˆ
i

W n d× 1( ,..., )nW W′ ′ ′ 1 ˆM I n Gθ Wγ− ′= − , where 

 is the n  identity matrix.  Then nI n×

 . 1
1 2 1 1 2 2

ˆ ˆ ˆ( , ) ( , ) ( , )V z z n F x z M M F x z− ′ ′= ϒ

The computation of the ˆ jω ’s can now be reduced to finding the eigenvalues of a finite-

dimensional matrix.  Let { :j 1,2,...}jφ =  be an orthonormal basis for 2[0,1]p rL + .Then 

1 1

ˆ ˆ( , , ) ( , ) ( , ) ( , )XZW jk j k
j k

f x z W Z z d x z Z Wφ φ
∞ ∞

= =

=∑ ∑ , 

where  
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1 1 1 1
1 2 1 1 2 1 20 0 0 0

ˆ ˆ ( , , ) ( , ) ( , ) ( )jk XZW j kd dx dz dz dwf x z w z z x z zφ φ= ∫ ∫ ∫ ∫ w . 

Approximate ˆ ( , , ) ( , )XZWf x z W Z z  by the finite sum 

1 1

ˆ( , , , ) ( , ) ( , )
L L

jk j k
j k

x z W Z d x z Z Wφ φ
= =

Π =∑ ∑  

for some integer .  Since  is a known function,  can be chosen to make L < ∞ ˆ
XZWf L Π  

approximate  with any desired accuracy.  Let ˆ
XZWf ( , )x zφ  denote the 1L×  vector whose ’th 

component is 

j

(j , )x zφ .  Let  be the Φ L n×  matrix whose (  component is , )j k ( , )j k kZ Wφ .  Let 

D  be the  matrix { .  Then V x  is approximated by L L× }jkd 1 1z 2 2; , )x zˆ( ,

1
1 1 2 2 1 1 2 2

ˆ̂ ( , ; , ) ( , ) ( , )V x z x z n x z D M M D x zφ φ− ′ ′ ′ ′= Φ ϒ Φ . 

The eigenvalues of  are approximated by those of the Ω̂ L L×  matrix D M M D′ ′ ′Φ ϒ Φ .   

2.5  Consistency of the Test against a Fixed Alternative Model 

In this section, it is assumed that H0 is false.  That is, there is no θ ∈Θ  such that 

( , ) ( , , )g x z G x z θ=  for almost every ( , )x z .  Let 0θ  denote the probability limit of n̂θ .  Define 

0( , , )x z( , ) ( , )q x z g x z G θ= − .  Let zα  denote the 1 α−  quantile of the distribution of nτ  under 

sampling from the pseudo-true model (2.8).  Let ẑεα  denote the 1 α−  quantile of ˆnτ .  The 

following theorem establishes consistency of the nτ  test against a fixed alternative hypothesis. 

 Theorem 3:  Let assumptions 1-5 hold.  Suppose that H0 is false and that 

.  Then for any 
1 2
0
[( )( , )] 0Tq x z dxdz >∫ α  such that 0 1α< < ,  

  lim ( ) 1n
n

zατ
→∞

> =P

and  

 . ˆlim ( ) 1n
n

zατ
→∞

> =P

 Because T  is nonsingular, the nτ  test is consistent against any alternative that differs 

from 0( , , )G x z θ  on a set of ( , )x z  values whose Lebesgue measure exceeds zero.  It is shown in 

the proof of Theorem 3 that when H0 is false, nτ  increases at the rate  as  increases.  This is 

faster than the rate found by Donald, Imbens, and Newey (2003) for a test of H

n n

0 against a 

nonparametric alternative based on the GMM test of overidentifying restrictions. 
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2.6  Asymptotic Distribution under Local Alternatives 

This section obtains the asymptotic distribution of nτ  under the sequence of local 

alternative hypotheses 

(2.11) , 1/ 2
0( , , ) ( , )Y G X Z n X Z Uθ −= + ∆ +

where  is a bounded function on [∆ 0,1]p r+  and 0 int( )θ ∈ Θ .  The following additional notation is 

used.  Let n̂θ  be the GMM estimator (2.9).  Let { :j 1,2,...}jψ =  denote the orthonormal 

eigenvectors of Ω .  Define ( , [) { ( , )]' }( , )x z T W X Z G x zθµ γ ′= ∆ − ∆E  and  

1

0
( , ) ( , )j jx z x z dxdµ µ ψ= ∫ z

}

. 

Let  denote independent random variables that are distributed as non-

central chi-square with one degree of freedom and non-central parameters { /

2 2
1{ ( / ) : 1,2,...}j j j jχ µ ω =

2
j jµ ω .  Let n̂θ  be 

the GMM estimator (2.9).  The following theorem states the result. 

 Theorem 4:  Let assumptions 1-5 hold.  Under the sequence of local alternatives (2.11),  

2 2
1

1
( /d

n j j j
j

)jτ ω χ µ ω
∞

−

→ ∑ , 

where the jω ’s are the eigenvalues of the operator Ω  defined in (2.7).  

Let zα  denote the 1 α−  quantile of the distribution of 2 2
11

( /j j j jj
)ω χ µ ω∞

=∑ .  Let ẑεα  

denote the estimated approximate α -level critical value defined in Section 2.2.  Then it follows 

from Theorems 2 and 4 that for any 0ε > , 

ˆlimsup ( ) ( ) |n n
n

z zεα ατ τ ε
→∞

> − > ≤| P P . 

It also follows from Theorem 4 that the nτ  test has power against local alternatives whose 

distance from the null-hypothesis model is O n .  In contrast, the test of Tripathi and 

Kitamura (2003) has power only against local alternatives whose distance from the null-

hypothesis model decreases more slowly than .  If 

1/ 2( −

1/ 2n−

)

( , ) 0x zµ =  for all ( , )x z , then there is a 

non-stochastic sequence { }nθ  such that G x .  

Therefore, the distance between the null and alternative hypotheses is .  

1/ 2

2( )

1/ 2
0 ) ( , ) ( )n x z o n− −= + ∆ +

1/o n−

( , ,z ) ( , ,n G x zθ θ
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2.7  Uniform Consistency 

This section shows that for any 0ε > , the nτ  test rejects 0H  with probability exceeding 

1 ε−

(O n−

 uniformly over a class of alternative models whose distance from the null hypothesis is 

.  The following additional notation is used.  Let 1/ 2 ) gθ  be the probability limit of n̂θ  under 

the hypothesis (not necessarily true) that ( , ) , ,( )g x z G x z θ=  for some θ ∈Θ  and a given function 

.  Let  be a compact subset of G Θ int( )Θ .  Define ( , ) ( , ), ) ( ,g gg zq x z x z G x θ= − .  Let  denote 

the bandwidth in .  For each 

h

( )i
XZWf − 1,2,...n =  and C define  as a set of functions 0> ncF g  such 

that:  (i) | ( , ) | gg x z C≤  for all ( , ) [0,1]p rx z +∈  and some constant Cg < ∞ ; (ii) ; (iii) 

(2.6) holds uniformly over ; (iv) , 

gθ ∈Θ

ncg∈F 1/ 2
g C≥Tq n− , where ⋅  denotes the  norm; and 

(v) 

2L

2h q / (o= 1) n →∞g gTq  as .  F  is a set of functions whose distance from nc 0H  shrinks to 

zero at the rate .  That is,  includes functions such that 1/ 2−n ncF
1/ 2(g n− )q O= .  Condition (ii) 

insures the existence of the critical value defined in Section 2.4.  The requirement  is not 

restrictive in applications because 

gθ ∈Θ

Θ  and Θ  can usually be made large enough to include any 

reasonable gθ .  Condition (v) rules out alternatives that depend on x  only through sequences of 

eigenvectors of T  whose eigenvalues converge to 0 too rapidly.  For example, let 1p = , 0r = , 

and { , : j 1,2,...}j jλ φ

...

=

0

 denote the eigenvalues and eigenvectors of T  ordered so that 

1 2λ λ≥ ≥ > .  Let, G x 1( , ) ( )xθ θφ= , 1( ( )n x( ) )xg x φ φ= + , and W .  Then 1φ= ( )W

2 2/ /g gq nh q T h λ= .  Because , condition (v) is violated if .  The 

practical significance of condition (v) is that the 

1/ 6h n−∝ 1/(o n− 3)nλ =

nτ  test has relatively low power against 

alternatives that differ from H0 only through eigenvectors of T  with very small eigenvalues. 

 The following theorem states the result of this section. 

Theorem 5:  Let assumptions 1, 2, 4, and 5 hold.  Assume that n̂θ  satisfies (2.9).  Then 

given any 0δ > , α  such that 0 1α< < , and any sufficiently large but finite constant , C

(2.12) lim inf ( ) 1
nc

n
n

zατ δ
→∞

> ≥ −P
F

. 

and  

(2.13) ˆlim inf ( ) 1 2
nc

n
n

zεατ δ
→∞

> ≥ −P
F

. 
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2.8  Alternative Weights 

 This section compares nτ  with a generalization of the test of Bierens (1990) and Bierens 

and Ploberger (1997).  To minimize the complexity of the discussion, assume that 1p =  and 

, so 0r = Z  is not in the model.  Let  be a bounded, real-valued function on [  such that H 20,1]

21

0
( , ) ( ) 0H x w s w dw =∫   

only if  for almost every ( ) 0s w = [0,1]w∈ .  Then a test of H0 can be based on the statistic 

1 2
0

( )nH nHS x dτ = ∫ x , 

where 

1/ 2

1

ˆ( ) [ ( , )] ( , )
n

nH i i n i
i

S x n Y G X H x Wθ−

=

= −∑ . 

If  for a suitably chosen function , then ( , ) ( )H x w H xw= H nHτ  is a modification of the statistic 

of Bierens (1990) and Bierens and Ploberger (1997) for testing the hypothesis that a conditional 

mean function belongs to a specified, finite-dimensional parametric family.  In this section, it is 

shown that the power of the nHτ  test can be low relative to that of the nτ  test.  Specifically, there 

are combinations of density functions of ( , )X W , XWf , and local alternative models (2.11) such 

that an α -level nHτ  test based on a fixed  has asymptotic local power arbitrarily close to H α , 

whereas the α -level nτ  test has asymptotic local power that is bounded away from α .  The 

opposite situation cannot occur under the assumptions of this paper.  That is, it is not possible for 

the asymptotic power of the α -level nτ  test to approach α  while the power of the α -level nHτ  

test remains bounded away from α .  

 The conclusion that the power of nHτ  can be low relative to that of nτ  is reached by 

constructing an example in which the α -level nτ  test has asymptotic power that is bounded away 

from α  but the nHτ  test has asymptotic power that is arbitrarily close to α .  To minimize the 

complexity of the example, assume that θ  is known and does not have to be estimated.  Define 

1/ 2

1
( ) ( , )

n

n i XW
i

iB x n U f x W−

=

= ∑ , 

1/ 2

1
( ) ( , )

n

nH i i
i

B x n U H x W−

=

= ∑ , 
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1 2 1 2( , ) [ ( ) ( )]n nR x x B x B x= E , and 1 2 1 2( , ) [ ( ) ( )]H nH nHR x x B x B x= E .  Also, define the operators 

Ω  and HΩ  on  by 2[0,1]L

 
1

0
( )( ) ( , ) ( )x R x dψ ξ ψ ξ ξΩ = ∫  

and 
1

0
( )( ) ( , ) ( )H Hx R x dψ ξ ψ ξ ξΩ = ∫ . 

Let { , : 1,2,...}j j jω ψ =  and { , : 1,2,...}jH jH jω ψ =  denote the eigenvalues and eigenvectors of 

Ω  and HΩ , respectively, with the eigenvalues sorted in decreasing order.  For  defined as in 

(2.11), define 

∆

( ) ( )( )x T xµ = ∆ ,  

1 1

0 0
( ) ( ) ( , ) ( , )H XWx H x w f w dxdwµ ξ ξ= ∆∫ ∫ ,  

1

0
( ) ( )j jx x dxµ µ ψ= ∫ , 

and 
1

0
( ) ( )jH H jHx x dxµ µ ψ= ∫ . 

Then arguments like those used to prove Theorem 4 show that under the sequence of local 

alternatives (2.11) with a known θ ,  

2 2
1

1
( /d

n j j j
j

)jτ ω χ µ ω
∞

−

→ ∑  

and 

2 2
1

1
( /d

nH jH j jH jH
j

τ ω χ µ
∞

−

→ ∑ )ω  

as .  Therefore, to establish the first conclusion of this section, it suffices to show that for a 

fixed function , 

n →∞

H XWf  and  can be chosen so that ∆ 2
1

/ jj
µ ω∞

=∑  is bounded away from 0 

and 2
1

/H jHj
µ ω∑∞

=
 is arbitrarily close to 0.   

 To this end, let 1( ) 1xφ =  and 1/ 2
1( ) 2 cos( )j x j xφ π−
+ =  for .  Let  be a finite 

integer.  Define  

1j ≥ 1m >

2

1  if  1 or 

  otherwise.j j

j m

e
λ −

== 
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Let 

1/ 2
1 1 1

1
( , ) 1 ( ) ( )XW j j j

j
f x w x wλ φ φ

∞

+ + +
=

= +∑ . 

Let  for all .  Then 2( | )U W w= =E 1 [0,1]w∈ 1 2 1 2( , ) ( , )R x x t x x= , j jω λ= , and 
1 jj
ω∞

=∑  is 

non-zero and finite.  Set ( )) (mx D xφ∆ =  for some finite .  Then 0D > 2 2 2 2
mD Dµ λ= = .  It 

suffices to show that m  can be chosen so that 2
Hµ  is arbitrarily close to 0.  To do this, observe 

that  has the Fourier representation ( , )H z w

, 1
( , ) ( ) ( )jk j k

j k
H x w h x wφ φ

∞

=

= ∑ , 

where {  are constants.  Moreover, : , 1,2,...}jkh j k = 2 2
1

2
H jmj

D hµ ∞

=
= ∑

0

.  Since  is bounded, 

 can be chosen so that  for any 

H

m 2
1

/jmj
h ε∞

=
<∑ 2D ε > .  With this , m 2

Hµ ε< , which 

establishes the first conclusion.   

 The opposite situation (a sequence of local alternatives for which 2µ  approaches 0 

while is 2
Hµ  remains bounded away from 0) cannot occur.  To show this, assume without loss 

of generality that the marginal distributions of X  and W  are U ,  for all 

, and 

[0,1] 2( | )U W w= =E 1

[0,1w∈ ]
1

1jHj
ω∞

=
=∑ .  Also, assume that 2 C∆∆ <  for some constant .  Then,  C∆ < ∞

1 1 2
0 0

1
( , ) jH

j
H x w dxdw ω

∞

=

=∑∫ ∫ . 

It follows from the Cauchy-Schwartz inequalty that 
21 1 12 2

0 0 0 0

21

0 0

2 2

2

( , ) ( , ) ( )

( , ) ( )

.

H XW

XW

H x w dzdw f x w x dx dw

f x w x dx dw

T

C

µ

µ∆

  ≤ ∆    

 = ∆  

≤ ∆ ∆

≤

∫ ∫ ∫ ∫

∫ ∫
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Therefore, 2µ  can approach 0 only if 2
Hµ  also approaches 0. 

3.  MONTE CARLO EXPERIMENTS 

This section reports the results of a Monte Carlo investigation of the finite-sample 

performance of the nτ  test.  The experiments consist of testing the null hypotheses, 0H , that 

(4.1) 0 1( )g x xθ θ= +  

and 

(4.2) . 2
0 1 2( )g x x xθ θ θ= + +

The alternative hypotheses are (4.2) if (4.1) is 0H  and  

(4.3)  2 3
0 1 2 3( )g x x x xθ θ θ θ= + + +

if either (4.1) or (4.2) is 0H . 

To provide a basis for judging whether the power of the nτ  test is high or low, this 

section also reports the results of two other tests.  One is an asymptotic t  test of the hypothesis 

2 0θ =  if (4.1) is 0H  and of 3 0θ =  if (4.2) is 0H .  The  test is an example of an ad hoc test that 

might be used in applied research.  The other test is the modified test of Bierens (1990) and 

Bierens and Ploberger (1997) that is described in Section 2.8.  The weight function is 

.  The critical value was computed using the methods described in Section 2.4.   

t

( ,H x w) exp(x= )w

In all experiments, 0 0θ =  and 1 0.5θ = .  When (4.2) is the correct model, 2 0.5θ = − .  

When (4.3) is the correct model, 2 1θ = − 3, 1θ =  if (4.1) is 0H , and 3 4θ =  if (4.2) is 0H .  

Realizations of ( , )X W  were generated by ( )X ξ= Φ , ( )W ζ= Φ , where  is the cumulative 

normal distribution function, 

Φ

~ N (0,1)ζ , 2 1/ 2)(1ξ ρζ ρ ε−= + , (0N ,1)ε ∼ , and ρ  is a constant 

parameter whose value varies among experiments.  Realizations of Y  were generated from 

( ) UY g x Uσ= + , where U 2 1/ 2)(1ηε η ν= + − , (0,1)Nν ∼ , 0.2Uσ = , and η  is a constant 

parameter whose value varies among experiments.  The instruments used to estimate (4.1), (4.2), 

and (4.3), respectively, are , , and .  The bandwidth  used to 

estimate 

(1, )W 2, )W W(1, 2 3)W(1, , ,W W h

XWf  was selected by cross-validation.  The kernel is 2 2) (| | 1)I v(K v) (15/16)(1 v= − ≤ , 

where  is the indicator function.  The asymptotic critical value was estimated by setting 

.  The results are not sensitive to the choice of 

I

25Kε = Kε , and the estimated eigenvalues ˆ jω  are 

very close to 0 when .  The sample size is n25j > 500= , and the nominal level is 0.05.  There 
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are 1000 Monte Carlo replications in each experiment.  Computation of the critical value took 

approximately 4 seconds on a 900 MHz PC. 

 The results are shown in Table 1.  The differences between the nominal and empirical 

rejection probabilities are small when H0 is true.  When H0 is false, the powers of the nτ  and t  

tests are similar.  Not surprisingly, the  tests of (4.1) against (4.2) and (4.2) against (4.3) are 

somewhat more powerful than the 

t

nτ  tests.  The nτ  test is slightly more powerful for testing 

(4.1) against (4.3).  The Bierens-type test is much less powerful than the nτ  and t  tests, 

especially for testing (4.2) against (4.3). 

5.  AN EMPIRICAL EXAMPLE 

This section presents an empirical example in which nτ  is used to test two hypotheses 

about the shape of an Engle curve.  One is that the curve is linear.  The other is that it is quadratic.  

The curve is given by (2.1) with , so 0r = Z  is not in the model.   denotes the logarithm of the 

expenditure share of food consumed off the premises where it was purchased, 

Y

X  denotes the 

logarithm of total expenditures, and W  denotes annual income from wages and salaries.  The 

data consist of 785 household-level observations from the 1996 U.S. Consumer Expenditure 

Survey.  The bandwidth for estimating XWf  was selected by cross-validation.  The kernel is the 

same as the one used in the Monte Carlo experiments.  As in the experiments, .   2= 5Kε

 The nτ  test of the hypothesis that g  is linear (quadratic) gives 13.4nτ =  (0.32) with a 

0.05-level critical value of 3.07 (5.22).  Thus, the test rejects the hypothesis that g  is linear but 

not that g  is quadratic.  The hypotheses were also tested using the  test described in Section 4.  

This test gives t  for the hypothesis that 

t

2.60= g  is linear ( 2 0θ =  in (4.2)) and  for the 

hypothesis that 

0.34t =

g  is quadratic ( 3 0θ =  in (4.3)).  The 0.05-level critical value is 1.96.  Thus, the 

 test also rejects the hypothesis that t g  is linear but not the hypothesis that it is quadratic.   

MATHEMATICAL APPENDIX:  PROOFS OF THEOREMS 

To minimize the complexity of the presentation, it is assumed here that 1p =  and 0r = .  

The proofs for 1p >  and/or  are identical after replacing quantities for  with the 

analogous quantities for the more general case.  Let 

0r > 1,p r= 0=

XWf  denote the density function of ( , )X W .   

Define 

1/ 2
1

1
( ) ( , )

n

n i XW
i

S x n U f x W−

=

= ∑ i , 

 16



1/ 2
2 0

1
( ) [ ( ) ( , )] ( , )

n

n i i
i

S x n g X G X f x Wθ−

=

= −∑ XW i

XW i

i

W i

W i

j

, 

1/ 2
3 0

1

ˆ( ) [ ( , ) ( , ))] ( , )
n

n i i n
i

S x n G X G X f x Wθ θ−

=

= −∑ , 

( )1/ 2
4

1

ˆ( ) [ ( , ) ( , )]
n

i
n i i XWXW

i
S x n U f x W f x W−−

=

= −∑ , 

( )1/ 2
5 0

1

ˆ( ) [ ( ) ( , )][ ( , ) ( , )]
n

i
n i i i XXW

i
S x n g X G X f x W f x Wθ −−

=

= − −∑ , 

and 

( )1/ 2
6 0

1

ˆˆ( ) [ ( , ) ( , ))][ ( , ) ( , )]
n

i
n i i n i XXW

i
S x n G X G X f x W f x Wθ θ −−

=

= − −∑ . 

Then . 
6

1
( ) ( )n n

j
S x S x

=

=∑
 Lemma 1:  As , n →∞

1/ 2
3 0

1/ 2
0

1

ˆ( ) ( ) ( ) (1)

( ) ( , , , ) (1).

n n p

n

i i i p
i

S x x n o

x n U X W o

θ θ

γ θ−

=

′= −Γ − +

′= −Γ +∑

 

uniformly over .   [0,1]z∈

 Proof:  A Taylor series expansion gives 

1 1
3 0

1

ˆ( ) ( , ) ( , ) ( )
n

n i n XW i
i

S x n G X f x W nθ
/ 2

nθ θ θ−

=

= − −∑ , 

where nθ  is between n̂θ  and 0θ .  Application of Jennrich’s (1969) uniform law of large numbers 

gives the first result of the lemma.  The second result follows from the first by applying 

Assumption 3.  Q.E.D. 

 Lemma 2:  As n , |→∞ ( ) 1/ 2 2ˆ ( , ) / ( , ) / | [(log ) /( ) ]i
XWXWf x w z f x w z o n n h h−∂ ∂ − ∂ ∂ =

20,1]

+  almost 

surely uniformly over . ( , )z w ∈[

 Proof:  This is a modified version of Theorem 2.2(2) of Bosq (1996) and is proved the 

same way as that theorem.  Q.E.D. 

 Lemma 3:  As , n →∞ 4 ( ) (1)n pS x o=  uniformly over [0,1]x∈ . 
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 Proof:  Let  be a partition of [  into m  intervals of length 1 .  For each 

, choose a point 

1,..., mI I 0,1] / m

1,...,j = m jjx I∈ .  Define ( ) ( ,XW
( )) ( , ) ( ,i i

XWXW
ˆ )f x w x w f x w−f− −∆ = .  Then for any 

0ε > ,  

( )1/ 2
4

1 1

( )1/ 2

1 1

( ) ( )1/ 2

1 1

41 42

( ) ( ) ( , )

( ) ( , )

( )[ ( , ) ( ,

( ) ( ).

m n
i

n i j iXW
j i

m n
i

i j j iXW
j i

m n
i i

i j i jXW XW
j i

n n

S x n U I x I f x W

n U I x I f x W

n U I x I f x W f x

S x S x

−−

= =

−−

= =

− −−

= =

= ∈ ∆

= ∈ ∆

+ ∈ ∆ − ∆

≡ +

∑ ∑

∑ ∑

∑ ∑ )]iW

j−

 

A Taylor series expansion gives 

( )1/ 2
42

1 1
( ) ( )[ ( , ) / ]( )

m n
i

n i j j iXW
j i

S x n U I x I f x W x x x−−

= =

= ∈ ∂∆ ∂∑ ∑ , 

where jx  is between jx  and x .  Therefore, it follows from Lemma 2 that 

( )1/ 2 1
42

1 1

1/ 2 1 1/ 2 2

1 1

2 1/ 2

| ( ) | | | ( ) | ( , ) /

[(log ) /( ) ] | | ( )

[(log ) /( ) / ]

m n
i

n i j XW
j i

m n

p i
j i

p

S x n m U I x I f x W x

n m o n n h h U I x I

O n mh n h m

−− −

= =

− −

= =

≤ ∈ ∂∆

≤ +

= +

∑ ∑

∑ ∑

|j i

j

∂

∈  

uniformly over .  In addition, for any [0,1]x∈ 0ε > , 

( )1/ 2
41

1[0,1] 1

( )1/ 2

1 1

sup | ( ) | max ( , )

( , ) .

n
i

n i XWj mx i

m n
i

i j iXW
j i

S x n U f x W

n U f x W

j iε ε

ε

−−

≤ ≤∈ =

−−

= =

  
> = ∆ >  

    

 
≤ ∆ > 

  

∑

∑ ∑

P P

P

 

But , and standard calculations for kernel estimators show that  ( )[ ( , )]i
i j iXWU f x W−∆E 0=
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( )1/ 2 2 1 4

1
( , ) [( ) ]

n
i

i iXW
i

Var n U f x W O nh h−− −

=

 
∆ = 

  
∑ +  

for any .  Therefore, it follows from Chebyshev’s inequality that [0,1]x∈

( )1/ 2 2 2 4 2

1 1
( , ) [ /( ) /

m n
i

i j iXW
j i

n U f x W O m nh mh ]ε ε ε−−

= =

 
∆ > = + 

  
∑ ∑P , 

which implies that 

2 2 4 2
41

[0,1]
sup | ( ) | [ /( ) / ]n

x
S x O m nh mhε ε ε

∈

 
> = + 

 
P . 

The lemma now follows by choosing  so that  as , where C  is a constant 

such that 0 .  Q.E.D. 

m 1/ 2
3n m C− → n →∞ 3

3C< < ∞

 Lemma 4:  As , n →∞ 6 ( ) (1)n pS x o=  uniformly over [0,1]x∈ . 

 Proof:  A Taylor series expansion gives 

( )1 1
6 0

1

ˆ ˆ( ) ( , )[ ( , ) ( , )] ( )
n

i
n i n i XW iXW

i
S x n G X f x W f x W nθ

/ 2
nθ θ θ−−

=

= −∑ − , 

where nθ  is between n̂θ  and 0θ .  The result follows from boundedness of Gθ , 

, and [ (  almost surely 

uniformly over .  Q.E.D. 

1/ 2
0

ˆ( )nn O− =

[0x∈

(1)p
2 1/ 2 ]θ θ ( ) 2ˆ ) ( , )] [ (log ) /( )i

i XW iXWf x W f x W O h n nh− − = +,

,1]

 Lemma 5:  Under 0H , ( ) ( ) (1)n n pS x B x o= +  uniformly over [0,1]x∈ .   

 Proof:  Under 0H , 2 5( ) ( ) 0n nS x S x= =  for all x .  Now apply Lemmas 1, 3, and 4.  

Q.E.D. 

 Proof of Theorem 1: 

 Under 0H , S x  uniformly over ( ) ( ) (1)n n pB x o= + [0,1]x∈  by Lemma 5.  Therefore,  

1 2
0

( ) (1)n n pB x dx oτ = +∫ . 

The result follows by writing 
1 2
0
[ ( ) ( ) ]n n

2B x B x d−∫ E x  as a degenerate U  statistic of order two. 

See, for example Serfling (1980, pp. 193-194).  Q.E.D. 

 Proof of Theorem 2:  ( )ˆˆ j j Oω ω| |− = Ω −Ω  by Theorem 5.1a of Bhatia, Davis, and 

McIntosh (1983).  Moreover, standard calculations for kernel density estimators show that 
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2 1/ 2ˆ [(log ) /( ) ]O n nhΩ−Ω = .  Part (i) of the theorem follows by combining these two results.  

Part (ii) is an immediate consequence of part (i).  Q.E.D. 

2
11 j jj

ω χ∞

=∑
( )X U= +

lim ( ) 1n
n

zατ
→∞

> =P

1

0
plim [( )(n
n

n Tτ−

→∞
∫

( )( ) (1)pTq x o+

, [0,1]x w∈

[0,1]x∈

1/ 2 1/ 2( )n nn S x n B− −

1/ 2 ( ) ( )( )p
nn S x Tq x− →

( ) ( ) (n n nS x B x S= +

[0,1]x∈

1
5

1
( ) (

[(log ) /(

n

n i
i

S x n X

O n

−

=

= ∆

=

∑

1
2

1
( ) (

n

n i
i

S x n X−

=

= ∆∑

Proof of Theorem 3:  Let zα  denote the 1 α−  quantile of the distribution of 

.  Because of Theorem 2, it suffices to show that if 1H  holds, then under sampling 

from Y g ,  

 . 

This will be done by proving that  

1 2)] 0q x d= >x . 

To do this, observe that by Jennrich’s (1969) uniform law of large numbers, 1/ 2
2 ( )nn S x− =  

 uniformly over .  Moreover, [0,1]x∈ 1
5 ( ) ( log )nS x o h n−= =

2 1( , ) [(log ) /( )x w o n nh− =

  a.s. 

uniformly over  because  a.s. uniformly 

over .  Combining these results with Lemma 5 yields 

1/ 6( log )o n n

( )ˆ i
XW
− / 2 ]( , ) XWf x w f

( ) ( )( ) (1)x Tq x o= + + p

dx

. 

A further application of Jennrich’s (1969) uniform law of large numbers shows that 

, so n .  Q.E.D. 
11 2
0
[( )( )]p

n Tq xτ− → ∫
Proof of Theorem 4:  Arguments like those leading to lemma 5 show that 

2 5) ( ) ( ) ( )( ) (1)n px S x W TG x oθγ′ ′+ − ∆ +E  

uniformly over .  Moreover,  

( )

2 1/ 2

ˆ)[ ( , ) ( , )]

) ]

i
i XWXWf x W f x W

nh

− − i

 

almost surely uniformly over x .  In addition 

) ( , )

( )( ) (1)

Xf x W

T x o= ∆ +

W i

 

almost surely uniformly over x .  Therefore, ( ) ( ) ( ) (1)n n pS x B z x oµ= + +  uniformly over x .  But 
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1
( ) ( ) ( )n j

j
jB x x bµ ψ

∞

=

+ =∑ x

j

, 

where j jb b µ= +  and  is defined as in the proof of Theorem 1.  The ’s are asymptotically 

distributed as independent 

jb jb

( , )j jN µ ω  variates.  Now proceed as in Serfling’s (1980, pp. 195-199) 

derivation of the asymptotic distribution of a 2nd-order degenerate U statistic.  Q.E.D. 

 Proof of Theorem 5:  Let gz α  denote the critical value under the model Y g , 

.  Let 

( )X U= +

ncg∈F ˆ gzεα  denote the corresponding estimated approximate critical value.  Observe that 

gz α  is bounded and ˆ gzεα  is bounded in probability uniformly over ncg∈F .   

We prove (2.12).  The proof of (2.13) is similar.  Define   

 and .  Then 

( )nD x = 3 6( ) ( )n nS x S x+

2 5[ ( ) ( )n nS x S x+ +E ] ( ) ( ) ( )n n nS x S x D x= −
2

nn nS Dτ = + .  Use the inequality  

(A1)   2 20.5 ( )a b b≥ − − 2a

with  and  to obtain na S= nb D=

22( ) 0.5n g n n gz D S zα ατ  > ≥ − > 
 

P P . 

For any finite , 0M >

( )

2 22 2

2 22

22

0.5 0.5 ,

0.5 ,

0.5 .

n n g n g n n

n g n n

n g n

D S z D z S S M

D z S S M

2

D z M S M

α α

α

α

  − ≤ = ≤ + ≤  
  

 + ≤ + > 
 

 ≤ ≤ + +  
 

P P

P

P P




>

 

nS  is bounded in probability uniformly over ncg∈F .  Therefore, for each 0ε >  there is 

 such that for all Mε < ∞ M Mε>  

( )22 20.5 .5n n g n gD S z D z Mα α ε − ≤ ≤ ≤ + + 
 
P P . 

Equivalently, 

( )22 20.5 .5n n g n gD S z D z Mα α ε − > ≥ > + − 
 
P P  

and 
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(A2) ( )2( ) .5n g n gz D z Mα ατ ε> ≥ > + −P P . 

Now 

( )1/ 2
2 5

1

ˆ( ) ( )] [ ( ) ( , )] ( , )
n

i
n n i i g XW

i
S x S x n g X G X f x Wθ −−

=

+ = −∑ i . 

Therefore, 

1/ 2 2
2 5

1
[ ( ) ( )] [ ( ) ( , )][ ( , ) ( )]

n

n n i i g XW i n
i

S x S x n g X G X f x W h R xθ−

=

+ = − +∑E E , 

where ( )nR x  is nonstochastic, does not depend on g , and is bounded uniformly over .  

It follows that  

[0,1]x∈

1/ 2 1/ 2 2
2 5[ ( ) ( )] ( )( )n n gS x S x n Tq x O n h qg + = +  E  

and 

  1/ 2
2 5[ ( ) ( )] 0.5 ( )( )n n gS x S x n Tq x+ ≥E

uniformly over  for all sufficiently large . ncg∈F n

 Now 

( )1/ 2 1
3 6

[0,1], 1

ˆˆ( ) ( ) sup ( , ) ( , ) ( , )
nc

n
i

n n n g XW
g i

S x S x n G G n f x W
ξ

ξ θ ξ θ −−

∈ ∈ =

+ ≤ − ∑
F

i . 

Therefore, it follows from the definition F  and uniform convergence of nc
( )ˆ i
XWf −  to XWf  that 

3 6 (1)n n pS S O+ =  uniformly over ncg∈F .  A further application of (A1) with  and 

 gives 

( )n xa D=

2[ ( )nb S x S= +E 5 ( )n x ]

(A3) 
22 .125 (1)n gD n Tq O≥ + p  

uniformly over  as .  Inequality (2.12) follows by substituting (A3) into (A2) and 

choosing C  to be sufficiently large.  Q.E.D. 

ncg∈F n →∞
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Table 1:  Results of Monte Carlo Experiments 
 
 

                             Empirical Probability    
Null    Alt.               that H0 Is Rejected Using  
Model  Model   ρ      η     nτ      t  test    Bierens’    
_     ____________________            __     Test  ____ 

 
H0 is true 

 
(4.1)          0.8   0.1   0.051   0.052     0.053   
               0.8   0.5   0.030   0.034     0.029   
               0.7   0.1   0.049   0.052     0.053   

 
(4.2)          0.8   0.1   0.053   0.040     0.054   
               0.8   0.5   0.046   0.077     0.043   
               0.7   0.1   0.056   0.036     0.036   

 
H0 is false 

 
(4.1)  (4.2)   0.8   0.1   0.658   0.714     0.470   
               0.8   0.5   0.721   0.827     0.466   
               0.7   0.1   0.421   0.444     0.280   

 
(4.1)  (4.3)   0.8   0.1   0.684   0.671     0.479   
               0.8   0.5   0.663   0.580     0.464   
               0.7   0.1   0.424   0.412     0.274   

 
(4.2)  (4.3)   0.8   0.1   0.510   0.566     0.038   
               0.8   0.5   0.972   0.987     0.030   
               0.7   0.1   0.527   0.590     0.059   
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