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Abstract

We propose a test of the hypothesis of stochastic monotonicity. This hypothesis is of
interest in many applications in economics. Our test is based on the supremum of a rescaled
U-statistic. We show that its asymptotic distribution is Gumbel. The proof is difficult
because the approximating Gaussian stochastic process contains both a stationary and a
nonstationary part and so we have to extend existing results that only apply to either
one or the other case. We also propose a refinement to the asymptotic approximation
that we show works much better in finite samples. We apply our test to the study of
intergenerational income mobility.
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1 Introduction

Let Y and X denote two random variables whose joint distribution is absolutely continuous

with respect to Lebesgue measure on R2. Let FY |X(·|x) denote the distribution of Y condi-

tional on X = x. This paper is concerned with testing the stochastic monotonicity of FY |X .

Specifically, we consider the hypothesis

(1) H0 : For each y ∈ Y, FY |X(y|x) ≤ FY |X(y|x′) whenever x ≥ x′ for x, x′ ∈ X ,

where Y and X , respectively, are the supports of Y and X. We propose a test statistic and

obtain asymptotically valid critical values. To our best knowledge, we are not aware of any

existing test for (1) in the literature.

This hypothesis can be of interest in a number of applied settings. If X is some policy,

dosage, or other input variable, one might be interested in testing whether its effect on the

distribution of Y is increasing in this sense. Also, one can test whether stochastic monotonicity

exists in well-known economic relationships such as expenditures (Y ) vs. incomes (X) at

household levels, wages (Y ) vs. cognitive skills (X) using individual data, outputs (Y ) vs. the

stock of capital (X) at the country level, sons’ incomes (Y ) vs. fathers’ incomes (X) using

family data, and so on.

The notion of stochastic monotonicity is important in instrumental variables estimation.

Manski and Pepper (2000) have introduced monotone instrumental variables assumptions that

hold when the average outcome varies monotonically across the levels of instrumental variables.

Small and Tan (2007) have used the stochastic monotonicity condition that does not require

that a monotonic increasing relationship hold within individuals, thus allowing for “defiers” in

treatments.

Blundell, Gosling, Ichimura, and Meghir (2007) have recently adopted this hypothesis and

obtained tight bounds on an unobservable cross-sectional wage distribution thus allowing them

to characterize the evolution of its inequality over time. Specifically, they assumed that the

distribution of wages W for employed given observed characteristics X and an instrument

Z is increasing in Z. Their instrument was the out of work income. They derived a bound

on the implied distribution of wages given characteristics under this assumption of stochastic

monotonicity. They also suggested a test of this hypothesis based on the implied bounds, using

the bootstrap to calculate critical values. They found that the hypothesis was not rejected on

their data at standard significance levels, indeed the p-values were very high. They did not

provide any theory to justify their critical values, and moreover did not test the monotonicity

hypothesis itself but an implication of it.

This concept arises often in dynamic economic models. Thus suppose that Y = Yt+1 and
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X = Yt and Yt is a Markov process so that FY |X = Ft+1|t is the transition measure of the process

Yt. In that case the property, along with mild technical conditions, implies that the process

has a stationary distribution. The influential monograph of Lucas and Stokey (1989) uses the

stochastic monotonicity property frequently in solving dynamic optimization problems of the

Markov type and characterizing the properties of the solution. It is particularly important in

problems where nonconvexities give rise to discontinuous stochastic behaviour and it provides

a route to proving the existence of stationary equilibria not requiring smoothness. Hopenhayn

and Prescott (1992) argue that it arises ‘in economic models from the monotonicity of decision

rules or equilibrium mappings that results from the optimizing behaviour of agents’. Pakes

(1986) assumed that the distribution of the return to holding a patent conditional on current

returns was nonincreasing in current returns. Consequently he showed that the optimal renewal

policy took a very simple form based on the realization of current returns compared with the

cost of renewing. Ericson and Pakes (1995), Olley and Pakes (1996), and Buettner (2003) have

all used a similar property in various dynamic models of market structures. It is possible to

test these restrictions with our methods given suitable data.

Testing stochastic monotonicity can be relevant for testing the existence of firms’ strategic

behaviors in industrial organization. Recently, Ellison and Ellison (2007) have shown that

under some suitable conditions, investment levels are monotone in market size if firms are not

influenced by strategic entry deterrence and non-monotone if influenced by a desire to deter

entry. Ellison and Ellison (2007) have also developed a couple of monotonicity tests, based on

Hall and Heckman (2000), and have implemented them using pharmaceutical data. In addition

to the tests used in Ellison and Ellison (2007), our test can be adopted to test the existence of

strategic entry deterrence.

We propose a simple test of hypothesis (1) for observed or (partially) estimated i.i.d. data.

Our statistic is based on the supremum of a rescaled second order U-process indexed by two

parameters x and y, Nolan and Pollard (1987). It generalizes the corresponding statistic

introduced by Ghosal, Sen and van der Vaart (2000) for testing the related hypothesis of

monotonicity of a regression function. Our first contribution is to prove that the asymptotic

distribution of our test statistic is a Gumbel with certain nonstandard norming constants,

thereby facilitating inference using critical values obtained from the limiting distribution. We

also show that the test is consistent against all alternatives. The proof technique is quite

complicated and novel because the approximating Gaussian stochastic process contains both a

stationary part (corresponding to x) and a nonstationary part (corresponding to y) and so we

have to extend existing results that only apply to either one or the other case. For example,

Stute (1986) establishes the weak convergence to a Brownian Bridge of a conditional empirical
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process (effectively holding x constant in our problem). In the other direction, using the local

strong invariance principle of Rio (1994), Ghosal, Sen and van der Vaart (2000) establish

local (in x in our notation) weak convergence of an empirical process to a stationary limit,

generalizing the seminal work of Bickel and Rosenblatt (1973). The most closely related work

to ours is Beirlant and Einmahl (1996) who consider the asymptotics of some functional of a

conditional empirical process except that they consider a maximum over a discrete partition of

the support of the covariate. See also Einmahl and Van Keilegom (2006). We use some results

of Piterbarg (1996) to establish the approximation. These results can be of use elsewhere. See

Appendix A.1 on some informal discussion on the proof technique.

One issue with the extreme value limiting distributions is known to be the poor quality

of the asymptotic approximation in the sense that the error declines only at a logarithmic

(in sample size) rate. The usual approach to this has been to use the bootstrap, which pro-

vides an asymptotic refinement by removing the logarithmic error term and giving an error

of polynomial order, Hall (1993). In a special case of ours (of a stationary Gaussian process),

Piterbarg (1996) provides a higher order analytic approximation to the limiting distribution

that involves including the (known) logarithmic factor in the first order error. His Theorem

G1 shows that this corrected distribution is closer to the actual distribution and indeed has an

error of polynomial (in sample size) magnitude. We apply this analysis to our more compli-

cated setting and compute the corresponding “correction” term. Our simulation study shows

that this approach gives a noticeable improvement in size. An alternative approach is to use

a standard bootstrap resample applied to the (recentered) statistic (or a bootstrap resample

imposing independence between Y and X) to improve the size of the test, motivated by the

reasoning of Hall (1993). This method should also yield an asymptotic refinement, Horowitz

(2001), but is much more time consuming than using the asymptotic critical values.

The hypothesis (1) implies that the regression function E(Y |X = x), when it exists, is

monotonic increasing. It also implies that all conditional quantile functions are increasing. It

is a strong hypothesis but can be reduced in strength by limiting the set of X and Y for which

this property holds. See, e.g. Bowman, Jones and Gijbels (1998), Hall and Heckman (2000),

Ghosal, Sen and van der Vaart (2000), and Gijbels, Hall, Jones and Koch (2000) for existing

tests of the hypothesis that E(Y |X = x) is increasing in x. Note that the transformation

regression model structure considered in Ghosal, Sen and van der Vaart (2000) i.e., φ(Y ) =

m(X) + ε, where ε is independent of X and both φ,m are monotonic functions, actually

implies stochastic monotonicity. See also Ekeland, Heckman, and Nesheim (2004). Also, a test

of the hypothesis (1) can be viewed as a continuum version of the stochastic dominance test

(see Linton, Maasoumi, and Whang (2005) and references therein for details on the stochastic
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dominance test).

The remainder of the paper is organized as follows. Section 2 defines our test statistic and

Section 3 states the asymptotic results and describes how to carry out the test. Section 4

contains results of some Monte Carlo experiments. Section 5 illustrates the usefulness of our

test by applying it to the study of intergenerational income mobility. Section 6 considers a

multivariate extension and Section 7 concludes. All the proofs are in the Appendix.

2 The Test Statistic

This section describes our test statistic. Let {(Yi, Xi) : i = 1, . . . , n} denote a random sample

from (Y, X). We suppose throughout that the data are i.i.d., but the main result also holds

for the Markov time series case where Yi = Yt+1 and Xi = Yt. We actually suppose that

Xi is not observed but an estimate X̂i = ψ(Wi, θ̂) is available, where Xi = ψ(Wi, θ0) is a

known function of observable Wi for some true parameter value θ0 and θ̂ is a root-n consistent

estimator thereof. The vector Wi can contain discrete and continuous variables. Let 1(·)
denote the usual indicator function and let K(·) denote a one-dimensional kernel function with

a bandwidth hn. Consider the following U -process:

Ûn(y, x) =
2

n(n− 1)

∑

1≤i<j≤n

[1(Yi ≤ y)− 1(Yj ≤ y)]sgn(X̂i − X̂j)Khn(X̂i − x)Khn(X̂j − x),

where Khn(·) = h−1
n K(·/hn) and sgn(x) = 1(x > 0) − 1(x < 0). Note that the U -process

Ûn(y, x) can be viewed as a locally weighted version of Kendall’s tau statistic, applied to

1(Y ≤ y) and that Ûn(y, x) is related to the U -process considered in Ghosal, Sen, and van der

Vaart (2000, equation (2.1)).

Let Un(y, x) denote Ûn(y, x) computed using Xi instead of X̂i. First, notice that under

regularity conditions including smoothness of FY |X(y|x), as n →∞,

h−1
n EUn(y, x) → Fx(y|x)

(∫ ∫
|u1 − u2|K(u1)K(u2)du1du2

)
[fX(x)]2,

where Fx(y|x) is a partial derivative of FY |X(y|x) with respect to x. Therefore, since θ̂ is a

consistent estimator, under the null hypothesis such that Fx(y|x) ≤ 0 for all (y, x) ∈ Y × X ,

Ûn(y, x) is less than or equal to zero on average for large n. Under the alternative hypothesis

such that Fx(y|x) > 0 for some (y, x) ∈ Y × X , a suitably normalized version of Ûn(y, x) can

be very large. In view of this, we define our test statistic as a supremum statistic

(2) Sn = sup
(y,x)∈Y×X

Ûn(y, x)
cn(x)
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with some suitably defined cn(x), which may depend on (X1, . . . , Xn) but not on (Y1, . . . , Yn).

The U-statistic structure suggests that we use the scaling factor cn(x) = σ̂n(x)/
√

n, where

σ̂2
n(x) =

4
n(n− 1)(n− 2)

∑

1≤i 6=j 6=k≤n

sgn(X̂i − X̂j)sgn(X̂i − X̂k)

×Khn(X̂j − x)Khn(X̂k − x)[Khn(X̂i − x)]2.

Remark 2.1. (i) An alternative class of test statistics is based on explicit estimation

of conditional c.d.f.’s thus, consider Tn = supy∈Y,x,x′∈X :x≥x′ [F̂Y |X(y|x) − F̂Y |X(y|x′)], where

F̂Y |X(y|x) is some e.g., kernel estimate of the conditional c.d.f., see Hall, Wolff, and Yao

(1999). The advantage that Tn has is that it does not require smoothness of FY |X(y|x). The

disadvantage is that its limiting distribution is not pivotal and it is not known how to make

it so. (ii) One might also be interested in testing second or higher order dominance, Levy

(2006), of the conditional distribution functions, which can be achieved by straightforward

modification of either Sn or Tn.

Remark 2.2. In applications one may also be interested in the following extension where

there are multiple covariates. Specifically, suppose that X is replaced by X, Z, where Z is a

vector, and the hypothesis is that

H0 : For each y ∈ Y, FY |X,Z(y|x, z) ≤ FY |X,Z(y|x′, z)

whenever x ≥ x′ for x, x′ ∈ X and z ∈ Z.

This hypothesis allows the variable Z to affect the response in a general way. The hypothesis

is non-nested with (1) for the same reason that a conditional independence hypothesis is non-

nested with an independence hypothesis, see Dawid (1979) and Phillips (1988). In the case

that Z are discrete random variables, our test statistic can be trivially adapted to test this

hypothesis. If Z included some continuous random variables, then a modified version of our

test statistic might work but its asymptotic distribution would be different.

Remark 2.3. As an alternative norming constant, one can use cn(x) = σ̃n(x)/
√

n, where

σ̃2
n(x) = 4h−1

n

[∫
q2(u)K2(u)du

]
× f̂3

X(x),

q(u) =
∫

sgn(u − w)K(w)dw and f̂X(x) is the kernel density estimator of fX(x). It can be

shown easily that σ̃n(x) is asymptotically equivalent to σ̂n(x). In finite samples, σ̂n(x) may

worker better than σ̃n(x) since the former is based on a more direct sample analog but the

latter is easier to compute.

Remark 2.4. In some applications, it might be more desirable to assume that Xi =

ψ(Wi, θ0)+ εi, (i = 1, . . . , n), where εi is an unobserved random variable. In this case, our test
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does not apply with X̂i = ψ(Wi, θ̂). In order to resolve this case, one could assume certain

regularity conditions that ensure that the stochastic monotonicity between Y and ψ(W, θ0)

holds if the stochastic monotonicity between Y and X holds (e.g., the monotone likelihood

ratio property as in Proposition 2 of Ellison and Ellison, 2007).

3 Asymptotic Theory

This section provides the asymptotic behaviour of the test statistic when the null hypothesis

is true and when it is false. In particular, we determine the asymptotic critical region of the

test and show that the test is consistent against general fixed alternatives at any level.

3.1 Distribution of the Test Statistic

Since the hypothesis (1) is a composite hypothesis, it is necessary to find a case when the

type I error probability is maximized asymptotically. First of all, under regularity conditions

assumed below, it can be shown that

(3) Ûn(y, x)− Un(y, x) = Op(n−1/2) and h1/2
n σ̂n(x) = Op(1)

uniformly over (y, x) (see Lemmas A.6, A.7, and A.9). Then if hn → 0,

Ûn(y, x) = Un(y, x)[1 + op(1)](4)

uniformly over (y, x). Thus, the asymptotic distribution of the test statistic Sn is the same as

if Xi were observed directly.

Now define

Ũn(y, x) =
2

n(n− 1)

∑

1≤i<j≤n

[FY |X(y|Xi)− FY |X(y|Xj)]sgn(Xi −Xj)

×Khn(Xi − x)Khn(Xj − x).

Since E[Un(y, x)− Ũn(y, x)|X1, . . . , Xn] = 0, under regularity conditions assumed below, using

the empirical process method (see, e.g., Ghosal, Sen, and van der Vaart (2000, Appendix) and

van der Vaart and Wellner (1996)), it can be shown that

Un(y, x)− Ũn(y, x) = Op

[(
log n

nhn

)1/2
]

and Ũn(y, x) = Op (hn)

uniformly over (y, x). Then if log n/(nh3
n) → 0,

Un(y, x) = Ũn(y, x)[1 + op(1)](5)
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uniformly over (y, x).

Under the null hypothesis (1), note that

[FY |X(y|Xi)− FY |X(y|Xj)]sgn(Xi −Xj) ≤ 0.(6)

Hence, by (4), (5), and (6), the type I error probability is maximized asymptotically when

Fx(y|x) ≡ 0, equivalently FY |X(y|x) = FY (y) for any (y, x) ∈ Y × X . Therefore, in order to

derive the limiting distribution under the null hypothesis, we consider the case that Fx(y|x) ≡
0, equivalently FY |X(y|x) = FY (y) for any (y, x). That is, Y and X are independent. Further,

assume that without loss of generality, the support of X is X = [0, 1].

To establish the asymptotic null distribution of the test statistic, we make the following

assumptions, which are standard in the literature on nonparametric estimation and testing.

Assumption 3.1. Assume that (a) Y and X are independent; (b) X = [0, 1]; (c) the distribu-

tion of X is absolutely continuous with respect to Lebesgue measure and the probability density

function of X is continuously differentiable and strictly positive in X ; (d) the distribution of Y

is absolutely continuous with respect to Lebesgue measure; (e) K is a second-order kernel func-

tion with support [−1, 1], and is twice continuously differentiable; (f) θ0 is a finite-dimensional

parameter and ||θ̂ − θ0|| = Op(n−1/2); (g) for each w, ψ(w, θ) is continuously differentiable

with respect to θ; (h) for any (Wi, x, hn), there exists a positive constant CL < ∞ such that

|ξ(Wi, x, θ1, hn) − ξ(Wi, x, θ2, hn)| ≤ CL ‖θ1 − θ2‖ for all θ1 and θ2 in a neighborhood of θ0,

where

ξ(Wi, x, θ, hn) =
∫

sgn[ψ(Wi, θ)− ψ(w̃, θ)]Khn [ψ(w̃, θ)− x]dFW (w̃).

To describe the limiting distribution of Sn, recall that q(u) =
∫

sgn(u − w)K(w)dw. Let

βn be the largest solution to the following equation:

(7) h−1
n

(
8λ

π

)1/2

βn exp(−2β2
n) = 1,

where

λ = −6
∫

q(x)K2(x)K ′(x)dx +
∫

q2(x)K(x)K ′′(x)dx∫
q2(x)K2(x)dx

.(8)

The following theorem gives the asymptotic distribution of the test statistic when the null

hypothesis is true.

Theorem 3.1. Let Assumption 3.1 hold. Let hn satisfy hn log n → 0, nh3
n/(log n) →∞, and

nh2
n/(log n)4 →∞. Then for any x,

(9) Pr (4βn(Sn − βn) < x) = exp
{
− exp

(
−x− x2

8β2
n

)[
1 +

x

4β2
n

]}
+ o (1) .
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In particular,

lim
n→∞Pr (4βn(Sn − βn) < x) = exp

(−e−x
) ≡ F∞(x).

Remark 3.1. It is necessary to compute βn in (7) to construct a test based on Theorem

3.1. The constant λ in (8) can be computed easily for commonly used kernels that are twice

differentiable and have compact support. For example, λ = 1177/118 ≈ 9.975 for the Epanech-

nikov kernel K(u) = 0.75(1 − u2)1(|u| ≤ 1) and λ = 131689/11063 ≈ 11.904 for the biweight

kernel K(u) = (15/16)(1− u2)21(|u| ≤ 1). It is straightforward to show that

(10) βn =
(

1
2

log
[
h−1

n c∗
])1/2

+
log

[
1
2 log

[
h−1

n c∗
]]

8
(

1
2 log

[
h−1

n c∗
])1/2

+ o

[
1

(
log

[
h−1

n c∗
])1/2

]
.

where c∗ = (8λ/π)1/2. Then one can use an approximation to βn by the first two terms on the

right side of (10) or solve the nonlinear equation (7) numerically.

Remark 3.2. We note that the regularity conditions on hn are not very restrictive. Band-

width sequences hn that converge to zero at a rate of n−η, η < 1/3, or (log n)−ν , ν > 1, satisfy

the conditions imposed in Theorem 3.1. We might also consider data-dependent bandwidths

such as provided by cross-validation, for example. That is, let ĥn be a data-dependent sequence

such that ĥn/hn
p→ 1, where hn is a deterministic sequence that satisfies the assumptions of

Theorem 3.1. In view of the results in Einmahl and Mason (2005), one expects that, under

some suitable regularity conditions, the asymptotic distribution of the test Sn with data de-

pendent bandwidths ĥn is the same as the one given in Theorem 3.1. However, it is beyond

the scope of this paper to provide such regularity conditions and corresponding proofs.

As in Theorem 4.2 of Ghosal, Sen, and van der Vaart (2000), the theorem suggests that

one can construct a test with an asymptotic level α:

(11) Reject H0 if F∞(4βn(Sn − βn)) ≥ 1− α

for any 0 < α < 1. Alternatively, one can construct an α-level test with (9):

(12) Reject H0 if Fn(4βn(Sn − βn)) ≥ 1− α,

where for each n, Fn(x) is the ‘distribution function’ of the form1

Fn(x) = exp
{
− exp

(
−x− x2

8β2
n

)[
1 +

x

4β2
n

]}
.

Although (11) yields the correct size asymptotically, the results of Hall (1979,1991) suggest

that Pr[(11) is true|H0] = α+O(1/ log n), which is rather slow for practical purposes. However,
1The approach in (12) to defining the critical region is motivated partly by the normalizing transformation

approach, Phillips (1979).
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the results of Piterbarg (1996, Theorem G1) suggest that Pr[(12) is true|H0] = α+O(n−q) for

some q > 0, which is potentially much better. In the next section, we carry out Monte Carlo

experiments using both critical regions (11) and (12). In our experiments, a test based on (12)

performs much better in finite samples and yields size quite close to the nominal value.

An alternative approach to constructing critical values would be to use a bootstrap resam-

pling method (that imposes independence between X and Y ) and then to reject if F∞(4βn(Sn−
βn)) exceeds the 1−α critical value of the bootstrap distribution of F∞(4βn(S∗n− βn)), where

S∗n is the bootstrapped test statistic, Horowitz (2001). Hall (1993) showed in the related con-

text of density estimation that a bootstrapped test yields error of order n−q for some q > 0.

We expect a similar result can be established here. The bootstrap approach is much more

computationally demanding than the asymptotic approach outlined above.

We now turn to the consistency of the test. It is straightforward to show that the test

specified by (11) or (12) is consistent again general alternatives.

Theorem 3.2. Assume that nh3
n/ log h−1

n →∞. If Fx(y|x) > 0 for some (y, x) ∈ Y ×X , then

the test specified by (11) or (12) is consistent at any level.

We end this subsection by mentioning that the test and its asymptotic properties obtained

in this section can be extended easily to the case when the null hypothesis in (1) holds only for

Y and X1, where X1 is a compact interval and a strict subset of X . In this case, Fx(y|x) ≡ 0

does not imply that Y and X are independent; however, this would not matter since our

test statistic depends only on observations inside an open interval containing X1. Thus, the

asymptotic properties of the supremum test statistic would be the same with X1 except that

h−1
n in (7) and (10) is replaced with measure(X1)/hn.

4 Monte Carlo Experiments

This section presents the results of some Monte Carlo experiments that illustrate the finite-

sample performance of the test. For each Monte Carlo experiment, X was independently

drawn from a uniform distribution on [0, 1]. To evaluate the performance of the test under the

correct null hypothesis, Y ≡ U was generated independently from X, where U ∼ N(0, 0.12).

In addition, to see the power of the test, Y was also generated from Y = m(X) + U , where

m(x) = x(1− x). The simulation design considered here is similar to that of Ghosal, Sen, and

van der Vaart (2000). To save computing time the test statistic was computed by the maximum

of
√

nUn(y, x)/σ̃n(x) over Y ×X , where Y = {Y1, Y2, . . . , Yn}, X = {0.05, 0.10, . . . , 0.90, 0.95},
and σ̃n(x) was defined in Remark 2.3. The kernel function was K(u) = 0.75(1 − u2) for

−1 ≤ u ≤ 1. The simulations used sample sizes of n = 50, 100, 200 and 500, and all the
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simulations were carried out in GAUSS using GAUSS pseudo-random number generators. For

each simulation, the number of replications was 1500.

Table 1 reports results of Monte Carlo experiments using critical values obtained from the

asymptotic expansion Fn of the limiting distribution (see (12)) and also using those from the

type I extreme value distribution (see (11)). The nominal level was 5%. First, consider the

first panel of the table that shows results with the critical values from Fn. When the null

hypothesis is true, each rejection proportion is below the nominal level for all the bandwidths

and is maximized at n = 500 and hn = 0.5. It can be seen that the best hn is decreasing with

the sample size and the performance of the test is less sensitive to hn as n gets large. When

the null hypothesis is false, for all values of hn, the powers of the test are high for n = 50,

almost one for n = 100, and one for n = 200. The performance of the test with critical values

from the type I extreme value distribution is uniformly worse, as seen from the second panel

of the table. Hence, our simulation study shows that the approximation based on (12) gives a

substantial improvement in size.

In addition, Table 1 gives results with bootstrap critical values. Each bootstrap resample

is generated by random sampling of Y and X separately with replacement (i.e., imposing in-

dependence between Y and X). Because of very lengthy computation times, the Monte Carlo

experiments are carried out with only n = 50 and only 500 replications in each experiment.

There were 500 bootstrap resampling for each replication in the Monte Carlo experiment. Not

surprisingly, it can be seen that when the null hypothesis is true, the difference between actual

and nominal rejection proportions are smaller than either of asymptotic critical values. As

a result, the test with bootstrap critical values has better power. In view of these experi-

ment results, we recommend using bootstrap critical values when the sample size is small or

moderate.

5 Application to Intergenerational Income Mobility

This section presents an empirical example in which the test statistic Sn is used to test a

hypothesis about the stochastic monotonicity between sons’ incomes and parental incomes.

See Solon (1999, 2002) for a detailed survey on intergenerational income mobility in the US

and other countries. A large body of this literature focuses on the extent to which sons’

incomes are correlated with fathers’ or parental incomes. Testing the hypothesis of stochastic

monotonicity in (1) with Y being sons’ incomes and X parental incomes can give further

insights into understanding of the intergenerational income mobility. For example, if one fails

to reject the hypothesis, then that would imply that sons’ incomes with high parental incomes

are higher not only on average but also in the stochastic dominance sense than those with low
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parental incomes.2

We use data from the Panel Study of Income Dynamics (PSID), which has been used

frequently to study mobility after a highly influential paper by Solon (1992). In particular, we

use Minicozzi’s (2003) data extract that is available on the Journal of Applied Econometrics

website. The Y variable is the logarithm of son’s averaged full-time real labor income when age

28 and age 29 and the X variable is the logarithm of parental predicted permanent income.3

Figure 1 shows local linear quantile regression estimates of sons’ log incomes on parental

log incomes. The kernel function used in this estimation is the same as the one used in the

Monte Carlo experiment. For each quantile, the bandwidth is chosen by a simple rule of thumb

suggested by Fan and Gijbels (1996, p.202): 0.59 (quantile=10%), 0.55 (25%), 0.55 (50%), 0.56

(75%), and 0.69 (90%). It can be seen that all the conditional quantiles of sons’ incomes are

increasing functions of parental incomes for most of the range of the support of X. This

suggests that there may be stochastic monotonicity between sons’ and parental incomes.

To test this formally, the test statistic Sn is computed by the maximum of
√

nUn(y, x)/σ̂n(x)

over Y × X , where Y = {Y1, Y2, . . . , Yn}, and X = [8.48, 10.85], where two end points of X
correspond to 1 and 99 percentiles of parental log permanent incomes. The same kernel is used

with a bandwidth of hn = 0.55, which is used to estimate the local linear median estimator

above. The test gives Sn = 0.5227. The normalizing constant βn in (7) and (10) is obtained

with the assumption that X = [0, 1], but it is trivial to extend this to a more general case,

X = [a, b]. One just needs to replace h−1
n in (7) and (10) with (b − a)/hn. After this simple

modification, the critical values at 10% nominal level are 1.71 using (11) and 1.72 using (12),

respectively. Changing the value of the bandwidth to 0.75hn or to 1.25hn did not change

this conclusion. Thus, we fail to reject the null hypothesis of stochastic monotonicity at any

conventional level and this confirms findings from Figure 1.

6 Testing for Stochastic Monotonicity in a Vector

In this section, we extend our analysis to the case where monotonicity in a vector is of interest.

Let X be a d-dimensional vector of random variables whose distribution is absolutely continuous
2As a related paper, Dearden, Machin, and Reed (1997) investigate the intergenerational income mobility in

Britain using the quantile transition matrix approach.
3Minicozzi (2003) computes sons’ average incomes only when both incomes at ages 28 and 29 are available

and regards those with only one or no income record as censored observations. In our empirical work, we define
sons’ average incomes as the average of observed incomes. Hence, sons’ average incomes are defined for those
with only one income record at age 28 or at age 29. Using our definition, only 12 cases have missing sons’
incomes. This is only 2% of 628 original observations of Minicozzi’s (2003) data extract. Hence, censoring
is not a serious issue with our definition. Parental permanent incomes are predicted values. The asymptotic
distribution of Sn is the same as long as a parametric model used by Minicozzi (2003, equations (8) and (9))
gives consistent estimates of parental permanent incomes.
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with respect to Lebesgue measure on Rd. We consider the following hypothesis, which is a

multivariate generalization of (1),

(13) H0 : For each y ∈ Y, FY |X(y|x) ≤ FY |X(y|x′)

whenever xj ≥ x′j for all j = 1, . . . , d and for x ≡ (x1, . . . , xd),x′ ≡ (x′1, . . . , x
′
d) ∈ X .

The hypothesis (13) restricts the stochastic ordering FY |X(y|x) only when all components

of x are ordered componentwise. In other words, using the terminology of Manski (1997),

testing (13) amounts to testing the stochastic semi-monotonicity of FY |X. The hypothesis (13)

can be of interest in a number of empirical applications. For example, Y is the output and X

is a vector of inputs used for production, Manski (1997).

We now describe a test statistic for (13). Let {(Yi,Xi) : i = 1, . . . , n} denote a random

sample from (Y,X). As in Section 2, we assume that Xi is not observed, but X̂i is estimated

with a root-n consistent estimator of θ̂. For u ≡ (u1, . . . , ud), let K(·) denote a d-dimensional

product of univariate kernel functions: K(u) =
∏d

j=1 K(uj) and let I(u > 0) =
∏d

j=1 1(uj > 0).

Consider the following U -process:

Ûn(y,x) =
2

n(n− 1)

∑

1≤i<j≤n

[1(Yi ≤ y)− 1(Yj ≤ y)]sgn(X̂i − X̂j)Khn(X̂i − x)Khn(X̂j − x),

where Khn(·) = h−d
n K(·/hn) and sgn(x) = I(x > 0)− I(x < 0). Note that sgn(X̂i − X̂j) has

a nonzero value only when semi-monotonicity between X̂i and X̂j holds.

Again, we define our test statistic as a supremum statistic

(14) Sn = sup
(y,x)∈Y×X

Ûn(y,x)
ĉn(x)

,

with ĉn(x) = ŝn(x)/
√

n, where

ŝ2
n(x) =

4
n(n− 1)(n− 2)

∑

1≤i6=j 6=k≤n

sgn(X̂i − X̂j)sgn(X̂i − X̂k)

Khn(X̂j − x)Khn(X̂k − x)[Khn(X̂i − x)]2.

Under the null hypothesis (13), note that

[FY |X(y|Xi)− FY |X(y|Xj)]sgn(Xi −Xj) ≤ 0.(15)

Thus, using arguments similar to those used in Section 3.1, it can be shown that the type I

error probability is maximized asymptotically when the inequality (15) is equality for all i and

j. This equality occurs when Y is independent of X. Therefore, in order to derive the limiting

distribution under the null hypothesis, we consider the case that Y and X are independent.
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Assumption 6.1. Assume that Y and X are independent and the support of X is X = [0, 1]d.

Let conditions (c)-(h) of Assumption 3.1 hold.

Let bn be the largest solution to the following equation:

(16) h−d
n 2−(d−1)

(
8λ

π

)d/2

bd
n exp(−2b2

n) = 1,

where λ is defined in (8). The following theorem is a generalization of Theorem 6.1.

Theorem 6.1. Let Assumption 6.1 hold. Let hn satisfy hn log n → 0, nh3d
n /(log n) →∞, and

nhd+1
n /(log n)2(d+1) →∞. Then for any x,

(17) Pr (4bn(Sn − bn) < x) = exp

{
− exp

(
−x− x2

8b2
n

)[
1 +

x

4b2
n

]d
}

+ o (1) .

In particular,

lim
n→∞Pr (4bn(Sn − bn) < x) = exp

(−e−x
) ≡ F∞(x).

Then a test with asymptotically valid critical values can be constructed as in Section 3.1.

Furthermore, it can be shown that the corresponding test is consistent at any level against

fixed alternatives, provided that nh3d
n / log h−1

n →∞.

7 Conclusions

We have proposed a test for stochastic monotonicity and have developed the asymptotic null

distribution of our test statistic. There remain several research topics we have not addressed

in this paper. First, we have only established the consistency of the test against fixed general

alternatives. It would be useful to establish asymptotic results regarding local powers of the

test. Second, we have not considered an “optimal” choice of the bandwidth used in the test

statistic. Our theoretical results for the asymptotic null distribution and the consistency of the

test do not distinguish different bandwidths, provided that a sequence of bandwidths satisfies

some weak regularity conditions on rates of convergence. Thus, it would be necessary to develop

a finer asymptotic result to discuss an optimal bandwidth choice. Doing this and developing a

corresponding data-dependent bandwidth choice are topics for future research. Using a method

similar to that used in this paper, we can extend the supremum test of Ghosal, Sen, and van

der Vaart (2000), who considered the monotonicity of the regression function with a scalar

explanatory variable, to the multivariate setup. This is another topic for future research.
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A Appendix: Proofs

A.1 Informal Discussion of the Proof Technique

Although the test is easy to implement, proving Theorem 3.1 involves several lengthy steps.

Since establishing these steps requires techniques that are not commonly used in econometrics,

we now give an informal description of our proof techniques and provide some discussions

behind them. Specifically, our proof of Theorem 3.1 consists of the following three steps:

1. The asymptotic approximation of Ûn(y, x)/cn(x) by a Gaussian process (Appendix A.2);

2. The asymptotic approximation of the excursion probability of the maximum of the

Gaussian process on a fixed set (Appendix A.3);

3. The asymptotic approximation of the excursion probability of the maximum of the

Gaussian process on an increasing set (Appendix A.4).

In particular, in step 1, we show that Ûn(y, x)/cn(x) can be approximated uniformly over

(y, x) by ξn[FY (y), h−1
n x], where FY (·) is the c.d.f of Y and ξn is a sequence of Gaussian

processes {ξn(u, s) : (u, s) ∈ [0, 1]× [0, h−1
n ]} with continuous sample paths such that

E[ξn(u, s)] = 0, E[ξn(u1, s1)ξn(u2, s2)] = [min(u1, u2)− u1u2]ρ(s1 − s2),(18)

for u, u1, u2 ∈ [0, 1] and s, s1, s2 ∈ [0, h−1
n ], where ρ(·) is some known smooth function. See

Appendix A.2 for the exact form of ρ(·).
First of all, note that by step 1, taking the supremum of Ûn(y, x)/cn(x) over (y, x) corre-

sponds to taking the supremum of ξn[FY (y), h−1
n x] over (y, x) asymptotically. Since FY is the

c.d.f. and hn → 0, this means that we need to take the supremum of the Gaussian process

ξn over the product space of a fixed set (in the direction of y) and an increasing set (in the

direction of x).

In general, it is expected that the asymptotic distribution of a suitably normalized version

of the supremum of a Gaussian process over an increasing set converges to one of extreme value

distributions. If the supremum is taken over for Gaussian processes with an one-dimensional

parameter, then the corresponding probability theory and applications on statistical prob-

lems are well understood. See, for example, see Leadbetter, Lindgren, and Rootzén (1983).

However, for Gaussian processes with multi-dimensional parameters (often called Gaussian

fields), the probability theory is less developed and applications on statistical problems are

rare. Unfortunately, we need to deal with ξn(u, s) that has two parameters and approximate

the distribution of its supremum over an increasing set. These tasks are steps 2 and 3. The

14



important reference we have used to carry out steps 2 and 3 is Piterbarg (1996), who developed

a general theory for approximations of the suprema of Gaussian fields.

Once step 2 is established, then there is a general approximation method to achieve step 3.

Thus, Step 2 is the critical step in proving Theorem 3.1. Note that the covariance function of

ξn in (18) is the product of a Brownian Bridge covariance function and a stationary covariance

function. In this paper, we develop a new result for the excursion probability of the maximum

of the Gaussian process ξn (Theorem A.2). To be specific, the approximating Gaussian process

contains both a stationary and a nonstationary part and therefore we need to extend existing

results that only apply to either one or the other case. For example, see Section 7 of Piterbarg

(1996) for the stationary case and Sections 8 and 9 of Piterbarg (1996) for the nonstationary

case, but to our best knowledge, there is no known result regarding our case in the literature.

A.2 Gaussian Process Approximation

Let fX(·), FX(·), and FY (·), respectively, denote the p.d.f. and c.d.f. of X and c.d.f. of Y .

Define

ρ(s) =
∫

q(z)q(z − s)K(z)K(z − s)dz∫
q2(z)K2(z)dz

,

where q(u) =
∫

sgn(u−w)K(w)dw was defined in the main text. Let ξ(u, s) denote a Gaussian

process {ξ(u, s) : (u, s) ∈ [0, 1]× R} with continuous sample paths such that

E[ξ(u, s)] = 0, E[ξ(u1, s1)ξ(u2, s2)] = [min(u1, u2)− u1u2]ρ(s1 − s2),

for u, u1, u2 ∈ [0, 1] and s, s1, s2 ∈ R. Define Xn = [0, 1/hn] and let ξn be the restriction of ξ

to [0, 1]×Xn.

Theorem A.1. Let Assumption 3.1 hold. Let hn satisfy

hn(log n)1/2 → 0, nh3
n →∞, and nh2

n/(log n)2 →∞.

Then there exists a sequence of Gaussian processes {ξn(u, s) : (u, s) ∈ [0, 1]×Xn} with contin-

uous sample paths such that

E[ξn(u, s)] = 0, E[ξn(u1, s1)ξn(u2, s2)] = [min(u1, u2)− u1u2]ρ(s1 − s2),

for u, u1, u2 ∈ [0, 1] and s, s1, s2 ∈ Xn, and that

sup
(y,x)∈Y×X

∣∣∣∣∣n
1/2 Ûn(y, x)

σ̂n(x)
− ξn[FY (y), h−1

n x]

∣∣∣∣∣ = Op

(
n−1/2h−3/2

n + n−1/4h−1/2
n (log n)1/2 + hn(log h−1

n )1/2
)

.
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Proof. The proof of Theorem follows closely Theorem 3.1 of Ghosal, Sen, and van der Vaart

(2000). In particular, the theorem can be proved by combining arguments almost identical

to those used in the proof of Theorem 3.1 of Ghosal, Sen, and van der Vaart (2000) with

Lemmas proved in Section A.6. The only difference here is that because of the estimated Xi’s,

an additional term of order Op

(
n−1/2h

−3/2
n

)
appears.

A.3 Asymptotic Behaviour of the Excursion Probability on the Fixed Set

Since the distribution of ξn(u, s) does not depend on n, for the purpose of deriving the dis-

tribution of the supremum statistic Sn, it suffices to consider the asymptotic behaviour of

the excursion probability of the maximum of the Gaussian process ξ(u, s) that has the same

covariance function as ξn(u, s).

We first consider the asymptotic behaviour of the tail probability of the maximum of ξ(u, s)

on a fixed set [0, 1]× I, where I ≡ [0, L] is an interval with a fixed length L. Define

Ψ(a) =
1√
2π

∫ ∞

a
exp

(
−1

2
x2

)
dx.

Theorem A.2. Let λ denote the quantity defined in Theorem 3.1. In addition, let I = [0, L].

Then

Pr
(

max
(u,s)∈[0,1]×I

ξ(u, s) > a

)
= L

(
8λ

π

)1/2

a exp(−2a2)[1 + o(1)]

as a →∞.

The following Lemmas are useful to prove Theorem A.2.

Lemma A.1. Let Πδ = [1/2− δ(a), 1/2 + δ(a)], where δ(a) = a−1 log a. Then

Pr
(

max
(u,s)∈[0,1]×I

ξ(u, s) > a

)
= Pr

(
max

(u,s)∈Πδ×I
ξ(u, s) > a

)
[1 + o(1)]

as a →∞.

Proof. For all sufficiently large a,

Pr
(

max
(u,s)∈Πδ×I

ξ(u, s) > a

)
≤ Pr

(
max

(u,s)∈[0,1]×I
ξ(u, s) > a

)

≤ Pr
(

max
(u,s)∈Πδ×I

ξ(u, s) > a

)
+ Pr

(
max

(u,s)∈{[0,1]\Πδ}×I
ξ(u, s) > a

)
.

(19)

Note that

E[ξ(u1, s1)− ξ(u2, s2)]2 = u1(1− u1) + u2(1− u2)− 2[min(u1, u2)− u1u2]ρ(s1 − s2).
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Furthermore, by some straightforward manipulation,

E[ξ(u1, s1)− ξ(u2, s2)]2 ≤ C |u1 − u2|+ |s1 − s2|

for some constant C. Thus, Assumption E3 of Piterbarg (1996, p.118) is satisfied. Then since

max
(u,s)∈{[0,1]\Πδ}×I

σ2(u, s) ≤ 1/4− δ(a)2,

by Theorem 8.1 of Piterbarg (1996, p.119), there exists a constant C such that

Pr
(

max
(u,s)∈{[0,1]\Πδ}×I

ξ(u, s) > a

)
≤ C mes({[0, 1] \Πδ} × I) a4Ψ

(
a

[1/4− δ(a)2]1/2

)
.(20)

Note that by (D.8) of Piterbarg (1996, p.15), as a →∞,

a4Ψ
(

a

[1/4− δ(a)2]1/2

)
∼ 1√

2π
a3 exp

( −a2/2
1/4− δ(a)2

)
,

where A ∼ B stands for A/B → 1. Also, for some fixed interior point s̄ ∈ I, we have

Pr (ξ(1/2, s̄) > a) = Ψ(a/2) ∼ 2√
2π

a−1 exp
(−a2/2

4

)
.

Then it is easy to show that as a →∞, the probability on the left-hand side of (20) converges

to zero at a rate of exp
[−2a2 + O(log a)

]
and Pr (ξ(1/2, s̄) > a) converges to zero at a rate of

exp
[−a2/8−O(log a)

]
. Thus, the probability on the left-hand side of (20) converges to zero

faster than Pr (ξ(1/2, s̄) > a). Since Pr (ξ(1/2, s̄) > a) ≤ Pr
(
max(u,s)∈Πδ×I ξ(u, s) > a

)
,

Pr
(

max
(u,s)∈{[0,1]\Πδ}×I

ξ(u, s) > a

)
= o

[
Pr

(
max

(u,s)∈Πδ×I
ξ(u, s) > a

)]
.

Then the lemma follows immediately from (19).

Let σ2(u, s) = u(1−u) and r[(u1, s1), r(u2, s2)] = [min(u1, u2)−u1u2]ρ(s1−s2), respectively,

denote the variance and covariance functions of ξ(u, s).

Lemma A.2. As u → 1/2,

σ2(u, s) =
1
4
−

(
u− 1

2

)2

[1 + o(1)](21)

Furthermore, as (u1, u2) → (1/2, 1/2) and |s1 − s2| → 0,

r[(u1, s1), r(u2, s2)] =
1
4
− 1

2
|u1 − u2| [1 + o(1)]− λ

8
(s1 − s2)2 [1 + o(1)]

− 1
2

(
u1 − 1

2

)2

[1 + o(1)]− 1
2

(
u2 − 1

2

)2

[1 + o(1)].
(22)
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Proof. The first result (21) follows easily from a second-order Taylor series expansion of the

variance of ξ(u, s) with respect to u. We now consider the second result (22). In view of the

proof of Theorem 9.2 of Piterbarg (1996, p.138), note that as (u1, u2) → (1/2, 1/2),

min(u1, u2)− u1u2√
u1(1− u1)u2(1− u2)

= 1− 1
2

|u1 − u2|√
u1(1− u1)u2(1− u2)

+ o (|u1 − u2|) .(23)

Note that by (4.9) of Ghosal, Sen, and van der Vaart (2000),

ρ(s1 − s2) = 1− λ(s1 − s2)2

2
+ o

(|s1 − s2|2
)
,(24)

as |s1 − s2| → 0. As in (21), a Taylor series expansion of σ(u, s) around u = 1/2 gives

σ(u, s) =
1
2
−

(
u− 1

2

)2

[1 + o(1)], as u → 1
2

for any s ∈ I. Thus, we have

√
u1(1− u1)u2(1− u2) =

1
4
− 1

2

(
u1 − 1

2

)2

[1 + o(1)]− 1
2

(
u2 − 1

2

)2

[1 + o(1)],(25)

as (u1, u2) → (1/2, 1/2). Then the lemma follows from combining (23) and (24) with (25).

Let ε > 0 be a fixed constant. Define Gaussian processes ψ−1 (u) and ψ+
1 (u) such that

ψ−1 (u) =
ζ−1 (u)

23/2[1 + 4(1 + ε)(u− 0.5)2]
and ψ+

1 (u) =
ζ+
1 (u)

23/2[1 + 4(1− ε)(u− 0.5)2]

where ζ−1 (u) and ζ+
1 (u) are Gaussian stationary processes with zero means and the covariance

functions r−1 (u) = exp [−4(1− ε)|u|] and r+
1 (u) = exp [−4(1 + ε)|u|]. In addition, define mean-

zero stationary Gaussian processes ψ−2 (s) and ψ+
2 (s) such that they are independent of ψ−1 (u)

and ψ+
1 (u) and have the the covariance functions of the form

r−2 (s) =
1
8

[
1− λ(1− ε)s2 + o(s2)

]
,

r+
2 (s) =

1
8

[
1− λ(1 + ε)s2 + o(s2)

]
,

respectively. Finally, define

ψ−(u, s) = ψ−1 (u) + ψ−2 (s) and ψ+(u, s) = ψ+
1 (u) + ψ+

2 (s).

Lemma A.3. Let ε > 0 be any fixed, arbitrarily small, constant. Then for all sufficiently large

a,

Pr
(

max
(u,s)∈Πδ×I

ψ−(u, s) > a

)
≤ Pr

(
max

(u,s)∈Πδ×I
ξ(u, s) > a

)
≤ Pr

(
max

(u,s)∈Πδ×I
ψ+(u, s) > a

)
.
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Proof. As noted in the proofs of Theorems D.4 and 8.2 of Piterbarg (1996, p.23 and p.133),

the lemma follows from Lemma A.2 and the fact that the distribution of the maximum is

monotone with respect to the variance and the Slepian inequality (see, for example, Theorem

C.1 of Piterbarg (1996, p.6)).

Lemma A.4. Let ε > 0 be any fixed, arbitrarily small, constant. As a →∞,

Pr
(

max
u∈Πδ

23/2ψ−1 (u) > a

)
= 21/2 (1− ε)

(1 + ε)1/2
exp(−a2/2)[1 + o(1)],(26)

Pr
(

max
u∈Πδ

23/2ψ+
1 (u) > a

)
= 21/2 (1 + ε)

(1− ε)1/2
exp(−a2/2)[1 + o(1)].(27)

Proof. This lemma can be proved by one of results given in the proof of Theorem D.4 of

Piterbarg (1996, p.21). In particular, using the notation used in the proof of of Theorem D.4

of Piterbarg (1996), the excursion probability of 23/2ψ−1 (u) can be obtained by the result of

Case 1 with α = 1, β = 2, b = 4(1 + ε), and d = 4(1 − ε). It follows from the second display

on page 22 of Piterbarg (1996) that as a →∞,

Pr
(

max
u∈Πδ

23/2ψ−1 (u) > a

)
=

H1Γ(1/2)[4(1− ε)]
[4(1 + ε)]1/2

aΨ(a)[1 + o(1)],

where H1 is the Pickands’ constant with α = 1 (defined on pages 13 and 16 of Piterbarg (1996))

and Γ(·) is the Gamma function. Note that Γ(1/2) =
√

π. Furthermore, by (9.6) of Piterbarg

(1996, p.138), H1 = 1 and by (D.8) of Piterbarg (1996, p.15),

aΨ(a) ∼ (2π)−1/2 exp(−a2/2)

as a → ∞. Therefore, (26) follows immediately. The excursion probability of 23/2ψ+
1 (u) can

be obtained analogously.

Lemma A.5. Let ε > 0 be any fixed, arbitrarily small, constant. As a →∞,

Pr
(

max
s∈I

23/2ψ−2 (s) > a

)
=

[(λ/2)(1− ε)]1/2L

π
exp(−a2/2)[1 + o(1)],(28)

Pr
(

max
s∈I

23/2ψ+
2 (s) > a

)
=

[(λ/2)(1 + ε)]1/2L

π
exp(−a2/2)[1 + o(1)].(29)

Proof. Recall that I = [0, L]. By Theorem D.2 of Piterbarg (1996, p.16) and a simple scaling

of ψ−2 (u),

Pr
(

max
s∈[0,L]

23/2ψ−2 (s) > a

)
= H2L

∗aΨ(a)[1 + o(1)]

where H2 is the Pickands’ constant with α = 2 and L∗ = [λ(1− ε)]1/2L. By (F.4) of Piterbarg

(1996, p.31), H2 = 1/
√

π. Then (28) follows immediately. The excursion probability of

23/2ψ+
2 (u) can be obtained similarly.
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Proof of Theorem A.2. Let ε > 0 be any fixed, arbitrarily small, constant. Note that ψ−(u, s)

and ψ+(u, s) are convolutions of ψ−1 (u) and ψ−2 (s) and of ψ+
1 (u) and ψ+

2 (s), respectively. Then

an application of Lemma 8.6 of Piterbarg (1996, p.128) with Lemmas A.4 and A.5 gives

Pr
(

max
(u,s)∈Πδ×I

23/2ψ−(u, s) > a

)
= L

(1− ε)3/2

(1 + ε)1/2

(
λ

π

)1/2

a exp(−a2/4)[1 + o(1)],(30)

Pr
(

max
(u,s)∈Πδ×I

23/2ψ+(u, s) > a

)
= L

(1 + ε)3/2

(1− ε)1/2

(
λ

π

)1/2

a exp(−a2/4)[1 + o(1)].(31)

Then as a →∞, by Lemma A.1,

Pr
(

max
(u,s)∈[0,1]×I

23/2ξ(u, s) > a

)
= L

(
λ

π

)1/2

a exp(−a2/4)[1 + o(1)]

since the choice of ε can be made arbitrarily small and the constants on the right-hand sides

of (30) and (31) are continuous at ε = 0. Therefore, the theorem follows immediately.

A.4 Asymptotic Behaviour of the Excursion Probability on the Increasing
Set

Theorem A.3. For any x,

Pr
(

4βn

{
max

(u,s)∈[0,1]×Xn

ξ(u, s)− βn

}
< x

)
= exp

{
− exp

(
−x− x2

8β2
n

)[
1 +

x

4β2
n

]}
+ o (1) .

where βn is defined in (7).

Proof of Theorem A.3. This theorem can be proved using arguments similar to those used in

the proof of Theorem G.1 of Piterbarg (1996). Note that the covariance function of ξ(u, s),

that is r[(u1, s1), r(u2, s2)], has compact support and in particular it is zero when |s1−s2| > 2.

Define an increasing sequence mn such that mn →∞ but mnhn → 0 as n →∞. That is, mn

converges to infinity slower than h−1
n . Further, define sequences of sets

Ik =
[
k(mnhn)−1, (k + 1)(mnhn)−1 − 2

]
,

Jk =
[
(k + 1)(mnhn)−1 − 2, (k + 1)(mnhn)−1

]
,

for k = 0, 1, . . . , mn − 1. Then we have

Pr
(

max
(u,s)∈[0,1]×Xn

ξ(u, s) < a

)
= Pr

(
max

(u,s)∈[0,1]×[
S

k Ik]
ξ(u, s) < a

)

− Pr

(
max

(u,s)∈[0,1]×[
S

k Ik]
ξ(u, s) < a, max

(u,s)∈[0,1]×[
S

k Jk]
ξ(u, s) ≥ a

)
.

(32)
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We first consider the first probability on the right-hand side of (32). Let c∗ =
(

8λ
π

)1/2
. For

each x, choose an = βn + x/(4βn), where βn is the largest solution to the following equation:

h−1
n c∗βn exp(−2β2

n) = 1.(33)

Since Ik’s are separated by the diameter of the support and the distribution of ξ(u, s) is

stationary in the direction of s, it follows from Theorem A.2 that

Pr

(
max

(u,s)∈[0,1]×[
S

k Ik]
ξ(u, s) < an

)

=
[
1− Pr

(
max

(u,s)∈[0,1]×I0
ξ(u, s) ≥ an

)]mn

= exp
(

mn log
[
1− Pr

(
max

(u,s)∈[0,1]×I0
ξ(u, s) ≥ an

)])

= exp
(
−mnPr

(
max

(u,s)∈[0,1]×I0
ξ(u, s) ≥ an

))
+ O

(
mn

[
Pr

(
max

(u,s)∈[0,1]×I0
ξ(u, s) ≥ an

)]2
)

= exp
{−mn[(mnhn)−1 − 2]c∗an exp(−2a2

n)[1 + o(1)]
}

+ O (hn) ,

so that

Pr

(
max

(u,s)∈[0,1]×[
S

k Ik]
ξ(u, s) < an

)
= exp

{
− exp

(
−x− x2

8β2
n

)[
1 +

x

4β2
n

]}
+ o (1) .(34)

Now consider the second probability on the right-hand side of (32). Note that again using

Theorem A.2 and the fact that the distribution of ξ(u, s) is stationary in the direction of s,

Pr

(
max

(u,s)∈[0,1]×[
S

k Ik]
ξ(u, s) < an, max

(u,s)∈[0,1]×[
S

k Jk]
ξ(u, s) ≥ an

)

≤ Pr

(
max

(u,s)∈[0,1]×[
S

k Jk]
ξ(u, s) ≥ an

)

≤ mnPr
(

max
(u,s)∈[0,1]×J1

ξ(u, s) ≥ an

)

= mnPr
(

max
(u,s)∈[0,1]×[0,2]

ξ(u, s) ≥ an

)

= O (mnhn) = o(1).

This and (34) together prove the theorem.

A.5 Proofs of Theorems 3.1 and 3.2

Proof of Theorem 3.1. Since βn[n−1/2h
−3/2
n + n−1/4h

−1/2
n (log n)1/2 + hn(log n)1/2] → 0, the

main theorem 3.1 is an immediate consequence of Theorems A.1 and A.3.
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Proof of Theorem 3.2. The theorem can be proved by arguments similar to those used to

prove Theorem 5.1 of Ghosal, Sen, and van der Vaart (2000). In fact, when Fx(y|x) > 0 for

some (y, x), Sn is of order Op(n1/2h
3/2
n ) and the consistency follows from the restriction that

nh3
n/ log h−1

n →∞.

A.6 Lemmas for Proving Theorem A.1

Define

Vn(y, x, θ) =
2

n(n− 1)

∑

1≤i<j≤n

[1(Yi ≤ y)− 1(Yj ≤ y)]sgn[ψ(Wi, θ)− ψ(Wj , θ)]

×Khn [ψ(Wi, θ)− x]Khn [ψ(Wj , θ)− x],

so that Ûn(y, x) = Vn

(
y, x, θ̂

)
. Also, since Fx(y|x) ≡ 0, define the projection of Vn(y, x, θ) by

V̂n(y, x, θ) = 2n−1
n∑

i=1

[1(Yi ≤ y)− F (y)]

×
∫

sgn[ψ(Wi, θ)− ψ(w̃, θ)]Khn [ψ(w̃, θ)− x]dFW (w̃) Khn [ψ(Wi, θ)− x].

Lemma A.6. Let Θ denote a neighborhood of θ0.

sup
(y,x,θ)∈Y×X×Θ

∣∣∣Vn(y, x, θ)− V̂n(y, x, θ)
∣∣∣ = Op

(
n−1h−2

n

)
.

Proof. The proof is similar to that of Lemma 3.1 of Ghosal, Sen, and van der Vaart (2000).

Hence, we will only indicate the differences. Consider a class of functions M = {m(y,x,θ) :

(y, x, θ) ∈ Y × X ×Θ}, where

m(y,x,θ)((y1, w1), (y2, w2)) = [1(y1 ≤ y)− 1(y2 ≤ y)]sgn[ψ(w1, θ)− ψ(w2, θ)]

×Khn [ψ(w1, θ)− x]Khn [ψ(w2, θ)− x].

This class is contained in the product of the classes

M1 = {1(y1 ≤ y)− 1(y2 ≤ y) : y ∈ Y}

M2 =
{

K

(
ψ(w1, θ)− x

hn

)
: (x, θ) ∈ X ×Θ

}

M3 =
{

K

(
ψ(w2, θ)− x

hn

)
: (x, θ) ∈ X ×Θ

}

M4 = {hn
−2sgn[ψ(w1, θ)− ψ(w2, θ)]1{|ψ(w1, θ)− ψ(w2, θ)| ≤ 2hn} : θ ∈ Θ}.

Since θ is finite-dimensional and K is of bounded variation, M is a VC-class with the envelope

function Ch−2
n with some positive finite constant C, by Lemmas 2.6.15 and 2.6.18 of van der
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Vaart and Wellner (1996). Then using Theorem 2.6.7 of van der Vaart and Wellner (1996) and

following the proof of Lemma 3.1 of Ghosal, Sen, and van der Vaart (2000), we have, for some

finite constant C,

E

[
sup

(y,x,θ)∈Y×X×Θ

∣∣∣Vn(y, x, θ)− V̂n(y, x, θ)
∣∣∣
]
≤ Cn−1h−2

n ,

which gives the conclusion of the lemma.

Lemma A.7.

sup
(y,x)∈Y×X

∣∣∣Ûn(y, x)− V̂n(y, x, θ0)
∣∣∣ = Op

(
n−1/2

)
.

Proof. Note that by Assumption 3.1 (h),
∣∣∣V̂n(y, x, θ̂)− V̂n(y, x, θ0)

∣∣∣

=
∣∣∣∣2n−1

n∑

i=1

[1(Yi ≤ y)− F (y)]

×
{ ∫

sgn[ψ(Wi, θ̂)− ψ(w̃, θ̂)]Khn [ψ(w̃, θ̂)− x]dFW (w̃) Khn [ψ(Wi, θ̂)− x]

−
∫

sgn[ψ(Wi, θ0)− ψ(w̃, θ0)]Khn [ψ(w̃, θ0)− x]dFW (w̃) Khn [ψ(Wi, θ0)− x]
}∣∣∣∣

≤ C

[ ∥∥∥θ̂ − θ0

∥∥∥ n−1
n∑

i=1

Khn [ψ(Wi, θ̂)− x] + n−1
n∑

i=1

{
Khn [ψ(Wi, θ̂)− x]−Khn [ψ(Wi, θ0)− x]

}]

for some positive constant C < ∞, which is independent of (y, x). Also, note that using

the standard empirical process method (for example, van der Vaart and Wellner, 1996), it is

straightforward to show that for a n−1/2 neighborhood Θn of θ0,

sup
(x,θ)∈X×Θn

n−1
n∑

i=1

Khn [ψ(Wi, θ)− x] = Op(1),

sup
(x,θ)∈X×Θn

n−1

∣∣∣∣∣
n∑

i=1

{Khn [ψ(Wi, θ)− x]−Khn [ψ(Wi, θ0)− x]}
∣∣∣∣∣ = Op

(
n−1/2

)
.

Then the lemma follows from the root-n-consistency of θ̂ and Lemma A.6 since Ûn(y, x) =

Vn

(
y, x, θ̂

)
.

Define

φn,y,x(Y, X) = 2[1(Y ≤ y)− FY (y)]
∫

sgn(X − x̃)Khn(x̃− x)dFX(x̃)Khn(X − x).
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Lemma A.8. There exists a sequence of Gaussian processes Gn(·), indexed by Y × X , with

continuous sample paths and with

E[Gn(y, x)] = 0, for (y, x) ∈ Y × X ,

E[Gn(y1, x1)Gn(y2, x2)] = E[φn,y1,x1(Y,X)φn,y2,x2(Y, X)],

for (y1, x1) and (y2, x2) ∈ Y × X , such that

sup
(y,x)∈Y×X

∣∣∣n1/2V̂n(y, x, θ0)−Gn(y, x)
∣∣∣ = O

(
n−1/4h−1

n (log n)1/2
)

a.s.

Proof. As in the proof of Lemma 3.2 of Ghosal, Sen, and van der Vaart (2000), we use Theorem

1.1 of Rio (1994). Since it can be proved using arguments identical to those used to prove

Lemma 3.2 of Ghosal, Sen, and van der Vaart (2000), we will only highlight the differences.

To apply Rio’s theorem, we rewrite ϕn,y,x(Y, X) as

φn,y,x(Y, X) = 2[1(U ≤ u)− u]
∫

sgn(X − x̃)Khn(x̃− x)dFX(x̃)Khn(X − x)

≡ ϕn,u,x(U,X),

where U = FY (Y ) and u = FY (y). Then U is uniformly distributed in [0, 1] ≡ U . Thus,

Theorem 1.1 of Rio (1994) can be applied to a normalized empirical process associated with

ϕn,u,x(U,X). First, we verify that the class of functions (v, t) 7→ hnϕn,u,x(v, t), indexed by

(u, x) ∈ U × X , is uniformly of bounded variation (UBV). By the definition of Rio (1994), it

suffices to show that

sup
(u,x)∈U×X

sup
g∈D2([0,1]2)

(∫

R2

hnϕn,u,x(v, t) div g(v, t) dv dt/ ‖g‖∞
)

< ∞,

where D2([0, 1]2) denotes the space of C∞ functions with values in R2 and with compact

support included in [0, 1]2, div denotes the divergence, and ‖g‖∞ = sup(v,t)∈R2 ‖g(v, t)‖ with

‖·‖ being the usual Euclidean norm. To do so, note that for any g(v, t) ≡ (gv(v, t), gt(v, t)),
∫

R2

ϕn,u,x(v, t) div g(v, t) dv dt

=
∫

R2

2[1(v ≤ u)− u]
∫

sgn(t− x̃)Khn(x̃− x)dFX(x̃)Khn(t− x)
[
∂gv(v, t)

∂v
+

∂gt(v, t)
∂t

]
dv dt

=
∫

R

∫

R
2[1(v ≤ u)− u]

∂gv(v, t)
∂v

dv

∫
sgn(t− x̃)Khn(x̃− x)dFX(x̃)Khn(t− x) dt

+
∫

R2

2[1(v ≤ u)− u]
∫

sgn(t− x̃)Khn(x̃− x)dFX(x̃)Khn(t− x)
∂gt(v, t)

∂t
dv dt.

Then it is straightforward to verify that

sup
g∈D2([0,1]2)

(∫

R2

ϕn,u,x(v, t) div g(v, t) dv dt/ ‖g‖∞
)

= O
(
h−1

n

)
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uniformly over (u, x) ∈ U × X . This implies that the class of functions {hnϕn,u,x : (u, x) ∈
U × X} satisfies the UBV condition of Rio (1994). Furthermore, it is also straightforward to

verify that

sup
g∈D2([a,b]2)

(∫

R2

ϕn,u,x(v, t) div g(v, t) dv dt/ ‖g‖∞
)

= O
(
h−1

n [b− a]
)

uniformly over (u, x) ∈ U × X . This implies that the class of functions {hnϕn,u,x : (u, x) ∈
U × X} also satisfies the LUBV condition of Rio (1994). We now verify that the class of

functions {hnϕn,u,x : (u, x) ∈ U × X} is a VC class. The function hnϕn,u,x is bounded by a

constant uniformly in (u, z) ∈ U × X and is obtained by taking an average of

2hn[1(v ≤ u)− 1(ũ ≤ u)]sgn(x̃− t)Khn(x̃− t)Khn(t− x)

over (ũ, x̃). Then it is easy to show that {hnϕn,u,x : (u, x) ∈ U × X} is a VC class by using

arguments similar to those used in the proof of Lemma 3.2 of Ghosal, Sen, and van der Vaart

(2000, in particular equation 8.5). Finally, by applying Theorem 1.1 of Rio (1994), there exists

a sequence of centered Gaussian processes Gn(u, x) with covariance

E[Gn(u1, x1)Gn(u2, x2)] = E[ϕn,u1,x1(U,X)ϕn,u2,x2(U,X)].

By switching back to the original variable Y and its corresponding index y, we obtain the

desired result.

Define

σ2
n(x) = 4

∫ [ ∫
sgn(x̄− x̃)Khn(x̃− x)dFX(x̃)Khn(x̄− x)

]2

dFX(x̄)

and

σ2(x) = 4
[∫

q2(u)K2(u)du

]
[fX(x)]3.

Lemma A.9.

(a) sup
x∈X

∣∣hnσ2
n(x)− σ2(x)

∣∣ = o(1).

(b) lim inf
n→∞hn inf

x∈X
σ2

n(x) > 0.

(c) sup
x∈X

∣∣σ̂2
n(x)− σ2

n(x)
∣∣ = Op

(
n−1/2h−2

n

)
.

Proof. Parts (a) and (b) of the lemma follow directly from Lemma 3.3 (a)-(b) of Ghosal, Sen,

and van der Vaart (2000). To prove part (c) of the lemma, note that σ̂2
n(x) depends on the

estimated Xi. To deal with this, let σ̃2
n(x, θ) be the same as σ̂2

n(x) except that X̂i is replaced
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by ψ(Wi, θ). As in the proof of Lemma A.6, modifying the proof of Lemma 3.3 of Ghosal, Sen,

and van der Vaart (2000) gives

sup
x∈X

sup
θ∈Θ

∣∣σ̃2
n(x, θ)− Eσ̃2

n(x, θ)
∣∣ = Op

(
n−1/2h−2

n + n−1h−3
n + n−3/2h−4

n

)
,

where Θ is a neighborhood of θ0. Then part (c) follows from the restriction on hn and the fact

that Eσ̃2
n(x, θ) is Lipschitz continuous with respect to θ.

Lemma A.10. For the sequence of Gaussian processes {Gn(y, x) : (y, x) ∈ Y×X} obtained in

Lemma A.8, there corresponds a sequence of Gaussian processes {ξn(u, s) : (u, s) ∈ [0, 1]×Xn}
with continuous sample paths such that

E[ξn(u, s)] = 0, E[ξn(u1, s1)ξn(u2, s2)] = [min(u1, u2)− u1u2]ρ(s1 − s2),

for u, u1, u2 ∈ [0, 1] and s, s1, s2 ∈ Xn, where

sup
(y,x)∈Y×X

∣∣∣∣
Gn(y, x)
σn(x)

− ξn[FY (y), h−1
n x]

∣∣∣∣ = Op

(
hn

√
log h−1

n

)

Proof. Let Gn denote the class of functions {gn,u,x : (u, x) ∈ U × X}, where gn,u,x(U,X) =

ϕn,u,x(U,X)/σn(x). Also, let G̃n denote the class of functions {g̃n,u,x : (u, x) ∈ U × X}, where

g̃n,u,x(U,X) = ϕ̃n,u,x(U,X)/σ̃n,x(X),

ϕ̃n,u,x(U,X) = [1(U ≤ u)− u]
∫

sgn(X − x̃) Khn(x̃− x)dx̃Khn(X − x),

σ̃n,x(X) =

[∫ (∫
sgn(x̄− x̃)Khn(x̃− x)dx̃

)2 [
Khn(x̄− x)

]2
dx̄

]1/2

[fX(X)]1/2.

As explained in Remark 8.3 of Ghosal, Sen, and van der Vaart (2000), it is possible to extend

Lemma A.8 in that there exists a sequence of Gaussian bridges, say {Bn(g) : g ∈ Gn ∪ G̃n},
with

E[Bn(g)] = 0, E[Bn(g1)Bn(g2)] = cov(g1, g2)

for all g, g1, g2 ∈ Gn ∪ G̃n and with continuous sample paths with respect to the L2-metric such

that

Gn(u, x) = σn(x)Bn(ϕn,u,x),

where Gn(u, x) is defined in the proof of Lemma A.8. Now let ξ̃n(u, x) = Bn(g̃n,u,x) and

γn(u, x) = Gn(u, x)/σn(x) − ξ̃n(u, x). As in the proof of Lemma 3.4 of Ghosal, Sen, and van

der Vaart (2000), note that γn(u, x) is a mean zero Gaussian process with

E[γn(u1, x1)γn(u2, x2)] = E[(gn,u1,x1 − g̃n,u1,x1)(gn,u2,x2 − g̃n,u2,x2)].

Then the lemma can be proved using identical arguments used in the proof of Lemma 3.4 of

Ghosal, Sen, and van der Vaart (2000).
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A.7 Proof of Theorem 6.1

This theorem can be proved using arguments similar to those used in the proof of Theorem 3.1.

In particular, the following lemmas can be proved, whose proofs are omitted here for brevity,

and then the desired result follows.

Recall that

ρ(s) =
∫

q(z)q(z − s)K(z)K(z − s)dz∫
q2(z)K2(z)dz

,

where q(u) =
∫

sgn(u − w)K(w)dw. Let ξ(u, s) denote a Gaussian process {ξ(u, s) : (u, s) ∈
[0, 1]× Rd} with continuous sample paths such that

E[ξ(u, s)] = 0, E[ξ(u1, s1)ξ(u2, s2)] = [min(u1, u2)− u1u2]
d∏

j=1

ρ(s1j − s2j),

for u, u1, u2 ∈ [0, 1] and s, s1 ≡ (s11, . . . , s1d), s2 ≡ (s21, . . . , s2d) ∈ Rd. Define Xn = [0, 1/hn]d

and let ξn be the restriction of ξ to [0, 1]×Xn.

Lemma A.11. Let Assumption 6.1 hold. Let hn satisfy

hn(log n)1/2 → 0, nh3d
n →∞, and nhd+1

n /(log n)d+1 →∞.

Then there exists a sequence of Gaussian processes {ξ(u, s) : (u, s) ∈ [0, 1]×Xn} with continuous

sample paths such that

E[ξn(u, s)] = 0, E[ξn(u1, s1)ξn(u2, s2)] = [min(u1, u2)− u1u2]
d∏

j=1

ρ(s1j − s2j),

for u, u1, u2 ∈ [0, 1] and s, s1 ≡ (s11, . . . , s1d), s2 ≡ (s21, . . . , s2d) ∈ Xn, and that

sup
(y,x)∈Y×X

∣∣∣∣∣n
1/2 Ûn(y,x)

ŝn(x)
− ξn[FY (y), h−1

n x]

∣∣∣∣∣
= Op

[
n−1/2h−3d/2

n + n−1/2(d+1)h−1/2
n (log n)1/2 + hn(log n)1/2

]
.

Lemma A.12. Let λ denote the quantity defined in Theorem 3.1 and let I ≡ [0, L]d be a

rectangle with a fixed volume Ld. Then

Pr
(

max
(u,s)∈[0,1]×I

ξ(u, s) > a

)
= Ld2−(d−1)

(
8λ

π

)d/2

ad exp(−2a2)[1 + o(1)]

as a →∞.

Lemma A.13. For any x,

Pr
(

4bn

{
max

(u,s)∈[0,1]×Xn

ξ(u, s)− bn

}
< x

)
= exp

{
− exp

(
−x− x2

8b2
n

)[
1 +

x

4b2
n

]d
}

+ o (1) .

where bn is defined in (16).
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Figure 1: Intergenerational Income Mobility

Note: This figure shows local linear quantile regression estimates of sons’ log incomes on
parental log incomes.
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Table 1. Simulation Results

Using critical values obtained from
the asymptotic expansion Fn of the limiting distribution

(1500 replications in each experiment)

Sample Bandwidth
Size hn = 0.4 h = 0.5 h = 0.6 h = 0.7

Rejection proportions when the null hypothesis is true:
n = 50 0.014 0.021 0.025 0.030
n = 100 0.028 0.033 0.034 0.034
n = 200 0.025 0.031 0.036 0.033
n = 500 0.032 0.039 0.033 0.037

Rejection proportions when the null hypothesis is false:
n = 50 0.687 0.762 0.771 0.760
n = 100 0.976 0.988 0.989 0.977
n = 200 1.000 1.000 1.000 1.000

Using critical values obtained from
the type I extreme value distribution

(1500 replications in each experiment)

Sample Bandwidth
Size hn = 0.4 h = 0.5 h = 0.6 h = 0.7

Rejection proportions when the null hypothesis is true:
n = 50 0.009 0.017 0.013 0.017
n = 100 0.022 0.024 0.022 0.021
n = 200 0.015 0.021 0.022 0.021
n = 500 0.021 0.021 0.022 0.023

Rejection proportions when the null hypothesis is false:
n = 50 0.618 0.693 0.697 0.694
n = 100 0.966 0.976 0.983 0.965
n = 200 1.000 1.000 1.000 1.000

Using bootstrap critical values with 500 bootstrap samples
(500 replications in each experiment)

Sample Bandwidth
Size hn = 0.4 h = 0.5 h = 0.6 h = 0.7

Rejection proportions when the null hypothesis is true:
n = 50 0.064 0.062 0.046 0.058

Rejection proportions when the null hypothesis is false:
n = 50 0.814 0.872 0.880 0.856
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