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Abstract
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lihood (GEL) has smaller bias but the usual standard errors are too small. In this
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that addresses this problem. This asymptotics leads to improved approximations
in overidentified models where the variance of the derivative of the moment condi-
tions is large relative to the squared expected value of the moment conditions and
identification is not too weak. We obtain an asymptotic variance for GEL that is
larger than the usual one and give a ”sandwich” estimator of it. In Monte Carlo
examples we find that this variance estimator leads to a better Gaussian approx-
imation to t-ratios in a range of cases. We also show that Kleibergen (2005) K
statistic is valid under these asymptotics. We also compare these results with a
jackknife GMM estimator, finding that GEL is asymptotically more efficient under
many weak moments.
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1 Introduction

Many applications of generalized method of moments (GMM, Hansen, 1982) have low

precision. Examples include some natural experiments (Angrist and Krueger, 1991), con-

sumption asset pricing models (Hansen and Singleton, 1982), and dynamic panel models

(Holtz-Eakin, Newey and Rosen, 1988). In these settings the use of many moments can

improve estimator accuracy. For example, Hansen, Hausman and Newey (2005) have

recently found that in an application from Angrist and Krueger (1991), using 180 instru-

ments, rather than 3, shrinks correct confidence intervals substantially.

A problem with using many moments is that the usual Gaussian asymptotic approx-

imation can be poor. The two-step GMM estimator can be very biased. Generalized

empirical likelihood (GEL, Smith 1997) and other estimators have smaller bias but the

usual standard errors are found to be too small in examples in Han and Phillips (2005)

and here. In this paper we use alternative asymptotics that addresses this problem in

overidentified models where the variance of the derivative of the moment conditions is

large relative to the squared expected value of the moment conditions and identification

is not too weak. Such environments seem quite common in econometric applications of

instrumental variables (IV). Under the alternative asymptotics we find that GEL has a

Gaussian limit distribution with asymptotic variance larger than the usual one. We give

a consistent, ”sandwich” estimator of the alternative asymptotic variance. We find in

instrumental variable Monte Carlo examples that, in a range of cases where identifica-

tion is not very weak, the new t-ratios have a better Gaussian approximation than the

usual ones. We also show that the Kleibergen (2005) K statistic is valid under these

asymptotics.

For comparison purposes we also consider a jackknife GMM estimator that generalizes

jackknife IV estimators of Phillips and Hale (1977) and Angrist, Imbens and Krueger

(1998). This estimator should also be less biased than the two-step GMM estimator.

In the IV case Chao and Swanson (2004) derived its limiting distribution under the

alternative asymptotics. Here we show that jackknife IV is asymptotically less efficient

[1]



than GEL.

The alternative asymptotics is based on many weak moment sequences like those of

Chao and Swanson (2004, 2005), Stock and Yogo (2004), and Han and Phillips (2005).

This paper picks up where Han and Phillips (2005) leave off, by showing asymptotic

normality when the convergence rate of the estimator is the square root of the number

of moment conditions, deriving an explicit formula for the asymptotic variance that is

larger than the usual one, and giving a consistent variance estimator. This paper also

extends Han and Phillips (2005) by giving primitive conditions for consistency and a

limiting distribution when a general weight matrix is used for the continuous updating

estimator (CUE), by analyzing GEL estimators other than the CUE, and by treatment

of jackknife GMM.

The standard errors we give can be thought of as an extension of the Bekker (1994)

standard errors from homoskedasticity and the limited information maximum likelihood

(LIML) estimator to heteroskedasticity and GEL. Under many weak moments, in a ho-

moskedastic linear model, Hansen, Hausman and Newey (2005) show that the Bekker

(1994) standard errors are consistent for LIML. In the same model we show that GEL

has the same asymptotic variance as LIML, so that the standard errors here have the

same limit as those of Bekker (1994). However, the standard errors we give are also

consistent for GEL with heteroskedasticity.

In the asymptotics here the variability of the derivative of the moments affects the

limiting distribution but the variability of the weight matrix has no effect. The dif-

ference between the usual asymptotic variance and the one given here corresponds to a

GEL higher-order variance term from Donald and Newey (2003), that depends on sample

variability of the Jacobian of the moment functions. In Donald and Newey (2003) there

are also higher-order variance terms corresponding to variability of the weight matrix,

but these are relatively small when the Jacobian variance is large relative to squared

average Jacobian, as happens under many weak moment asymptotics. Thus, the asymp-

totic variance we give will approximately be the higher order variance of GEL when the

Jacobian variance is relatively large. This kind of approximation seems appropriate for
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many IV settings, where the sample variability of the Jacobian can be relatively large. It

would not lead to improvements in minimum distance settings where the Jacobian does

not depend on data. In that case the asymptotic variance here will equal the usual one.

The limiting distribution for GEL can be derived by increasing the number of moments

in the Stock and Wright (2002) limiting distribution of the continuous updating estimator

(CUE). This derivation corresponds to sequential asymptotics, where one lets the number

of observations go to infinity and then lets the number of moments grow. We give here

simultaneous asymptotics, where the number of moments grows along with, but slower

than, the sample size.

One might also consider asymptotics where the number of moments increases at the

same rate as the sample size, as did Bekker (1994). Theory for this case would be difficult

because the dimension of the weighting matrix would grow at the same rate as the sample

size.

The variance adjustment that comes out of the many weak instrument asymptotics

is different from that of Windmeijer (2005). He adjusts for the variability of the weight

matrix while the many instrument asymptotics adjusts for the variability of the moment

derivative.

In Section 2 we describe the model, the estimators, the new asymptotic variance

estimator, and the alternative asymptotics we consider. Section 3 gives the consistency

results and Section 4 gives the asymptotic normality results. There we give regularity

conditions for the CUE and reserve to Appendix B the regularity conditions for GEL.

Section 5 reports some Monte Carlo results. Section 6 offers some conclusions and some

possible directions for future work. Appendix A gives proofs of Theorems in Sections 3

and 4.

2 The Model and Estimators

The model we consider is for i.i.d. data where there is a countable number of moment

restrictions. In the asymptotics we allow the data generating process to depend on the
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sample size. To describe the model, let wi, (i = 1, ..., n), be i.i.d. observations on a data

vector w. Also, let β be a p× 1 parameter vector and g(w, β) = (gm1 (w, β), ..., g
m
m(w, β))

0

be an m × 1 vector of functions of the data observation w and the parameter, where

m ≥ p. For notational convenience we suppress an m superscript on g(w, β). The model

has a true parameter β0 satisfying the moment condition

E[g(w, β0)] = 0,

where E[.] denotes expectation taken with respect to the distribution of wi for sample

size n, and we suppress the dependence on n for notational convenience.

To describe GMM estimators let gi(β) = g(wi, β), ĝ(β) =
Pn

i=1 gi(β), and Ω̂(β) =Pn
i=1 gi(β)gi(β)

0. Also let β̄ be a preliminary estimator and B be a compact set of para-

meter values. The usual two-step GMM estimator is given by

β̃ = argmin
β∈B

Q̃(β), Q̃(β) = ĝ(β)0Ŵ ĝ(β)/2, Ŵ = Ω̂(β̄)−1.

where β̄ is some preliminary estimator. The weighting matrix Ŵ = Ω̂(β̄)−1 is optimal in

minimizing the asymptotic variance of β̃ under standard asymptotics.

The jackknife GMM estimator is obtained as

β̆ = argmin
β∈B

Q̆(β), Q̆(β) = Q̃(β)− tr(Ŵ Ω̂(β))/2 =
X
i6=j
[gi(β)

0Ŵgj(β)]/2.

This estimator equals the JIVE2 estimator of Angrist, Imbens, and Krueger (1998) in

a linear model when Ŵ is the inverse of the second moment matrix of the instruments.

The first-order conditions for this estimator are

0 =
∂ĝ(β)

∂β

0
Ŵ ĝ(β)−

nX
i=1

∂ĝi(β)

∂β

0
Ŵgi(β).

This can be interpreted as a bias corrected version of the two-step GMM first order con-

dition. The first term ∂ĝ(β)/∂β0Ŵ ĝ(β) is the derivative of the GMM objective function.

When evaluated at β0 this term is biased, in the sense of having nonzero expectation (for

Ŵ fixed). The second term is an estimator of the expectation of the first term (for Ŵ

fixed). Subtracting out the second term makes the expectation exactly zero (for fixed

Ŵ ), i.e. makes the first order conditions unbiased at the true parameter.
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To describe a GEL estimator let ρ(v) be a function of a scalar v that is concave on an

open interval V containing zero and let ρj(0) = ∂jρ(0)/∂vj . We normalize ρ(v) so that

ρ0(0) = 0, ρ1(0) = 1 and ρ2(0) = −1. Let Λ̂n(β) = {λ : λ0gi(β) ∈ V, i = 1, ..., n}. A GEL
estimator is given by

β̂ = argmin
β∈B

Q̂(β), Q̂(β) = sup
λ∈Λ̂n(β)

nX
i=1

ρ(λ0gi(β)),

as in Smith (1997). The empirical likelihood (EL; Qin and Lawless, 1994) estimator

is obtained when ρ(v) = ln(1 − v) (and V = (−∞, 1)), and exponential tilting (ET,

Kitamura and Stutzer, 1997) when ρ(v) = −ev. When ρ(v) is quadratic, Q̂(β) has an

explicit form, given by

Q̂(β) = ĝ(β)0Ω̂(β)−1ĝ(β)/2.

Newey and Smith, 2004). Here the GEL estimator β̂, that minimizes Q̂(β), is the con-

tinuous updating estimator (CUE, Hansen, Heaton and Yaron, 1996).

The estimator of the asymptotic variance makes use of weights associated with the

GEL estimator. Let

ρ̂1i(β) = ρ1(λ̂(β)
0gi(β)), (i = 1, ..., n), λ̂(β) = argmax

λ

nX
i=1

ρ(λ0gi(β)),

Ĥ = ∂Q̂(β̂)/∂β∂β 0, D̂(β) =
nX
i=1

ρ̂1i(β)∂gi(β)/∂β.

Here D̂(β̂)/
Pn

i=1 ρ̂1i(β̂) is an efficient estimator of G = E[∂gi(β0)/∂β], like that consid-

ered by Brown and Newey (1998). Let D̂ = D̂(β̂) and Ω̂ = Ω̂(β̂). The estimator of the

asymptotic variance is given by

V̂ = Ĥ−1D̂0Ω̂−1D̂Ĥ−1.

The ”sandwich” form of the asymptotic variance estimator is important under the alter-

native asymptotics. Unlike the usual asymptotics, the middle matrix D̂0Ω̂−1D̂ estimates

a different, larger object than the Hessian. Also, the use of the Hessian is important.

Here we cannot replace Ĥ by the more common formula Ĝ0Ω̂−1Ĝ, where Ĝ = ∂ĝ(β̂)/∂β,

because Ĝ0Ω̂−1Ĝ has extra random terms that are eliminated in the Hessian in the alter-

native asymptotics.
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The Hessian term on the outside of V̂ is familiar from other estimation environments.

The middle term D̂0Ω̂−1D̂ is an estimator of the asymptotic variance of ∂Q̂(β0)/∂β due

to Kleibergen (2005) for the CUE and Guggenberger and Smith (2005) for other GEL

settings. They show that this estimator can be used to construct a test statistic under

weak identification with fixed m. We give conditions for consistency when m is allowed

to grow with the sample size.

The Kleibergen (2005) K statistic will also be valid under many weak moment con-

ditions. For the null hypothesis H0 : β0 = β̄, where β̄ is known, the K statistic is

T̂ (β̄) = ĝ(β̄)0Ω̂(β̄)−1D̂(β̄)[D̂(β̄)0Ω̂(β̄)−1D̂(β̄)]−1D̂(β̄)0Ω̂(β̄)−1ĝ(β̄).

Under the null hypothesis and the alternative asymptotics this statistic will have a χ2(p)

under the alternative asymptotics. As a result we can form joint confidence intervals

for the vector β0 by inverting T̂ (β). Specifically, for the 1 − α quantile q of a χ2(p)

distribution, an asymptotic 1−α confidence interval is {β : T̂ (β) ≤ q}. These confidence
intervals are also correct in the weak identification setting of Stock and Wright (2000). In

general though, these intervals are much more difficult to compute than Wald confidence

intervals.

The alternative variance estimator and associated asymptotics should provide a better

approximation than the usual one when, for G = E[∂gi(β0)/∂β] and Ω = E[gi(β0)gi(β0)
0],

1 : m > p,

2 : V ar(Ω−1/2∂gi(β0)/∂β) >> G0Ω−1G,

3 : nG0Ω−1G >> 0.

That is, the approximation should be better in 1) overidentified models where 2) the

variance of the Jacobian of the moment functions is large relative to its average and 3)

the model is not too weakly identified. Condition 2) is often true in IV settings, tending

to hold when reduced form R2s are low. Condition 3) is also often true in IV settings,

corresponding to a model not being ”too weakly” identified (e.g. see the brief applications

survey in Hansen, Hausman and Newey, 2005). Condition 2) would not to be satisfied in
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minimum distance settings, where V ar(∂gi(β0)/∂β) = 0, and so we expect that V̂ would

not provide an improvement there.

Conditions 1), 2) and 3) are simultaneously imposed in the many weak moment

condition asymptotics, where m grows, G0Ω−1G goes to zero, and nG0Ω−1G grows. For

this asymptotics we will give conditions under which there is µn −→∞ and a matrix V

such that

µn(β̂ − β0)
d−→ N(0, V ), µ2nV̂

p−→ V,

Therefore, standard (Wald) confidence intervals and test statistics that treat β̂ as if it

were normally distributed with mean β0 and variance V̂ will be asymptotically correct.

The convergence rate of the estimator will be 1/µn.

We impose conditions so that µ2n might be considered a generalization of the concen-

tration parameter, that plays such a central role in the asymptotic theory of instrumental

variable estimators. Let

ḡ(β) = E[gi(β)],Ω(β) = E[gi(β)gi(β)
0],Ω = Ω(β0),

where we suppress m subscripts and/or superscripts for convenience. We require that µ2n

behave as follows:

Assumption 1: i) there is µn −→∞ such µ2n/n −→ 0,m ≤ µ2n,m/µ2n −→ κ, 0 ≤ κ ≤
1; ii) (n/µ2n)G

0Ω−1G −→ H andH is nonsingular; iii) For all β andm, Ω(β) is nonsingular

and there is a continuous function ∆(a) > 0 for all a 6= 0 and (n/µ2n)ḡ(β)0Ω(β)−1ḡ(β) ≥
∆(kβ − β0k).

This assumption means that µ2n characterizes the growth rate of nG
0Ω−1G, similarly

to the concentration parameter of the simultaneous equations literature. When κ > 0,

so that the number of instruments grows as fast as the concentration parameter, the

convergence rate will also be 1/
√
m. This formulation is a GMM version of Chao and

Swanson (2005) that is similar to Han and Phillips (2005).

A special case is the linear model, where

yi = x0iβ0 + εi, xi = Υi + ηi, (2.1)
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0 = E[εi|zi,Υi], 0 = E[ηi|zi,Υi].

Here zi is an m× 1 vector of instrumental variables, where we suppress the m argument

for convenience, and we will impose the normalization E[ziz
0
i] = Im. Also, Υi is a p× 1

vector of reduced form values. The moment functions are

g(wi, β) = zi(yi − x0iβ).

Here G = −E[zix0i] = −E[ziΥ0i] and Ω = E[ziz
0
iε
2
i ] = E[σ2i ziz

0
i], where σ

2
i = E[ε2i |zi,Υi].

Then Assumption 1 means that for Υ∗i = Υi/σ
2
i and Π∗ = Ω−1E[σ2i ziΥ

∗0
i ]

(n/µ2n)G
0Ω−1G = (n/µ2n)E[σ

2
iΥ

∗
i z
0
i]Ω

−1E[σ2i ziΥ
∗0
i ]

= (n/µ2n)Π
∗0ΩΠ∗ −→ H.

Here Π∗ can be thought of as the coefficients from a population weighted regression of

optimal instruments Υ∗i on the instrumental variables zi, with weight σ
2
i . Assumption 1

specifies that µ2n gives the growth rate of nΠ
∗0ΩΠ∗ that can be interpreted as a weighted

sum of squares of reduced form predicted values.

One example has Υi = π0mnzi, so that the reduced form is a linear combination of

the instrumental variables. If εi is homoskedastic with σ2i = σ2ε constant, Assumption 1

follows from
n

µ2n
π0mnπmn/σ

2
ε −→ H.

When p = 1 this equation would be satisfied when πmn = σεH
1/2(µn/

√
nm, ..., µn/

√
nm)0.

When µ2n grows at the same rate as m, each reduced form coefficient follows the weak

instrument assumption of Staiger and Stock (1997), but the number of instruments is

growing, which makes the concentration parameter grow. This example is a special case

of the many weak instrument asymptotics of Chao and Swanson (2005).

Another example is given by

Υi = µnf0(Zi)/
√
n, z0i = pm(Zi)

0, pm(Z) = (p1m(Z), ..., pmm(Z))
0,

where f0(Z) is an unknown function of fixed dimensional vector of exogenous variables

Z and p1m(Z), ..., pmm(Z) are approximating functions for f0, such as power series or
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splines. Here Assumption 1 will be satisfied if E[f0(Zi)f0(Zi)
0/σ2i ] is nonsingular and

there is γm such that

lim
m−→∞E[σ2i kf0(Zi)/σ

2
i − γmp

m(Zi)k2] = 0.

This example is like Newey (1990) where zi are approximating functions for the optimal

(asymptotic variance minimizing) instruments Υ∗i , but with µ
2
n growing more slowly than

n.

3 Consistency

We first give a brief explanation of the consistency results. As usual, the crucial condition

for consistency of an extremum estimator is that the limit of the objective function is

minimized at the truth. Under many weak instruments the limit of the objective function

will be the limit of its expectation with the weighting matrix Ŵ replaced by its limit W

and the expectation divided by µ2n.

As in Han and Phillips (2005), for two step GMM,

E[ĝ(β)0Wĝ(β)/nµ2n] = (n− 1)ḡ(β)0Wḡ(β)/µ2n + tr(WΩ(β))/µ2n.

The term (n− 1)ḡ(β)0Wḡ(β)/µ2n is a ”signal” term that is minimized at β0. The second

term is a ”noise” term that is not minimized at β0, and is not dominated by the signal

term when µ2n grows at the same rate as m. Consequently, two-step GMM will not

be consistent, when µ2n grows at the same rate as m. The jackknife GMM estimator

eliminates the noise term. We have

E[
X
i6=j

gi(β)
0Wgj(β)/nµ

2
n] = (n− 1)ḡ(β)0Wḡ(β)/µ2n.

This function is minimized at the truth, leading to consistency of the jackknife GMM

estimator.

The CUE estimator makes the noise term not depend on β. We have

E[ĝ(β)0Ω(β)−1ĝ(β)/nµ2n] = (n− 1)ḡ(β)0Ω(β)−1ḡ(β)/µ2n + tr(Ω(β)−1Ω(β))/µ2n

= (n− 1)ḡ(β)0Ω(β)−1ḡ(β)/µ2n +m/µ2n.
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This function is minimized at the truth, leading to consistency of the CUE. Also, it

turns out that under many weak moments the objective function of every GEL estimator

behaves like that of the CUE, leading to their consistency as well. The reason for this is

that that for all β the vector λ̂(β) converges to zero, and so the GEL objective function

Q̂(β) is approximately quadratic, i.e. is approximately the CUE objective function.

Turning now to precise results, for a matrix F let kFk = trace(F 0F )1/2 denote its

Euclidean norm and for symmetric F let λmin(F ) and λmax(F ) denote its smallest and

largest eigenvalues, respectively. Also, define stochastic equicontinuity of a sequence of

random functions {Ŝn(β)}n=1 to mean that for any ∆n −→ 0, supkβ̃−βk≤∆n
|Ŝn(β̃) −

Ŝn(β)| p−→ 0.

Assumption 2: β0 ∈ B with B compact, there is a constant C with λmin(Ω(β)) ≥ 1/C,
λmax(Ω(β)) ≤ C, E[{gi(β)0gi(β)}2]/n −→ 0 for each β ∈ B, supβ∈B kΩ̂(β)/n−Ω(β)k p−→
0, nḡ(β)0Ω(β)−1ḡ(β)/µ2n is equicontinuous, and ĝ(β)0Ω(β)−1ĝ(β)/nµ2n is stochastically

equicontinuous.

The condition that supβ∈B kΩ̂(β)/n − Ω(β)k p−→ 0 puts restrictions on the rate at

which m can grow with the sample size. If E[gij(β)
4] is bounded uniformly in j, m,

and β then a sufficient condition for pointwise convergence would be that m2/n −→ 0.

The uniformity condition may impose further restrictions. The following is a consistency

result for CUE.

Theorem 1: If Assumptions 1 and 2 are satisfied then β̂
p−→ β0.

We also give more primitive regularity conditions for consistency for the linear model

example. Let Σi = E[(εi, η
0
i)
0(εi, η0i)|zi,Υi].

Assumption 3: The linear model holds and there is a constant C with E[ε4i |zi,Υi] ≤ C,

E[kηik4|zi,Υi] ≤ C, λmin(Σi) ≥ 1/C, kΥik ≤ C, E[(z0izi)
2]/n −→ 0, and nE[(Υ0

iΥi)
2]/µ4n ≤

C.

The conditions put restrictions on the rate at which m can grow with the sample size.
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If zij is bounded uniformly in j and m, then these conditions will hold for the CUE if

m2/n −→ 0, for in that case, E[(z0izi)
2]/n = O(m2/n).

Theorem 2: If Assumptions 1 i), 1 ii), and 3 are satisfied then β̂
p−→ β0.

4 Asymptotic Normality

We first give an explanation of the asymptotic normality results. The usual Taylor

expansion of the first-order condition ∂Q̂(β̂)/∂β = 0 gives

µn(β̂ − β0) = −H̄−1µ−1n ∂Q̂(β0)/∂β, H̄ = µ−2n ∂2Q̂(β̄)/∂β∂β 0,

where β̄ is an intermediate value for β, being on the line joining β̂ and β0 (that actually

differs from row to row of H̄). Under regularity conditions given below we will have

H̄
p−→ H, for H from Assumption 1. The asymptotic distribution of β̂ will then be

determined by the asymptotic distribution of µ−1n ∂Q̂(β0)/∂β. This reasoning also holds

for the jackknife GMM estimator.

To simplify notation we focus on the scalar β case. Also, as for consistency we can

take the weighting matrix equal to its limit. Let gi = gi(β0), Gi = ∂gi(β0)/∂β, ĝ = ĝ(β0),

and Gn = (
√
n/µn)G. Then differentiating the jackknife GMM objective function, with

Ω−1/n replacing Ŵ gives

µ−1n ∂Q̆(β0)/∂β =
X
i6=j

G0
iΩ
−1gj/nµn = (1− n−1)G0

nΩ
−1ĝ/n1/2 +

X
j<i

ψJ
ij/nµn,

ψJ
ij = (Gj −G)0Ω−1gi + (Gi −G)0Ω−1gj,

where the second equality holds by adding and subtracting G to Gi. The G
0
nΩ

−1ĝ/n1/2

term is the usual GMM one, having asymptotic variance H. The other term
P

j<i ψ
J
ij/nµn

is a martingale sum, as in Hall (1984). Specifically, it is a degenerate U-statistic that is

asymptotically normal. Also,

E[(ψJ
ij)
2]/2 = E[{(Gj −G)0Ω−1gi}2] + E[{(Gj −G)0Ω−1gi}{(Gi −G)0Ω−1gj}]

= E[(Gj −G)0Ω−1(Gj −G)] + E[G0
jΩ
−1giG0

iΩ
−1gj]

= E[G0
jΩ
−1Gj]−G0Ω−1G+ tr({Ω−1E[giG0

i]}2)
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The asymptotic variance of
P

j<i ψ
J
ij/nµn will be (using G

0Ω−1G/m −→ 0),

ΛJ = lim
m,n−→∞E[(

X
j<i

ψJ
ij/nµn)

2] = lim
m,n−→∞{(m/µ2n)[n(n− 1)/2]E[(ψJ

ij)
2]/mn2}

= κ lim
m−→∞E[(ψJ

ij)
2]/2m = κ lim

m−→∞{E[G
0
iΩ
−1Gi] + tr({Ω−1E[giG0

i]}2)}/m.

The U-statistic term is uncorrelated with the usual GMM term, so by the central limit

theorem, µ−1n ∂Q̆(β0)/∂β
d−→ N(0, H + ΛJ). It then follows that

µn(β̆ − β0)
d−→ N(0, VJ), VJ = H−1 +H−1ΛJH

−1,

a result that was previously derived for linear IV by Chao and Swanson (2004).

For the CUE, let B = Ω−1E[giG0
i] be the coefficients from the population regression

of Gi on gi and Ui = Gi − G − B0gi be the corresponding residual. Assuming we can

differentiate under the integral we have

∂Ω(β0)
−1/∂β = −Ω−1[∂Ω(β0)/∂β]Ω−1 = −BΩ−1 − Ω−1B0

Then differentiating the CUE objective function with Ω(β)−1/n replacing Ω̂(β)−1 we have

µ−1n ∂Q̂(β0)/∂β = µ−1n {∂[ĝ(β0)0Ω−1ĝ(β0)]/∂β + ∂[ĝ0Ω(β0)−1ĝ]/∂β}/2n
= µ−1n {

∂ĝ(β0)

∂β

0
Ω−1ĝ − ĝ0BΩ−1ĝ}/n

= G0
nΩ

−1ĝ/n1/2 +
X
j<i

ψ∗ij/nµn +
nX
i=1

U 0
iΩ
−1gi/nµn,

ψ∗ij = Uj
0Ω−1gi + U 0

iΩ
−1gj .

By the law of large numbers,
Pn

i=1 U
0
iΩ
−1gi/nµn

p−→ 0. Also note that E[(ψ∗ij)
2]/2 =

E[U 0
iΩ
−1Ui]. It then follows similarly to the jackknife GMM that µ−1/2n ∂Q̂(β0)/∂β

d−→
N(0, H + Λ∗), Λ∗ = κ limm−→∞E[U 0

iΩ
−1Ui]/m. Then it follows that

µn(β̂ − β0)
d−→ N(0, V ), V = H−1 +H−1Λ∗H−1.

We now show that the CUE is asymptotically efficient relative to the jackknife GMM,

i.e. that V ≤ VJ in the positive semidefinite sense. Let ∆ij = g0jBΩ−1gi + g0iBΩ−1gj .

Note that by E[Uig
0
i] = E[Ujg

0
j] = 0 we have

ψJ
ij = ψ∗ij +∆ij, E[ψ

∗
ij∆ij ] = 0.

[12]



It follows that E[(ψJ
ij)
2] = E[(ψ∗ij)

2] + E[(∆ij)
2] ≥ E[(ψ∗ij)

2], so that

Λ∗ = κ lim
m−→∞E[(ψ∗ij)

2]/2m ≤ κ lim
m−→∞E[(ψJ

ij)
2]/2m = ΛJ .

Thus we have

V = H−1 +H−1Λ∗H−1 ≤ H−1 +H−1ΛJH
−1 = VJ ,

showing the asymptotic relative efficiency of CUE.

The linear model provides an example of the asymptotic variance. Continuing to

assume that β is a scalar, we have

B = −Ω−1E[ziz0ixiεi] = −Ω−1E[ziz0iηijεi],
Ui = −zixi + E[zixi]− B0ziεi = −ziΥi + E[ziΥi] + ui, ui = −ziηi − B0ziεi.

Then we have,

E[U 0
iΩ
−1Ui]/m = E[u0iΩ

−1ui]/m+ E[{ziΥi −E[ziΥi]}0Ω−1{ziΥi −E[ziΥi]}]/m.

Under many weak instruments Υi is small, so that

Λ∗ = κ lim
m−→∞E[u0iΩ

−1ui]/m.

For instance, in the homoskedastic case where E[ε2|z] = σ2ε , E[ηη
0|z] = Ση, E[εη|z] = σηε,

we have ui = −zi(η0i − σ0ηεεi/σ
2
ε), so that

E[u0iΩ
−1ui]/m = E[(ηi − σηεεi/σ

2
ε)(ηi − σηεεi/σ

2
ε)
0z0iΩ

−1zi]/m

= (Ση − σηεσ
0
ηε/σ

2
ε)E[z

0
i(σ

2
εI)

−1zi]/m

= (Ση − σηεσ
0
ηε/σ

2
ε)/σ

2
ε .

Then, assuming π0mnπmnn/µ
2
n −→ A for a nonsingular matrix A, the asymptotic variance

matrix for µn(β̂ − β0) will be

V = σ2εA
−1 + κσ2εA

−1(Ση − σηεσ
0
ηε/σ

2
ε)A

−1.

This variance for the CUE is identical to the asymptotic variance of LIML under many

weak instrument asymptotics calculated by Stock and Yogo (2005). Thus we find that in

[13]



the linear homoskedastic model the CUE and LIML have the same asymptotic variance

under many weak moment asymptotics. As shown by Hansen, Hausman, and Newey

(2005), the Bekker (1994) standard errors are consistent under many weak instruments,

so that µ2nV̂ will have the same limit as the Bekker standard errors in a homoskedastic

linear model. Since µ2nV̂ will also be consistent with heteroskedasticity, one can think of V̂

as an extension of the Bekker (1994) variance estimator to GEL with heteroskedasticity.

It is interesting to compare the asymptotic variance V of the CUE with the usual as-

ymptotic variance formula H−1 for GMM. When κ = lim(m/µ2n) = 0 or ∂gi(β0)/∂β

is constant V = H−1, but otherwise the variance here is larger than the standard

formula. For further comparison we consider a corresponding variance approximation

Vn for β̂ for a sample size of size n. Replacing H with (n/µ2n)G
0Ω−1G and Λ∗ by

Λn = (m/µ2n)E[U
0
iΩ
−1Ui]/m, and dividing by µ2n (the square of the convergence rate)

gives the variance approximation for sample size n of

Vn = (G0Ω−1Gn/µ2n)
−1/µ2n + (G

0Ω−1Gn/µ2n)
−1Λn(G

0Ω−1Gn/µ2n)
−1/µ2n

= (G0Ω−1G)−1/n+
m

n
(G0Ω−1G)−1(E[U 0

iΩ
−1Ui]/m)(G

0Ω−1G)−1/n.

The usual variance approximation for β̂ is (G0Ω−1G)−1/n. The approximate variance Vn

includes an additional term which can be important in practice. When V ar(Ω−1/2∂gi(β0)/∂β) >>

G0Ω−1G, as seems descriptive of many IV settings, E[U 0
iΩ
−1Ui]/m may be very large rel-

ative to G0Ω−1G, leading to the additional term being important, even when m/n is

small.

It is interesting to note that the usual term is divided by n and the additional term

by n2. In asymptotic theory with fixed m this makes the additional term a ”higher-

order” variance term. Indeed, by inspection of Donald and Newey (2003), one can see

that the additional term corresponds to a higher order variance term involving sample

variability of the Jacobian. There are also additional higher order terms that come from

the estimation of the weight matrix, but the Jacobian term dominates as identification

becomes weak. For example, in the linear homoskedastic example suppose that E[ε3i |zi] =
0 and E[ε4i |zi] = E[ε4i ] and let An = π0mnπmn. The higher-order variance approximation

[14]



for GEL from Donald and Newey (2003) is

Vn = σ2εA
−1
n /n+ (m/n)σ2εA

−1
n (Ση − σηεσ

0
ηε/σ

2
ε)A

−1
n /n

+[(5− κ) + ρ3(0)(3− κ)]σ2εA
−1
n (π

0
mnE[kzik2ziz0i]πmn)A

−1
n /n2.

The last term corresponds to estimating of the weight matrix and will tend to be small

when πmn is small, as it is under the asymptotics we consider. In this sense the many

weak moment asymptotics accounts well for variability of the derivative of the moment

conditions but takes no account of variability of the weight matrix.

For asymptotic normality in the general i.i.d. case we make the following assumption:

Assumption 4: g(z, β) is twice continuously differentiable in a neighborhood N of β0,

{E[kgi(β0)k4] + E[k∂gi(β0)/∂βk4]}(m/n + 1/m
√
n) −→ 0, and for all β ∈ N we have

λmax(E[∂gi(β)/∂βj{∂gi(β)/∂βj}0]) ≤ C, λmax(E[∂
2gi(β)/∂βj∂βk{∂2gi(β)/∂βj∂βk}0]) ≤

C for a constant C.

This condition imposes a stronger restriction on the growth rate of the number of

moment conditions than was imposed for consistency. If gij(β0) were uniformly bounded

a sufficient condition would be that m3/n −→ 0. Let Ãj(β) =
Pn

i=1{∂gi(β)/∂βj}gi(β)0

and Aj(β) = E[{∂gi(β)/∂βj}gi(β)0].

Assumption 5: For all β on a neighborhood N of β0 i) each of supβ∈N kĝ(β)k/(µn
√
n),

supβ∈N k∂ĝ(β)/∂βjk/(µn
√
n), and supβ∈N k∂2ĝ(β)/∂βj∂βkk/(µn

√
n) are bounded in prob-

ability; ii) each of E[kgi(β)k4]/n, E[k∂gi(β)/∂βjk4]/n, E[k∂2gi(β)/∂βj∂βkk4]/n converge
to zero; iii) supβ∈N kn−1Ãj(β)−Aj(β)k p−→ 0, supβ∈N kn−1∂2Ω̂(β)/∂βj∂βk−∂2Ω(β)/∂βj∂βkk p−→
0.

Let Q̇(β) = ĝ(β)0Ω(β)−1ĝ(β)/2nµ2n, D̃
j(β) = [∂ĝ(β)/∂βj −Aj(β)Ω(β)−1ĝ(β)] /µn

√
n,

and D̃(β) = [D̃1(β), ..., D̃p(β)].

Assumption 6: ∂2Q̇(β)/∂β∂β 0 and D̃(β)0Ω(β)−1D̃(β) are stochastically equicontinu-

ous.

[15]



Under these and other regularity conditions we can show that β̂ is asymptotically

normal and that the variance estimator is consistent. Let Bj = Ω−1E[gi∂gi(β0)/∂β 0j ],

U j
i = ∂gi(β0)/∂βj − E[∂gi(β0)/∂βj]− Bj0gi, and Ui = [U

1
i , ..., U

p
i ].

Theorem 3: If Assumptions 1, 2, and 4-6 are satisfied and E[U 0
iΩ
−1Ui]/µ

2
n −→ Λ∗

then for V = H−1 +H−1Λ∗H−1

µn(β̂ − β0)
d−→ N(0, V ), µ2nV̂

p−→ V.

This result specializes to the linear model under previous conditions and a slight

strengthening of rate condition for the instruments.

Theorem 4: If Assumptions 1 i), ii), and 3 are satisfied, E[U 0
iΩ
−1Ui]/µ

2
n −→ Λ∗,

and E[(z0izi)
2]m/n −→ 0 then

µn(β̂ − β0)
d−→ N(0, V ), µ2nV̂

p−→ V.

This limiting distribution can also be derived by a sequential asymptotics calculation

based on Stock and Wright (2002). If one takes their limiting distribution of the CUE

under weak identification and lets the number of moment restrictions and the degree of

identification grow at the same rate then one obtains the same limiting distribution as

in Theorem 3.

The last result shows that the Kleibergen (2005) K-statistic has the usual chi-squared

distribution:

Theorem 5: If Assumptions 1, 2, and 4-6 are satisfied Λn −→ Λ∗ and β0 = β̄ then

T̂ (β̄)
d−→ χ2(p).

5 Monte Carlo Results

We first carry out a Monte Carlo for the linear IV model of equation (2.1) where the

disturbances and instruments have a Gaussian distribution, Υi = z0iπ. The parameters of
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this experiment are the correlation coefficient ρ between the structural and reduced form

errors, the concentration parameter E[π0Z 0Zπ]/V ar(η), and the number of instruments

m.

The data generating process is given by

yi = xiβ0 + εi

xi = z0iπ + ηi

εi = ρηi +
q
1− ρ2vi

ηi ∼ N (0, 1) ; vi ∼ N (0, 1) ; zi ∼ N (0, Im)

π =

s
CP

mn
ιm,

where ιm is an m-vector of ones. The concentration parameter in this design is equal

to CP . We generate samples of size n = 200, with values of CP equal to 10, 20 or 35;

number of instruments m equal to 3, 10 or 15; values of ρ equal to 0.3 or 0.5; and β0 = 0.

Table 1 presents the estimation results for 10, 000 Monte Carlo replications. We report

median bias and interquartile range (IQR) of 2SLS, GMM, LIML and CUE. The results

for 2SLS and GMM are as expected. They are upward biased, with the bias increasing

with the number of instruments, the degree of endogeneity and a decreasing concentration

parameter. LIML and CUE are close to being median unbiased, although they display

some small biases, accompanied by large interquartile ranges, when CP = 10 and the

number of instruments is larger than 3. There is a clear reduction in IQR for LIML and

CUE when both the number of instruments and the concentration parameter increase,

whereas the biases for 2SLS and GMM remain.

Table 2 presents rejection frequencies of Wald tests at 5% nominal level. The esti-

mators and standard errors utilised in the Wald tests are the two-step GMM estimator

with the usual standard errors (GMM2), with the Windmeijer (2005) standard errors

(GMM2C), the continuous updating estimator with the usual standard errors (CUE)

and with the standard errors presented here (CUEC). For purposes of comparison we

also give results for 2SLS and LIML with Bekker (1994) standard errors (LIMLC), and

the Kleibergen test statistic (KST).
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Table 1. Simulation results for linear IV model

CP = 10 CP = 20 CP = 35
Med Bias IQR Med Bias IQR Med Bias IQR

ρ = 0.3
m = 3
2SLS 0.0474 0.3891 0.0258 0.2876 0.0145 0.2217
GMM 0.0466 0.3964 0.0248 0.2896 0.0151 0.2242
LIML -0.0017 0.4839 -0.0049 0.3238 -0.0016 0.2356
CUE -0.0055 0.4955 -0.0042 0.3245 -0.0012 0.2392

m = 10
2SLS 0.1438 0.3009 0.0972 0.2449 0.0615 0.1991
GMM2 0.1431 0.3140 0.0990 0.2499 0.0586 0.2066
LIML 0.0076 0.6060 0.0046 0.3725 -0.0034 0.2558
CUE 0.0140 0.6481 0.0041 0.4020 -0.0064 0.2771

m = 15
2SLS 0.1792 0.2661 0.1262 0.2267 0.0847 0.1910
GMM2 0.1800 0.2791 0.1249 0.2364 0.0878 0.1986
LIML 0.0207 0.6572 0.0021 0.4111 -0.0021 0.2801
CUE 0.0339 0.7183 0.0044 0.4552 -0.0033 0.3159
ρ = 0.5
m = 3
2SLS 0.0970 0.3764 0.0494 0.2793 0.0297 0.2177
GMM 0.0970 0.3786 0.0502 0.2845 0.0308 0.2216
LIML 0.0099 0.4696 0.0011 0.3153 0.0020 0.2365
CUE 0.0092 0.4786 0.0031 0.3238 0.0022 0.2383

m = 10
2SLS 0.2384 0.2786 0.1575 0.2364 0.1062 0.1908
GMM2 0.2386 0.2940 0.1580 0.2446 0.1060 0.1987
LIML 0.0122 0.5680 -0.0001 0.3599 0.0019 0.2518
CUE 0.0226 0.6052 -0.0015 0.3862 0.0039 0.2692

m = 15
2SLS 0.2985 0.2475 0.2122 0.2154 0.1458 0.1789
GMM2 0.2994 0.2590 0.2093 0.2222 0.1460 0.1895
LIML 0.0297 0.6335 0.0040 0.3980 -0.0025 0.2759
CUE 0.0384 0.7096 0.0030 0.4348 -0.0029 0.3091

Notes: n = 200; β0 = 0; 10, 000 replications
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Table 2. Rejection frequencies of Wald tests for linear IV model

ρ = 0.3 ρ = 0.5
CP = 10 CP = 20 CP = 35 CP = 10 CP = 20 CP = 35

m = 3
2SLS 0.0448 0.0441 0.0507 0.0836 0.0707 0.0633
GMM 0.0477 0.0472 0.0539 0.0862 0.0761 0.0664
GMMC 0.0471 0.0452 0.0510 0.0805 0.0715 0.0626
LIML 0.0380 0.0388 0.0448 0.0609 0.0521 0.0516
LIMLC 0.0304 0.0334 0.0407 0.0490 0.0457 0.0480
CUE 0.0749 0.0605 0.0620 0.0932 0.0710 0.0639
CUEC 0.0338 0.0359 0.0442 0.0527 0.0475 0.0457
KST 0.0476 0.0448 0.0465 0.0461 0.0479 0.0448

m = 10
2SLS 0.1088 0.0923 0.0739 0.2546 0.1838 0.1393
GMM 0.1357 0.1155 0.0973 0.2806 0.2113 0.1674
GMMC 0.1091 0.0922 0.0757 0.2333 0.1727 0.1315
LIML 0.0770 0.0675 0.0595 0.0998 0.0749 0.0597
LIMLC 0.0344 0.0369 0.0391 0.0536 0.0465 0.0437
CUE 0.3384 0.2293 0.1606 0.3073 0.2104 0.1447
CUEC 0.0542 0.0496 0.0452 0.0773 0.0568 0.0477
KST 0.0371 0.0334 0.0344 0.0375 0.0375 0.0339

m = 15
2SLS 0.1654 0.1296 0.1127 0.3993 0.3079 0.2231
GMM 0.2083 0.1732 0.1440 0.4391 0.3473 0.2649
GMMC 0.1565 0.1242 0.1012 0.3608 0.2730 0.1964
LIML 0.1054 0.0865 0.0813 0.1300 0.0894 0.0736
LIMLC 0.0381 0.0391 0.0438 0.0602 0.0495 0.0460
CUE 0.4741 0.3408 0.2516 0.4534 0.3176 0.2322
CUEC 0.0733 0.0621 0.0531 0.0963 0.0697 0.0558
KST 0.0346 0.0330 0.0315 0.0316 0.0328 0.0304

Notes: n = 200; H0 : β0 = 0; 10, 000 replications, 5% nominal size
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The LIML Wald test using the Bekker standard errors has rejection frequencies very

close to the nominal size, correcting the usual asymptotic Wald test which is oversized.

Kleibergen’s K-statistic shows a tendency to be undersized with an increasing number

of instruments. The results for the rejection frequencies of the Wald test show that

even with low numbers of instruments the corrected standard errors for the continuous

updating estimator produce large improvements in the accuracy of the approximation.

When the instruments are not too weak, i.e. when CP = 20 and larger, the observed

rejection frequencies are very close to the nominal size for all values of m, whereas those

based on the usual asymptotic standard errors are much larger than the nominal size.

When we consider the ”diagonal” elements, i.e. increasing the number of instruments

and the concentration parameter at the same time, we see that the CUEC Wald test

performs very well in terms of size.

We next analyze the properties of the CUE using the many weak instrument as-

ymptotics for the estimation of the parameters in a panel data process, generated as in

Windmeijer (2005):

yit = β0xit + uit, uit = ηi + vit

xit = γxit−1 + ηi + 0.5vit−1 + εit, ηi ∼ N (0, 1) , εit ∼ N (0, 1)

vit = δiτtωit, ωit ∼
³
χ21 − 1

´
, δi ∼ U [0.5, 1.5] , τt = 0.5 + 0.1 (t− 1) .

Fifty time periods are generated, with τt = 0.5 for t = −49, ..., 0 and xi,−49 ∼ N
³

ηi
1−γ ,

1
1−γ2

´
,

before the estimation sample is drawn. n = 250, T = 6, β0 = 1 and 10, 000 replications

are drawn. For this data generating process the regressor xit is correlated with the un-

observed constant heterogeneity term ηi and is predetermined due to its correlation with

vit−1. The idiosyncratic shocks vit are heteroskedastic over time and at the individual

level, and have a skewed chi-squared distribution. The model parameter β0 is estimated

by first-differenced GMM (see Arellano and Bond (1991)). As xit is predetermined the

sequential moment conditions used are

gi (β) = Z 0i∆ui (β) ,
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where

Zi =


xi1 0 0 · · · 0 · · · 0
0 xi1 xi2 · · · 0 · · · 0
. . . · · · . · · · .
0 0 0 · · · xi1 · · · xiT−1

 ,

∆ui (β) =


∆ui2 (β)
∆ui3 (β)

...
∆uiT (β)

 =


∆yi2 − β∆xi2
∆yi3 − β∆xi3

...
∆yiT − β∆xiT

 .
This results in a total of 15 moment conditions in this case, but only a maximum of 5

instruments for the cross section in the last time period.

The first two sets of results in Table 3 are the estimation results for values of γ = 0.40

and γ = 0.85 respectively. When γ = 0.40 the instruments are relatively strong, but

they are weaker for γ = 0.85. The reported empirical concentration parameter is an

object corresponding to the reduced form of this panel data model and is equal to 261

when γ = 0.4 and 35 when γ = 0.85. This is estimated simply from the linear reduced

form estimated by OLS and ignores serial correlation and heteroskedasticity over time.

This CP is therefore only indicative and does not play the same role as in the linear

homoskedastic IV model. Median bias and interquartile range (IQR) are reported for the

standard linear one-step and two-step GMM estimators and the CUE. When γ = 0.40,

median biases are negligible for both GMM and CUE, with comparable interquartile

ranges. When γ = 0.85 and the instruments are weaker, the linear GMM estimators are

downward biased, whereas the CUE is median unbiased but exhibits a larger interquartile

range than the linear GMM estimators.

Table 3. Simulation results for panel data model, N = 250, T = 6

γ = 0.40 (CP = 261) γ = 0.85 (CP = 35) γ = 0.85 (CP = 54)
Med Bias IQR Med Bias IQR Med Bias IQR

GMM1 -0.0087 0.0784 -0.0689 0.2059 -0.0842 0.1780
GMM2 -0.0056 0.0714 -0.0508 0.1896 -0.0565 0.1617
CUE -0.0001 0.0740 0.0000 0.2557 0.0000 0.2186
Instr: xit−1, ..., xi1 xit−1, ..., xi1 xit−1, ..., xi1; yit−2, ..yi1
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Figures 1 and 2 present p-value plots for the Wald tests for the hypothesisH0 : β0 = 1,

based on one-step GMM estimates (WGMM1), on two-step GMM estimates (WGMM2), on

the Windmeijer (2005) corrected two-step Wald (WGMM2C), on the continuously updated

Wald test using the conventional asymptotic variance (WCUE) and on the continuously

updated Wald test using the variance estimate V̂ described in Section 2,WCUEC . Further

displayed is the p-value plot for Kleibergen’s (2005) K statistic. It is clear that the usual

asymptotic variance estimate for the CUE is too small, especially when γ = 0.85. This

problem is similar to that of the linear two-step GMM estimator, leading to rejection

frequencies that are much larger than the nominal size. In contrast, use of the variance

estimator under many weak instrument asymptotics leads to rejection frequencies that

are very close to the nominal size.

The third set of results presented in Table 3 is for the design with γ = 0.85, but

with lags of the dependent variable yit included as sequential instruments (yi,t−2, ..., yi1)

additional to the sequential lags of xit. As there is feedback from yit−1 to xit and xit is

correlated with ηi the lagged values of yit could improve the strength of the instrument

set. The total number of instruments increases to 25, with a maximum of 11 for the

cross section in the final period. The empirical concentration parameter increases from

35 to 54. The GMM estimators are slightly more downward biased, especially GMM1,

when the extra instruments are included. The CUE is still median unbiased and its

IQR has decreased by 15%. As the p-value plot in Figure 3 shows, use of the proposed

variance estimator results in rejection frequencies that are virtually equal to the nominal

size. AlthoughWGMM2C had good size properties when using the smaller instrument set,

use of the additional instruments leads to rejection frequencies that are larger than the

nominal size.
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Fig. 1. P-value plot, γ = 0.4, H0 : β0 = 1, Panel data model

Fig. 2. P-value plot, γ = 0.85, H0 : β0 = 1, Panel data model
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Fig. 3. P-value plot, γ = 0.85, H0 : β0 = 1, Panel data model, additional instr.

6 Conclusion

We have given an asymptotic approximation for generalized empirical likelihood estima-

tors that accounts for many weak moment conditions by adding a term to the variance,

and have suggested an estimator for that variance. This approximation is shown to

perform well in a simple linear IV and panel data Monte Carlo.

There are several topics that could be considered in future research. One topic would

be more refined asymptotics where the number of moment conditions m grows slower

than the concentration parameter µ2n, i.e. where κ = limn−→∞(m/µ2n) = 0. Here we

have focused on the case where κ > 0, leading to an asymptotic variance that is larger

than the usual one. When κ = 0 the asymptotic variance is the same as the usual one,

but the standard errors given here may provide an improvement over the usual standard

errors. Intuitively, if m grows slower than, but close to µ2n, the standard errors may

still help account for the extra term. Hansen, Hausman, and Newey (2005) have shown

that Bekker (1994) standard errors in a homoskedastic linear model give an improved

approximation if m2 grows faster than µ2n. We expect that this result will also hold here.
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Another interesting topic is the choice of moment conditions under many weak mo-

ment conditions. Donald, Imbens, and Newey (2003) give a criteria for moment choice

for GMM and GEL that is quite complicated. Under many weak moment conditions

this criteria should simplify. It would be useful in practice to have a simple criteria for

choosing the moment conditions.

A third topic for future research is the extension of these results to dependent obser-

vations. It appears that the variance estimator for the CUE would be the same except

that Ω̂ would include autocorrelation terms. It should also be possible to obtain sim-

ilar results for GEL estimators based on time smoothed moment conditions, like those

considered in Kitamura and Stutzer (1997).

7 Appendix A: Proofs of Theorems 1 - 5.

Throughout the Appendices, let C denote a generic positive constant that may be dif-

ferent in different uses. Let CS, M, and T denote the Cauchy-Schwartz, Markov, and

triangle inequalities respectively. Also, let CM denote the conditional Markov inequality

that if E[|An||Bn] = Op(εn) then An = Op(εn) and let w.p.a.1 stand for ”with probability

approaching one.”

For the next two results let Yi, Zi, (i = 1, ..., n) be i.i.d. m × 1 random vectors with

4th moments, that can depend on n, but where we suppress an n subscript for notational

convenience. Also, let

Ȳ =
nX
i=1

Yi/n, µY = E[Yi],ΣY Y = E[YiY
0
i ],ΣY Z = E[YiZ

0
i]

and define the corresponding object with Z in place of Y.

Lemma A1: If λmax(AA
0) ≤ C, λmax(A

0A) ≤ C, λmax(ΣY Y ) ≤ C, λmax(ΣZZ) ≤ C,

E[(Y 0
i Yi)

2]/nm ≤ C, E[(Z 0iZi)
2]/nm ≤ C, nµ0Y µY /m ≤ C, nµ0ZµZ/m ≤ C, then

nȲ 0AZ̄/m = tr (AΣ0Y Z) /m+ nµ0YAµZ/m+Op(1/
√
m+ 1/n).
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Proof: Let Wi = AZi. Then AΣ0Y Z = Σ0YW , AµZ = µW ,

λmax(E[WiW
0
i ]) = λmax(AΣZZA

0) ≤ Cλmax(AA
0) ≤ C

E[(W 0
iWi)

2]/nm = E[(Z 0iA
0AZi)

2]/nm ≤ C.

Thus the hypotheses and conclusion are satisfied with W in place of Z and A = I.

Therefore, it suffices to show the result with A = I.

Note that

E[(Y 0
i Zi)

2] ≤ CE[(Y 0
i Yi)

2] + CE[(Z 0iZi)
2] ≤ Cmn,

E[Y 0
i ZjZ

0
jYi] = E[Y 0

iΣZZYi] ≤ CE[Y 0
i Yi] = Ctr(ΣY Y ) ≤ Cm,

|E[Y 0
i ZjY

0
jZi]| ≤ C(E[Y 0

i ZjZ
0
jYi] + E[Y 0

jZiZ
0
iYj ]) ≤ Cm.

For the moment suppose µy = µz = 0. Let Wn = nȲ 0Z̄/m. Then E[Wn] = tr (Σ
0
Y Z) /m

and

E[W 2
n ] = E

X
i,j,k,

Y 0
i ZjY

0
kZ /n2m2

 = E
h
(Y 0

iZi)
2
i
/nm2 + (1− 1/n){E[Wn]

2

+E[Y 0
i ZjY

0
jZi]/m

2 + E[Y 0
i ZjZ

0
jYi]/m

2} = E[Wn]
2 +O(1/m),

so that by M,

Wn = tr (Σ
0
Y Z) /m+Op(1/

√
m).

In general, when µY or µZ are nonzero, note that E[{(Yi−µY )0(Yi−µY )}2] ≤ CE[(Y 0
i Yi)

2]

and λmax(V ar(Yi)) ≤ λmax(ΣY Y ), so the hypotheses are satisfied with Yi − µY replacing

Yi and Zi − µZ replacing Yi and Zi respectively. Also,

Wn = n
³
Ȳ − µY

´0
(Z̄ − µZ)/m+ nµ0Y (Z̄ − µZ)/m+ n(Ȳ − µY )

0µZ/m+ nµ0Y µZ/m.
(7.1)

Note that

E
·n
nµ0Y (Z̄ − µZ)/m

o2¸
= nµ0Y (ΣZZ − µZµ

0
Z)µY /m

2 ≤ nµ0YΣZZµY /m
2 ≤ C/m.

so by M, the second and third terms in eq. (7.1) (with Y and Z interchanged) are

Op(1/
√
m). Also, tr(µZµ

0
Y )/m = n−1(nµ0Y µZ/m) = O(1/n). Applying the result for the
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zero mean case then gives

Wn = tr(Σ0Y Z − µZµ
0
Y )/m+ nµ0Y µZ/m+Op(1/

√
m)

= tr(Σ0Y Z)/m+ nµ0Y µZ/m+Op(1/
√
m+ 1/n), Q.E.D..

For the next result, let Xi denote a scalar random variable where we also suppress

dependence on n, let Ψ = ΣZZΣY Y +Σ2ZY , and let λ̄Z = λmax(ΣZZ) and λ̄Y = λmax(ΣY Y ).

Lemma A2: If E[Xi] = 0, E [Zi] = E [Yi] = 0, ΣZZ and ΣY Y exist, nE[X
2
i ] → A,

nE[X4
i ] −→ 0, n2 tr(Ψ)→ Λ, mn4λ̄2Z λ̄

2
Y −→ 0, and n3E

h
|Y 0
1Z2|4

i
−→ 0, then

nX
i=1

Xi +
X
i6=j

Z 0iYj
d−→ N(0, A + Λ)

Proof: Let wi = (Xi, Yi, Zi) and for any j < i, ψij = Z 0iYj + Z 0jYi. Note that

E[ψij|wi−1, ..., w1] = 0,

E[ψ2ij] = E[(Z 0iYj)
2 + (Z 0jYi)

2 + 2Z 0iYjZ
0
jYi] = 2tr(Ψ).

We have
nX
i=1

Xi +
X
i6=j

Z 0iYj =
nX
i=2

(Xi +Bin) +X1, Bin =
X
j<i

ψij .

Note that E [X2
1 ] = (nE[X2

i ])/n −→ 0, so X1
p−→ 0 by M . Also, E [XiBin] =

E
h
Xi

P
j<i ψij

i
= 0 and

E
h
B2
in

i
= E

X
j,k<i

ψijψik

 = (i− 1)E[ψ2ij] = 2(i− 1) tr(Ψ).
Therefore

sn =
nX
i=2

E[(Xi +Bin)
2] = (n− 1)E[X2

i ] + 2
nX
i=2

(i− 1) tr(Ψ)

=
n− 1
n

nE[X2
i ] +

Ã
n2 − n

n2

!
n2 tr(Ψ) −→ A+ Λ∗.

Next, for k 6= i and k 6= j define

ϕij = E[ψkiψkj|wi, wj] = Y 0
iΣZZYj + Z 0iΣY YZj + Z 0iΣY ZYj + Z 0jΣY ZYi.
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Let λ̄Z = λmax(ΣZZ) and λ̄Y = λmax(ΣY Y ). Note that

E[(Y 0
iΣZZYj)

2] = E[Y 0
iΣZZΣY YΣZZYi] ≤ λ̄YE[Y

0
iΣ

1/2
ZZΣZZΣ

1/2
ZZYi] ≤ λ̄Y λ̄ZE[Y

0
iΣZZYi]

≤ λ̄Y λ̄
2
ZE[Y

0
i Yi] ≤ mλ̄2Y λ̄

2
Z .

Similarly, E[(Z 0iΣY YZj)
2] ≤ mλ̄2Y λ̄

2
Z . We also have, by Im ≤ λ̄ZΣ

−1
ZZ and ΣY ZΣ

−1
ZZΣZY ≤

ΣY Y ,

E[(Z 0iΣY ZYj)
2] = E[Z 0iΣY ZΣY YΣZYZi] ≤ λ̄YE[Z

0
iΣY ZΣZYZi] ≤ λ̄Y λ̄ZE[Z

0
iΣY ZΣ

−1
ZZΣZYZi]

≤ λ̄Y λ̄ZE[Z
0
iΣY YZi] ≤ mλ̄2Y λ̄

2
Z .

Therefore, it follows that E[ϕ2ij ] ≤ Cmλ̄2Y λ̄
2
Z , so that

E[ϕ2ij ]/E[ψ
2
ij ]
2 = E[ϕ2ij]/[4tr(Ψ)

2] ≤ Cmn4λ̄2Y λ̄
2
Z −→ 0.

It then follows as in the proof of Theorem 1 of Hall (1984) that

nX
i=2

³
E
h
B2
in | wi−1, ..., w1

i
− E[B2

in]
´

p→ 0.

Note also that E[X2
i ] = E[X2

i | wi−1, ..., w1] and that

nX
i=2

E[XiBin|wi−1, ..., w1] =
nX
i=2

X
j<i

E
h
Xi

³
Z 0iYj + Z 0jYi

´
| wi−1, ..., w1

i

=
nX
i=2

{E[XiZ
0
i]

X
j<i

Yj

+ E[XiY
0
i ]

X
j<i

Zj

}
= E[XiZ

0
i]
n−1X
i=1

(n− i)Yi + E[XiY
0
i ]

n−1X
i=1

(n− i)Zi

Therefore

E

Ã nX
i=2

E[XiBin|wi−1, ..., w1]

!2
≤ C(E[XiY

0
i ]ΣZZE[YiXi] + E[XiZ

0
i]ΣY YE[ZiXi])

n−1X
i=1

(n− i)2

≤ Cn3λ̄Y λ̄ZE[X
2
i ] ≤ Cλ̄Y λ̄Zn

2 = C(mn4λ̄2Y λ̄
2
Z)
1/2/m1/2 −→ 0.

Then by M , we have
nX
i=2

E[XiBin | wi−1, ..., w1]
p→ 0.
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By T it then follows that

nX
i=2

{E
h
(Xi +Bin)

2 | wi−1, ..., w1
i
− E

h
(Xi +Bin)

2
i
}

=
nX
i=2

³
E
h
B2
in | wi−1, ..., w1

i
−E[B2

in]
´
+ 2

nX
i=2

E[XiBin | wi−1, ..., w1]
p→ 0

Next, note that

n−1E
h
ψ4ij
i
/E[ψ2ij]

2 ≤ Cn3E
h
|Z 01Y2|4

i
/
h
n2 tr(Ψ)

i2 −→ 0.

It then follows as in the proof of Theorem 1 of Hall (1984) that
Pn

i=1E[B
4
in] → 0.

Therefore, by T ,

nX
i=2

E
h
(Xi + Bin)

4
i
≤ CnE[X4

i ] + C
nX
i=1

E[B4
in]→ 0,

so that, as in Hall (1984), for any ε > 0

nX
i=2

E
h
(Xi +Bin)

2 1 (|Xi +Bin| > εsn)
i
→ 0.

The conclusion then follows from the martingale central limit theorem applied to
Pn

i=2(Xi+

Bin). Q.E.D.

Let Q̇(β) = ĝ(β)0Ω(β)−1ĝ(β)/nµ2n and Q̄(β) = nḡ(β)0Ω(β)−1ḡ(β)/µ2n +m/µ2n.

Lemma A3: If Assumption 2 is satisfied then supβ∈B |Q̇(β)− Q̄(β)| p−→ 0.

Proof: Since Q̇(β) and Q̄(β) are stochastically equicontinuous by Assumption 2, it

suffices by Newey (1991, Theorem 2.1) to show that Q̇(β)
p−→ Q̄(β) for each β. Ap-

ply Lemma A1 with Yi = Zi = m1/2gi(β)/µn and A = Ω(β)−1. By Assumption 2,

λmax(A
0A) = λmax(AA

0) = λmax(Ω(β)
−2) ≤ C, λmax(ΣY Y ) = (m/µ2n)λmax(Ω(β)) ≤ C,

E[(Y 0
i Yi)

2]/nm = mE[{gi(β)0gi(β)}2]/nµ4n ≤ C, and nµ0Y µY /m ≤ Cnḡ(β)0Ω(β)−1ḡ(β)/µ2n =

CQ̄(β) ≤ C where the last inequality follows by equicontinuity of Q̄(β) (which implies

Q̄(β) is uniformly bounded on the compact set B). Thus, the hypotheses of Lemma A1

are satisfied. Note that AΣ0Y Z = AΣZZ = AΣY Y = mIm/µ
2
n, so by the conclusion of

Lemma A1

Q̇(β) = tr(Im)/µ
2
n + nḡ(β)0Ω(β)−1ḡ(β)/µ2n + op(1) = Q̄(β) + op(1).

[29]



Q.E.D.

Proof of Theorem 1: We first will show that sup
β∈B

¯̄̄
2Q̂(β)/µ2n − Q̄(β)

¯̄̄
p−→ 0. By T,

Lemma A3, equicontinuity of Q̄(β) and B compact, we have supβ∈B |Q̇(β)| = Op(1). Let

â(β) = Ω(β)−1ĝ(β)/µn
√
n. By Assumption 2,

kâ(β)k2 = ĝ(β)0Ω(β)−
1
2Ω(β)−1Ω(β)−

1
2 ĝ(β)/nµ2n ≤ CQ̇(β),

so that supβ∈B kâ(β)k = Op(1). Also, we have

¯̄̄
λmin(Ω̂(β)/n)− λmin(Ω(β))

¯̄̄
≤ sup

β∈B

°°°Ω̂(β)/n− Ω(β)
°°° p−→ 0,

so that λmin(Ω̂(β)/n) ≥ C, and hence λmax((Ω̂(β)/n)
−1) ≤ C for all β ∈ B, w.p.a.1.

Therefore,

¯̄̄
2Q̂(β)/µ2n − Q̇(β)

¯̄̄
≤

¯̄̄
â(β)0

h
Ω̂(β)− Ω(β)

i
â(β)

¯̄̄
+
¯̄̄
â(β)0

h
Ω̂(β)− Ω(β)

i
Ω̂(β)−1

h
Ω̂(β)− Ω(β)

i
â(β)

¯̄̄
≤ kâ(β)k2

µ°°°Ω̂(β)− Ω(β)
°°°+ C

°°°Ω̂(β)− Ω(β)
°°°2¶

It then follows by Assumption 2 that supβ∈B
¯̄̄
2Q̂(β)/µ2n − Q̇(β)

¯̄̄
p→ 0. Then sup

β∈B

¯̄̄
2Q̂(β)/µ2n − Q̄(β)

¯̄̄
p→

0 by T and Lemma A3. The conclusion then follows by standard results. Q.E.D.

Lemma A4: If Assumption 3 is satisfied then E[(yi − x0iβ)
2|zi,Υi] ≥ C. Also, for

Xi = (yi, x
0
i)
0, E[kXik4|zi,Υi] ≤ C.

Proof: Note that for δ = β0 − β we have yi − x0iβ = εi + η0iδ +Υ0iδ, so that

E[(yi − x0iβ)
2|zi,Υi] ≥ E[(εi + η0iδ)

2|zi,Υi] = (1, δ
0)Σi(1, δ

0)0 ≥ λmin(Σi)(1 + δ0δ) ≥ C,

giving the first conclusion. Also, E[kxik4|zi,Υi] ≤ CE[kηik4|zi,Υi] + CE[kΥik4|zi,Υi] ≤
C and E[y4i |zi,Υi] ≤ CE[kxik4kβ0k4|zi,Υi] + E[ε4i |zi,Υi] ≤ C, giving the second conclu-

sion. Q.E.D.

Lemma A5: If Assumption 3 is satisfied then there is a constant C such that for

every β and m, C−1Im ≤ Ω(β) ≤ CIm.
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Proof: By Lemma A4 C−1 ≤ E[(yi − x0iβ)
2|zi] ≤ C, so that the conclusion follows by

Im = E[ziz
0
i] and Ω(β) = E[ziz

0
iE[(yi − x0iβ)

2|zi]]. Q.E.D.

Lemma A6: If Assumptions 1 i), ii), and 3 are satisfied then Assumption 1 iii) is

satisfied.

Proof: By Assumption 3 and Lemma A5, λmin(G
0G) ≥ Cλmin(G

0Ω−1G) for large

enough n. Then 1by Lemma A5 and Assumption 1 ii),

nḡ(β)0Ω(β)−1ḡ(β)/µ2n = (β − β0)
0[nG0Ω(β)−1G/µ2n](β − β0)

≥ C(β − β0)
0(nG0G/µ2n)(β − β0) ≥ C kβ − β0k2 .Q.E.D.

Lemma A7: If Assumptions 1 and 3 are satisfied then there is M̂ = Op(1) with

i) k∂ḡ(β)/∂βk = O(µn/
√
n), ii) kn−1∂ĝ(β)/∂β − ∂ḡ(β)/∂βk = Op(µn/

√
n), iii) supβ∈B kḡ(β)k =

O(µn/
√
n), iv) supβ∈B kĝ(β)/nk = Op(µn/

√
n), v)µ−1n

√
nkḡ(β̃) − ḡ(β)k ≤ Ckβ̃ − βk,

vi)µ−1n n−1/2kĝ(β̃)− ĝ(β)k ≤ M̂kβ̃ − βk.
Proof: Note first that ∂ḡ(β)/∂β = −E[ziΥ0

i] = G, so i) follows by G0G ≤ CG0Ω−1G =

O(µ2n/n). Also, we have

(n/µ2n)E[

°°°°°
nX
i=1

ziη
0
i/n

°°°°°
2

] = E[z0iziη
0
iηi]/µ

2
n ≤ CE[z0izi]/µ

2
n = Cm/µ2n,

(n/µ2n)E[

°°°°°
nX
i=1

ziΥ
0
i/n− E[ziΥ

0
i]

°°°°°
2

] ≤ E[z0iziΥ
0
iΥi]/µ

2
n ≤ (E[(z0izi)2]/n)1/2{nE[(Υ0

iΥi)
2]/µ4n}1/2.

Therefore by M and T we have

°°°n−1∂ĝ(β)/∂β − ∂ḡ(β)/∂β
°°° ≤ °°°°°

nX
i=1

ziη
0
i/n

°°°°°+
°°°°°

nX
i=1

ziΥ
0
i/n− E[ziΥ

0
i]

°°°°° = Op(µn/
√
n),

giving ii). For iii), note that by β in a compact set,

kḡ(β)k = k∂ḡ(β)/∂β(β − β0)k ≤ C(µn/
√
n)kβ − β0k ≤ Cµn/

√
n.

For iv), note that by T, i), and ii), and kĝ(β0)/nk = Op(µn/
√
n) we have

sup
β∈B

kĝ(β)/nk = sup
β∈B

kn−1[∂ĝ(β)/∂β](β − β0)k+ kĝ(β0)/nk = Op(µn/
√
n).
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Finally, v) follows by i) and CS and vi) by i), ii), CS, and T. Q.E.D.

Lemma A8: If Assumption 3 is satisfied, then supβ∈B kΩ̂(β)/n− Ω(β)k p−→ 0,

sup
β∈B

kn−1∂Ω̂(β)/∂βj−∂Ω(β)/∂βjk p−→ 0, sup
β∈B

kn−1∂2Ω̂(β)/∂βj∂βk−∂2Ω(β)/∂βj∂βkk p−→ 0.

Proof: Let Xi = (yi, x
0
i)
0 and α = (1,−β), so that yi − x0iβ = X 0

iα. Note that

Ω̂(β)− Ω(β) =
p+1X
j,k=1

F̂jkαjαk, F̂jk =
nX
i=1

ziz
0
iXijXik/n−E[ziz

0
iXijXik].

Then E[X2
ijX

2
ik|zi] ≤ C by Lemma A4 so that

E[
°°°F̂jk

°°°2] ≤ CE[(z0izi)
2E[X2

ijX
2
ik|zi]]/n ≤ CE[(z0izi)

2]/n −→ 0.

The conclusion then follows by B bounded and by the fact that Ω̂(β)−Ω(β) is a quadratic
function of β. Q.E.D.

Lemma A9: If Assumption 3 is satisfied, then

|a0Ω(β̃)b− a0Ω(β)b| ≤ Ckakkbkkβ̃ − βk,
|a0[∂Ω(β̃)/∂βj]b− a0[∂Ω(β)/∂βj]b| ≤ Ckakkbkkβ̃ − βk.

Proof: Let Σ̃i = E[XiX
0
i|zi,Υi], which is bounded. Then by α = (1,−β) bounded on

B we have |α̃0Σ̃iα̃−α0Σ̃iα| ≤ C
°°°β̃ − β

°°°. Also, E[(a0zi)2] = a0E[ziz0i]a = kak2. Therefore,

|a0Ω(β̃)b− a0Ω(β)b| = |E[(a0zi)(b0zi)E[(X 0
iα̃)

2 − (X 0
iα)

2|zi]]|
≤ E[|a0zi| |b0zi| |α̃0Σ̃iα̃− α0Σ̃iα|] ≤ CE[(a0zi)2]1/2E[(b0zi)2]1/2kβ̃ − βk ≤ Ckakkbkkβ̃ − βk.

We also have

|a0∂Ω(β̃)/∂βjb− a0∂Ω(β)/∂βjb| = |2E[(a0zi)(b0zi)E[xijX 0
i(α̃− α)|zi]]|

≤ Ckakkbkkβ̃ − βk ≤ CE[|a0zi| |b0zi|E[|xij|kXik|zi]]kβ̃ − βk ≤ Ckakkbkkβ̃ − βk.Q.E.D.

Proof of Theorem 2: By Lemma A5, λmin(Ω(β)) ≥ C. Also, by Lemma A4,

E[{gi(β)0gi(β)}2]/n = E[(z0izi)
2E[(yi − x0iβ)

4|zi]]/n ≤ CE[(z0izi)
2]/n −→ 0.
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Lemma A8 gives supβ∈B kΩ̂(β)/n − Ω(β)k p−→ 0. Let a(β, β̃) = Ω(β)−1ḡ(β̃)
√
n/µn and

Q̄(β̃, β) = (n/µ2n)ḡ(β̃)
0Ω(β)−1ḡ(β̃). By Lemmas A5 and A7, supβ,β̃∈B

°°°a(β, β̃)°°° ≤ C. Let

Then by Lemma A9,¯̄̄
Q̄(β̃, β̃)− Q̄(β̃, β)

¯̄̄
=
¯̄̄
a(β̃, β̃)0

h
Ω(β)− Ω(β̃)

i
a(β, β̃)/2

¯̄̄
≤ C

°°°β̃ − β
°°° .

Also, by T and Lemma A7,¯̄̄
Q̄(β̃, β)− Q̄(β)

¯̄̄
≤ C(n/µ2n)(

°°°ḡ(β̃)− ḡ(β)
°°°2 + kḡ(β)k °°°ḡ(β̃)− ḡ(β)

°°°)
≤ C

°°°β̃ − β
°°° .

Then by T it follows that
¯̄̄
Q̄(β̃)− Q̄(β)

¯̄̄
≤ C

°°°β̃ − β
°°° , implying equicontinuity of Q̄(β).

An analogous argument with â(β, β̃) = Ω(β)−1ĝ(β̃)/
√
nµn and Q̌(β̃, β) = ĝ(β̃)0Ω(β)−1ĝ(β̃)/nµ2n

replacing a(β, β̃) and Q̄(β̃, β) respectively implies that
¯̄̄
Q̌(β̃)− Q̌(β)

¯̄̄
≤ M̂

°°°β̃ − β
°°°, with

M̂ = Op(1), giving stochastic equicontinuity of Q̌(β). Thus, all the hypotheses of Assump-

tion 2 are satisfied. Assumption 1 iii) follows by Lemma A6. Thus, all the hypotheses of

Theorem 1 are satisfied. The conclusion then follows by Theorem 1. Q.E.D.

For the next results gi = gi(β0), g
k
i = ∂gi(β0)/∂βk, Ω̃ = Ω̂(β0)/n, Ã

k =
Pn

i=1 gig
k0
i /n,

Ak = E[Ãk], B̃k = Ω̃−1Ãk, and Bk = Ω−1Ak .

Lemma A10: If Assumption 5 is satisfied then

√
mkΩ̃− Ωk p−→ 0,

√
mkÃk − Akk p−→ 0,

√
mkB̃k − Bkk p−→ 0.

Proof: By standard arguments and Assumption 5,

E[mkΩ̃− Ωk2] ≤ CmE[kgik4]/n −→ 0, E[mkÃk − Akk2] ≤ CmE[kgki k2kgik2]/n −→ 0,

so the first conclusion holds by M. Also, note that AkAk0 ≤ CAkΩ−1Ak0 ≤ CE[gki g
k0
i ] and

λmin(Ω̃) ≥ C w.p.a.1. Also, BkBk0 ≤ CAkAk0 ≤ CE[gki g
k0
i ]. Then

√
mkB̃k −Bkk ≤ √

mk(Ãk − Ak)Ω̃−1k+√mkBk(Ω− Ω̃)Ω̃−1k
≤ C

√
mkÃk − Akk+ C

√
mkΩ̃− Ωk p−→ 0.Q.E.D.

Lemma A11: If Assumption 5 is satisfied then,

µ−1n ∂Q̂(β0)/∂β
d−→ N(0, H + Λ∗).
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Proof: Let ĝ = ĝ(β0), G̃
k = ∂ĝ(β0)/∂βk, G

k = E[∂gi(β0)/∂βk], and Û
k = G̃k−nGk−B̃k0ĝ.

Note that n∂Ω̂(β0)
−1/∂βk = −B̃kΩ̃−1 − Ω̃−1B̃k0 . Therefore,

µ−1n
∂Q̂

∂βk
(β0) = n−1µ−1n (G̃

k0Ω̃−1ĝ − ĝ0B̃kΩ̃−1ĝ) = µ−1n (G
k0Ω̃−1ĝ + Ûk0Ω̃−1ĝ/n)

= µ−1n Gk0Ω̃−1ĝ +
√
κnÛ

k0Ω̃−1ĝ/n
√
m.

Let Ũk = G̃k−nGk−Bk0ĝ. Note that kĝk2/n = Op(m) by M and that λmax(B
kΩ−1Ω−1Bk0) ≤

C. By Lemma A10 we have

√
κn|(Ûk0Ω̃−1 − Ũk0Ω−1)ĝ/n

√
m|

≤ C|ĝ0(B̃k −Bk)Ω̃−1ĝ/n
√
m|+ |ĝ0BkΩ−1(Ω̃− Ω)Ω̃−1ĝ/n

√
m|

≤ Cn−1kĝk2kB̃k − Bkk/√m+ Cn−1kĝ0BkΩ−1kkĝkkΩ̃− Ωk/√m ≤ Op(m)op(1/
√
m)/
√
m

p−→ 0.

Similarly we have µ−1n Gk0Ω̃−1ĝ − µ−1n Gk0Ω−1ĝ
p−→ 0. Therefore, we have

µ−1n
∂Q̂

∂βk
(β0) = µ−1n Gk0Ω−1ĝ +

√
κnŨ

k0Ω−1ĝ/n
√
m+ op(1).

Let Ũ = [Ũ1, ..., Ũp] . Then stacking over k gives

µ−1n
∂Q̂

∂β
(β0) = µ−1n G0Ω−1ĝ +

√
κnŨ

0Ω−1ĝ/n
√
m+ op(1). (7.2)

Next, let Uk
i = gki − Gk − Bk0gi and Ui = [U

1
i , ..., U

p
i ], so that Ũ =

Pn
i=1 Ui. For any

vector λ with kλk = 1 let Xi = µ−1n λ0G0Ω−1gi, Yi = Ω−1/2gi, Zi =
√
κnΩ

−1/2Uiλ/n
√
m,

and A = λ0Hλ. Note that E[Z 0iYi] = 0 and

nE[|Y 0
i Zi|2] ≤ CE[

°°°g01Ω−1U1°°°2]/nm ≤ (E[kg1k4] + E[kgβ1k4])/mn −→ 0.

Then
Pn

i=1 Z
0
iYi

p−→ 0 by M. Then by eq. (7.2),

µ−1n λ0
∂Q̂(β0)

∂β
=

nX
i=1

Xi +
nX

i,j=1

Z 0iYj + op(1) =
nX
i=1

Xi +
X
i6=j

Z 0iYj + op(1).

Now apply Lemma A2. Note that ΣY Y = Im and ΣZY = 0, so that Ψ = ΣZZ =

κnΩ
−1/2E[Uiλλ

0Ui]Ω
−1/2/n2m. By Assumption 1 and the hypothesis of Theorem 3, we

have

nE[X2
i ] = (n/µ2n)λ

0G0Ω−1Gλ −→ λ0Hλ = A,

n2tr(Ψ) = n2E[Z 0iZi] = κnλ
0E[U 0

iΩ
−1Ui]λ/m −→ κλ0Λ∗λ.
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Also, note that E[UiU
0
i ] ≤ C

Pp
j=1E[g

j
i g

j0
i ] so that

λmax(ΣZZ) ≤ Cλmax(Ω
−1)/mn2 ≤ C/mn2.

It then follows that

mn4λmax(ΣY Y )
2λmax(ΣZZ)

2 ≤ Cmn4/(mn2)2 ≤ C/m −→ 0.

In addition, by Assumption 5 and kµ−1n
√
nG0Ω−1k ≤ C we have for gβi = ∂gi(β0)/∂β,

nE[|Xi|4] ≤ nE[
°°°µ−1n √nG0Ω−1gi

°°°4]/n2 ≤ CE[kgik4]/n −→ 0,

n3E
h
|Y 0
1Z2|4

i
≤ CE[

°°°g01Ω−1U2°°°4]/nm2 ≤ CE[kg1k4]E[kU1k4]/nm2

≤ C(E[kg1k4]/m
√
n)(E[kg1k4] + E[kgβ1k4])/(m

√
n) −→ 0.

The conclusion then follows by the conclusion of Lemma A2 and the Cramer-Wold device.

Q.E.D.

Lemma A12: If Assumptions 2 and 4-6 are satisfied then for any β̄
p−→ β0, µ

−2
n ∂2Q̂(β̄)/∂β∂β0

p−→
H.

Proof: For notational convenience, let g̃(β) = ĝ(β)/µn
√
n, drop the β argument,

replace Q̂ by µ−2n Q̂, Ω̂ by Ω̂/n, and let k and denote derivatives with respect to βk and

β , e.g. ∂Q̂(β)/∂βk = Q̂k and ∂
2Q̂(β)/∂βk∂β = Q̂k, . Then differentiating twice we have

Q̂k = g̃0kΩ̂
−1g̃ − 1

2
g̃0Ω̂−1Ω̂kΩ̂

−1g̃ (7.3)

Q̂k, = g̃0k, Ω̂
−1g̃ + g̃0kΩ̂

−1g̃0 − g̃0kΩ̂
−1Ω̂ Ω̂−1g̃ − g̃0Ω̂−1Ω̂kΩ̂

−1g̃

+g̃0Ω̂−1Ω̂ Ω̂−1Ω̂kΩ̂
−1g̃ − 1

2
g̃0Ω̂−1Ω̂k, Ω̂

−1g̃.

Note also that for Q̃ = 1
2
g̃0Ω−1g̃, Q̃k, = ∂2Q̃(β)/∂βk∂β has the same formula as Q̂k,

with Ω = Ω(β) replacing Ω̂. By Assumption 5 each of Ω−2, Ω2k, and Ω2k have largest

eigenvalue bounded above by a constant. Then by Assumption 7 it follows that

sup
β∈N

¯̄̄
g̃0kΩ̂

−1Ω̂ Ω̂−1g̃ − g̃0kΩ
−1Ω Ω−1g̃

¯̄̄
≤ sup

β∈N
kg̃kk sup

β∈N

°°°Ω̂−1Ω̂ Ω̂−1 − Ω−1Ω Ω−1
°°° sup
β∈N

kg̃k

= Op(1)op(1)Op(1)
p−→ 0.

[35]



Therefore, we can replace Ω̂ by Ω in the third term in Q̂k, , from eq. (7.3), without

affecting its probability limit. Applying a similar argument to each of the six terms in

the above expression for Q̂k, , it follow that for Q̃ =
1
2
g̃0Ω−1g̃, by T,

sup
β∈N

¯̄̄
Q̂k, − Q̃k,

¯̄̄
p→ 0.

By Assumption 8, Q̃k, (β) is stochastically equicontinuous, so by β̄
p−→ β0, the previous

equation, and T,°°°Q̂k, (β̄)− Q̃k, (β0)
°°° ≤ °°°Q̂k, (β̄)− Q̃k, (β̄)

°°°+ °°°Q̃k, (β̄)− Q̃k, (β0)
°°° p−→ 0.

(7.4)

It therefore suffices to show that Q̃k,
p−→ Hk , where we now evaluate at β0, i.e. Q̃k, =

∂2Q̃(β0)/∂βk∂β . Next, note that Ωk = Ωk + Ωk0 for Ωk = E[gig
k0
i ]. Then by standard

properties of the trace of a matrix,

tr(Ω−1ΩkΩ
−1Ω ) = tr(Ω−1Ω Ω−1Ωk0) + tr(Ω−1Ω Ω−1Ωk)

= tr(Ω−1Ω Ω−1Ωk0) + tr(Ωk0Ω−1Ω 0Ω−1)

= tr(Ω−1Ω Ω−1Ωk0) + tr(Ω 0Ω−1Ωk0Ω−1) = tr(Ω−1Ω Ω−1Ωk0).

Therefore, it follows by Lemma A1 that

−g̃0kΩ−1Ω Ω−1g̃ − g̃0Ω−1ΩkΩ
−1g̃ + g̃0Ω−1Ω Ω−1ΩkΩ

−1g̃

= −tr(Ω−1Ω Ω−1Ωk)/µ2n − tr(Ω−1ΩkΩ
−1Ω )/µ2n

+tr(Ω−1Ω Ω−1ΩkΩ
−1Ω)/µ2n + op(1)

p−→ 0.

It also follows similarly that for Ωk = E[gig
k 0
i ] and Ωk, = E[gki g

0
i ],

tr(Ω−1(Ωk + Ωk, )) =
1

2
tr(Ω−1Ωk, ).

Then by Lemma A1, for ḡ = µ−1n
√
nE[gi(β)],

g̃0k, Ω
−1g̃ + g̃0kΩ

−1g̃0 − 1
2
g̃0Ω−1Ωk, Ω

−1g̃

= ḡ0kΩ
−1ḡ + tr(Ω−1Ωk )/µ2n + tr(Ω−1Ωk, )/µ2n −

1

2
tr(Ω−1Ωk, Ω

−1Ω)/µ2n + op(1)

= ḡ0kΩ
−1ḡ + tr(Ω−1(Ωk + Ωk, ))/µ2n −

1

2
tr(Ω−1Ωk, )/µ

2
n + op(1) = ḡ0kΩ

−1ḡ + op(1).
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By Assumption 1, ḡ0kΩ
−1ḡ −→ Hk . It then follows by T that Q̃k

p−→ Hk . The conclu-

sion for the CUE then follows by T and eq. (7.4). Q.E.D.

Lemma A13: If Assumptions 4-6 are satisfied then D̂(β̂)0Ω̂−1D̂(β̂)/µ2n
p−→ H + Λ∗.

Proof: For the CUE ρ(v) = v − v2/2 so that λ̂(β) = Ω̂(β)−1ĝ(β) and ρ̂1i(β) =

1 − ĝ(β)0Ω̂(β)−1gi(β). Let Ãj(β), Aj(β), D̃j(β), and D̃(β) be as defined in connection

with Assumptions 5 and 6. For the jth unit vector ej we have

D̂(β)ej = ∂ĝ(β)/∂βj − Âj(β)Ω̂(β)−1ĝ(β).

By Assumption 5, supβ∈B
°°°Âj(β)/n− Aj(β)

°°° p−→ 0. Then it follows similarly to the proof

of Lemma A10 that supβ∈B
°°°Âj(β)Ω̂(β)−1 − Aj(β)Ω(β)−1

°°° p−→ 0, so that by Assumption

6 i) and CS,

sup
β∈N

°°°D̂j(β)/(µn
√
n)− D̃j(β)

°°° ≤ sup
β∈B

°°°Âj(β)Ω̂(β)−1 −Aj(β)Ω(β)−1
°°° sup
β∈N

°°°ĝ(β)/µn√n°°° p−→ 0.

By Assumption 6 we also have supβ∈N
°°°D̃(β)°°° = Op(1) so that by T and CS,

°°°D̂(β̂)0Ω̂−1D̂(β̂)/nµ2n − D̃(β̂)0Ω(β̂)−1D̃(β̂)
°°° (7.5)

≤
°°°D̂(β̂)0Ω̂−1D̂(β̂)/nµ2n − D̃(β̂)0Ω̂−1D̃(β̂)

°°°+ °°°D̃(β̂)0(Ω̂−1 − Ω(β̂)−1)D̂(β̂)
°°° p−→ 0.

Also, by Assumption 6, D̃(β̂)0Ω(β̂)−1D̃(β̂)− D̃(β0)
0Ω−1D̃(β0)

p−→ 0. Note that D̃(β0) =Pn
i=1 Ui/µn

√
n so that, in the notation of Lemma A1,

D̃j(β0)
0Ω−1D̃k(β0)ek = nȲ 0AZ̄/m

for A = Ω−1, Yi =
√
mU j

i /µn, and Zi =
√
mUk

i /µn. Also note that

tr(AΣY Z0)/m = E[U j0
i Ω

−1Uk
i ]/µ

2
n −→ Λ∗jk, nµ

0
YAµZ/m = nGj0Ω−1Gk/µ2n −→ Hjk.

Therefore, it follows from the conclusion of Lemma A1 that

D̃j(β0)
0Ω−1D̃k(β0) = Λ∗jk +Hjk + op(1).

The conclusion for the CUE now follows by T. Q.E.D.
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Proof of Theorem 3: The result follows from Lemmas A11, A12, and A13 in the

usual way. Q.E.D.

Proof of Theorem 4: We proceed by verifying all of the hypotheses of Theorem

3. First consider Assumption 4. Note that g(w, β) = z(y − x0β) is twice continuously

differentiable by inspection. Also, by Lemma A4 and the specified rate condition,

(E[kgik4] + E[k∂g(wi, β0)/∂βk4])m/n ≤ CE[(z0izi)
2]m/n −→ 0.

Also by Lemma A4,

λmax(E[∂gi(β)/∂βj{∂gi(β)/∂βj}0]) = λmax(E[ziz
0
ix
2
ij]) ≤ λmax(CIm) ≤ C,

λmax(E[gi(β)gi(β)
0]) ≤ λmax(CE[gig

0
i] + CE[∂gi(β)/∂βj{∂gi(β)/∂βj}0])

≤ λmax(CIm) + C ≤ C.

It follows that Assumption 4 is satisfied.

It follows by Lemma A7 that Assumption 5 i) is satisfied. Assumption 5 ii) holds by

E[(z0izi)
2]/n −→ 0. Assumption 5 iii) holds by Lemma A8.

The proof of Assumption 6 follows similarly to the proof of stochastic equicontinuity

in the proof Q̃(β) in the proof of Theorem 2. Q.E.D.

Proof of Theorem 5: It follows from Lemma A13, replacing β̂ with β0, that

D̂(β̄)0Ω̂(β̄)−1D̂(β̄)
p−→ H + κΛ∗. Also, Lemma A11 gives µ−1n ∂Q̂(β̄)/∂β

d−→ N(0, H +

κΛ∗), so the conclusion follows in the usual way. Q.E.D.

8 Appendix B: Asymptotic Theory for GEL.

We give here results for GEL. For the consistency results we make use of the following

condition:

Assumption 7: i) ρ(v) is three times continuously differentiable;ii) there is γ > 2

such that n1/γ(E[supβ∈B kgi(β)kγ ])1/γµn/
√
n −→ 0.

The first two results are consistency in the general case and in the linear model.
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Theorem 6: If Assumptions 1, 2, and 7 are satisfied then β̂
p−→ β0 for any GEL

estimator β̂.

Theorem 7: If Assumptions 1 i), 1 ii), 3, and 7 i) are satisfied and for γ > 2 we

have E[|εi|γ |zi] ≤ C, E[kηikγ|zi] ≤ C, n1/γ(E[kzikγ])1/γµn/
√
n −→ 0 then β̂

p−→ β0 for

any GEL estimator β̂.

For the asymptotic normality results we make use of the following condition:

Assumption 8: For bi = maxβ∈Bmax{kgi(β)k , k∂gi(β)/∂βk} there is γ > 2 such

that n1/γ(E[bγi ])
1/γµn/

√
n −→ 0, for di = maxβ∈Bmaxj{kgi(β)k , k∂gi(β)/∂βk , k∂2gi(β)/∂β∂βjk},

E[d3i ]
q
m/n −→ 0.

We now give the asymptotic normality results for the general case and the linear

model, respectively.

Theorem 8: If Assumptions 1, 2, and 4-8 are satisfied, and E[U 0
iΩ
−1Ui]/µ

2
n −→ Λ∗

then for V = H−1 +H−1Λ∗H−1,

µn(β̂ − β0)
d−→ N(0, V ), µ2nV̂

p−→ V.

This result specializes to the linear model under previous conditions and a slight

strengthening of rate condition for the instruments.

Theorem 9: If Assumptions 1 i), ii), 3, 7 i) are satisfied,and for γ > 2 we have

E[|εi|γ |zi] ≤ C, E[kηikγ|zi] ≤ C, n1/γ(E[kzikγ ])1/γµn/
√
n −→ 0, E[U 0

iΩ
−1Ui]/µ

2
n −→ Λ∗,

and E[(z0izi)
2]m/n −→ 0 then

µn(β̂ − β0)
d−→ N(0, V ), µ2nV̂

p−→ V.

Before proving these results we first give two additional Lemmas.

Lemma A14: If Assumptions 2 and 7 are satisfied then there is Ċ > 0 such that

w.p.a.1 for all β ∈ B λ̂(β) = argmaxλ∈Λ̂n(β)
Pn

i=1 ρ(λ
0gi(β)) exists,

°°°λ̂(β)°°° ≤ C kĝ(β)/nk,
and supβ∈B

°°°λ̂(β)°°° = Op(µn/
√
n).
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Proof: By λmax(Ω(β)) ≤ C we have kĝ(β)k2 /nµ2n ≤ CQ̌(β) and by Lemma A3,

supβ∈B Q̌(β) = Op(1), so by T , supβ∈B kĝ(β)k2 = Op(nµ
2
n). Let bi = sup

β∈B
kgi(β)k. By

a standard argument, maxi≤n bi = Op(n
1/γ(E[bγi ])

1/γ). By Assumption 7 there exists

δn with δn = o(n−
1
γ (E[bγi ])

−1/γ) and µn/
√
n = o(δn). Let Λn = {λ : kλk ≤ δn} and

Ŝ(β, λ) =
Pn

i=1 ρ (λ
0gi(β)) . Note that

max
λ∈Λn,β∈B,i≤n

|λ0gi(β)| ≤ δnmax
i≤n bi = Op(δnn

1
γ (E[bγi ])

1/γ)
p−→ 0,

so that Λn ⊆ Λ̂n(β) for all β w.p.a.1. Similarly, by continuity of ρ2(v) and ρ2(0) =

−1, supλ∈Λn,β∈B,i≤n ρ2(λ0gi(β)) ≤ −1/2 w.p.a.1. Since Ŝ(β, λ) is concave in λ, λ̃(β) =

argmax
λ∈Λn

Ŝ(β, λ) exists (for all β). Also, w.p.a.1,

λmin
³
Ω̂(β)/n

´
≥ λmin(Ω(β))−

°°°Ω̂(β)/n− Ω(β)
°°° ≥ C − sup

β

°°°Ω̂(β)/n− Ω(β)
°°° ≥ C.

Then by a Taylor expansion in λ around zero with Lagrange remainder, for ρj(v) =

∂jρ(v)/∂vj

0 = Ŝ(β, 0) ≤ Ŝ(β, λ̃(β)) = λ̃(β)0ĝ(β) + λ̃(β)0
hXn

i=1
ρ2(λ̄(β)

0gi(β))gi(β)gi(β)0
i
λ̃(β)

≤ λ̃(β)0ĝ(β)− λ̃(β)0Ω̂(β)λ̃(β)/2 ≤ λ̃(β)0ĝ(β)− Cn
°°°λ̃(β)°°°2 ,

so that

Cn
°°°λ̃(β)°°°2 ≤ λ̃(β)0ĝ(β) ≤ |λ̃(β)0ĝ(β)| ≤

°°°λ̃(β)°°° kĝ(β)k .
Dividing through by Cn

°°°λ̃(β)°°° we find that w.p.a. 1 for all β
C
°°°λ̃(β)°°° ≤ kĝ(β)/nk ≤ sup

β∈B
kĝ(β)k /n = Op

³
µn/
√
n
´
.

By µn/
√
n = o(δn) it follows that λ̃(β) ∈ intΛn for all β w.p.a.1. Then, since a local

maximum of the convex function Ŝ(β, λ) over an open convex set int(Λn) is a global

maximum, it follows that λ̃(β) = λ̂(β) w.p.a.1, giving the conclusion. Q.E.D.

Lemma A15: If Assumptions 1, 2, and 7 are satisfied then for Q̂∗(β) = ĝ(β)0Ω̂(β)−1ĝ(β)/2,

supβ∈B |Q̂(β)− Q̂∗(β)| = op(µ
2
n).
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Proof: Expanding around λ = 0 gives

Q̂(β) = [ĝ(β)0λ̂(β)− 1
2
λ̂(β)0Ω̂(β)λ̂(β) + r̂(β)],

r̂(β) =
1

6

X
i

ρ3
³
λ̄(β)0ĝ(β)

´ h
gi(β)

0λ̂(β)
i3
,

where λ̄(β) lies on the line joining λ̂(β) and 0. Similarly to previous arguments there

is C with λmax(Ω̂(β)/n) ≤ C for all β ∈ B w.p.a.1, supβ∈B,i≤n |λ̂(β)0gi(β)| p−→ 0, and

supβ∈B,i≤n |λ̄(β)0gi(β)| p−→ 0. Therefore, by ρ3(v) bounded in a neighborhood of v = 0,

It then follows that

|r̂(β)| ≤ C
nX
i=1

¯̄̄
gi(β)

0λ̂(β)
¯̄̄3 ≤ n sup

β∈B,i≤n
|λ̂(β)0gi(β)|λ̂(β)0[Ω̂(β)/n]λ̂(β) = op(µ

2
n).

Also, as shown above λ̂(β) ∈ Λn ⊆ Λ̂(β), so that λ̂(β) ∈ int Λ̂(β) for all β w.p.a.1.. Thus,
w.p.a.1 λ̂(β) satisfies the first-order conditions

0 =
nX
i=1

ρ1
³
λ̂(β)0gi(β)

´
gi(β)

Note that maxi≤n biµn/
√
n

p−→ 0, i.e. maxi≤n bi = op(
√
n/µn). Then expand around

λ = 0 to obtain

0 = ĝ(β)− Ω̂(β)λ̂(β) + R̂(β), R̂(β) =
nX
i=1

ρ3(λ̄(β)
0gi(β))

h
gi(β)

0λ̂(β)
i2
gi(β),°°°R̂(β)°°° ≤ Cmax

i≤n biλ̂(β)
0Ω̂(β)λ̂(β) ≤ op(

√
n/µn)nOp(µ

2
n/n) = op(

√
nµn).

It follows from the last inequality and λmin(Ω̂(β)/n) ≥ C w.p.a.1 that

R̂(β)0Ω̂(β)−1R̂(β) ≤ C sup
β∈B

°°°R̂(β)°°°2 /n = op(µ
2
n).

Then solving for λ̂(β) = Ω̂(β)−1[ĝ(β) + R̂(β)] and plugging into the expansion for Q̂(β)

gives

Q̂(β) = ĝ(β)0Ω̂(β)−1[ĝ(β) + R̂(β)]− [ĝ(β) + R̂(β)]0Ω̂(β)−1[ĝ(β) + R̂(β)]/2 + r̂(β)

= Q̂∗(β)− R̂(β)0Ω̂(β)−1R̂(β)/2 + r̂(β).
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It then follows by T that

sup
β∈B

|Q̂(β)− Q̂∗(β)| ≤ sup
β∈B

R̂(β)0Ω̂(β)−1R̂(β)/2 + sup
β∈B

|r̂(β)| = op(µ
2
n).Q.E.D.

Proof of Theorem 6: The conclusion of Lemma A14 shows that the difference of

the CUE and GEL objective functions, divided by µ2n, converges to zero uniformly in β.

The remainder of the proof then follows from the proof for the CUE.

Proof of Theorem 7: All of the hypotheses of Theorem 6 are satisfied, so the

conclusion follows by Theorem 6.

Proof of Theorem 8: First, we show that for GEL,

µ−1n ∂Q̂(β0)/∂β
d−→ N(0, H + κΛ∗).

Let G̃k =
P
gki /n and Ãk =

P
i gig

k0
i /n, as before. Also, let λ̂ = λ̂(β0). By the envelope

theorem and an expansion,

∂Q̂

∂βj
(β0) =

X
i

λ̂0gji ρ1(λ̂
0gi) = nG̃j0 λ̂− nλ̂0Ãjλ̂+ r̂, r̂ =

X
i

λ̂0gji ρ3
³
λ̄0gi

´ ³
λ̄0gi

´2
/2,

where
°°°λ̄°°° ≤ °°°λ̂°°° . By M , kĝk = Op (

√
m) , so by Lemma A14,

°°°λ̂°°° = Op

³q
m/n

´
. It

follows as above that maxi≤n
¯̄̄
λ̂0gi

¯̄̄
p→ 0, so that maxi≤n

¯̄̄
ρ3
³
λ̄0gi

´¯̄̄
≤ C w.p.a. 1. LetGi =

∂gi(β0)/∂β and bi = max{kGik , kgik}. As above, b̂ = maxi≤n bi = Op(n
1/γ(E[bγi ])

1/γ). It

then follows that, by λmax
³
Ω̃
´
= Op(1) and Assumption 8,

µ−1n |r̂| ≤ µ−1n C
°°°λ̂°°° b̂nλ̄0Ω̃λ̄ = Op(µ

−1
n m3/2n1/γ(E[bγi ])

1/γ/
√
n)

p−→ 0.

It also follows similarly to previous arguments that w.p.a.1 λ̂ satisfies the first-order

conditions X
i

ρ1
³
λ̂0gi

´
gi = 0.

Expanding and solving give

λ̂ = Ω̃−1ĝ/
√
n+ R̂, R̂ = Ω̃−1

X
i
ρ3
³
λ̄0gi

´
gi
³
λ̄0gi

´2
/n.
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As previously, °°°R̂°°° ≤ Cb̂λ̄0Ω̃λ̄ = Op(n
1/γ(E[bγi ])

1/γm/n).

Now, plug this expansion for λ̂ back in the expression for ∂Q̂(β0)/∂βj to obtain

µ−1n
∂Q̂

∂βj
(β0) = µ−1n

√
nG̃j0Ω̃−1ĝ − µ−1n ĝ0Ω̃−1ÃjΩ̃−1ĝ + r̂/µn

+µ−1n nG̃j0R̂ − µ−1n nR̂0ÃjR̂ − µ−1n
√
nR̂0

³
Ãj + Ãj0´ Ω̃−1ĝ.

Note that by Assumption 5, E[
°°°gji °°°2] = tr(E[gji g

j0
i ]) ≤ mλmax(E[g

j
i g

j0
i ]) ≤ Cm. There-

fore,
°°°G̃j −Gj

°°° = Op

Ãµ
E
·°°°gji °°°2¸¶1/2 /√n

!
= Op(

q
m/n) = Op(µn/

√
n). We also have

kGjk = O (µn/
√
n) . Therefore,

¯̄̄
µ−1n nG̃j0R̂

¯̄̄
≤ µ−1n n

³°°°G̃j −Gj
°°°+ °°°Gj

°°°´ °°°R̂°°° = Op(n
1/γ(E[bγi ])

1/γm/
√
n)

p−→ 0.

It also follows that λmax
³
Ãj + Ãj0

´
≤ C w.p.a.1, so that

¯̄̄
µ−1n nR̂0ÃjR̂

¯̄̄
≤ µ−1n n

°°°R̂°°°2 = Op

³
{µ−1/2n n1/γ(E[bγi ])

1/γm/
√
n}2

´
p−→ 0.

We also have
°°°Ω̃−1ĝ°°° = Op (

√
m) , so that by

√
m = O(µn),¯̄̄

µ−1n
√
nR̂

³
Ãj + Ã0j

´
Ω̃−1ĝ

¯̄̄
= Op

³
n1/γ(E[bγi ])

1/γm/
√
n
´

p−→ 0.

By T it now follows that

µ−1n
∂Q̂

∂β
(β0) = µ−1n

√
nG̃j0Ω̃−1ĝ − µ−1n ĝ0Ω̃−1ÃjΩ̃−1ĝ + op(1)

The expression between the equality sign and op(1) is equal to µ−1n ∂Q̂(β0)/∂β for the

CUE, so the conclusion for a general GEL estimator follows by the conclusion for the

CUE.

Next we show that for any β̄
p−→ β0, µ

−2
n ∂2Q̂(β̄)/∂β∂β 0

p−→ H. It follows as in

Lemma A14 of Donald, Imbens, and Newey (2003) that
°°°ĝ ³β̂´ /n°°° = Op

³q
m/n

´
. Then

by Lemma A14, we have
°°°λ̂ ³β̂´°°° = Op

³q
m/n

´
. Also, as in the proof of Lemma A14,

w.p.a. 1 λ (β) ∈ int
³
Λ̂n (β)

´
for all β ∈ B. Therefore w.p.a.1, for all β ∈ B, λ̂ (β) solves

nX
i=1

ρ1
³
λ̂(β)0gi(β)

´
gi(β) = 0.
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As above we have

sup
β∈B

max
i≤n

¯̄̄
λ̂(β)0gi(β)

¯̄̄
p−→ 0,

so that for all
°°°λ̄°°° ≤ λ̂ (β) and all β,

−X
i

ρ2
³
λ̄0gi(β)

´
gi(β)gi(β)

0/n ≥ C
X
i

gi(β)gi(β)
0/n = CΩ̂(β),

and so w.p.a.1 the matrix preceding the inequality is nonsingular. It then follows by the

implicit function theorem that λ̂ (β) is differentiable and

∂λ̂

∂βj
(β) =

"
−X

i

ρ2
³
λ̂(β)0gi(β)

´
gi(β)gi(β)

0
#−1

×
X
i

ρ1
³
λ̂(β)0gi(β)

´ ∂gi(β)
∂βj

+
X
i

ρ2
³
λ̂(β)0gi(β)

´
gi(β)

∂gi(β)
0

∂βj
λ̂

To simplify derivations we will henceforth evaluate at β̂, unless otherwise notified, and

drop the β argument. Thus, in what follows gi = gi
³
β̂
´
, λ̂ = λ̂

³
β̂
´
, etc. Also,

let superscripts denote derivatives, e.g. so that gji = ∂gi(β̂)/∂βj. Then evaluating the

previous equation at β̂ and letting Ω̃ = −Pn
i=1 ρ2

³
λ̂0gi

´
gig

0
i/n, we have

λ̂j = Ω̃−1
"X

i

n
ρ1
³
λ̂0gi

´
gji + ρ2

³
λ̂0gi

´
gig

j0
i λ̂
o
/n

#

Let Ω̃j = −Pi ρ2
³
λ̄0gi

´
gig

j0
i /n, where λ̄ is somewhere on the line between λ̂ and zero,

and where, for notational simplicity, we do not distinguish different such λ̄. Then an

expansion gives

λ̂j = Ω̃−1
h
gj −

³
Ω̃j + Ω̃j0´ λ̂i .

Next, by the envelope theorem it follows that

µ2n
n

∂Q̂

∂βj

³
β̂
´
=
X
i

ρ1
³
λ̂0gi

´
λ̂0gji /n.

Differentiating again and using the expansion ρ1
³
λ̂0gi

´
= 1 + ρ2

³
λ̄0gi

´
λ̂0gi, we obtain

µ2n
n
Q̂jk =

X
i

[ρ1
³
λ̂0gi

´ ³
λ̂k0gji + λ̂0gjki

´
+ ρ2

³
λ̂0gi

´
λ̂0gji

³
λ̂k0gi + λ̂0gki

´
]/n

= n−1
X
i

h³
1 + ρ2

³
λ̄0gi

´
λ̂0gi

´ ³
λ̂k0gji + λ̂0gjki

´i
− λ̂k0Ω̂jλ̂− λ̂0Ω̂j,kλ̂

= λ̂k0ĝj + λ̂0g̃jk − λ̂0Ω̂jλ̂k − λ̂k0Ω̂jλ̂− λ̂0
³
Ω̂jk + Ω̂j,k

´
λ̂
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where Ω̂jk = −Pi ρ2
³
λ̃0gi

´
gig

jk0
i /n, Ω̂j,k = −Pi ρ2

³
λ̃0gi

´
gji g

k0
i /n, ĝ

j =
P

i g
j
i /n, and

ĝjk =
P

i g
jk/n. Substituting the formula for λ̂k we obtain

µ2n
n
Q̂jk = ĝk

0
Ω̃−1ĝj − λ̂0

³
Ω̃k + Ω̃j0´ Ω̃−1ĝj + λ̂0ĝjk − λ̂0Ω̃jΩ̃−1ĝk + λ̂0Ω̃jΩ̃−1

³
Ω̃k + Ω̃k0´ λ̂

−ĝk0Ω̃−1Ω̃jλ̂+ λ̂0
³
Ω̃k + Ω̃k0´ Ω̃−1Ω̃jλ̂− λ̂0

³
Ω̃jk + Ω̃j,k

´
λ̂.

Next, a mean value expansion of the first-order conditions for λ̂ gives

λ̂ = Ω̃−1g̃µn/
√
n, Ω̃ = − 1

n

nX
i=1

ρ2
³
λ̄gi

´
gig

0
i.

where g̃ now comes from the result for the CUE. Noting also that ĝj = g̃jµn/
√
n

Q̂jk = g̃kΩ̃
−1g̃j + g̃0Ω̃−1g̃jk

−g̃0Ω̃−1
³
Ω̃k + Ω̃k0´ Ω̃−1g̃j − g̃0Ω̃−1

³
Ω̃j + Ω̃j0´ Ω̃−1g̃k

+g̃0Ω̃−1
³
Ω̃j + Ω̃j0´ Ω̃−1 ³Ω̃k + Ω̃k0´ Ω̃−1g̃

−1
2
g̃0Ω̃−1

³
Ω̃jk + Ω̃j,k + Ω̃j,k0 + Ω̃j,k0´ Ω̃−1g̃

Comparing with equation (7.3) we can see that this expression is identical to that for the

CUE with Ω̃j + Ω̃j0 replacing Ω̂j and Ω̃jk + Ω̃j,k + Ω̃j,k0 + Ω̃jk0 replacing Ω̂j,k. Evaluate

the CUE expressions at the GEL estimator, and note that

°°°Ω̂j −
³
Ω̃j + Ω̃j

´°°° ≤ 2
X
i

¯̄̄
ρ2
³
λ̄0gi

´
+ 1

¯̄̄
kgik

°°°gji °°° /n
= Op

Ã
E

"
sup
β∈B
(kgik2

°°°gji °°°)
#√

m/
√
n

!
p−→ 0.

by CS. It follows similarly that

°°°Ω̂− Ω̃
°°° p→ 0,

°°°Ω̂j,k −
³
Ω̃jk + Ω̃j,k + Ω̃j,k0 + Ω̃jk0´°°° p−→ 0.

Then it follows similarly to the proof for the CUE that one can replace Ω̂ there by Ω̃

that the difference of the expression for the CUE and for GEL converges in probability

to zero.
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Finally, we prove that D̂(β̂)0Ω̂−1D̂(β̂)/µ2n
p−→ H + κΛ∗ for GEL. Like like those in

previous proofs,

D̂j =
X
i

ρ1(λ̂
0gi)g

j
i = Ĝj −X

i

ρ2(λ̂
0g)gji gi

0λ̂ = Ĝj − ĀjΩ̄−1ĝ(β̂),

Āj = −X
i

ρ2(λ̄
0gi)g

j
i g
0
i/n, Ω̄ =

X
i

−ρ2(λ̄0gi)gig0i/n,

where the two λ̄ may differ but each lies on the line joining λ̂(β̂) and zero. It follows as

in previous proofs that

°°°Āj − Âj
°°° ≤ C

°°°λ̂°°°X
i

sup
β∈B
(
°°°gji (β)°°° kgi(β)k2)/n = Op(

q
m/nE[d3i ])

p−→ 0.

It follows similarly that
°°°Ω̄− Ω

°°° p−→ 0. Then it follows similarly to eq. (7.5) that
√
n/µn times the difference of the expressions of D̂j for GEL and the CUE converges in

probability to zero. It then follows by arguments similar to those already given that the

µ−2n times the difference of D̂0Ω̂−1D̂ for the GEL estimator and the CUE converges in

probability to zero. The conclusion then follows by T. Q.E.D.
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