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Abstract
ExpEnd is a Gauss programme for non-linear generalised method of mo-
ments (GMM) estimation of exponential models with endogenous regressors
for cross section and panel data. The estimators included in this package
are simple Poisson pseudo ML; GMM for cross section data using moment
conditions based on multiplicative or additive errors; within groups fixed
effects Poisson for panel data; GMM estimation using quasi-differenced
moment conditions eliminating unobserved heterogeneity and allowing for
predetermined or endogenous regressors; and quasi-differenced GMM for a
dynamic linear feedback model. This manual describes in detail the var-
ious estimators, the data and software requirements, and the programme
commands. The programme can be downloaded from
http://cemmap.ifs.org.uk /wps/expend.zip.

Key Words: Generalised Method of Moments, Count Data, Panel data
JEL Classification: C13, C21, C23

*I am grateful to Rachel Griffith and Marcos Vera-Hernandez for helpful comments. This
programme has been developed while working on a project for the Centre for Economic Evalu-
ation at IF'S, a member of the ESRC Evidence Network. Financial support of the ESRC, grant
no. H141251024, is gratefully acknowledged.



1. Introduction

ExpFEnd is a Gauss programme for non-linear GMM estimation of Fxponential
models with Endogenous regressors for cross section and panel data. The esti-
mators included in this package are simple Poisson pseudo ML; GMM for cross
section data using moment conditions based on multiplicative or additive errors;
within groups fixed effects Poisson for panel data; GMM estimation using quasi-
differenced moment conditions eliminating unobserved heterogeneity and allowing
for predetermined or endogenous regressors; and quasi-differenced GMM for a dy-
namic linear feedback model. The models and estimation methods are described
in detail in Chamberlain (1992), Wooldridge (1991, 1997), Mullahy (1997), Wind-
meijer and Santos Silva (1997), Windmeijer (2000a) and Blundell, Griffith and
Windmeijer (2002).

The programme can be downloaded from http://cemmap.ifs.org.uk/wps/expend.zip.

The EXPEND.ZIP file contains the following files:

EXPEND.PRG is the main programme file for use with MAXLIK 4.0
EXPENDOP.PRG is the main programme file for use with OPTMUM
EXPENDNM.PRG is the main programme file if MAXLIK 4.0 and OPTMUM
are not available

EXPEND.RUN is the run file from which the main programme is called, using
MAXLIK 4.0

EXPENDOP.RUN is the run file from which the main programme is called, using
OPTMUM

EXPENDNM.RUN is the run file if MAXLIK 4.0 and OPTMUM are not available

GDATA.DAT and .DHT, an example gauss synthetic data set
AUXGDATA.DAT and .DHT, the auxiliary file accompanying the data set

Extract these files to a directory of choice. If the run file is in a different location
from the programme file, the #include statement at the end of the run file should
contain the path to the programme file. Estimation is done by editing the run file
and executing it in Gauss.

2. Software Requirements

Gauss Version 3.2 for DOS, 3.5 and higher for Windows or 3.6 for UNIX, prefer-
ably with MAXLIK 4.0 or OPTMUM, although a simple optimisation routine is
provided by the programme. If MAXLIK 4.0 is available, use the EXPEND.RUN



file, together with the EXPEND.PRG file. If OPTMUM is available use the EX-
PENDOP.RUN file, together with the EXPENDOP.PRG file. If MAXLIK 4.0
and OPTMUM are not available, use the EXPENDNM.RUN file, together with
the EXPENDNM.PRG file.

3. Data Setup

The programme does not allow for missing values in any of the variables used.
Further, when estimating a dynamic model, or when using instruments that are
lags of the variables, there should be no ”"gaps” in the individual time series.
The data set has to include an indicator of time, like year if the observations are
annual. The programme does allow for unbalancedness of the data. In that case
the data will have to be sorted in such a way that all individual observations with 1
time series observation come before all individuals with 2 time series observations
etc. For example for three individuals, two with 2 and one with 3 observations
observed in specific years, the data will have to be set up as follows:

Y T  year

Yisa Tige 1984
Y185 Tigs 1985
Y284 Toga 1984 .
Y285 Togs 1985
Yy3g3 T3g3 1983
Yssa Tzgse 1984
Y3gs 385 1985

The auxiliary file contains two columns. The first column indicates the number
of time series observations (1,2,3 etc.) and the second column indicates the number
of individuals with these number of time series observations (500, 1000, 300, etc).
The auxiliary file for the example above reads

T N
2 2

3 1

For a cross section data set with 2500 observations the auxiliary data set has the
entries 1 and 2500.



4. Models and Moment Conditions!

Let y;; denote the discrete count variable to be explained for subject i, : =1, ..., N,
at time ¢, t = 1,...,T; and let z;; denote a vector of explanatory variables. The
exponential model

Yir = exp(7y3) + uir (4.1)
= it + Ui,
where p;; = exp (2},) , is commonly used for count data. If z; is exogenous, such
that E (u;|z;) = 0, then the moment estimator that solves

1 N T

- Z Z Tt yzt - Mzt =0, (42)

i=1t=1
is consistent and equivalent to the Poisson ML estimator. When x;; is endogenous,
but there are valid instruments z;; available, then the GMM estimator for (3 that
minimises
!/

1 N T
< Zzzzt Yit — ,Uzt)

=1 t=

< Zzzzt Vit — ,uzt) (4.3)

i=11t=1
is consistent. These moment conditions are referred to as additive moment con-
ditions for the model in levels.

Multiplicative moment conditions for the model in levels when z;; is exogenous
are given by

=1t=1
the extension to endogenous i and instruments z; is straightforward. These
moment conditions were originally proposed by Mullahy (1997). A discussion of
multiplicative versus additive moment conditions can be found in Windmeijer and
Santos Silva (1997).

- ZZ - <y1tex§)((pliﬁl)tﬁ)> _o, (4.4)

An important feature in panel data applications is unobserved heterogeneity or
individual fixed effects. For count data models these effects are generally modelled
multiplicatively as

vie = exp (25,0 +n;) + wi (4.5)

= WiV + U,
where v; = exp (1;) is a permanent scaling factor for the individual specific mean.
In general, it is likely that the unobserved fixed components 7); are correlated with

the explanatory variables, E (z;7;) # 0, and therefore standard random effects
estimators will be inconsistent.

! This section draws heavily from Section 2 in Blundell, Griffith and Windmeijer (2002).
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4.1. Strictly Exogenous Regressors

When the z;; are strictly exogenous, the conditional mean of y;; satisfies
E (yalvi, i) = E (yae|vi, Tin, -, Tar) - (4.6)

For this case, Hausman, Hall and Griliches (1984) use the Poisson conditional
maximum likelihood estimator (CMLE), conditioning on Y., i, which is the
sufficient statistic for 7;. However, the Poisson maximum likelihood estimator
(MLE) for 8 in a model with separate individual specific constants does not suf-
fer from the incidental parameters problem, and is therefore consistent and the
same as the CMLE, see Blundell, Griffth and Windmeijer (1997), and Lancaster
(1997). The associated first order conditions imply that the Poisson MLE for /3
is equivalent to a moment estimator in a model where the ratio of individual, or
within group, means are used to approximate the individual specific effects. The
moment conditions for this within group mean scaling estimator are given by

1 N T _i
N 4 Tit <yit - Mz’t%) = 0. (4-7)

4.2. Predetermined Regressors

A regressor is predetermined when it is not correlated with current and future
shocks, but it is correlated with past shocks:

E(»Tz'tuz‘tﬂ') =0, 720
E (ziui—s) # 0, s>1.

With predetermined regressors, the within group mean scaling estimator is no
longer consistent. Chamberlain (1992) has proposed transformations that elim-
inate the fixed effect from the multiplicative model and generate orthogonality
conditions that can be used for consistent estimation in count data models with
predetermined regressors. The quasi-differencing transformation is
Hit—1 Hit—1
Sit = yitL —Yit-1 = Uz’tL = Uig—1- (4-8)
it it
Let 271 = (21, ..., Tit—1). When x; is predetermined, the following moment
conditions hold:

E (sit]xﬁ’l) = 0. (4.9)
Wooldridge (1991) proposed the following quasi-differencing transformation
Yir  Yit—1
Gie = == — =—,
Hit Hit—1
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with moment conditions
E (qulai™) = 0.
It is clear that a variable in z;; can not have only non-positive or non-negative val-

ues, as then the corresponding estimate for ( is infinity. A way around this prob-
lem is to transform z in deviations from overall means, see Windmeijer (2000a).

4.3. Endogenous Regressors

Regressors are endogenous when E (z;u;;) # 0. In this case, the Chamberlain
transformation can not be used. Use of the Wooldridge transformation leads to
the following moment conditions

E <Qit’$§72) =0,
where 2172 = (21, ..., Tir_2), see Windmeijer (2000a).

4.4. Linear Feedback Model

Blundell, Griffith and Windmeijer (2002) propose use of a linear feedback model
for modelling dynamic count panel data process. The linear feedback model
(LFM) of order p is defined as

P
Yie = > VYitj + exp(aiyf +n;) + ug (4.10)
j=1
P
= Z'ijitfj + WiV + Ui,
j=1

where lags of the dependent variable enter the model linearly. The LFM has its
origins in the Integer-Valued Autoregressive (INAR) process

Even when the z;; are strictly exogenous, the within group mean scaling esti-
mator will be inconsistent for small 7', as the lagged dependent variable is a prede-
termined variable. For estimation by GMM, the Chamberlain quasi-differencing
transformation for the LFM model is given by

P P

Hit—1

Sit = (yit - Z%‘yz't—j)— —\ Yit—1 — Z%yz’t—1_j (4~11)
j=1 Mt =1

For predetermined x;; the following moment conditions hold

E(suly; %27 1) =0. (4.12)

)



The Wooldridge quasi-differencing transformation for the LFM is given by

Qit =

Yit — 2521 VY- Y1 — Z§:1 Vi Yit—1—j
Hit Hit—1 '

For endogenous z;;, the following moment conditions are valid

E(qu|yi %, 2i7%) = 0.

)

5. GMM

Orthogonality conditions as described in the section above can be used to con-
sistently estimate the model parameters by the GMM estimation technique (see
Hansen, 1982). For example, for the Chamberlain quasi-differencing transforma-
tion for the LFM model, the GMM estimator minimises

ii AR iiZ/,
Ni:13¢ i N Ni:1 iSi |

where s; is the T — p — 1 vector [sy], Z; is the matrix of instruments and Wy is
a weight matrix. When the full sequential set of instruments is used and x; is
predetermined, the instrument matrix for the LFM(1) model is given by

Yir Ti1 Tq2
Zi:
Yir - Yir—2 Tip v TiT-1

Let 6 = [y1,...,7p,8]'. The efficient weight matrix for the GMM estimator is

given by
~1

n 1 ol 1. (0 oo\
WN (91) = <N ;lel(el)sz(&) Z@ N
where si(gl) is based on an initial consistent estimate 6, .
N ~1
In the programme, the one-step GMM estimator 6; uses Wy = (% >N, Z ZZ-)
as the initial weight matrix. The asymptotic variance of 0, is computed as

wr(0) = +(C@) wae () 0 (@) wawyt (5.) wae (5)

x (C (6.) wae (51)>1 (5.1)



where

c(6) - % g: 0Z}si (0)

|~ .
= 00
The asymptotic variance of the efficient two-step GMM estimator is computed
as
~ (A 1 S~/ ~ ~\)
var <92) == N <C (82) WN (81) C (62)) . (52)

Note that the two-step asymptotic standard errors can be severely biased down-
wards in small samples (small N), see Windmeijer (2000b).
The Sargan test for overidentifying restrictions is given by

N (% f; s: (8) Zz-> W (0,) (% f; Zls: (@)) , (5.3)

which is asymptotically chi-squared distributed with &k, — ky degrees of freedom
if the moment conditions are valid, where kz is the number of instruments and ky
is the number of parameters.

6. Programme Commands

The estimation of the various models is done via the run file. This run file has
to be edited by the user and executed in Gauss to obtain the estimation results.
EXPEND.RUN contains the following lines:



new;
cls;
speed = hsec

dataset = "gdata”;
auxset = "auxgdata”;

let yvar = y;
let xvar = x x;
let Ix =0 1;

model = 2;

addit = 1;

qdif = 1;

devvar = 0;

Ifmy = 1;
Ifmlag = 1;

seqz = 1

let seqzvar =y x;
let 1seqzl = 2 1;
let lseqz2 = 4 3;

/***
/***
/***

/***
/***
/***

/***
/***
/***

/***
/***
/***

/***
/***
/***

/***
/***
/***

/***
/***

/***
/***
/***
/***

name of data set
name of auxiliary data set
add paths if in different directory

name of dependent variable
names of explanatory variables
lag lenghts of explanatory variables

0 = levels model
1 = within group mean scaling
2 = quasi differenced model

0 = multiplicative moment conditions
1 = additive moment conditions
only active when model=0

0 = Wooldridge moment conditions
1 = Chamberlain moment conditions
only active when model=2

set to 1 for taking deviations from overall
means of explanatory variables
use this for Wooldridge quasi-differencing

0 = no linear feedback model
# of lags of dep. var.

0 = no sequential instruments
names of sequential instruments
lag length of seq. instrs. begin
lag length of seq. instrs. end

***/
***/
***/

***/
***/
***/

***/
***/
***/

***/
***/
***/

***/
***/
***/

***/
***/
***/

***/
***/

***/
***/
***/
***/



nonseqz = 1;
let nseqzvar = q;
let Inseqz = 1;

let timevar = year;

timedum = 0;

timez = 0;
lagl = 1;
llev = 0;
nind = 20;

saveres = 1;

ml = 1;
alg = 4;
sval = 1;

let startvaly = 0.4;
let startvalx = 0.5 0.2;
startvalc = 0;

/***
/***
/***

/***
/***

/***
/***
/***
/***
/***

/***

/***
/***
/***

/***

/***
/***

/***
/***
/***
/***

/***
/***
SRR
SRR
SRR

output file = expend.out on;

#include expend.prg;

/***

0 = no non-sequential instruments
names of non-sequential instruments
lag length of non-seq instruments

name of time variable
set equal to 0 for cross section analysis

1 = time dummies in model

estimated coefficients are d_ (t)-d_ (t-1)

in quasi-differenced model

1 = time dummies included in instrument set
when timedum=0

maximum lag length in the model

observations with less than lagl+llev+1
(lagl+llev+2 if model=2)
time periods get discarded

no. of individual units processed in each read

1 = save one- and two-step parameters and
variance matrices as bl, vl, b2 and v2.fmt

1= uses MAXLIK 4 routine of GAUSS
otherwise a simple method of scoring is used
sets _max_Algorithm, eg. 4 = NEWTON
active if ml=1

sval=0 sets all starting values to 0
start values for lagged dep. vars.
start values for expl. vars.

start value for constant

start values for time dummies are 0

add path if in different directory

***/
***/
***/

***/
***/

Hkk |
***/
***/
***/
***/

***/

***/
***/
***/

***/

***/
***/

***/
***/
Hokk |
***/

***/
***/
Hokk |
Hokk |
Hokk |

***/



Most definitions in the programme are self explanatory or explained by the
comments above. Below follow some examples of models and estimation methods
and the accompanying commands.

6.1. Cross Section Estimation

For estimation using cross section data, only the model in levels can be estimated,
so model = 0. All the lag lengths of the explanatory variables have to be set to
zero, lx = 0...0, and [ fmlag = 0. For additive moment conditions as in (4.2) set
addit = 1, for multiplicative moment conditions as in (4.4) set addit = 0. As there
are no sequential instruments, set seqz = 0 and nonseqz = 1. As there are no
time effects, timevar = timedum = timez = 0. If the instruments are the same
as the explanatory variables, the Poisson pseudo ML estimates will be returned
(i.e. with robust standard errors) if addit = 1.

6.2. Within Group Mean Scaling Estimation

For within group mean scaling estimation, using the moment conditions as in
(4.7) set model = 1. The Poisson fixed effects pseudo ML estimation results
are obtained when only non-sequential instruments are used that are identical
to the explanatory variables. Within-groups with the linear feedback model is
also possible, but this is of course no longer identical to the Poisson fixed effects
estimator, and biased and inconsistent for small 7.

6.3. Quasi-Differencing

For quasi-differencing, set model = 2. When z;; is endogenous, set qdif = 0 for
the Wooldridge moment conditions. It is recommended to set devvar = 1 when
using the Wooldridge moment conditions, so none of the variables take only non-
positive or only non-negative values. Using non-sequential moment conditions, set
nonseqz = 1. Using sequential moment conditions, set seqz = 1. When the time
dimension is large it is recommended not to use all lagged values as sequential
instruments. This is controlled by setting lseqz1 and lseqz2, for example setting
Iseqz1 = 2 and lseqz2 = 4 results in the following instrument matrix when
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lfmlag = 0 and g;;—1 is a non-sequential instrument:

0
T4l

Ti1 T2

Til Ti2 X438

Tig T3 Tia

TiT—4 XiT7-3 LiT—-2

6.4. Some General Remarks

The operator lagl is the maximum of [z, [fmlag and Inseqz. If lagl is set too
small, the model will automatically adjust it. If it is set larger than the maximum
of lx, [fmlag and Inseqz, the programme will display a warning that this is the
case.

The lag length operators for the explanatory variables and non-sequential in-
struments [x and Inseqz have to be positive. The programme will abort when
negative values are entered.

The first lag length operator for sequential instruments, /seqz1 can be nega-
tive, meaning that future values of the variable are valid instruments. When a
variable is considered to be strictly exogenous, observations in all periods are valid
instruments. By setting [seqz1 for this variable to a large negative number, e.g.
—99 and [seqz2 to a large positive number, e.g. 99, observations in all periods
will be included as instruments. The programme will automatically adjust the lag
lengths to the maximum possible.

The programme calculates the Hessian matrix for use in the optimisation rou-
tines as

H=C(0) WyC (0)

and therefore using the Newton-Raphson algorithm in Maxlik is equivalent to the
method of scoring.

If saveres = 1, the one- and two-step parameter and variance estimates can be
accessed, e.g. for Wald testing of parameter restrictions, using the load command.

7. Output

The output is written to the screen and to the output file as specified in the run
file. Below follows an example for estimation results of an LFM model of order 1,
estimated using the Chamberlain moment conditions.

11
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CHAMBERLAIN MOMENT CONDITIONS

DATASET gdata
DATE 2/04/02
N 1500 NT 7000
LAGL 1 LLEV 0
PERIOD 1987 1991
DEP. VAR. Y
INSTRUMENTS Y 2 4 X 1 3

Q1

SARGAN DOF P:  29.4340 24 0.2042

ONE-STEP
# ITERATIONS 10

coeff robse t-ratio p-value
Y 1 0.3982 0.0908 4.3849 0.0000
X 0.3414 0.1150 2.9681 0.0030
X 1 0.1300 0.1091 1.1913 0.2335

TESTS FOR SERIAL CORRELATION AND P-VALUES

M1 -5.1561 0.0000
M2 0.1652 0.8688
TWO-STEP

4 ITERATIONS 5

coeff robse t-ratio p-value
Y 1 03184 0.0435 7.3180 0.0000
X 0.3708 0.0376 9.8642  0.0000
X 1 0.2287 0.0264 8.6585 0.0000

TESTS FOR SERIAL CORRELATION AND P-VALUES
M1 -7.3128 0.0000
M2 -0.5290 0.5968

Execution time is 0.32 minutes
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The DATE format is month/day /year.

N is the number of individual units, NT is the total number of observations

Sequential instruments have a double subscript, non-sequential instruments
have a single subscript.

Sargan is the test for overidentifying restrictions as in (5.3), based on the
two-step results.

The standard errors for the one-step estimation results are calculated from the
robust asymptotic variance (5.1).

The two-step standard errors are calculated from the robust asymptotic vari-
ance (5.2).

The tests for serial correlation test for serial correlation of the residuals s;; as in
(4.11) in this case and is an extension of the tests for serial correlation in Arellano
and Bond (1991). Under the null of no serial correlation, these test statistics
are asymptotically NV (0,1) distributed. For the Chamberlain and Wooldridge
residuals one expects first-order, but not second-order autocorrelation if the model
is well specified.
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