
 
 

NONPARAMETRIC ESTIMATION OF HOMOTHETIC

AND HOMOTHETICALLY SEPARABLE FUNCTIONS

Arthur Lewbel
Oliver Linton

THE INSTITUTE FOR FISCAL STUDIES

DEPARTMENT OF ECONOMICS, UCL

cemmap working paper CWP14/03

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7113178?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Nonparametric Estimation of Homothetic and
Homothetically Separable Functions¤

Arthur Lewbely

Boston College

Oliver Lintonz

London School of Economics

October, 2003

Abstract

For vectors x and w, let r(x;w) be a function that can be nonparametrically estimated

consistently and asymptotically normally. We provide consistent, asymptotically normal esti-

mators for the functions g and h, where r(x;w) = h[g(x); w], g is linearly homogeneous and

h is monotonic in g. This framework encompasses homothetic and homothetically separable

functions. Such models reduce the curse of dimensionality, provide a natural generalization of

linear index models, and are widely used in utility, production, and cost function applications.

Extensions to related functional forms include a generalized partly linear model with unknown

link function. We provide simulation evidence on the small sample performance of our estimator,

and we apply our method to a Chinese production dataset.
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1 Introduction

Let Xi and Wi be observed vectors for i = 1; : : : ;n. Let r(x; w) be some function that can be
nonparametrically estimated, for example, r(x; w) could equal E(Y j X = x;W = w) which is
estimated with observations fYi; Xi;Wig. More generally, r(x; w) could be a density, distribution,
quantile, or hazard function, or r(x; w) could be a utility or cost function derived from a set of

estimated product or factor demands. Let br(x; w) be a consistent, asymptotically normal estimator
of the function r(x; w):

Assume there exist functions h and g such that

r(x;w) = h[g(x);w] (1)

where g is linearly homogeneous and h is strictly monotonic on its …rst element1. This paper provides
consistent, asymptotically normal estimators of the functions h and g. This in turn yields a general

estimator for homothetic and homothetically separable functions. We provide limiting distributions
for our estimators, and provide Monte Carlo simulations of the small sample properties of our esti-
mator. We also provide an empirical application to estimation of homothetic production functions

for chemical plants in mainland China.
We also consider some extensions, including restrictions on g other than homogeneity, and the

presence of endogenous regressors. In particular, we also provide an estimator for unknown functions

H and m in the model R(u; z; w) = H [m(z) + u; w], which is a generalized partly linear model with
unknown link function (here we observe vectors Zi and Wi and scalar Ui for i = 1; : : : ; n, and a
nonparametric estimate of R).

A function r(x) is de…ned to be homothetic if and only if r(x) = h[g(x)] where h is strictly

monotonic and g is linearly homogeneous. When w is empty, equation (1) is homothetic. More
generally, a function r is de…ned to be homothetically separable, and x is said to be homothetically
separable in r, if equation (1) holds where g is linearly homogeneous.

Homothetic and homothetically separable functions are commonly used in models of consumer
preferences and …rm production. The function r(x;w) could be a utility or consumer cost function
recovered from estimated consumer demand functions via revealed preference theory, or it could be a

directly estimated production or producer cost function. Some examples of homothetic functions used
in economics are provided in Chiang (1984). Zellner and Ryu (1998) perform empirical comparisons
of a large number of di¤erent homothetic functional forms for production. Blackorby, Primont, and

1Without loss of generality, this model is equivalent to having g be homogeneous of any nonzero degree ·, because
any homogeneous of degree · function can be written as g(x)· where g(x) is linearly homogeneous, and the exponent
· can be absorbed into the function h.
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Russell (1978) provide an extensive study of the properties of homothetically separable functions and
their applications. See also Matzkin (1994) for a general survey on imposing restrictions of economic
theory on nonparametric estimators.

Linear index models, corresponding to the case where g(x) = x>¯, are a very common semi-

parametric speci…cation that arises in a variety of contexts, particularly limited dependent variable
models. See, e.g., Powell (1994) for a survey. Replacing a linear index x>¯ with an arbitrary linearly
homogeneous function g(x) is a natural generalization, particularly in contexts where economic the-

ory gives rise to homogeneity but not necessarily linearity, such as price indices or constant returns
to scale technologies.

In applications of homothetic separability, r may have multiple homogeneous components, that

is,
r(x0; x1; : : : ; xk) = h[g1(x1); : : : ; gK(xK ); x0] (2)

for vectors x0; x1; : : : ; xK. In this model, each gk function can be estimated separately by applying

the method we propose to estimate g in equation (1), taking x = xk and w equal to the union of all
the elements in x0; x1; : : : ; xK except xk . Then, given estimates of each gk function, the function h
may be estimated by nonparametrically regressing r on g1; : : : ; gK ; x0.

In many applications the functions h and g are of direct interest, e.g., the returns to scale of a

homothetic production function is de…ned as the log derivative of h with respect to g. Even when h
and g are not of direct interest, our estimator may still be valuable for testing whether functions are
homothetic or homogeneously separable, by comparing br(x;w) to bh[bg(x);w]; and because, with our

estimator, the latter model achieves a faster rate of convergence than unrestricted nonparametric
estimation of r.

One obvious way to estimate equation (1) would be to parameterize the unknown functions h

and g, and employ nonlinear least squares to estimate these parameters. We propose an estimation
method that employs kernel or local polynomial methods to estimate h and g nonparametrically, and
establish their limiting distributions. The estimator we propose uses a form of marginal integration
to deal with w, while exploiting the restriction that linearly homogeneous functions g satisfy the

constraint g(x) = g(x=v)v for any scalar v. Once an estimate of g is obtained, the function h is
estimated by nonparametrically regressing r on g and w.

Matzkin (1992) provides a consistent estimator for the binary threshold crossing model y =

I[g(x) + " ¸ 0] where g(x) is homogeneous and " is independent of x. This threshold crossing
model has E(yjx) = h[g(x)] where h is the distribution function of ¡", and so is equivalent to our
framework with r(x) = E(yjx) and w empty.2 In an unpublished manuscript, Newey and Matzkin
(1993) propose (without derivation) a limiting distribution for an estimator of Matzkin’s (1992)

2A motivating example Matzkin provides for the threshold crossing model is where ¡g(x) is a constant returns to
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model. Our estimator is similar to theirs, though it entails fewer steps, allows for the presence
of w, and our limiting distribution for h exploits dimension reduction arising from homogeneity.
Matzkin (2003) considers models of the form y = m(x; ") with " independent of x and, as one
possible identifying assumption, m being homogeneous in x and an unobserved ". In contrast, our

model makes no assumptions about (and provides no estimates of) the role of unobservables other
than limiting distribution theory for r, and allows for homothetic rather than just homogeneous
dependence on x.

Models satisfying equations (1) or (2) without imposing homogeneity on g or gk are called weakly
separable. See Gorman (1959), Goldman and Uzawa (1964) and Blackorby, Primont, and Russell
(1978). Pinkse (2001) provides a general nonparametric estimator of weakly separable models, with-

out assuming homogeneity of g. In homothetically separable models, Pinkse’s estimator will identify
g up to an arbitrary monotonic transformation, whereas our estimator provides the unique (up to
scale) linear homogeneous g, and exploits the homogeneity of g to obtain a faster rate of convergence
than Pinkse’s.

Strongly or additively separable models are models of the form r(x) =
P
k gk(xk). Härdle, Kim,

and Tripathi (2001) provide a nonparametric estimator of additively separable models where the
gk(xk) functions are homogeneous. Other estimators of additively separable models include Friedman

and Stutzle (1981), Breiman and Friedman (1985), Andrews (1991), Tjøstheim and Auestad (1994),
and Linton and Nielsen (1995). Stone (1986), Hastie and Tibshirani (1990), Linton and Härdle
(1996), and Horowitz and Mammen (2002) provide estimators of generalized additively separable

models, de…ned as r(x) =H [
P
k gk(xk)], where H is a known function, and Horowitz (2001) extends

this to the case where H is unknown. In both cases, homogeneity is not assumed or exploited.
Tripathi and Kim (2001) discuss nonparametric estimators of homogeneous functions, corresponding
to the special case of equation (1) where w is empty and h is a known power function.

In section 2 we discuss identi…cation and the estimation strategy in general terms, while in section
3 the estimation algorithm is given in full detail. In section 4 we present the distribution theory for
our estimators of g and of h: In section 5 we present the results of some Monte Carlo simulations

and an application to Chinese production data. Section 6 discusses some extensions and conclusion.
The proofs are given in the appendix.

scale cost function for a project, " is …rm’s bene…t or return from undertaking the project (which is unknown to the
researcher), and y indicates whether the …rm embarks on the project, which it does if the bene…t exceeds the cost.
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2 Identi…cation

Assumption A1. Let X and W be random vectors with supp(X;W ) = ªX £ ªW . There exists
functions r; h and g such that r(x; w) = h[g(x); w] for all (x; w) 2 ªX £ ªW , where h is invertible
with respect to its …rst element and g is linearly homogeneous. Let x0 2 ªX be a constant vector
such that g(x0) 6= 0 and, for all x 2 ªX , there exists a scalar vx such that g(x) = g(vxx0). Without

loss of generality, assume that g(x0) = 1.

De…ne ªV = fev j evx0 2 ªX , ev 6= 0g. For any scalar v 6= 0, given the function r(x;w), let the

function s(r; q; w) be de…ned for any q such that vq 2 ªX by

s[r(qv; w); q; w] = v (3)

so s is the inverse of the function r(qv;w) with respect to v. Invertibility of h ensures that s exists.

Theorem 1. Let Assumption A1 hold. Let (V;fW ) be any random vector with support contained
in ªV £ ªW . Then for every x 2 ªX and w 2 ªW the functions g and h satisfy

g(x) = E

0
@ V

s
h
r
³
V x0;fW

´
; x;fW

i

1
A (4)

h[g(x); w] = E[r(X;W ) j g(X) = g(x);W = w]: (5)

Proof. Let w be any element of ªW . For any v; q such that v 6= 0 and vq 2 ªX , having g(x)

be linearly homogeneous implies that g(vq) = g(q)v, and so r(vq; w) = h[g(q)v;w], which in turn
implies that

s(r; q; w) =
h¡1(r; w)
g(q)

; (6)

where h¡1 is the inverse function of h on its …rst element.
Given x, the function r = r (evx0;w) is well de…ned because ev 2 ªV . Also, the function s(r; x; w) is

well de…ned for r = r (evx0; w) as long as there exists a v = v(ev;x) such that r = r (evx0; w) = r (vx; w),
since then s(r; x;w) will equal this v. The equality r (evx0; w) = r (vx; w) for all w is equivalent to
g[(ev=v)x0] = g(x), which holds taking ev=v(ev;x) = g(x). It follows that the function s [r (evx0;w) ; x;w]
is well de…ned.

Given equation (6), we have

ev
s [r (evx0; w) ; x; w]

=
g(x)ev

h¡1 [r (evx0; w) ;w]

=
g(x)ev

h¡1 [h[g(x0)ev; w];w]
= g(x) (7)
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This equation holds for all w 2 ªW , ev 2 ªV ev 6= 0, so it holds in expectation replacing w with fW
and ev with V , thereby yielding equation (4), since V 6= 0 with probability one. Equation (5) then
follows from the de…nition of r.

Theorem 1 shows that the functions g and h are identi…ed given r. With a consistent estimator
br of the function r, a consistent estimator bs may be constructed by inverting br(qv; w) with respect

to v. A consistent estimator of g(x) is then given by

bg(x) = 1
n

nX

i=1

Vi
bs [br (Vix0;Wi) ; x;Wi]

(8)

and a consistent estimator of h is then given by a nonparametric regression of br(x; w) on bg(x);w.3

Monotonic regression or average contour estimation could be used for this last step. We ‡esh out
the details of this in the next section.

Equations (4) and (8) hold just letting V = 1 and ªV = f1g. The reason for averaging over a
random V is that this reduces the e¤ective dimensionality of the estimator, resulting in a faster rate
of convergence.4 For example, one could let V be the inverse of a continuously distributed element

of X. In this case a good choice for x0 might be the vector that has one in the same position that
V occupies in X and zeros elsewhere. Another sensible choice for V would be V = 1=jjX jj. In
particular, if each element of X is continuously distributed with the same support, then in this case
one might take x0 to be the vector of ones. Yet another possibility is to let V = X>a for some

nonzero constant vector a, which might be chosen to maximize e¢ciency of the resulting estimator.
In fact, apart from convenience it is not necessary to relate the distribution of V to X at all, except
in so far as the support of V has to be determined by the support of X:

Theorem 1 assumes a set ªV of values that V can take on, and hence be averaged over, for any
value of X , and we need to be able to estimate the function s for every V in this set. To facilitate
this construction, Theorem 1 can be generalized slightly by replacing equation (3) with

s[r(xv=v0(x); w); x; w] = v=v0(x): (9)

for any nonzero function v0(x). Equation (9) follows immediately from equation (3) by replacing q

with x and v with v=v0(x). We may now choose any convenient v0(x) (we will use v0(x) = jjxjj);
de…ne ªV in terms of v in Equation (9) instead of the original v, and estimate s accordingly (see the
section on estimation for details).

3This estimator of g(x) takes fW = W for convenience. If the support of X; W were not rectangular, one could
modify equation (8) by including the indicator 1(Wi 2supp(W jX = x))=

Pn
j=1 1(Wj 2supp(W jX = x)), equivalent

to choosing a fW with support that is a subset of ªW . Taking fW to be a trimmed W could also be used to avoid
boundary issues in the estimation of br.

4For the same reason, we take fW = W and average over it, instead of …xing fW .
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Given any choice of x0, if the assumption that g(x0) 6= 0 (and hence normalizable to one) is
violated then s(r; x0;w) will be in…nite for all r and w. It may therefore be possible to test this
assumption by, e.g., testing if

Pn
i=1[nbs[br(Xi;Wi); x0;Wi]¡1 is signi…cantly di¤erent from zero.

The identi…cation in Theorem 1 does not require di¤erentiability of h or g (though estimation

may impose such smoothness) and allows some or all of the elements of X and W other than V to
be discrete or otherwise not continuously distributed.

If r(x; w) = E(Y j X = x;W = w) for some random Y , then h[g(x);w] = E[Y j g(X) =

g(x);W = w], which on estimation may yield a simpler limiting distribution than one based on
equation (5).

2.1 Matching

One way to interpret Theorem 1 is in terms of a matching estimator. For a given x; w, …nd ev
such that r (evx0; w) = r (x;w), a match. Then g (evx0) = g (x), i.e., g (x0) ev = g (x), so g (x) = ev.
The same argument implies that g (x) = ev=vwhen v; ev satisfy r (evx0;w) = r (vx; w) : Our estimator

essentially does this matching (replacing r with br) for a range of values of x and w, and averages
over the results. Note that the set fv : vx 2 ªXg varies with x; whereas we want to choose a set
ªV of values for V to average over that does not vary with the evaluation point x. If we replace

x by q0(x) = x=v0(x); where v0(x) = jjxjj; we have r (vq0(x);w) = r(vx=v0(x); w) = r(vx; w)=v0(x)
by homogeneity. Therefore, we look for a match with r (evx0; w) = r (vq0(x); w) and then divide by
v0(x). This is the matching interpretation of replacing equation (3) with equation (9). Figure 1

illustrates this construction.

Figure 1. The points v0q0(x) and vx0 are matched, i.e., g(v0q0(x)) = g(vx0); which implies that

g(x) = v=v0(x)v0:
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2.2 An Alternative Approach

Here we propose a variant of our approach based on …rst integrating out the contribution from w;
and then matching. De…ne

r(x) = h[g(x)] =
Z
r(x; w)ffW (w)dw (10)

for any density ffW (w) on ªW . De…ne s(r; q) be the inverse of the function r(qv) with respect to v:
Invertibility of h ensures that s exists.

Corollary 1. Let Assumption A1 hold, except that h need not be invertible with respect to its

…rst element. Assume r(x) exists for every x 2 ªX and that h is invertible. Let V be any random
scalar with support contained in ªV . Then for every x 2 ªX the function g satis…es

g(x) = E
µ

V
s [r (V x0) ; x]

¶
(11)

The proof is omitted, since it follows exactly the same steps as the proof of Theorem 1. Corollary
1 suggests a slightly di¤erent estimator for g(x), as follows. Let er(x) be some marginal integration
estimator, e.g.,

er(x) = 1
n

nX

i=1

br(x;fWi);

where fWi is drawn from ffW (w): De…ne es(r; q) as the inverse of the function er(qv) with respect to v,
and de…ne

eg(x) = 1
n

nX

i=1

Vi
es [er (Vix0) ; x]

: (12)

The original estimator bg(x) inverts r and then averages over W and V . The alternative eg(x) …rst
averages over fW then inverts and averages over V . This alternative requires existence of r(x), but
only requires invertibility of h instead of h. In the Appendix we show that eg(x) converges at the

same rate as bg(x), but has a di¤erent limiting variance. One of the main di¤erences is a dependence
on the product of the marginal densities of V and W in place of the joint density. Neither estimator
uniformly dominates the other.

2.3 Short Examples

1. Suppose that g(x) = jjxjj; ªX ½ R2 and contains a circle of some positive radius, h(°) = exp(°);

and there is now: Then r(q¢v) = exp(v¢jjqjj) and s(r; q) = log(r)=jjqjj: Let x0 be any point on the unit
circle. The set ªV is the ray fev j evx0 2 ªXg: We then have V=s [r (V x0) ; x] = V=s [expV;x] = jjxjj
exactly. Our Monte Carlo analysis takes this form.
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2. Suppose that g(x) = a>x;where x; a 2 Rd+; h(°) = exp(°+w): Then s(r; q) = [log(r)¡w]=a>q:
Given any point x0, we may freely scale a such that a>x0 = 1. For all x 2 ªX, there must exist a
scalar vx such that a>x = vxa>x0 = vx.

3. Suppose that g(x) = (
Pd
j=1 ajx

µ
j )1=µ; where x; a 2 Rd+; h(°) = °2; and that there is no w: Then

s(r; q) =
p
r=

³Pd
j=1 ajx

µ
j

´1=µ
:

3 Estimation Details

We suppose that we observe independent and identically distributed observations fZigni=1, where
Zi = (Xi;Wi) 2 Rd and d = dx+dw ; and that we can compute an estimator br(z) for all z = (x; w) in
the support of Zi: We shall give more details about the properties that the estimator br(z) possesses

later but for now we just need that it is well-de…ned for all z.
There are a variety of ways of implementing our estimator. We choose a way that is convenient in

practice. The main di¢culty is in …nding the function s for all relevant r; x; w: Let v0(x) = jjxjj and
q0(x) = x=v0(x). Then, based on equation (9) and on the matching interpretation of our estimator,

we de…ne our estimator of bs(r;x; w) as any sequence that satis…es [or approximately satis…es to some
order, see below]

bs(r;x;w) = 1
v0(x)

arg min
v2ªV

fv : br(q0(x) ¢ v; w) = rg: (13)

We then de…ne bg(x) by equation (8), where Vi are i.i.d. draws from V: This approach allows us to
use the same support for V for all x:

To estimate h(°;w) for ° 2 ª¡ = fg(x) : x 2 ªXg; we can compute the generated regression
implied by equation (5), that is compute the smooth of br(Xi;Wi) on bg(Xi);Wi: In the special case
that r(z) = E(Y j Z = z) and where there is also sample information on Y; we can alternatively

estimate h(g(x);w) by the smooth of Yi on bg(Xi);Wi: We will base our estimation of conditional
expectations on the local polynomial kernel method. This method has been extensively analyzed
and has some attractive properties like being design adaptive, and best linear minimax; see Fan and
Gijbels (1996) for further discussion.5 For any dataset fbYi; bZigni=1, the local polynomial regression of
bYi on bZi 2 Rd of order q can be obtained from the multivariate weighted least squares criterion:

nX

i=1

2
4bYi ¡

X

0·jjj·q
µj ¢ ( bZi ¡ z)j

3
5
2

K

Ã
bZi ¡ z
b¤

!
; (14)

5For bh, local linear regression does not impose monotonicity of h on its …rst element. Monotonic regression could
have been used instead, though note that h need not be monotonic on its …rst element if equation (12) is used to
estimate g.
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where K(u) is a nonnegative weight function on Rd and b¤ is a bandwidth parameter: Let bm(x) = bµ0;
where bµ0 is the minimizing intercept in (14). For any conformable vectors x; j, xj = xj11 £ : : :£ xjdd ;
while jjj = Pd

l=1 jl:
The following algorithm is used to de…ne the estimators bg(Xi); i = 1; : : : ; n and bh(°; w):

² First, compute for eachXi; i = 1; : : : ; n the vector q0(Xi) and scalar v0(Xi) such that jjq0(Xi)jj =
jjx0jj and q0(Xi) ¢ v0(Xi) = Xi: Then compute br(Vj ¢ x0;fWi); i; j = 1; : : : ; n: Here, (Vi;fWi) are
drawn from some known density fV;fW :

² Then …nd the values

bV(i;j) = arg min
Vk :1·k·n

¯̄
¯br(Vkq0(Xi);fWi) ¡ br(Vjx0;fWi)

¯̄
¯ ; i; j = 1; : : : ;n;

and let bsij = bs[br(Vjx0); Xi;fWi] = bV(i;j)=v0(Xi):

² Then let

bg(Xi) =
1
n

nX

j=1

Vj
bsij
: (15)

² For any c = (°;w) with ° 2 fg(x) : x 2 ªXg; let bh(°; w) be the intercept from a local
polynomial regression of order q of br(Zi) on bCi = (bg(Xi);Wi): The computation of br(Zi) in
this smooth may be based on a di¤erent amount of smoothing than in the previous usage in

computation of bg: In the special case where r(z) = E(Y j Z = z) we can replace br(Zi) in the
smooth by Yi:

To apply the integrate …rst strategy described in section 2.2, just drop the fWi argument in the
above calculations and use the estimator er(Xi) in place of br(Zi):

The arbitrary sign and scaling of g(x) is chosen by the normalization g(x0) = 1. The above

estimator bg(x) may have bg(x0) 6= 1. This suggests that alternative consistent estimators such as
eg(x) = bg(x) + 1 ¡ bg(x0) or eg(x) = bg(x)=bg(x0) can be constructed that might be more accurate, at
least for x in the neighborhood of x0.

4 Distribution Theory

We present the pointwise distribution of our estimators of g(x) at some x 6= x0 by the two methods
described; which requires an analysis of the properties of bs: The technical issues are similar in some
respects to those in the estimation of the mode of a density [Romano (1988)] or to those in the

10



estimation of maximal points of a regression function [Müller (1989)]. We then give the distribution
theory for our estimator of h(°; w); which is a sort of generated regressors problem, see Ahn (1995).
We …rst present our regularity conditions that are used in establishing the asymptotic normality of
our estimators. We shall suppose that our estimator br(:) of r(:) satis…es an asymptotic expansion but

are not more speci…c than this. Since the target function r(:) could be a variety of things depending
on the application and since a variety of estimation strategies could be contemplated for br(:); we
would like our theory to allow for this.

We shall work in polar co-ordinates, at least for X: This presupposes that the estimation strategy
for br(:) has been conducted in polar co-ordinates forX , which we would argue is quite sensible for this
particular problem. The main advantage of this approach is that we obtain simple formulae for the

bias and variance of our estimator. For any x 2 ªX there exists ½ 2 R; µ 2 Rdx¡1 with ½(x) = jjxjj
for some norm, where we can write x = Á(½; µ) for a smooth invertible function Á:6 The function
r(x; w) can be rewritten in terms of ½; µ as r(x;w) = r(Á(½; µ); w) = r¤(Á¡1(x); w) and likewise
g(x) = g(Á(½; µ)) = g¤(½; µ) = ½g¤¤(µ); where g¤¤(µ) = g¤(1; µ): Let µ0 = µ(x0) and ½0 = ½(x0): Note

that if µ(x) = µ(x0); then g(x) = ½(x); so we only consider points x with µ(x) 6= µ(x0):
De…ne for any vector ® = (®1; : : : ; ®d)> and function f : Rd ! R

D®f (z) =
@j®jf (z)

@z®11 ¢ ¢ ¢ @z®dd
with j®j =

dX

j=1

®j:

Our assumptions are given below. We suppose that the function Á is arbitrarily smooth and
so our main assumptions can be stated equivalently in terms of Z or Z¤; we have taken a ‘mixed

approach’ and state some assumptions on Z and some on Z¤:
Assumption B.
B1. The random variables (Xi;Wi;fWi; Vi) or equivalently (½i; µi;Wi;fWi; Vi); i = 1; : : : ; n are

independent and identically distributed. Let z¤ = (½; µ; w) 2 Rd and let fZ¤(z¤) [fZ(z)] be the
joint density function of Z¤i = (½i; µi;Wi) [Zi = (Xi;Wi)] with support ªZ¤ = ª½ £ ªµ £ ªW
[ªZ = ªX £ ªW ] a compact subset of Rd; and let fV;fW (v;w) be the joint density function of Vi;fWi:

B2. (a) The functions h; g; and Á are p-times continuously partially di¤erentiable in all directions,
which implies that D®r¤(z¤) exists and is continuous on ªZ for all ® with j®j · p; (b) The function
h satis…es inf°2ª¡ ;w2ªW j@h(°;w)=@° j > 0:

B3. We suppose that br(z) = br¤(z¤); where z¤ = (Á¡1(x); w); satis…es the asymptotic expansion

br¤(z¤) ¡ r¤(z¤) =
1
nbd

nX

i=1

an
µ
z¤;
z¤ ¡ Z¤i
b

¶
K

µ
z¤ ¡ Z¤i
b

¶
ui + bp¯(z¤) + Rn(z¤); (16)

6For example, x1 = ½ sin µ1; x2 = ½cosµ1 sin µ2; : : : ; xdx¡1 = ½cosµ1 ¢ ¢ ¢ cos µdx¡2 sin µdx¡1; xdx =
½cosµ1 ¢ ¢ ¢ cos µdx¡2 cosµdx¡1: We take the range ¡¼=2 < µi · ¼=2; i = 1; : : : ; dx ¡ 2; and ¡¼ < µdx¡1 · ¼:
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where the components of this expansion have the following properties:
(a) The random variable ui is i.i.d. and satis…es E(uijZi) = 0 and E(juij2+²) <1 for some ² > 0:

The function ¾2(z¤) = var(uijZ¤i = z¤) is continuous;
(b) The random function an (z¤; t) depends only on Z1; : : : ; Zn; is uniformly Lipschitz continuous

in both its arguments, and satis…es supz¤2ªZ ;t2supp(K) jan (z¤; t)¡ a (z¤) j = op(1) for some function a.
The non-random functions a(:); ¯(:) are bounded and continuous on ªZ ;

(c) The kernel K takes the product form K (u) =
Qd
j=1 k(uj); where k is symmetric about zero,

integrates to one, has compact support, and is continuously di¤erentiable in all its arguments;
(d) The remainder term Rn(¢) is a continuous function that satis…es

sup
z¤2ªZ¤

jRn(z¤)j = op(±n); where ±n = n¡p=(2p+dx¡1): (17)

B4. For some p¤ with p > p¤ > (dw + 1)=2; as n! 1;

sup
z2ªZ

¯̄
¯̄ @br
@x

(z) ¡ @r
@x

(z)
¯̄
¯̄ = op(n¡1=4b¡(dx¡1)=4) (18)

sup
z2ªZ

jD®br(z) ¡D®r(z)j = op(1); j®j · p¤: (19)

B5. The bandwidth satis…es b = cn¡1=(2p+dx¡1) for some c with 0 < c <1:

Assumption B2(b) is similar to assumption 4 in Horowitz (2001). Assumption B3 is consistent
with the estimator br(z) being a (p ¡ 1)th order with local polynomial nonparametric regression

estimator as in Fan and Gijbels (1996) [in which case a(z) is proportional to 1=fZ(z) and ui is
the regression error], or a local polynomial quantile estimator [in which case a(z) is proportional to
1=fZ(z)fujZ(0) and ui is the check function of the regression error], or a nonlinear function of vectors of
such estimators.7 It is also consistent with the case where the input smoother is a marginal integration

type estimator of the function r(x) de…ned in (10). In that case, a(z¤) = fW (w)=fZ¤(½; µ; w); and
we should elsewhere replace the argument z by x; and replace d by dx in the dimensionality of K
and in the power of b. There is one substantive di¤erence from the usual local polynomial smoother

case, which is that implicitly the smoothing window has been de…ned in the polar co-ordinates of X
7Suppose for simplicity that br were a kernel regression estimator. In that case an(z) = 1=bf(z); where bf(z) is a

kernel density estimator. Then taking a(z) = 1=f(z) we have

sup
z

jan(z) ¡ a(z)j ·
supz

¯̄
¯ bf(z) ¡ f(z)

¯̄
¯

(infz f(z))
³
infz f(z) ¡ supz j bf(z) ¡ f(z)j

´ = op(1);

provided supz j bf(z) ¡ f(z)j = op(1). A similar argument can be made in the local polynomial case.
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rather than the original co-ordinates.8

The rate ±n = n¡p=(2p+dx¡1) in (17) is the rate at which bg(x) converges under our assumptions;
in fact, this is the optimal pointwise rate of convergence for nonparametric functions of dimension
dx ¡ 1 and smoothness p; Stone (1980).

Our proof technique will use some results of Andrews (1994) that uses properties of the higher
derivatives, which explains why we have assumed in B4 that some higher order partials are uniformly
consistent. For local polynomial regression estimators the rate of convergence of the jth-order partial

derivatives is Op(
p

logn=nbd+2j) [given B5]; which can be achieved under some regularity conditions,
see for example Masry (1996a, 1996b). The bandwidth sequence in B5 is smaller than would be
optimal for the high-dimensional derivative estimation, and it is not always the case that Assumption

B4 for example will be satis…ed. To ensure that this does hold requires additional restrictions on
dw; p : (18) requires that p > dw + 3, while (19) requires p > (3dw + 4)=2: As we have discussed,
to satisfy (16)-(19) we require restrictions linking dw with p: The strongest such restriction is that
p > (3dw+4)=2: The greater the dimensionality of w; the more smoothness is required in order to ful…l

these conditions. This technical problem shows up in semiparametric estimation, and, of more direct
relevance, in the literature on estimation of additive regression functions by marginal integration, see
Linton and Nielsen (1995) and Horowitz (2001). One issue here is that if the smoothness conditions

are not satis…ed, i.e., dw is too large relative to p; our estimator is not ‘rate optimal’ in the sense
of Stone (1986) [note however that our estimator is rate optimal when the restrictions are satis…ed
though]. Hengartner and Sperlich (2002) and Horowitz and Mammen (2002) discuss this issue and

propose solutions for speci…c problems. We are only concerned with proposing su¢cient conditions
for our limit theory to hold; it may be possible to improve the theoretical results to obtain rate
optimal estimators.

De…ne the bounded continuous functions of x

¯g(x) = ¡g(x)
Z

[¯(v ¢ ½0; µ0;w) ¡ ¯(v ¢ ½(x); µ(x); w)]
fV;fW (v;w)
@h
@° (v; w) £ v dvdw (20)

I(x) =
Z
¾2(½; µ(x); w)a2(½; µ(x); w)

f 2
V;fW (½g(x)=½(x);w)fZ¤(½; µ(x); w)d½dw

h
@h
@° (½g(x)=½(x); w) £ ½

i2 :

Theorem 2. Suppose that Assumptions A1 and B1-B5 hold. Then,
p
nbdx¡1

¡
bg(x) ¡ g(x) ¡ bpn¯g(x)

¢
=) N (0;­(x)) ;

8This just amounts to another type of multivariate smoothing window: other common approaches include the
rectangular window, and the elliptical window. The shape of the smoothing window will typically have a material
a¤ect on the bias constant but not on the variance.
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where ­(x) = ­1(x) +­2(x) and

­1(x) = jjkjj2(dx¡1)
2 g2(x)I(x0) ; ­2(x) = jjkjj2(dx¡1)

2 g2(x)I(x):

To aid inference we next show how to compute analytic standard errors. Let b­(x) = b­1(x)+b­2(x);
where

b­1(x) = bg(x)2 1
nbdx¡1

nX

i=1

bu2i
dx¡1Y

j=1

k2
µ
µj0 ¡ µji
b

¶
ba2(½i; µ0;Wi)

f2
V;fW (½i=½0;Wi)

h
@bh
@° (½i=½0; w) £ ½i

i2

b­2(x) = bg(x)2 1
nbdx¡1

nX

i=1

bu2i
dx¡1Y

j=1

k2
µ
µj0 ¡ µji
b

¶
ba2(½i; µ(x);Wi)

f 2
V ;fW (½ibg(x)=½(x);Wi)

h
@bh
@° (½ibg(x)=½(x); w) £ ½i

i2 ;

where hats denote (nonparametric) estimators of the corresponding population quantities. Under
suitable regularity conditions b­(x) !p ­(x): The estimates of @bh=@° come from the slope estimates

from (14).
We now discuss the asymptotic distribution in some special cases. In fact, we just look at the

…rst terms in ­(x) as the same comments apply to the second ones. In the special case that br(z) is
a local linear estimator of a regression function r,

I(x0) =
Z
¾2(½; µ0;w)
fZ¤(½; µ0; w)

f 2
V;fW (½=½0; w)d½dw

h
@h
@° (½=½0; w) £ ½

i2 : (21)

In the special case that the input smoother is a local polynomial based marginal integration type
estimator of the function r(x) de…ned in (10),

I(x0) =
Z

¾2(½; µ0)
fZ¤(½; µ0; w)

f2V (½=½0)f
2
fW (w)d½dw

h
@h
@° (½=½0) £ ½

i2 : (22)

There are two di¤erences between (21) and (22). The …rst has to do with the fact that (21)
depends on the joint density of V;fW; while (22) depends only on the product of the marginals. The
second di¤erence is that in the integrate …rst approach the denominator has [@h(½=½0)=@° ]2 instead

of [@h(½=½0; w)=@°]2: We next make a comparison of (21) and (22) in the special case that V;fW
are mutually independent. De…ne ¿(½; w) = g2(x)¾2(½; µ0)f2V (½=½0)f 2fW (w)=½2fZ¤(½; µ0;w); then we
compare Z

¿(½; w)h
@h
@° (½=½0; w)

i2 d½dw with
Z

¿(½; w)h
@h
@° (½=½0)

i2 d½dw: (23)
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It can be seen that the comparison in (23) could go either way, i.e., the variances could have either
ranking [a good analogy is with the comparison between E(1=Y 2) and 1=E2(Y )]. The biases of the
two estimators are also di¤erent in general.

We now turn to the distribution theory of bh(°;w): This is a classic generated regressors problem

[like in Ahn (1995)] except that the estimator of g is a bit more complicated than in his case and
the dependent variable is also generated here. The rate of convergence is determined by the e¤ective
dimensionality dy = maxfdx ¡ 1; dw + 1g [along with the worst case smoothness]: In the case where

dw + 1 > dx ¡ 1; the dominant term comes from the smooth of br(Xi;Wi) on the known covariates
g(Xi);Wi. In the case where dw+ 1 > dx¡ 1; the dominant term comes from the estimation of bg(x);
while when dw + 1 = dx ¡ 1 the two terms contribute equally. We make the following additional

assumption:
Assumption C. The bandwidth in (14) is chosen to be b¤ = c¤n¡1=(2p+dy) for some c¤ with

0 < c¤ <1:We suppose that br(Zi) in (14) is computed with a bandwidth br such that br = b¤= logn:
Let fg;W be the density of (g(X);W ); which we assume to exist and to inherit the smoothness

properties of g; fZ ; and suppose that (°;w) is an interior point for which fg;W (°;w) > 0. De…ne

¥(°;w) =
E [f 2Z(Z)a2(Z)¾2(Z)jg(X) = g(x);W = w]

fg;W (°; w)
:

When a = 1=fZ ; ¥(°; w) = E[¾2(Z)jg(X) = g(x);W = w]=fg;W (°;w); which can be recognized
as the covariate dependent part of the asymptotic variance that would result were g known and a
standard local polynomial smoother used. In the appendix, in (54), we de…ne the kernel constants

'(K) and Ã(K).

Theorem 3. Suppose that Assumptions A1, B1–B5, and C hold. Then, there exists a bounded

continuous function ¯h(¢) such that
p
nb¤dy

³
bh(bg(x);w) ¡ h(bg(x); w) ¡ bp¤¯h(g(x); w)

´
=) N (0;§(g(x); w)) ;

where

§(g(x);w) = '(K)¥(g(x);w)1(dw+1 ¸ dx¡1)+Ã(K)
·
@h
@°

(g(x);w)
¸2

g2(x)I (x0)1(dw+1 · dx¡1):

Standard errors can be computed from this formula as above.

5 Numerical Results

5.1 Monte Carlo

In this section we describe a small monte carlo experiment. The design is g(x) = jjxjj=
p
2; h(g) =

exp(g); and y = h[g(x)] + " so there is no w. The distribution of X is uniform over the area
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ªX = fx : jjxjj2 · 2 and xj > 0:2g. We take V = jjX jj and x0 = (1; 1), which makes g(x0) = 1 and
ªV = (0:08;

p
2):The nonparametric functions used in each step of the estimation are constructed

using ordinary kernel regressions with a Gaussian kernel. We report results for three di¤erent sample
sizes and three di¤erent error variances, for a total of nine designs. Each design is estimated using

three di¤erent bandwidths h1, h2, and h3, where h2 is given by Silverman’s rule (1:06n¡1=5 times the
square root of the average of the regressor variances), h1 = 0:5 ¤ h2, and h3 = 1:5 ¤ h2. These kernel
and bandwidth choices are not likely to be optimal for our setting, but are chosen because they are

commonly used in applications and are easy to calculate.
For each estimated function g and h we calculate four criteria summarizing goodness of …t. These

are integrated mean squared error IMSE, integrated mean absolute error IMAE, pointwise mean

squared error PMSE, and pointwise mean absolute error PMAE. Results are based on a hundred
simulations of each design and bandwidth. These are reported in Tables 1 and 2.

Table 1 shows that, for estimation of g the largest bandwidth produces superior estimates in
all designs, with error criteria reduced by roughly 1/2 to 1/4 relative to estimates based on the

smallest bandwidth. When estimating g using the large bandwidth, most criteria in most designs are
approximately halved when the sample size is increased from 100 to 500 observations. Estimates of
h, shown in Table 2, are generally less accurate than the estimates of g. The best choice of bandwidth

for h varies across designs, but the di¤erences in …t across di¤erent bandwidths is less pronounced
for h than for g: The improvement in the …t of h when increasing the sample size from 100 to 500
varies across designs, with decreases in the error measures ranging from about 40% to 80%.

5.2 Application to Nonparametric Production Function Estimation

Let y be the log output of a …rm and x be a vector of inputs. Starting from Shephard (1953), many
parametric production function models of the form y = r(x) + " have been estimated that impose

homotheticity. A recent example is Zellner and Ryu (1998), who provide empirical comparisons
of a large number of di¤erent homothetic production functional forms. Regarding nonparametric
models, Hanoch and Rothschild (1972) test whether a homothetic production function exists that

could, without statistical errors, generate a given data set, and Primont and Primont (1994) provide
a way to construct these homothetic production functions. However, while the production functions
in these last two papers are nonparametric, by assumption they have no statistical errors and hence

no associated distribution theory.
Given a homothetic production function E(yjx) = r(x) = h[g(x)] with linearly homogeneous g, a

property of production that is empirically important is returns to scale, de…ned as

S(g) =
@h(g)
@ ln g
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Other important properties are measures of substitutability of inputs, such as the technical rate of
substitution and the elasticity of substitution. When x consists of just two elements, for example,
capital K and labor L, then a simple measure of substitutability is

®(K=L) =
@ ln g (K=L; 1)
@ ln(K=L)

Note in interpreting this measure that g (K=L; 1) = g (K;L) =L. The substitutability measure
®(K=L) equals a constant ® when g(x) = K®L1¡®, that is, when the production function r(x)
is a monotonic transformation of a Cobb Douglas, which is a common speci…cation for homothetic

production.
The data set consists of observations of chemical manufacturing …rms in mainland China in two

time periods, 1995 and 2001. For each …rm, we observe the net value of real …xed assets K, the
number of employees L, and Y de…ned as the log of value-added real output. Output and capital

are measured in thousands of Yuan converted to the base year 2000 using a general price de‡ator
for the Chinese chemical industry. For details regarding the collection and construction of this data,
see Je¤erson et. al. (2002). To eliminate extreme outliers, which may be due to gross errors in

data reported by some …rms, we sort the data by K=L and remove the bottom and top 2.5% of
observations. This leaves a total sample size of 1638 …rms in 2001 and 1560 …rms in 1995.

We consider both nonparametric and parametric estimates of the production function r(K;L).

The parametric model we employ is a homothetic Translog production function, in which log output
Y = h[g (K;L)] + ² with

g (K;L) =
µ
K
L

¶®
L

h (g) = ¯0 + ¯1 ln (g) + ¯2 ln (g)
2

Fitting this model by nonlinear least squares in each of the years of data yields the parameter
estimates reported in Table 3 (standard errors are in parentheses).

TABLE 3: Parametric Translog Estimates
® ¯0 ¯1 ¯2

2001 Translog 0.696 9.815 0.783 0.036

(0.043) (0.031) (0.028) (0.012)
1995 Translog 0.478 9.585 0.961 0.045

(0.046) (0.024) (0.041) (0.017)
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Figures 2 and 3 show homothetic Translog and homothetic nonparametric estimates bg(K=L; 1)
and bh(g) in 2001. Figure 3 also shows …ts from a simple nonhomothetic kernel regression of Y onK;L,
that is, the initial unconstrained estimator of the function r. For simplicity, at each nonparametric
estimation step we used ordinary kernel regressions with a normal kernel and bandwidth given by

Silverman’s rule. Without loss of generality, both the parametric and nonparametric models use the
same scale normalization g(1; 1) = 1.

Figures 2 and 3

The nonparametric …ts of r and those of h shown in Figure 3 are quite similar, indicating that
the imposition of homotheticity is reasonable for this data set. The nonparametric estimates of the

functions g and h are roughly similar to the parametric Translog model estimates, but show quite
a bit more curvature, departing most markedly from the parametric model for g at low capital to
labor ratios and from the model for h(g) at low values of g.

These di¤erences are greatly magni…ed when one calculates the returns to scale S(g) and the
substitution measure ®(K=L). For the Translog model, S(g) = ¯1+2¯2 ln (g) and ®(K=L) equals the
constant ®. For the nonparametric model we use the approximation bS(bgi) t [bh(bgi+1)¡bh(bgi¡1)]=(bgi+1¡
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bgi¡1) after sorting the data by bgi for each …rm i, and similarly for b®(K=L). Figures 4 and 5 show the
results of these calculations for 2001, and Table 4 provides summary statistics for both years.

TABLE 4: Substitutability and Returns to Scale Estimates
® parametric ® nonparametric S parametric S nonparametric

mean 2001 0.696 0.537 0.788 0.821

standard deviation 2001 0.000 0.281 0.082 1.286
mean 1995 0.478 0.562 0.968 1.101
standard deviation 1995 0.000 0.225 0.072 1.528

Unlike the popular homothetic Translog model, which assumes ® constant, the nonparametric
estimates have ® sharply increasing at low capital labor ratios and leveling o¤ only at high levels.
This result indicates likely inadequacies of the parametric model. The assumption of a constant ®
may be more reasonable for advanced economies like the United States, which tend to have higher

capital labor ratios.
The models also di¤er in returns to scale S(g). Both models imply similar returns to scale on

average, but the parametric model has S(g) mildly increasing, based on a small but statistically

signi…cant positive estimate of b̄
2. In contrast, the nonparametric estimates (which are likely to be

undersmoothed), are roughly U shaped, with a majority of the data in the decreasing portion of the
U. Given the substantial variability of the nonparametric bS , it is di¢cult to draw conclusions about

the dependence of S on g.
The estimates based on 1995 data are broadly similar to 2001. The major di¤erence between the

two years, which can be seen in Table 4, is that average returns to scale appear to have declined over
time, from approximately constant returns with average S near one in 1995, to decreasing returns

with S near 0.8 in 2001. This …nding could be an artifact of substantial ownership reform during this
period. Many larger …rms in the Chinese chemical industry may still be state-owned in 2001, while
many smaller enterprises were privatized after 1995 and so could have substantially restructured,

thereby enhancing their productivity. Combining these into a single cross section might then create
the appearance of decreasing returns on average. This could explain the overall di¤erence in mean
S between the two years, but would explain the observed patterns in S(g) within each year, though

as noted above these departures of S(g) from a constant are at best weakly estimated. Changes over
time may more generally be due to changes in technology, demand, and other aspects of China’s
increasing economic liberalization and growth over this time period.

19



Figures 4 and 5

6 Extensions and Conclusions

We have provided a general nonparametric estimator for homothetic and homothetically separable
functions, and demonstrated it in a monte carlo simulation and in an empirical production function

application. We conclude by describing some extensions of our methodology.

6.1 A Generalized Partly Linear Model With Unknown Link Function

Instead of homotheticity, consider nonparametric estimation of unknown functions H and m in a

model of the form
R(u; z; w) = H [m(z) + u;w] (24)

given a nonparametric estimate of the function R. A sample of u;z; w is observed, where z and w are
vectors and u is a scalar. Here m(z) + u is the partly linear form, the function m is not constrained
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to be homogeneous, and H is an unknown link function.
Examples of models of this type include reservation price and willingness to pay models9, and

models of generalized separability. Recent nonparametric or semiparametric estimators of this and
closely related models include Linton and Härdle (1996), Chen and Randall (1997), Creel and Loomis

(1997), An (2000), Horowitz (2001), McFadden (1999), Lewbel, Linton, and McFadden (2001), and
Horowitz and Mammen (2002).

Theorem 1 uses homogeneity in r(qv;w) = h[g(q)v; w] and essentially estimates g by solving this

equation for v. We may similarly solve equation (24) for the scalar u to estimate the function m, as
follows.

Assumption B1. Let Z andW be random vectors and U a random scalar with supp(U;Z;W ) =
ªU £ ªZ £ ªW . There exists functions R; H and m such that R(u;z; w) = H [m(z) + u; w] for all

(u; z; w) 2 ªU £ªZ £ ªW , where H is invertible with respect to its …rst element. Let z0 2 ªZ be a
constant vector and impose the free normalization m(z0) = 0.

Given the function R(u;z; w), de…ne the function S by S[R(u; z; w); z; w] = u: By equation (24),

the function S exists as long as H is invertible on its …rst element.

Corollary 2. Let Assumption B1 hold. Let (eU;fW ) be any random vector with support contained
in ªU £ªW . Then for every (u;z; w) 2 ªU £ ªZ £ ªW the functions m and H satisfy

m(z) = E[eU ¡ S[R(eU;z0;fW ); z;fW ]] (25)

H [m(z) + u; w] = E[R(U;Z;W ) j U = u;m(Z) = m(z);W = w]: (26)

Proof. Mirroring the proof of Theorem 1, we have S(R;z; w) = H¡1(R;w) ¡ m(z), so for any

(u; z; w) 2 ªU £ ªZ £ªW ,

u¡ S[R(u;z0; w); z;w] = u¡ [H¡1(R(u;z0; w); w) ¡m(z)]
= u¡ [H¡1(H [m(z0) + u; w]; w) ¡m(z)] = m(z)

9 In the reservation price or willingness to pay model y = I[¡m(z) + " · u]; where u is the price or cost of a good
to an individual, ¡m(z) + " is the individual’s reservation price or willingness to pay for the good (which depends on
observables z and an unobserved taste parameter "), y is the indicator of whether the individual buys (or is willing to
buy) the good at price u, H(";w) is the conditional distribution function of " given W = w. It is then assumed that
" j U;Z;W » " j W and R(u; z;w) = E(Y j U = u;Z = z; W = w).
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This equation holds for all w 2 ªW , u 2 ªU , so it holds in expectation replacing w with fW and u
with eU .

With a consistent estimator bR of the function R, a consistent estimator bS is constructed by
inverting bR(u; z;w) with respect to u. Analogous to bg, the corresponding consistent estimator of

m(z) is then given by

bm(z) = 1
n

nX

i=1

Ui ¡ S[R(Ui; z0;Wi); z;fWi] (27)

and a consistent estimator of H is a nonparametric regression of br(u; z; w) on bm(z)+u; w. One could

instead estimate H by regressing br(u; z0; w) on u; w, but that would only provide estimates of H over
ªU £ ªW instead of over supp[M(Z) + U ] £ ªW .

6.2 Endogenous Regressors

Consider estimation of g(x) in the model y = H[g(x); w; "] where " is unobserved. If " ? X;W
then r(x;w) = E(Y j X = x;W = w) = h[g(x); w]; and our estimator can be applied. However,

suppose instead that some of the covariates X;W are endogenous, and so are correlated with ".
Then estimation of g(x) is still possible, under the following conditions. Assume that we observe a
vector of exogenous covariates Z. This Z can include exogenous elements of X and W , if any. De…ne
mx(z) = E(X j Z = z), Ux = X ¡ mx(Z), mw(z) = E(W j Z = z), Uw = W ¡ mw(Z), and let

U = Ux; Uw. Then by construction " j X;W; Z v " j U;Z. De…ne r(x; w; u) = E(Y j X = x;W =
w; U = u) and h[g(x); w; u] = E[H[g(x); w; "] j U = u]. Assume that " j U; Z v " j U . It then follows
that r(x; w;u) = h[g(x); w; u]. This is the form required for application of our original estimator,

rede…ning w as w;u. If u were observed, then our estimator could be immediately applied without
change to this equation. Since u is not observed, it must be estimated.

We therefore have the following estimation procedure. First, estimate bmx and bmw by nonpara-

metric regressions of X and W on Z. Then let bUxi = bmx(Zi); for i = 1; : : : ; n, and similarly for bUwi,
which together give bUi. Compute br as a nonparametric regression of Y on X;W; bU . Then apply the
homotheticity estimator of the previous section, replacing W everywhere with W; bU . Consistency of
the resulting estimator follows from uniform consistency of the estimators in each step.

The key assumption that " j U; Z v " j U is the form of endogeneity analyzed in the control
function models of Blundell and Powell (2000), (2001). It also yields a nonparametric triangular
system similar to Newey, Powell, and Vella (1999) and Imbens and Newey (2001).

For every element of X;W that is also in Z, the corresponding element of U and bU will be
identically zero, and hence can be ignored.
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The above procedure yields estimates of the functions g and h. Recovery of the function H
will in general require some additional structure. Once g(x) is known, it can be treated as an
observable endogenous regressor, and estimation of H (or of identi…able functionals of H that are
of applied interest) then reduces to estimation of a nonparametric triangular system. Examples of

estimators for such systems include Blundell and Powell (2000), (2001), Imbens and Newey (2001)
and Chesher (2001). See also Matzkin (2003) for a homogeneity based method of identifying models
with nonadditive errors.

6.3 Partly Linear g

Since linear functions are homogeneous, a natural way to further reduce dimensionality is with a
partly linear speci…cation for g, that is, g(x) = x>1 ¯ + g2(x2) for subvectors x1; x2, with g2 homo-

geneous. Given an initial consistent estimator bg(x) using our estimator, ¯ and g2 could then be
obtained by applying a partly linear regression estimator such as Robinson (1988), treating bg(x) as
the dependent variable in a partly linear regression model. Alternatively, if g2 is not constrained
to be homogeneous, then the estimator of equation (27) could be applied …rst, taking V to be an

element of x1, and then treating bm(z) as the dependent variable in a partly linear regression to obtain
g2(x2) and the remaining portion of x>1 ¯.

A Appendix

De…ne the image sets

ªbr(w) = fr : br(v ¢ x0; w) = r; v 2 ªV g and ªr(w) = fr : r(v ¢ x0; w) = r; v 2 ªV g

for any w 2 ªfW :These sets trace out the values that the functions r(:) and br(:) can take - they are
both intervals due to the continuity of r; br. By assumption, ªr(w) is non-empty for any w 2 ªfW : By

the uniform consistency of br(:); the set ªbr(w) is also non-empty for any w 2 ªfW with probability
tending to one. In fact, for any ² > 0

Pr

"
sup
w2ªfW

½H (ªbr(w);ªr(w)) > ²

#
· Pr

"
sup

x2ªX ;w2ªfW

jbr(x; w) ¡ r(x; w)j > ²
#

! 0; (28)

where the Hausdor¤ distance ½H between two compact subsetsA;B of R is ½H(A;B) = supy2B infx2A jx¡
yj: It follows that supw2ªfW

½H (ªbr(w);ªr(w)) ¡!p 0:
De…ne the event

An =
n

br(Vix0;fWi) 2 ªr(fWi) for all i
o
;
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which is contained in the event fªbr(w) µ ªr(w) for all wg: Note that Acn = f½H(ªbr(w);ªr(w)) > ²
for some ² > 0 and some wg: A consequence of (28) is that Pr[Acn] ! 0: In the sequel, we have to
compute Pr [Bn] for various events Bn: Since

Pr [Bn] · Pr [Bn \ An] + Pr [Acn] · Pr [Bn \ An] + o(1);

we can restrict attention to the event Bn \ An: This argument ensures that we can replace, for
example, the set ªbr(w) by the set ªr(w) in the sequel.

A.1 Proof of Theorem 2

The proof of this theorem relies on two lemmas that are stated and proved below. We …rst establish
the properties of bg(x): Using the fact that 1=a ¡ 1=b = ¡(a ¡ b)=ab; we have

bg(x) ¡ g(x) =
1
n

nX

i=1

Vi
bs[br(Vix0;fWi); x;fWi]

¡ g(x)

=
1
n

nX

i=1

Vi
s[r(Vix0;fWi); x;fWi]

¡ g(x)

¡1
n

nX

i=1

Vi

"
bs[br(Vix0;fWi); x;fWi] ¡ s[r(Vix0;fWi); x;fWi]
bs[br(Vix0;fWi); x;fWi]s[r(Vix0;fWi); x;fWi]

#

= ¡1
n

nX

i=1

Vi

"
bs[br(Vix0;fWi); x;fWi] ¡ s[r(Vix0;fWi); x;fWi]

s2[r(Vix0;fWi); x;fWi]

#

+
1
n

nX

i=1

Vi

2
64

³
bs[br(Vix0;fWi); x;fWi] ¡ s[r(Vix0;fWi); x;fWi]

´2

bs2[br(Vix0;fWi); x;fWi]s[r(Vix0;fWi); x;fWi]

3
75 ;

because
1
n

nX

i=1

Vi
s[r(Vix0;fWi); x;fWi]

¡ g(x) ´ 0:

Therefore, we just need to consider the terms

Tn = ¡ 1
n

nX

i=1

Vi

"
bs[br(Vix0;fWi); x;fWi] ¡ s[r(Vix0;fWi); x;fWi]

s2[r(Vix0;fWi); x;fWi]

#
(29)

Rn =
1
n

nX

i=1

Vi

2
64

³
bs[br(Vix0;fWi); x;fWi] ¡ s[r(Vix0;fWi); x;fWi]

´2

bs2[br(Vix0;fWi); x;fWi]s[r(Vix0;fWi); x;fWi]

3
75 : (30)

Remainder term. By the Cauchy-Schwarz inequality we have

jRnj ·
Ã
1
n

nX

i=1

V 2
i

!1=2
³
max1·i·n

¯̄
¯bs[br(Vix0;fWi); x;fWi] ¡ s[r(Vix0;fWi); x;fWi]

¯̄
¯
´2

min1·i·n bs2[br(Vix0;fWi); x;fWi]s[r(Vix0;fWi); x;fWi]
: (31)
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By the triangle inequality

max
1·i·n

¯̄
¯bs[br(Vix0;fWi); x;fWi] ¡ s[r(Vix0;fWi); x;fWi]

¯̄
¯

· max
1·i·n

¯̄
¯bs[br(Vix0;fWi); x;fWi] ¡ s[br(Vix0;fWi); x;fWi]

¯̄
¯

+ max
1·i·n

¯̄
¯s[br(Vix0;fWi); x;fWi] ¡ s[r(Vix0;fWi); x;fWi]

¯̄
¯ :

We have

max
1·i·n

¯̄
¯bs[br(Vix0;fWi); x;fWi] ¡ s[br(Vix0;fWi); x;fWi]

¯̄
¯ · sup

fW2ªfW

sup
r2ªr(fW )

¯̄
¯bs[r; x;fW ] ¡ s[r;x;fW ]

¯̄
¯

· op(±1=2n )

by Lemma 1. Because s is a di¤erentiable function with bounded continuous …rst derivative, we have
max1·i·n js[br(Vix0;fWi); x;fWi] ¡ s[r(Vix0;fWi); x;fWi]j = op(±1=2n ) also using the uniform consistency
assumptions about br. The denominator terms in (31) are bounded away from zero with probability

tending to one by the reverse triangle inequality and the uniform convergence, hence Rn = op(±n):
Leading Term. By a Taylor series expansion

bs[br(Vix0;fWi); x;fWi]¡ s[r(Vix0;fWi); x;fWi]

= bs[r(Vix0;fWi); x;fWi]¡ s[r(Vix0;fWi); x;fWi]

+
@s
@r

[r(Vix0;fWi); x;fWi] £ [br(Vix0;fWi) ¡ r(Vix0;fWi)]

+
µ
@bs
@r

[ri; x;fWi] ¡
@s
@r

[r(Vix0;fWi); x;fWi]
¶

£ [br(Vix0;fWi) ¡ r(Vix0;fWi)];

where ri are intermediate points between br(Vix0;fWi) and r(Vix0;fWi): Substituting this expression
we have

Tn = ¡ 1
n

nX

i=1

Vi

"
bs[r(Vix0;fWi); x;fWi] ¡ s[r(Vix0;fWi); x;fWi]

s2[r(Vix0;fWi); x;fWi]

#
(32)

¡ 1
n

nX

i=1

Vi
@s
@r

[r(Vix0;fWi); x;fWi]
"
[br(Vix0;fWi) ¡ r(Vix0;fWi)]
s2[r(Vix0;fWi); x;fWi]

#
(33)

¡ 1
n

nX

i=1

Vi
µ
@bs
@r

[ri; x;fWi] ¡
@s
@r

[r(Vix0;fWi); x;fWi]
¶

£ [br(Vix0;fWi) ¡ r(Vix0;fWi)]: (34)

The term (34) is bounded in probability by a constant times

sup
z2ªZ

sup
r2ªr(w)

¯̄
¯̄@bs
@r

(r; x; w) ¡ @s
@r

(r;x; w)
¯̄
¯̄ £ sup

z2ªZ
jbr(x;w) ¡ r(x;w)j = op(±n)
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using the same inequality as in (31) and applying B4 and Lemma 1.
To analyze (32) we invoke the expansion obtained in Lemma 1 below. Speci…cally, from (58)

below we have

bs[r(Vix0;fWi); x;fWi] ¡ s[r(Vix0;fWi); x;fWi]

= ¡br(x ¢ s(r(Vix0;fWi); x;fWi);fWi) ¡ r(x ¢ s(r(Vix0;fWi); x;fWi);fWi)
@h
@° (s(r(Vix0;fWi); x;fWi) ¢ g(x);fWi) £ g(x)

+ op(±n):

= ¡br(x ¢ Vi=g(x);fWi) ¡ r(x ¢ Vi=g(x);fWi)
@h
@° (Vi;fWi) £ g(x)

+ op(±n):

This expansion is uniform over i = 1; : : : ; n: The last line follows from the fact that by substitution,
we have s(r(Vix0;fWi); x;fWi) = Vi=g(x) given the normalization on x0: Regarding (33), from the
de…nition of s(r; q; w) we have

@s
@r

(r; q;w) =
1

@h
@° (h¡1(r;w); w)) £ g(q)

so that
@s
@r

[r(Vix0;fWi); x;fWi] =
1

@h
@° (Vi;fWi) £ g(x)

:

Substituting back into Tn, we get

bg(x) ¡ g(x) =
1
n

nX

i=1

!(Vi;fWi) ¢ [br(Vi ¢ x0;fWi) ¡ r(Vix0;fWi)] (35)

¡ 1
n

nX

i=1

!(Vi;fWi) ¢ [br(Vi ¢ x=g(x);fWi) ¡ r(Vi ¢ x=g(x);fWi)] + op(±n);

where

!(v;w) = ¡ g(x)
@h
@° (v; w) £ v : (36)

The expression (35) is an average of the estimation error of a dx+dw dimensional nonparametric
regression over the support of the random variables V;fW: Because of this averaging, bg(x) behaves

like a dx ¡ 1 dimensional smoother, see Linton and Nielsen (1995) for comparison. There is some
trickyness here due to the fact that the V variable de…nes an integration path in Rdx - but because we
are using the polar co-ordinates this becomes standard. We now replace the sums in (35) by integrals,
which follows by two applications of Lemma 2 with u = x0=g(x0) and u = x=g(x); respectively: Thus

bg(x) ¡ g(x) =
Z

[br(v ¢ x0; w) ¡ r(v ¢ x0; w)]!(v; w)fV;fW (v; w)dvdw

¡
Z

[br(v ¢ x=g(x); w) ¡ r(v ¢ x=g(x);w)]!(v; w)fV;fW (v;w)dvdw + op(±n)

´ Tn1 + Tn2 + op(±n):
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Then substitute in the expansion (16) for br(x; w) ¡ r(x; w) and using the assumed properties

Tn1 =
1
n

nX

i=1

dx¡1Y

j=1

kb (µj0 ¡ µji)uib»n(Zi) +Op(bp) + op(±n); where (37)

b»n(Zi) =
Z
kb (v ¢ ½0 ¡ ½i)

dwY

l=1

kb (wl ¡Wli) an
µ
v½0; µ0; w;

v½0 ¡ ½i
b

;
µ0 ¡ µi
b
;
w ¡Wi
b

¶

£!(v; w)fV;fW (v; w)dvdw:

The integral in b»n(Zi) is over ªV £ªfW ; and kb(:) = k(:=b)=b: The Op(bp) term in (37) is the integrated
bias of br(v ¢x0; w)¡r(v ¢x0;w); and we defer analysis of this, see below. We next approximate b»n(Zi)
by simpler random variables. First make a change of variables v 7! u = (v ¢ ½0 ¡ ½i)=b. It follows

that v = (½i + ub)=½0 so that dv = b du=½0. The range of integration over which u is taken expands
to §1 as b ! 0 since the points v ¢ ½0 for all v 2 ªV are interior to ªX. Also, changing variables
w 7! t = (w ¡Wi)=b ; we get

b»n(Zi) =
1
½0

Z
k(u)

dwY

j=1

k (tj ) an
µ
½i + ub; µ0;Wi + tb;u;

µ0 ¡ µi
b
; t

¶

£!((½i + ub)=½0;Wi + tb)fV;fW ((½i + ub)=½0;Wi + tb)dudt: (38)

We shall replace b»n(Zi) by the leading term

e»n(Zi) =
1
½0
a(½i; µ0;Wi)!(½i=½0;Wi)fV;fW (½i=½0;Wi) = ¡g(x)

a(½i; µ0;Wi)fV;fW (½i=½0;Wi)
@h
@° (½i=½0;Wi) £ ½i

;

using the following argument. We have

1
n

nX

i=1

dx¡1Y

j=1

kb (µj0 ¡ µji) uib»n(Zi)

=
1
n

nX

i=1

dx¡1Y

j=1

kb (µj0 ¡ µji) uie»n(Zi) +
1
n

nX

i=1

dx¡1Y

j=1

kb (µj0 ¡ µji) ui[b»n(Zi) ¡ e»n(Zi)]

´ T ¤n1 + R
¤
n1:

Since an [and hence b»n] depends only on Z1; : : : ;Zn; we have

E[R¤n1jZ1; : : : ; Zn] = 0: (39)
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By the mutual independence of ui; uj given Z1; : : : ; Zn; the conditional variance of R¤n1 is just a sum
of conditional expectations. Therefore, we have

var[R¤n1jZ1; : : : ; Zn] =
1
n2

nX

i=1

[kb (µj0 ¡ µji)]2E(u2i jZi)[b»n(Zi) ¡ e»n(Zi)]2

·
·
max
1·i·n

¯̄
¯b»n(Zi) ¡ e»n(Zi)

¯̄
¯
¸2

£ sup
z2ªZ

¾2(z)
1
n2

nX

i=1

dx¡1Y

j=1

[kb (µj0 ¡ µji)]2

= op(1) £ 1
n2b2dx¡2

nX

i=1

dx¡1Y

j=1

k2
µ
µj0 ¡ µji
b

¶
= op(n¡1b¡(dx¡1)); (40)

since n¡2 Pn
i=1

Qdx¡1
j=1 [kb (µj0 ¡ µji)]2 = Op(n¡1b¡(dx¡1)) by standard theory for kernel density es-

timators, while max1·i·n jb»n(Zi) ¡ e»n(Zi)j = op(1) using the triangle inequality and the following

bounds:

max
1·i·n

sup
u;t2supp(k)

j!((½i + ub)=½0;Wi + tb) ¡ !(½i=½0;Wi)j = op(1)

max
1·i·n

sup
u;t2supp(k)

¯̄
¯fV;fW ((½i + ub)=½0;Wi + tb) ¡ fV;fW (½i=½0;Wi)

¯̄
¯ = op(1)

sup
n¸n0

max
1·i·n

sup
u;t;v2supp(k)

jan (½i + ub; µ0;Wi + tb; u; v; t) ¡ a(½i; µ0;Wi)j = op(1);

which follow from the smoothness and boundedness of the functions !; a; and fV;fW ; and assumption
B3 about an. Together, (37), (39) and (40) imply that Tn1 = T ¤n1 +Op(bp) + op(±n):

The random variable T ¤n1 is a sample average of independent random variables depending on
(½i; µi;Wi); with

E(T ¤n1) = 0

var(T ¤n1) =
1

nb2(dx¡1)

1
½2(x0)

Z
¾2(½; µ; w)

dx¡1Y

j=1

k
µ
µj0 ¡ µj
b

¶2

£

a2(½; µ0;w)!2(½=½0;w)f
2
V;fW (½=½0; w)fZ¤(½; µ; w)d½dµdw:

We change variables once again µj 7¡! (µj0 ¡ µj )=b = tj; j = 1; : : : ; dx ¡ 1; i.e., µj = µj0 ¡ tjb; and
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obtain

var(T ¤n1) =
1

nb(dx¡1)

1
½2(x0)

Z
¾2(½; µ0 ¡ tb;W )

dx¡1Y

j=1

k2(tj) £

a2(½; µ0; w)!2(½=½0; w)f
2
V;fW (½=½0;w)fZ¤(½; µ0 ¡ tb; w)d½dtdw

' g2(x)jjkjj2(dx¡1)
2

nb(dx¡1)

Z
¾2(½; µ0; w)a2(½; µ0; w)

f 2
V;fW (½=½0; w)fZ¤(½; µ0;w)

h
@h
@° (½=½0; w) £ ½

i2 d½dw (41)

using (36). The approximation in (41) is valid by dominated convergence.
Similar arguments apply to Tn2: We have

Tn2 =
1
n

nX

i=1

dx¡1Y

j=1

kb (µj (x=g(x)) ¡ µji) ui
Z
kb (v ¢ ½(x=g(x)) ¡ ½i) £

dwY

l=1

kb (wl ¡Wli)

an(v½(x=g(x)); µ(x=g(x)); w;
v½(x=g(x)) ¡ ½i

b
;
µ(x) ¡ µi
b

w ¡Wi
b

)!(v; w)fV;fW (v; w)dvdw

+Op(bp) + op(±n);

by substituting in the expansion (16) for br(v ¢ x=g(x); w) ¡ r(v ¢ x=g(x); w) and using the assumed

properties. We have Tn2 = T ¤n2 + Op(b
p) + op(±n); where

T ¤n2 =
1
n
g(x)
½(x)

nX

i=1

ui
dx¡1Y

j=1

kb (µj (x) ¡ µji) a(½i; µ(x);Wi)!(½ig(x)=½(x);Wi)fV;W (½ig(x)=½(x);Wi)

=
g(x)
n

nX

i=1

ui
dx¡1Y

j=1

kb (µj(x) ¡ µji)
a(½i; µ(x);Wi)

@h
@° (½ig(x)=½(x);Wi)½i

fV;W (½ig(x)=½(x);Wi);

which has the variance as stated in Theorem 2 after changing variables and applying dominated

convergence. Note that µj(x=g(x)) = µj(x) and ½(x=g(x)) = ½(x)=g(x):
The two terms T ¤n1; T ¤n2 are asymptotically independent because for any x; x0; with µ(x) 6= µ(x0);

the windows kb (µj (x) ¡ µji) and kb (µj (x0) ¡ µji) have small overlap. By the Lindeberg CLT, T ¤n1; T ¤n2
are asymptotically normal, see Gozalo and Linton (2000). Finally, the Op(bp) bias term is just

obtained by integrating ¯(v ¢ x0; w) with respect to !(v;w)fV;fW (v; w)dvdw and ¯(v ¢ x=g(x); w) with
respect to !(v; w)fV;fW (v; w)dvdw:
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A.2 Proof of Theorem 3

We outline the proof strategy. The dependent variable br(Zi) in the local polynomial regression can
be decomposed as the sum of three terms, and so therefore can the local polynomial estimator bh:
We deal with each of these three terms separately. In each case, it is necessary to expand out bg(Xi);
which is the covariate in the local polynomial regression. The higher order terms in this expansion
can be shown to be small using the properties of bg(x) ¡ g(x) established in Theorem 2. We then
have to manipulate the leading terms to obtain the dominant e¤ects using integration by parts and

moment calculation.
We …rst develop some notation that will be useful in writing out the local polynomial estimator.

Let d¤ = dx¡1, d¤¤ = dw+1: Let c = (g(x); w); bc = (bg(x); w); Ci = (g(Xi);Wi); and bCi = (bg(Xi);Wi)
all vectors in Rd¤¤: Following the notation of Masry (1996a,b), let N` = `+d¤¤¡1!=`!(d¤¤¡1)! be the

number of distinct d¤¤-tuples j with jjj = P
jk = `. Arrange these N` d¤¤-tuples as a sequence in a

lexicographical order and let Á¡1
` denote this one-to-one map. De…ne ±yn = n¡1=2b¡d

y=2
¤ = n¡p=(2p+dy):

We write
bh(bc) = e>0 cM¡1

n
bDn (42)

where e0 = (1; 0; : : : ;0)>, while cMn and bDn are symmetric N £N (N =
Pq
`=0 N` £ 1; q = p ¡ 1)

matrix and N £ 1 dimensional column vector respectively de…ned as

cMn =

2
666664

cMn;0;0 cMn;0;1 : : : cMn;0;q
... cMn;1;1 : : : cMn;1;q
... . .. ...

cMn;q;0 ¢ ¢ ¢ ¢ ¢ ¢ cMn;q;q

3
777775
; bDn =

2
666664

bDn;0
bDn;1
...

bDn;q

3
777775
;

where cMn;jmj;jkjis a Njmj £Njkj dimensional submatrix with the (l; l 0) element given by

h
cMn;jmj;jkj

i
l;l0

=
1
nbd¤¤¤

nX

i=1

Ã
bc¡ bCi
b¤

!Ájmj(l)+Ájkj(l0)
K

Ã
bc¡ bCi
b¤

!
;

and bDn;jmj is a Njmj dimensional subvector whose l-th element is given by

h
bDn;jmj

i
l
=

1
nbd¤¤¤

nX

i=1

Ã
bc¡ bCi
b¤

!Ájmj(l)
K

Ã
bc¡ bCi
b¤

!
br(Zi):

Write
br(Zi) = br(Zi) ¡ r(Zi) + h(g(Xi);Wi) ¡ h(bg(Xi);Wi) + h(bg(Xi);Wi);

where r(Zi) = h(g(Xi);Wi), and make a Taylor series expansion of h(bg(Xi);Wi) around h(bg(x); w)

h( bCi) =
1
m!

X

0·jmj·q
(Dmh)(bc)( bCi ¡ bc)m + b¢i;
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where b¢i is the remainder term from a qth order Taylor expansion. Therefore, using the decomposition
in Masry (1996, p576) we have

bh(bc) ¡ h(bc) = e>0 cM¡1
n [bUn1 + bUn2 + bUn3]; (43)

where bUns; s = 1; 2;3 are N £ 1 vectors bUns = [bUns;0; bU>ns;1; : : : ; bU>ns;q ]; where bUns;jmj are Njmj dimen-
sional subvectors whose l-th elements are given by:

h
bUn1;jmj

i
l

=
1
nbd¤¤¤

nX

i=1

Ã
bc¡ bCi
b¤

!Ájmj(l)
K

Ã
bc¡ bCi
b¤

!
[br(Zi) ¡ r(Zi)]

h
bUn2;jmj

i
l

=
1
nbd¤¤¤

nX

i=1

Ã
bc¡ bCi
b¤

!Ájmj(l)
K

Ã
bc¡ bCi
b¤

!
[h(g(Xi);Wi) ¡ h(bg(Xi);Wi)]

h
bUn3;jmj

i
l

=
1
nbd¤¤¤

nX

i=1

Ã
bc¡ bCi
b¤

!Ájmj(l)
K

Ã
bc¡ bCi
b¤

!
b¢i:

We have suppressed notationally the dependence of the bU quantities on bc:
We next analyze the properties of bUn1; bUn2; and bUn3: For notational simplicity we only consider

in detail the …rst element of these vectors bUn1;0; bUn2;0; and bUn3;0; since the arguments are the same
for the other elements.

Properties of bUn1;0: Let

eUn1;0 =
1
n

nX

i=1

kb¤ (g(x) ¡ g(Xi))
dwY

l=1

kb¤ (wl ¡Wli) [br(Zi) ¡ r(Zi)] :

By the mean value theorem

bUn1;0 ¡ eUn1;0 (44)

=
1
nb2¤

nX

i=1

k0
µ
g(x) ¡ gi
b¤

¶ dwY

l=1

kb¤ (wl ¡Wli) [bg(x) ¡ g(x) ¡ bg(Xi) + g(Xi)] [br(Zi) ¡ r(Zi)] ;

where gi; g(x) are intermediate points. Then

jbUn1;0 ¡ eUn1;0j · 2
supt jk

0(t)j
b2¤

µ
sup
x

jbg(x) ¡ g(x)j
¶µ

sup
x

jbr(z) ¡ r(z)j
¶

1
n

nX

i=1

dwY

l=1

jkb¤ (wl ¡Wli)j

= Op
¡
n¡1=2b¡(dx¡1)=2n¡1=2b¡d=2r b¡2

¤ logn
¢
= op(n¡1=2b¡d

y=2
¤ ); (45)

because nbdx¡1bd+4¡dy
¤ (br=b¤)d ! 1 provided 2p > dw + 3:We have used the facts that: supx jbg(x) ¡

g(x)j = Op(n¡1=2b¡(dx¡1)=2plogn); which follows from standard arguments applied to our expansion
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for bg(x)¡g(x) obtained in Theorem 2 [see Masry (1996ab)], and supx jbr(z)¡r(z)j = Op(n¡1=2b¡d=2r
p
logn);

which follows from B3.
Following the proof of Lemma 2, we show that

eUn1;0 =
Z
kb¤ (g(x) ¡ g(X))

dwY

l=1

kb¤ (wl ¡Wl) [br(Z) ¡ r(Z)] fZ (Z)dZ + op(±¤n): (46)

Then substituting from the expression (16) for br¡ r and interchanging summation with integration

we have
eUn1;0 =

1
n

nX

i=1

ui¿n1;0;i +Op(bpr) + op(±
¤
n) ´ eU ¤n1;0 + op(bp¤) + op(±¤n); where

¿n1;0;i =
1
bdr

Z
an

µ
Z¤;
Z¤ ¡ Z¤i
b

¶
kb¤ (g(x) ¡ g(X))

dwY

l=1

kb¤ (wl ¡Wl)K
µ
Z¤ ¡ Z¤i
br

¶
fZ¤(Z¤)dZ¤:

De…ne

eU¤¤n1;0 =
1
n

nX

i=1

¿ ¤n1;0;iui; where (47)

¿ ¤n1;0;i = f½;µ;W (½i; µi;Wi)a(Z¤i)
1
bdw+1
¤
k

µ
g(x) ¡ g(Xi)

b¤

¶ dwY

l=1

k
µ
wl ¡Wli
b¤

¶
:

Note that eU¤¤n1;0 is a sum of independent mean zero random variables with variance of order n¡1b¡(dw+1)
¤ ;

it is like the stochastic part of a dw + 1 dimensional weighted kernel estimator. Furthermore, it is

asymptotically normal by the Lindeberg CLT.
We now show that we can approximate eU¤n1;0 by eU¤¤n1;0: Write g(x) = ½(x)g¤¤(µ(x)) and g(X) =

½g¤¤(µ); and change variables: ½ 7! t = (½¡ ½i)=br; µ 7! s = (µ ¡ µi)=br; W 7! u = (W ¡Wi)=br ; we
have

½(x)g¤¤(µ(x)) ¡ ½g¤¤(µ)
b¤

7! ½(x)g¤¤(µ(x)) ¡ (½i + tbr)g¤¤(µi + sbr)
b¤

:

By the Mean Value Theorem,

(½i + tbr)g¤¤(µi + sbr) ¡ ½ig¤¤(µi)

= tbrg¤¤(µi + sbr) + ½isbrg
0
¤¤(µi + sbr) ´ br¸n(½i; µi; s; t); (48)

where s lies between 0 and s; and under our assumptions the function ¸n(¢; ¢; ¢; ¢) is bounded and
uniformly continuous in all its arguments. It follows that

¿n1;0;i =
1
b¤

Z
k

µ
g(x) ¡ g(Xi)

b¤
+
br
b¤
¸n(½i; µi; s; t)

¶
an

µ
½i + tbr; µi + sbr;Wi + ub;

br
b¤
(t; s; u)

¶
k (t)

£ 1
bdw+1
¤

dwY

l=1

k (sl) k
µ
wl ¡Wli
b¤

¡ br
b¤
ul

¶
k (ul) f½;µ;W (½i + tbr ; µi + sbr ;Wi + ubr)dtdsdu:
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Then consider ¿n1;0;i ¡ ¿ ¤n1;0;i: This includes a number of terms like, for example,

rni = a(Z¤i)f½;µ;W (½i; µi;Wi)
1
b¤
k0

µ
g(x) ¡ g(Xi)

b¤

¶
1
bdw+1
¤

dwY

l=1

k
µ
wl ¡Wli
b¤

¶

£br
b¤

Z
¸n(½i; µi; s; t)k (t)

dwY

l=1

k (sl) dtds:

Note that the integral
R
¸n(½i; µi; s; t)k (t)

Qdw
l=1 k (sl) dtds is …nite by the properties of ¸n(¢; ¢; ¢; ¢).

Since k has bounded support, k0 is also zero outside that support and so n¡1 Pn
i=1 uirni = Op (br=b¤)£

Op(eU ¤¤n1;0) = op(±¤n): Similar comments apply to the other remainder terms, i.e., n¡1 Pn
i=1 ui(¿n1;0;i ¡

¿¤n1;0;i) = op(±
¤
n).

By the same sequence of arguments we can show that the leading term of [bUn1;jjj]l is

h
eU¤¤n1;jmj

i
l
=

1
n

nX

i=1

¿ ¤n1;jmj;l;iui; where

¿ ¤n1;jmj;l;i = f½;µ;W (½i; µi;Wi)a(Z¤i)
1
bdw+1
¤
k

µ
g(x) ¡ g(Xi)

b¤

¶ dwY

l=1

k
µ
wl ¡Wli
b¤

¶µ
c¡ Ci
b¤

¶Ájmj(l)
:

In conclusion
bUn1 = eU ¤¤n1 + op(±¤n):

Properties of bUn2;0: De…ne

eUn2;0 =
¡1
n

nX

i=1

kb¤ (g(x) ¡ g(Xi))
dwY

l=1

kb¤ (wl ¡Wli)
@h
@°

(g(Xi);Wi)[bg(Xi) ¡ g(Xi)]:

Then by Taylor expanding h(bg(Xi);Wi) about h(g(Xi);Wi) and kb¤(bg(x) ¡ bg(Xi)) about kb¤(g(x) ¡
g(Xi)) we obtain

bUn2;0 ¡ eUn2;0 =
¡1
nb¤2

nX

i=1

k0 (g(x) ¡ gi)
dwY

l=1

kb¤ (wl ¡Wli)
@h
@°

(g(Xi);Wi)[bg(Xi) ¡ g(Xi)]

£[bg(x) ¡ g(x) ¡ bg(Xi) + g(Xi)]

+
¡1
2n

nX

i=1

kb¤ (bg(x) ¡ bg(Xi))
dwY

l=1

kb¤ (wl ¡Wli)
@2h
@°2

(egi;Wi)

£[bg(x) ¡ g(x) ¡ bg(Xi) + g(Xi)]2;

where g(x); gi;egi are intermediate values. The remainder term bUn2;0 ¡ eUn2;0 is small by the same
arguments as those used in (45). Namely, with probability tending to one, for some C <1 we have

jbUn2;0 ¡ eUn2;0j · C (supx jbg(x) ¡ g(x)j)2 =b2¤ = Op(n¡1b¡2
¤ b¡(dx¡1) logn) = op(±¤n):
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Following the proof of Lemma 2 we show that

eUn2;0 = ¡
Z
kb¤ (g(x) ¡ g(X))

dwY

l=1

kb¤ (wl ¡Wl)
@h
@°

(g(X);W )[bg(X) ¡ g(X)]fZ(X;W )dXdW

+op(±n): (49)

We substitute into eUn2;0 the expansion we already obtained for bg in Theorem 2, and interchanging
summations and integrals we obtain

eUn2;0 = An1 + An2 + Op(bp) + op(±n); where:

An1 = ¡ 1
n

nX

i=1

ui
dx¡1Y

l=1

kb (µl0 ¡ µli)
a(½i; µ0;Wi)
@h
@° (½i=½0;Wi)½i

fV;fW (½i=½0;Wi) £

Z
kb¤ (g(x) ¡ g(X))

dwY

l=1

kb¤ (wl ¡Wl)
@h
@°

(g(X);W )g(X)fZ (X;W )dXdW

An2 =
1
n

nX

i=1

ui
Z dx¡1Y

l=1

kb (µl(X) ¡ µli)
a(½i; µ(X);Wi)

@h
@° (½ig(X)=½(X);Wi)½i

fV;fW (½ig(X)=½(X);Wi) £

kb¤ (g(x) ¡ g(X))
dwY

l=1

kb¤ (wl ¡Wl)
@h
@°

(g(X);W )g(X)fZ(X;W )dXdW:

Note that
Z
kb¤ (g(x) ¡ g(X))

dwY

l=1

kb¤ (wl ¡Wl)
@h
@°

(g(X);W )g(X)fZ (X;W )dXdW

=
Z
kb¤ (g(x) ¡ g)

dwY

l=1

kb¤ (wl ¡Wl)
@h
@°

(g;W )gfg;W (g;W )dgdW

=
Z
k (t)

dwY

l=1

k (sl)
@h
@°

(g(x) + tb;w + sb¤)[g(x) + tb¤]fg;W (g(x) + tb; w + sb¤)dtds

= g(x)fg;W (g(x); w)
@h(°;w)
@°

???y
°=g(x)

+ o(1)

by a change of variables [g 7! t = (g(x) ¡ g)=b¤ and W 7! s = (w ¡ W )=b¤] and dominated
convergence, using

R
k (t)

Qdw
l=1 k (sl) dtds = 1: It follows that

An1 = ¡g(x)fg;W (g(x); w)
@h(°; w)
@°

???y
°=g(x)

£ 1
n

nX

i=1

ui
dx¡1Y

l=1

kb (µl0 ¡ µli)
a(½i; µ0;Wi)fV;fW (½i=½0;Wi)

@h
@° (½i=½0;Wi)½i

[1 + op(1)]

= Op(n¡1=2b¡(dx¡1)=2): (50)
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Regarding An2; we can write An2 = n¡1 Pn
i=1 uitni; where:

tni =
Z
kb¤ (g(x) ¡ g(X))

dx¡1Y

l=1

kb (µl(X) ¡ µli)
dwY

l=1

kb¤ (wl ¡Wl) £

a(½i; µ(X);Wi)
@h
@° (½ig(X)=½(X);Wi)½i

fV;fW (½ig(X)=½(X);Wi)
@h
@°

(g(X);W )g(X)fZ(X;W )dXdW

=
Z
kb¤ (½(x)g¤¤(µ(x)) ¡ ½g¤¤(µ))

dx¡1Y

l=1

kb (µl ¡ µli)
dwY

l=1

kb¤ (wl ¡Wl) £

a(½i; µ;Wi)
@h
@° (½ig¤¤(µ);Wi)½i

fV;fW (½iµ;Wi)
@h
@°

(½g¤¤(µ);W )½g¤¤(µ)fZ¤(½; µ;W )d½dµdW;

after changing to polar co-ordinates where g(x) = ½(x)g¤¤(µ(x)) and g(X) = ½g¤¤(µ). We now change
variables µ 7! t = (µ ¡ µi)=b; W 7! u = (w ¡W )=b¤; ½ 7! v = (½ ¡ ½i)=b¤; and get

½(x)g¤¤(µ(x)) ¡ ½g¤¤(µ)
b¤

7! ½(x)g¤¤(µ(x)) ¡ (½i + vb¤)g¤¤(µi + tb)
b¤

=
½(x)g¤¤(µ(x)) ¡ ½ig¤¤(µi)

b¤
¡ ¸¤n(½i; µi; v; t);

where ¸¤n(½i; µi; v; t) = vg¤¤(µi + tb) + ½itg0¤¤(µi + tb)(b=b¤) with t being intermediate values. When
limsup b=b¤ <1; ¸¤n(½i; µi; v; t) is bounded and uniformly continuous. We have

tni =
Z
k

µ
g(x) ¡ g(Xi)

b¤
¡ ¸¤n(½i; µi; v; t)

¶ dwY

l=1

k (ul)
dx¡1Y

l=1

k (tl) £

£ a(½i; µi + tb;Wi)
@h
@° (½ig¤¤(µi + tb);Wi)½i

fV;fW (½ig¤¤(µi + tb);Wi)

£@h
@°

((½i + b¤v)g¤¤(µi + tb);w + b¤u)(½i + b¤v)g¤¤(µi + tb)

£fZ¤(½i + b¤v; µi + tb; w + b¤u)dvdudt:

It follows that tni is bounded in probability and depends only on Zi. Therefore, An2 = Op(n¡1=2):
In conclusion bUn2;0 = eU¤¤n2;0 + op(n¡1=2b¡(dx¡1)=2); where

eU¤¤n2;0 = ¡g(x)fg;W (g(x); w)
@h(g(x); w)
@°

1
n

nX

i=1

ui
dx¡1Y

l=1

kb (µl0 ¡ µli)
a(½i; µ0;Wi)fV;fW (½i=½0;Wi)

@h
@° (½i=½0;Wi)½i

(51)

Furthermore, it is easy to see that the leading term of
h
bUn2;jmj

i
l
is

35



= ¡ 1
n

nX

i=1

ui
dx¡1Y

l=1

kb (µl0 ¡ µli)
a(½i; µ0;Wi)
@h
@° (½i=½0;Wi)½i

fV;fW (½i=½0;Wi)
Z
@h
@°

(g(X);W )g(X) £

µ
g(x) ¡ g(X)

b¤
;
w¡W
b¤

¶Ájmj(l)
kb¤ (g(x) ¡ g(X))

dwY

l=1

kb¤ (wl ¡Wl) fZ(X;W )dXdW

' ¡ 1
n

nX

i=1

ui
dx¡1Y

l=1

kb (µl0 ¡ µli)
a(½i; µ0;Wi)
@h
@° (½i=½0;Wi)½i

fV;fW (½i=½0;Wi) £
Z dw+1Y

l=1

k (vl) vÁjmj(l)dv

and in fact

h
bUn2;jmj

i
l
=

Z dw+1Y

l=1

k (vl) vÁjmj(l)dv£ eU ¤¤n2;0 + op(n¡1=2b¡(dx¡1)=2):

In conclusion
bUn2 = eU ¤¤n2 + op(±¤n);

where eU¤¤n2 is the vector with components
R Qdw+1

l=1 k (vl) v
Ájmj(l)dv£ eU ¤¤n2;0:

Properties of bUn3;0: We have
bUn3;0 = Op(bp¤) (52)

by a lengthy argument similar to those already given using the fact that b¢i = Op(bp¤).
We have established the properties of the three numerator terms in (43); it remains to de-

termine the properties of the denominator and combine the results. De…ne the N £ 1 vector

m = (m0;m>
1 ; : : : ; m>

q )> and N £N dimensional matrices

M =

2
666664

M0;0 M0;1 ¢ ¢ ¢ M0;q

M1;0 M1;1 ¢ ¢ ¢ M1;q
...

...
Mq;0 Mq;1 ¢ ¢ ¢ Mq;q

3
777775
; ¡ =

2
666664

¡0;0 ¡0;1 ¢ ¢ ¢ ¡0;q

¡1;0 ¡1;1 ¢ ¢ ¢ ¡1;q
...

...
¡q;0 ¡q;1 ¢ ¢ ¢ ¡q;q

3
777775
; (53)

wheremi are Ni£1 vectors andMi;j;¡i;j are Ni£Nj dimensional matrices whose ` and (`;m) element
are respectively ¹Ái(`); ¹Ái(`)+Áj (m) and ºÁi(`)+Áj (m); with for 0 · jjj · 2q, ¹j(k) =

R
uj

Qdw+1
l=1 k(ul)du

and ºj(k) =
R
uj

Qdw+1
l=1 k(ul)

2du. Masry (1996, 3.9). De…ne also

'(K) =
£
M¡1¡M¡1¤

0;0 and Ã(K) = jjkjj2(dx¡1)
2

£
M¡1mm>M¡1¤

0;0 ; (54)

where [A]0;0 signi…es the upper-left element of matrix A.
De…ning the matrix fMn with components

h
fMn;jmj;jkj

i
l;l0

=
1
nbd¤¤¤

nX

i=1

µ
c¡ Ci
b¤

¶Ájmj(l)+Ájkj(l0)
K

µ
c¡Ci
b¤

¶
;
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we show that cMn = fMn + Op(±n) + Op(±¤n): By Masry (1996, Corollary 1)

fMn = E
³

fMn
´
+ Op

Ãs
log n
nbdw+1

¤

!
; (55)

where the deterministic quantity E(fMn) = fg;W (g(x); w)M + Op(b¤): It follows that: e>0 cM¡1
n

bUn1 =

e>0M¡1eU ¤¤n1 + op(±¤n); e>0 cM¡1
n

bUn2 = e>0M¡1eU¤¤n2 + op(±¤n); and e>0 cM¡1
n

bUn3 = Op(bp¤); where eU¤¤n1 =
Op(n¡1=2b¡(dw+1)=2

¤ ) and eU¤¤n2 = Op(n¡1=2b¡(dx¡1)=2): When dx ¡ 1 > dw + 1; the term eU¤¤n2 is of
larger order in probability than eU¤¤n1 and is the same order in probability as bg(x) ¡ g(x); while if

dx ¡ 1 < dw + 1; the term eU ¤¤n1 dominates both eU¤¤n2 and bg(x) ¡ g(x):
Therefore,

bh(bc) ¡ h(bc) = 1
fg;W (g(x);w)

³
e>0M

¡1 eU ¤¤n1 + e>0M¡1meU ¤¤n2;0
´
+ O(bp) + O(bp¤) + op(±

¤
n);

where:

var

"
e>0M¡1eU¤¤n1
fg;W (g(x); w)

#
=

1
nbdw+1

¤
'(K)

E [f 2Z(Z)a2(Z)¾2(Z)jg(X) = g(x);W = w]
fg;W (g(x); w)

var

"
e>0M¡1eU¤¤n2
fg;W (g(x); w)

#
=

1
nbdx¡1Ã(K)

·
@h(g(x); w)
@°

¸2
£

g2(x)
Z ¾2(½; µ0; w)a2(½; µ0; w)f 2V;fW (½=½0; w)fZ¤(½; µ(x); w)

[@h@° (½=½0; w)]
2½2

d½dw

=
1

nbdx¡1Ã(K)
·
@h(g(x); w)
@°

¸2
g2(x)I(x0):

The two random variables eU¤¤n1; eU¤¤n2;0 are asymptotically mutually uncorrelated.
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A.3 Lemmas

In Lemma 1 we derive a uniform asymptotic expansion for bs(r; x; w) and its derivatives, while in
Lemma 2 we state a version of the well-known lemma which replaces the sums in (35) by integrals.

Lemma 1. We have

sup
z2ªZ

sup
r2ªr(w)

jbs(r; x; w) ¡ s(r; x; w)j = op(±1=2n ): (56)

sup
z2ªZ

sup
r2ªr(w)

¯̄
¯̄@bs
@r

(r; x; w) ¡ @s
@r

(r;x;w)
¯̄
¯̄ = op(±1=2n ): (57)

Furthermore,

bs(r; x; w) ¡ s(r; x; w) = ¡ br(x ¢ s(r;x;w); w) ¡ r
@h
@° (s(r;x; w) ¢ g(x); w) £ g(x) + Rs(r;x; w); (58)

where supz2ªZ supr2ªr(w) jRs(r; x; w)j = op(±n):
Lemma 2. Let !(v; w) be a continuous function. Then for any x¤ 2 ªX

1
n

nX

i=1

!(Vi;fWi) ¢ [br(Vi ¢ x¤;fWi) ¡ r(Vi ¢ x¤;fWi)]

=
Z
!(v; w) ¢ [br(v ¢ x¤; w) ¡ r(v ¢ x¤; w)]fV;fW (v; w)dvdw + op(±n): (59)

Proof of Lemma 1. Note that our estimator bs(r; x; w) is de…ned for all r 2 R. De…ne for all

r 2 R: Q(v;x;w;r) = [r(q0(x) ¢v; w)¡r]2 and bQ(v; x; w; r) = [br(q0(x) ¢ v;w)¡r]2: Both functions are
continuous in r over R and x; w over ªX ;ªW :We interpret the value sy = sy(r; x; w) as the unique
minimizer of Q(v; x; w; r) over v 2 ªV and let s = s(r; x;w) = sy(r; x;w)=v0(x): Then take bsy(r;x; w)
to be any approximate minimizer of bQ(v; x; w;r) over v 2 ªV ; and bs(r;x; w) = bsy(r; x; w)=v0(x)
as de…ned in (13). Because bQ(v; x; w; r) is a continuous function of v over the compact set ªV ; a
minimum exists and hence so does bs(r; x; w). Furthermore, jbs(r; x; w)j ·

¡
supv2ªV v

¢
=v0(x);and is

bounded provided infx2ªX v0(x) > 0:

We …rst prove consistency of the un-normalized quantity bsy(r; x;w): The proof follows the main
steps of similar results in the literature for optimization estimators (see for example Pötscher and
Prucha (1991, Lemmas 3.1 and 4.2) or Andrews (1995, Lemma A1)). It relies on the use of the
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identi…cation assumption and a uniform weak law of large numbers. We have

sup
v2ªV

j bQ(v; x; w; r) ¡Q(v;x; w;r)j · 2 sup
v2ªV

jbr(q0(x) ¢ v; w) ¡ r(q0(x) ¢ v;w)j £ jr(q0(x) ¢ v; w) ¡ rj

+ sup
v2ªV

jbr(q0(x) ¢ v;w) ¡ r(q0(x) ¢ v; w)j2

· 2 sup
x2ªX

jbr(x; w) ¡ r(x;w)j £ jr(x; w) ¡ rj (60)

+ sup
x2ªX

jbr(x; w) ¡ r(x; w)j2

= op(1): (61)

This result is true for any given r 2 R and x 2 ªX ; w 2 ªfW by the uniform consistency of br(x; w)
and the compactness of the relevant sets. Since sy(r; x; w) is the unique minimizer of the continuous
functionQ(v; x; w; r); we obtain the consistency of bsy(r;x; w) by Theorem 2.1 of Newey and McFadden
(1994); i.e.,

bsy(r; x; w) = sy(r; x; w) + op(1): (62)

The result (61) holds uniformly over r 2 ªr(w) and x 2 ªX ;w 2 ªfW because of the uniform
consistency of br(x;w) and the compactness of the sets ªr(w); ªX ;ªfW .

As a consequence of B2(b) we have that for all x; w; r; and for all ´ ¸ ´ > 0 there exists

²(x; w;r) ¸ ² > 0 such that

inf
v :jv¡s(x;w;r)j>´

Q(v; x; w; r) ¸ ²(x; w; r): (63)

This follows because

@Q
@v

(v; x; w; r) = 2 [r(q0(x) ¢ v; w) ¡ r] @r
@x>

(q0(x) ¢ v; w) £ q0(x)
= 0 at v = s(x;w; r)

@2Q
@v2

(v; x; w; r) = 2
·
@r
@x>

(q0(x) ¢ v; w) £ q0(x)
¸2

+ 2 [r(q0(x) ¢ v; w) ¡ r]q>0 (x)
@2r
@x@x>

(q0(x) ¢ v;w)q0(x)

= 2
·
@r
@x>

(q0(x) ¢ s(x; w; r);w) £ q0(x)
¸2

at v = s(x; w; r):

Since g is homogenous of degree one, it satis…es Euler’s Law whence g(x) = x>@g(x)=@x for any x;
so that since g(x) 6= 0, we have

q>0 (x)
@r
@x

(q0(x) ¢ s(x;w; r); w) = 1
v0(x)

@h
@°

(g(x);w)x>
@g
@x

(x) =
1
v0(x)

@h
@°

(g(x); w)g(x) 6= 0;
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and (63) follows by uniform continuity.
Therefore, using the triangle inequality

Pr [9(x; w;r) : jbs(x; w; r) ¡ s(x; w; r)j ¸ ´]

· Pr [9(x; w;r) : Q(bs(x;w; r);x; w;r) ¸ ²(x; w;r)]

· Pr
h
9(x; w;r) : bQ(bs(x;w; r);x; w;r) ¸ ²=2

i

+Pr
·
sup
v;x;w;r

¯̄
¯ bQ(v;x;w;r) ¡Q(v; x; w; r)

¯̄
¯ ¸ ²=2

¸

· Pr
h
9(x; w;r) : bQ(bs(x;w; r);x; w;r) ¸ ²=2

i
+ o(1)

· Pr
h
9(x; w;r) : bQ(s(x;w; r);x; w;r) ¸ ²=2

i
+ o(1)

· Pr
·
sup
v;x;w;r

¯̄
¯ bQ(v; x; w; r) ¡Q(v; x; w; r)

¯̄
¯ ¸ ²=2

¸
+ o(1) = o(1):

It follows that
sup
z2ªZ

sup
r2ªr(w)

jbs(r; x; w) ¡ s(r; x; w)j = op(1):

We next establish the uniform asymptotic expansion for bsy(r; x; w):De…ne cM(v; x; w; r) = br(q0(x)¢
v; w) ¡ r and its derivative

@cM(v; x; w; r)
@v

=
dxX

j=1

q0j(x)
@br
@xj

(q0(x) ¢ v; w):

We know that
cM(bsy(r; x; w); x;w; r) = op(±n):

De…ne also the corresponding population moment condition M(v;r;x; w) = r(q0(x) ¢ v; w) ¡ r and
its derivative

@M(v; x;w; r)
@v

=
@h
@°

(v ¢ g(q0(x));w) ¢ g(q0(x)):

By a Taylor expansion any consistent sequence bsy(r; x; w) satis…es

op(±n) = cM(bsy(r; x; w); x; w; r) (64)

= cM(sy(r; x; w); x; w; r) +
@cM(v; x;w; r)

@v

¯̄
¯̄
¯
v=sy(r;x;w)

v0(x)(bs(r; x; w) ¡ s(r; x; w));
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where sy(r; x; w) are intermediate values. Since bs(r; x;w) is consistent, with probability tending to
one we have xs(r; x; w) 2 ªX :Therefore, for some ²n ! 0 we have with probability tending to one
¯̄
¯̄
¯
@cM(sy(r; x; w); x; w; r)

@v
¡ @M(sy(r; x; w); x;w; r)

@v

¯̄
¯̄
¯

· sup
js¡sy(r;x;w)j·²n

¯̄
¯̄
¯
@cM(s; x; w; r)

@v
¡ @M(s; x; w; r)

@v

¯̄
¯̄
¯

+
¯̄
¯̄@M(sy(r; x; w); x; w; r)

@v
¡ @M(sy(r; x; w); x;w; r)

@v

¯̄
¯̄

· sup
x2ªX

¯̄
¯̄
¯
dxX

j=1

q0j(x)
½
@br
@xj

(x; w) ¡ @r
@xj

(x; w)
¾¯̄

¯̄
¯ + op(1) = op(1):

Since @M(s(r;x; w); x; w; r)=@v > 0; it follows that

bs(r; x; w) ¡ s(r; x; w) = ¡
·
@M(sy(r;x; w); x; w; r)

@v

¸¡1 1
v0(x)

cM(sy(r; x;w);x; w;r)[1 + op(1)];

i.e.,

bs(r; x; w) ¡ s(r; x; w) = ¡ br(x ¢ s(r;x; w); w) ¡ r
@h
@° (s(r;x; w) ¢ g(x); w) £ g(x)[1 + op(1)]: (65)

This is true for all r;x; w and the error term in (65) is uniform over r; x; w under our assumptions.
This concludes the uniform asymptotic expansion for bs(r;x;w):

We now give the proof of (57). Di¤erentiate the …rst order condition (64) with respect to r and

use the chain rule to obtain

op(±n) =
@cM(v; x; w; r)

@r

????y
v=bsy(r;x;w)

+
@cM(bsy(r; x;w); x; w;r)

@bs
@bsy(r;x;w)
@r

= ¡1 +
dxX

j=1

xj
@br
@xj

(x ¢ bs(r; x;w);w)@bs(r;x;w)
@r

;

from which it follows that

@bs(r; x;w)
@r

=
1Pdx

j=1 xj
@br
@xj

(x ¢ bs(r;x; w); w)
:

Using again the fact that 1=a ¡ 1=b = ¡(a ¡ b)=ab; we have

@bs(r; x; w)
@r

¡ @s(r; x; w)
@r

=
¡ Pdx

j=1 xj
h
@br
@xj

(x ¢ bs(r; x;w); w) ¡ @r
@xj

(x ¢ s(r; x; w); w)
i

Pdx
j=1 xj

@br
@xj

(x ¢ bs(r; x; w); w)Pdx
j=1 xj

@r
@xj

(x ¢ s(r; x;w); w)
(66)
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and it su¢ces to ensure that the denominator of (66) is bounded away from zero with probability
tending to one and that the numerator is small. We have with probability tending to one

¯̄
¯̄ @br
@x

(x ¢ bs(r;x; w); w) ¡ @r
@x

(x ¢ s(r; x; w);w)
¯̄
¯̄

=
¯̄
¯̄@r
@x

(x ¢ bs(r; x;w); w) ¡ @r
@x

(x ¢ s(r; x; w); w)

+
@br
@x

(x ¢ bs(r; x; w); w) ¡ @r
@x

(x ¢ bs(r;x;w); w)
¯̄
¯̄

·
¯̄
¯̄ @

2r
@x@x>

(x ¢ s(r; x; w);w) £ x
¯̄
¯̄ £ jbs(r;x; w) ¡ s(r;x; w)j

+ sup
js¡s(r;x;w)j·²n

¯̄
¯̄@br
@x

(x ¢ s; w) ¡ @r
@x

(x ¢ s; w)
¯̄
¯̄

· sup
x2ªX

sup
w2ªfW

¯̄
¯̄ @

2r
@x@x>

(x; w) £ x
¯̄
¯̄ £ jbs(r; x;w) ¡ s(r; x;w)j

+ sup
x2ªX

sup
w2ªfW

¯̄
¯̄ @br
@x

(x; w) ¡ @r
@x

(x;w)
¯̄
¯̄ = op(±1=2n );

which gives the required bound on the numerator. Using the same result and the positivity of
Pd
j=1 xj@r(x ¢s(r; x; w);w)=@xj, the denominator of (66) is bounded away from zero with probability

tending to one.

Proof of Lemma 2. De…ne an empirical process ºn(¢) by

ºn(¿) =
1p
n

nX

i=1

¼(Vi;fWi; ¿ ) ¡ E¼(Vi;fWi; ¿ ); where (67)

¼(Vi;fWi; ¿) = !(Vi;fWi) ¢ ¿(Vi;fWi);

and ¿ 2 T for some pseudo-metric space T with pseudo-metric ½T (¢; ¢) de…ned by

½T (¿1; ¿ 2) =
·Z

f¼(v; w; ¿ 1) ¡ ¼(v; w; ¿2)g2 dvdw
¸1=2
: (68)

The function ¿ : Rdw+1 ! R: Suppose b¿ is an estimator of ¿ 0 2 T . It is well known that (see, for

example, Andrews (1994, p. 2257))

ºT (b¿ ) ¡ ºT (¿ 0) p¡! 0 (69)
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if: (i) Pr(b¿ 2 T ) ! 1, (ii) ½T (b¿ ; ¿ 0)
p¡! 0, and (iii) fºT (¢) : T ¸ 1g is stochastically equicontinuous

at ¿0. We take

b¿ (v;w) = [br(v ¢ x¤;w) ¡ r(v ¢ x¤; w)]
¿ 0(v;w) = 0

and verify the conditions (i)–(iii) above.

We take T to be the class of functions with bounded Sobolev norm of order p¤ where p¤ >
(dw + 1)=2; speci…cally, for some large C <1; let

T =

8
><
>:
¿ (¢) :

0
@ X

j®j·p¤

Z
(D®¿(v; w))1=2 dvdw

1
A

1=2

· C

9
>=
>;
: (70)

Note that @b¿ (v; w)=@v = Pdx
j=1 xj[@br(v ¢ x¤; w)=@xj ¡ @r(v ¢ x¤;w)=@xj] and likewise with the higher

order partials.
Note that ¿ 0(¢) lies in T by assumption. To show that (i) Pr(b¿ 2 T ) ! 1, it su¢ces to show

that b¿ (v; w) has partial derivatives of order p¤ that are bounded uniformly over the support with
probability tending to one. Note that the latter holds by the uniform consistency of the derivatives

of br assumed in B4. With the pseudo-metric de…ned in (68), the condition (ii) ½T (b¿ ; ¿ 0)
p¡! 0 holds

trivially. Then condition (iii) is satis…ed by Andrews (1994).
The proofs of (46) and (49) are similar to the proof of Lemma 2. Instead of (67) we have a process

ºn(¿ ) =
1p
n

nX

i=1

¼(Zi; ¿) ¡ E¼(Zi; ¿ ); where

¼(Zi; ¿ ) = wn(Zi) ¢ ¿(Zi);

and in the …rst case take

wn(Zi) =
1

b¤(dw+1)=2 k
µ
g(x) ¡ g(Xi)

b¤

¶ dwY

l=1

k
µ
wl ¡Wli
b¤

¶

b¿ (Zi) = br(Zi) ¡ r(Zi)
¿ 0(Zi) = 0;

while in the second case take

wn(Zi) =
¡1

b¤(dw+1)=2 k
µ
g(x) ¡ g(Xi)

b¤

¶ dwY

l=1

k
µ
wl ¡Wli
b¤

¶
@h
@°

(g(Xi);Wi)

b¿(Zi) = bg(Xi) ¡ g(Xi)
¿0(Zi) = 0:

In both cases wn has a square integrable envelope and b¿ ; ¿ 0 2 T :
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TABLE 1: Monte Carlo …t criteria for g(x) estimates

¾x
¾x+¾"

0:75 0:5 0:25

n 100 300 500 100 300 500 100 300 500

IMSE h1 0.0494 0.0436 0.0416 0.1280 0.1006 0.0867 0.4004 0.3193 0.2797
h2 0.0189 0.0138 0.0122 0.0462 0.0369 0.0322 0.1622 0.1184 0.1025

h3 0.0172 0.0102 0.0090 0.0306 0.0225 0.0191 0.1021 0.0843 0.0661

IMAE h1 0.0292 0.0251 0.0246 0.0775 0.0576 0.0555 0.2402 0.1978 0.1604
h2 0.0116 0.0087 0.0077 0.0289 0.0224 0.0203 0.0952 0.0749 0.0661
h3 0.0104 0.0063 0.0056 0.0186 0.0138 0.0118 0.0638 0.0521 0.0427

PMSE h1 0.0487 0.0432 0.0244 0.1237 0.0855 0.0781 0.3976 0.3180 0.2204
h2 0.0198 0.0133 0.0109 0.0492 0.0357 0.0271 0.1910 0.1152 0.1046

h3 0.0183 0.0098 0.0077 0.0294 0.0213 0.0158 0.1023 0.7483 0.0592

PMAE h1 0.0302 0.0270 0.0173 0.0779 0.0541 0.0473 0.2238 0.1972 0.1435
h2 0.0116 0.0081 0.0066 0.0294 0.0215 0.0178 0.0979 0.0709 0.0632
h3 0.0111 0.0060 0.0049 0.0177 0.0128 0.0103 0.0638 0.0587 0.0392

TABLE 2: Monte Carlo …t criteria for h(g) estimates

¾x
¾x+¾" 0:75 0:5 0:25
n 100 300 500 100 300 500 100 300 500

IMSE h1 0.1103 0.0953 0.0918 0.2140 0.1724 0.1711 0.4911 0.3807 0.3525

h2 0.1284 0.0946 0.0828 0.1703 0.1279 0.1150 0.3597 0.2702 0.2481
h3 0.2101 0.1551 0.1357 0.2242 0.1638 0.1442 0.3378 0.2645 0.2183

IMAE h1 0.0765 0.0624 0.0579 0.1570 0.1218 0.1144 0.3740 0.2834 0.2581
h2 0.0894 0.0603 0.0511 0.1275 0.0898 0.0801 0.2771 0.1991 0.1803
h3 0.1552 0.1045 0.0884 0.1686 0.1150 0.0988 0.2614 0.1678 0.1625

PMSE h1 0.0963 0.0706 0.0537 0.1972 0.1451 0.1440 0.4527 0.3500 0.3523

h2 0.0908 0.0568 0.0418 0.1376 0.0913 0.0800 0.3310 0.2462 0.2146
h3 0.1528 0.0968 0.0760 0.1733 0.1083 0.0826 0.3124 0.2214 0.1662

PMAE h1 0.0678 0.0490 0.0397 0.1382 0.1057 0.0989 0.3558 0.2600 0.2597
h2 0.0653 0.0329 0.0251 0.1116 0.0666 0.0593 0.2607 0.1917 0.1609

h3 0.1088 0.0580 0.0479 0.1286 0.0708 0.0566 0.2457 0.1842 0.1201
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