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Abstract

Using many moment conditions can improve efficiency but makes the usual
GMM inferences inaccurate. Two step GMM is biased. Generalized empirical like-
lihood (GEL) has smaller bias but the usual standard errors are too small. In this
paper we use alternative asymptotics, based on many weak moment conditions,
that addresses this problem. This asymptotics leads to improved approximations
in overidentified models where the variance of the derivative of the moment condi-
tions is large relative to the squared expected value of the moment conditions and
identification is not too weak. We obtain an asymptotic variance for GEL that is
larger than the usual one and give a ”sandwich” estimator of it. In Monte Carlo
examples we find that this variance estimator leads to a better Gaussian approx-
imation to t-ratios in a range of cases. We also show that Kleibergen (2005) K
statistic is valid under these asymptotics. We also compare these results with a
jackknife GMM estimator, finding that GEL is asymptotically more efficient under
many weak moments.
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1 Introduction

Many applications of generalized method of moments (GMM, Hansen, 1982) have low
precision. Examples include some natural experiments (Angrist and Krueger, 1991), con-
sumption asset pricing models (Hansen and Singleton, 1982), and dynamic panel models
(Holtz-Eakin, Newey and Rosen, 1988). In these settings the use of many moments can
improve estimator accuracy. For example, Hansen, Hausman and Newey (2005) have
recently found that in an application from Angrist and Krueger (1991), using 180 instru-
ments, rather than 3, shrinks correct confidence intervals substantially.

A problem with using many moments is that the usual Gaussian asymptotic approx-
imation can be poor. The two-step GMM estimator can be very biased. Generalized
empirical likelihood (GEL, Smith 1997) and other estimators have smaller bias but the
usual standard errors are found to be too small in examples in Han and Phillips (2005)
and here. In this paper we use alternative asymptotics that addresses this problem in
overidentified models where the variance of the derivative of the moment conditions is
large relative to the squared expected value of the moment conditions and identification
is not too weak. Such environments seem quite common in econometric applications of
instrumental variables (IV). Under the alternative asymptotics we find that GEL has a
Gaussian limit distribution with asymptotic variance larger than the usual one. We give
a consistent, "sandwich” estimator of the alternative asymptotic variance. We find in
instrumental variable Monte Carlo examples that, in a range of cases where identifica-
tion is not very weak, the new t-ratios have a better Gaussian approximation than the
usual ones. We also show that the Kleibergen (2005) K statistic is valid under these
asymptotics.

For comparison purposes we also consider a jackknife GMM estimator that generalizes
jackknife IV estimators of Phillips and Hale (1977) and Angrist, Imbens and Krueger
(1998). This estimator should also be less biased than the two-step GMM estimator.
In the IV case Chao and Swanson (2004) derived its limiting distribution under the

alternative asymptotics. Here we show that jackknife IV is asymptotically less efficient
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than GEL.

The alternative asymptotics is based on many weak moment sequences like those of
Chao and Swanson (2004, 2005), Stock and Yogo (2004), and Han and Phillips (2005).
This paper picks up where Han and Phillips (2005) leave off, by showing asymptotic
normality when the convergence rate of the estimator is the square root of the number
of moment conditions, deriving an explicit formula for the asymptotic variance that is
larger than the usual one, and giving a consistent variance estimator. This paper also
extends Han and Phillips (2005) by giving primitive conditions for consistency and a
limiting distribution when a general weight matrix is used for the continuous updating
estimator (CUE), by analyzing GEL estimators other than the CUE, and by treatment
of jackknife GMM.

The standard errors we give can be thought of as an extension of the Bekker (1994)
standard errors from homoskedasticity and the limited information maximum likelihood
(LIML) estimator to heteroskedasticity and GEL. Under many weak moments, in a ho-
moskedastic linear model, Hansen, Hausman and Newey (2005) show that the Bekker
(1994) standard errors are consistent for LIML. In the same model we show that GEL
has the same asymptotic variance as LIML, so that the standard errors here have the
same limit as those of Bekker (1994). However, the standard errors we give are also
consistent for GEL with heteroskedasticity.

In the asymptotics here the variability of the derivative of the moments affects the
limiting distribution but the variability of the weight matrix has no effect. The dif-
ference between the usual asymptotic variance and the one given here corresponds to a
GEL higher-order variance term from Donald and Newey (2003), that depends on sample
variability of the Jacobian of the moment functions. In Donald and Newey (2003) there
are also higher-order variance terms corresponding to variability of the weight matrix,
but these are relatively small when the Jacobian variance is large relative to squared
average Jacobian, as happens under many weak moment asymptotics. Thus, the asymp-
totic variance we give will approximately be the higher order variance of GEL when the

Jacobian variance is relatively large. This kind of approximation seems appropriate for
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many IV settings, where the sample variability of the Jacobian can be relatively large. It
would not lead to improvements in minimum distance settings where the Jacobian does
not depend on data. In that case the asymptotic variance here will equal the usual one.

The limiting distribution for GEL can be derived by increasing the number of moments
in the Stock and Wright (2002) limiting distribution of the continuous updating estimator
(CUE). This derivation corresponds to sequential asymptotics, where one lets the number
of observations go to infinity and then lets the number of moments grow. We give here
simultaneous asymptotics, where the number of moments grows along with, but slower
than, the sample size.

One might also consider asymptotics where the number of moments increases at the
same rate as the sample size, as did Bekker (1994). Theory for this case would be difficult
because the dimension of the weighting matrix would grow at the same rate as the sample
size.

The variance adjustment that comes out of the many weak instrument asymptotics
is different from that of Windmeijer (2005). He adjusts for the variability of the weight
matrix while the many instrument asymptotics adjusts for the variability of the moment
derivative.

In Section 2 we describe the model, the estimators, the new asymptotic variance
estimator, and the alternative asymptotics we consider. Section 3 gives the consistency
results and Section 4 gives the asymptotic normality results. There we give regularity
conditions for the CUE and reserve to Appendix B the regularity conditions for GEL.
Section 5 reports some Monte Carlo results. Section 6 offers some conclusions and some
possible directions for future work. Appendix A gives proofs of Theorems in Sections 3

and 4.

2 The Model and Estimators

The model we consider is for i.i.d. data where there is a countable number of moment

restrictions. In the asymptotics we allow the data generating process to depend on the
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sample size. To describe the model, let w;, (i = 1,...,n), be i.i.d. observations on a data
vector w. Also, let 3 be a p x 1 parameter vector and g(w, ) = (¢7"(w, B), ..., g (w, 5))’
be an m x 1 vector of functions of the data observation w and the parameter, where
m > p. For notational convenience we suppress an m superscript on g(w, ). The model

has a true parameter [y satisfying the moment condition

E[Q(%ﬁo)] =0

where E[.] denotes expectation taken with respect to the distribution of w; for sample
size n, and we suppress the dependence on n for notational convenience.

To describe GMM estimators let ¢;(8) = g(w;, 5), §(8) = X, g:(8), and Q(ﬁ) =

" 9i(8)g:(B)". Also let 3 be a preliminary estimator and B be a compact set of para-

meter values. The usual two-step GMM estimator is given by

B = argmin Q(5), Q(83) = 9(8) Wi (8)/2, W = (B)™
where 3 is some preliminary estimator. The weighting matrix W = Q(B)_l is optimal in
minimizing the asymptotic variance of 5 under standard asymptotics.

The jackknife GMM estimator is obtained as

B = argmin Q(A), Q(8) = Q(B) — tr(WAB))/2 = 2 Loi(0Y Wy 5))/2

This estimator equals the JIVE2 estimator of Angrist, Imbens, and Krueger (1998) in

a linear model when W is the inverse of the second moment matrix of the instruments.

The first-order conditions for this estimator are

5@(5)' Z 59z W
9B

This can be interpreted as a bias corrected version of the two-step GMM first order con-

dition. The first term 9§(8)/0F' W () is the derivative of the GMM objective function.

0=

9:(8).

When evaluated at 3y this term is biased, in the sense of having nonzero expectation (for
W fixed). The second term is an estimator of the expectation of the first term (for W
fixed). Subtracting out the second term makes the expectation exactly zero (for fixed

W), i.e. makes the first order conditions unbiased at the true parameter.
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To describe a GEL estimator let p(v) be a function of a scalar v that is concave on an
open interval V containing zero and let p;(0) = 97p(0)/dv?. We normalize p(v) so that
po(0) = 0, p1(0) = 1 and py(0) = —1. Let A (8) = {A: Ng;i(B) € V,i=1,...n}. A GEL

estimator is given by
B =argmin Q(8), Q(8) = sup 3~ p(Ng:i(8)),

as in Smith (1997). The empirical likelihood (EL; Qin and Lawless, 1994) estimator
is obtained when p(v) = In(1 —v) (and V = (—00, 1)), and exponential tilting (ET,
Kitamura and Stutzer, 1997) when p(v) = —e’. When p(v) is quadratic, Q(3) has an
explicit form, given by
Q) = 3(B8YAB)"9(8)/2.
Newey and Smith, 2004). Here the GEL estimator 3, that minimizes Q(B), is the con-
tinuous updating estimator (CUE, Hansen, Heaton and Yaron, 1996).

The estimator of the asymptotic variance makes use of weights associated with the
GEL estimator. Let

pulB) = 2B 5(). 0 = 1...n). A(B) = argmax Y~ p(Ngi(9))

=1

A

= 0Q(3)/0508 D) = 3 pu(9)0:(5)/05.

Here D(3)/ X7, pi(B) is an efficient estimator of G = E[dg;(5)/80], like that consid-
ered by Brown and Newey (1998). Let D = D(f3) and Q = Q(3). The estimator of the

asymptotic variance is given by

The ”sandwich” form of the asymptotic variance estimator is important under the alter-
native asymptotics. Unlike the usual asymptotics, the middle matrix D'Q7'D estimates
a different, larger object than the Hessian. Also, the use of the Hessian is important.
Here we cannot replace H by the more common formula G’)~'G, where G = &E](B) /003,
because G’)~ G has extra random terms that are eliminated in the Hessian in the alter-

native asymptotics.



The Hessian term on the outside of V' is familiar from other estimation environments.
The middle term D'Q~'D is an estimator of the asymptotic variance of 8@(60)/ d6 due
to Kleibergen (2005) for the CUE and Guggenberger and Smith (2005) for other GEL
settings. They show that this estimator can be used to construct a test statistic under
weak identification with fixed m. We give conditions for consistency when m is allowed
to grow with the sample size.

The Kleibergen (2005) K statistic will also be valid under many weak moment con-

ditions. For the null hypothesis Hy : Sy = 3, where /3 is known, the K statistic is

Under the null hypothesis and the alternative asymptotics this statistic will have a x?(p)
under the alternative asymptotics. As a result we can form joint confidence intervals
for the vector By by inverting T'(3). Specifically, for the 1 — a quantile ¢ of a x2(p)
distribution, an asymptotic 1 — « confidence interval is {3 : T(ﬁ) < q}. These confidence
intervals are also correct in the weak identification setting of Stock and Wright (2000). In
general though, these intervals are much more difficult to compute than Wald confidence
intervals.

The alternative variance estimator and associated asymptotics should provide a better

approximation than the usual one when, for G = E[0g;(50)/00] and Q = E[g;(50)g:(50)'],

1 : m>p,
2 Var(Q Y20¢:(6,)/08) >> G'Q7'G,
3 nG'Q7'G >>0.

That is, the approximation should be better in 1) overidentified models where 2) the
variance of the Jacobian of the moment functions is large relative to its average and 3)
the model is not too weakly identified. Condition 2) is often true in IV settings, tending
to hold when reduced form R?s are low. Condition 3) is also often true in IV settings,
corresponding to a model not being ”too weakly” identified (e.g. see the brief applications

survey in Hansen, Hausman and Newey, 2005). Condition 2) would not to be satisfied in
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minimum distance settings, where Var(dg:(8,)/93) = 0, and so we expect that V would
not provide an improvement there.

Conditions 1), 2) and 3) are simultaneously imposed in the many weak moment
condition asymptotics, where m grows, G’07'G goes to zero, and nG’Q~'G grows. For
this asymptotics we will give conditions under which there is p,, — oo and a matrix V/
such that

(B = Bo) == N (0, V), oV L=V,
Therefore, standard (Wald) confidence intervals and test statistics that treat 3 as if it
were normally distributed with mean 3, and variance V will be asymptotically correct.
The convergence rate of the estimator will be 1/,,.

We impose conditions so that p2 might be considered a generalization of the concen-
tration parameter, that plays such a central role in the asymptotic theory of instrumental

variable estimators. Let

9(8) = Elg:(8)], UB) = Elg:(8)g:(B)'], 2 = Q)

where we suppress m subscripts and/or superscripts for convenience. We require that p2

behave as follows:

Assumption 1: i) there is y, — oo such p2/n — 0,m < p2, m/p? — k,0 < k <
1;ii) (n/p2)G'QY'G — H and H is nonsingular; iii) For all 5 and m, Q(/3) is nonsingular
and there is a continuous function A(a) > 0 for all a # 0 and (n/u2)g(8)'Q(B8)tg(3) >
A8 = Boll)-

This assumption means that p? characterizes the growth rate of nG'Q~'G, similarly
to the concentration parameter of the simultaneous equations literature. When £ > 0,
so that the number of instruments grows as fast as the concentration parameter, the
convergence rate will also be 1/y/m. This formulation is a GMM version of Chao and
Swanson (2005) that is similar to Han and Phillips (2005).

A special case is the linear model, where

yi = z;fo + i, zi = Ti+n;, (2.1)
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0= E[gi\zi, TZ], 0= E[?]Z‘ZZ, Tz]

Here z; is an m x 1 vector of instrumental variables, where we suppress the m argument
for convenience, and we will impose the normalization E[z;z)] = I,,,. Also, T;isapx 1

vector of reduced form values. The moment functions are

g(wi, B) = 2i(yi — 55;5)

Here G = —FE[zz}] = —E[z;Y!] and Q = FE|z;2/e?] = E[0?z;z]], where 0? = E[e?|2;, T,].

7

Then Assumption 1 means that for T; = T, /0?7 and II* = Q"' E[0?2, T}

(n/pi)G'AG = (n/py)Elo; 7 2]Q Elo} 2 Y]]
= (n/p?)IT¥QIT* — H.

Here IT* can be thought of as the coefficients from a population weighted regression of
optimal instruments T} on the instrumental variables z;, with weight 0. Assumption 1
specifies that 2 gives the growth rate of nII¥QIT* that can be interpreted as a weighted
sum of squares of reduced form predicted values.

One example has T; = =, z;, so that the reduced form is a linear combination of

2

2 constant, Assumption 1

the instrumental variables. If g; is homoskedastic with ¢? = o

follows from
n !
E Tmn

When p = 1 this equation would be satisfied when ., = 0. HY?(pu,, //nim, ..., pin //1om)’.

Ton /02 — H.

When p2 grows at the same rate as m, each reduced form coefficient follows the weak
instrument assumption of Staiger and Stock (1997), but the number of instruments is
growing, which makes the concentration parameter grow. This example is a special case
of the many weak instrument asymptotics of Chao and Swanson (2005).

Another example is given by

Ti - ,unfO(Zz)/\/ﬁ7 Z; = pm(Zz)/>pm(Z) = (plm(Z)’ "'7pmm(Z))/>

where fy(Z) is an unknown function of fixed dimensional vector of exogenous variables

Z and p1(Z), ..., pmm(Z) are approximating functions for fy, such as power series or
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splines. Here Assumption 1 will be satisfied if E[fo(Z;)fo(Z:)'/0?] is nonsingular and
there is 7,, such that

i Elo?fo(Z)/0% = 3™ (Z0)[P) = 0.

This example is like Newey (1990) where z; are approximating functions for the optimal
(asymptotic variance minimizing) instruments Y, but with p2 growing more slowly than

n.

3 Consistency

We first give a brief explanation of the consistency results. As usual, the crucial condition
for consistency of an extremum estimator is that the limit of the objective function is
minimized at the truth. Under many weak instruments the limit of the objective function
will be the limit of its expectation with the weighting matrix W replaced by its limit W
and the expectation divided by 2.

As in Han and Phillips (2005), for two step GMM,

Elg(BYWa(B)/npm] = (n = 1)g(B)Wg(B)/ 1 + tr(WQ(B))/ bz

The term (n — 1)g(8)Wg(8)/u? is a "signal” term that is minimized at 3y. The second
term is a "noise” term that is not minimized at 3y, and is not dominated by the signal
term when p? grows at the same rate as m. Consequently, two-step GMM will not
be consistent, when p? grows at the same rate as m. The jackknife GMM estimator
eliminates the noise term. We have
B[} gi(B)Wg;(B)/nuz] = (n — 1)g(8)Wa(B)/ 1.
i#]

This function is minimized at the truth, leading to consistency of the jackknife GMM
estimator.

The CUE estimator makes the noise term not depend on 3. We have

Elg(8)B) "' 9(B)/rum] = (n—1)g(B)B)~'g(B)/py + tr(UB) ' B))/ in
= (n—1gB)UB) " 3(B)/ ki, + m/ bz,

[9]



This function is minimized at the truth, leading to consistency of the CUE. Also, it
turns out that under many weak moments the objective function of every GEL estimator
behaves like that of the CUE, leading to their consistency as well. The reason for this is
that that for all 5 the vector 5\(6) converges to zero, and so the GEL objective function
Q(ﬁ) is approximately quadratic, i.e. is approximately the CUE objective function.

1/2 denote its

Turning now to precise results, for a matrix F' let ||F|| = trace(F'F)
Euclidean norm and for symmetric F' let Apin(F) and Apax(F) denote its smallest and
largest eigenvalues, respectively. Also, define stochastic equicontinuity of a sequence of
random functions {S,(3)}n—1 to mean that for any A, — 0, SUD|5_g/|<A, 15.(B) —

Su(B)] = 0.

Assumption 2: §y € B with B compact, there is a constant C' with A\, (2(8)) > 1/C,
Amax(B)) < C, E[{g:(8) 9:(8)}?]/n — 0 for each § € B, supsep [|QB)/n—Q(B)|| =
0, ng(B)'QB)*g(B)/u? is equicontinuous, and G(58)'Q(B)1g(B)/nu? is stochastically

equicontinuous.

The condition that sups.p 1223)/n — Q(B)|| = 0 puts restrictions on the rate at
which m can grow with the sample size. If E[g;;(3)*] is bounded uniformly in j, m,
and 3 then a sufficient condition for pointwise convergence would be that m?/n — 0.

The uniformity condition may impose further restrictions. The following is a consistency

result for CUE.
THEOREM 1: If Assumptions 1 and 2 are satisfied then B L5 5.

We also give more primitive regularity conditions for consistency for the linear model

example. Let X; = E[(e;,n)) (ei,m0)| 2, Y-

Assumption 3: The linear model holds and there is a constant C with E[e}|z;, T;] < C,
Elllmil*]zi, Ti] < C, Amin(%i) 2 1/C, ||Ts]| < C, E[(2]2)%] /n — 0, and nE[(Y;Y:)?] /iy, <
C.

The conditions put restrictions on the rate at which m can grow with the sample size.
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If z;; is bounded uniformly in j and m, then these conditions will hold for the CUE if

m?/n — 0, for in that case, E[(2/2;)%]/n = O(m?/n).

THEOREM 2: If Assumptions 1 i), 1 i), and 8 are satisfied then B -2 By,

4 Asymptotic Normality

We first give an explanation of the asymptotic normality results. The usual Taylor

expansion of the first-order condition 8@(5) /0B =0 gives

1 (B — Bo) = —H 11, 0Q(Bo) /08, H = 11;,20*Q(5) /9B,

where /3 is an intermediate value for 3, being on the line joining B and [y (that actually
differs from row to row of H). Under regularity conditions given below we will have
H -2 H, for H from Assumption 1. The asymptotic distribution of 5 will then be
determined by the asymptotic distribution of i *dQ(53,)/d3. This reasoning also holds
for the jackknife GMM estimator.

To simplify notation we focus on the scalar 5 case. Also, as for consistency we can
take the weighting matrix equal to its limit. Let g; = ¢:(50), G; = 99:(50)/95, § = §(5o),
and G,, = (v/n/u,)G. Then differentiating the jackknife GMM objective function, with
Q1 /n replacing W gives

1" 0Q(B0) /08 = Y G gy np = (1=~ )GLQg/n"2 + 3" /i,
i#] J<i
;]j = (G;—G)Q7 g+ (G, — G)Q g,
where the second equality holds by adding and subtracting G to G;. The G’ Q~'g/n'/?
term is the usual GMM one, having asymptotic variance H. The other term >-;_; ¢;]j [,
is a martingale sum, as in Hall (1984). Specifically, it is a degenerate U-statistic that is

asymptotically normal. Also,
E[(W)4/2 = E{(G; — &) g}’ + E{(G; — Q) g H(Gi — G)YQ g}
— EI(G, - GG - G)] + BIG Gl
= E[GQ'G)) - GG+ tr({Q ' Elg:Gi]Y)

[11]



The asymptotic variance of 32, 1 /np, will be (using G'Q'G/m — 0),

Ay o=l B0 )] = im {(m/pd)n(n — 1)/2)E[(65)?) fmn?)

= & lim E[()°]/2m = lim {E[GQ7G]+tr({Q Elg,G}]}*)}/m.

The U-statistic term is uncorrelated with the usual GMM term, so by the central limit
theorem, 11 0Q(5y)/08 — N(0, H 4+ A,). It then follows that

(3 = Bo) = N(0,V)),V, = H '+ H'A;H Y,

a result that was previously derived for linear IV by Chao and Swanson (2004).
For the CUE, let B = Q 'E[g;G}] be the coefficients from the population regression
of G; on ¢g; and U; = G; — G — B'g; be the corresponding residual. Assuming we can

differentiate under the integral we have

ON(B) 1/ = = O0(Bo) /OB = —BQT — QLB

Then differentiating the CUE objective function with Q(5)~!/n replacing Q(8) ! we have

0008 = i {010 B2 a(B0)] /08 + D15'50) ™ 51/08) 2n
*l{ag““) Q1 - B g} /n

= g/n1/2+z¢”/nun+ZUQ gl/nﬂna

]<z

vy o= U/Qlg + U g

v

By the law of large numbers, ", U/Q g, /nu, —~ 0. Also note that F[(¢); )22 =
E[U!Q71U;]. Tt then follows similarly to the jackknife GMM that u/20Q(53,)/08 —=
N(0,H + A*), A* = klim,, ., E[U/Q7'U;]/m. Then it follows that

(B = Bo) — N(0,V),V = H™ + H'A*H .

We now show that the CUE is asymptotically efficient relative to the jackknife GMM,
i.e. that V' < Vj in the positive semidefinite sense. Let Ay; = ¢5BQ g, + ¢;BQ'g;.
Note that by E[Ug;] = E[U;g;] = 0 we have

5= 05 + Aij, Bl Ay =0,

[12]



It follows that F|( ZJ])Q] = E[(w;‘j)z] + E[(A;)?] > E[(w;‘j)z], so that
A= /{mli_r>nooE[(¢;"j)2]/2m <k lim E[( 7)%/2m = A,
Thus we have
V=H'+HWH'<H'4+HWH''=V,

showing the asymptotic relative efficiency of CUE.
The linear model provides an example of the asymptotic variance. Continuing to

assume that 3 is a scalar, we have
= —Q 'E[zdzie) = —Q  Elziznged),
UZ' = —z;x; + E[ZZJIZ] — B/Ziéi = —ZiTZ' + E[ZZTZ] + Uy, Uy = — 237 — B/Ziéi.
Then we have,
Under many weak instruments Y; is small, so that
A= /@mlimooE[u;Q_lui]/m.
For instance, in the homoskedastic case where E[e?|z] = o2, Elnn|2] = 5, Elen|z] = oy,
we have u; = —z;(n) — 0,,.€;/02), so that
Blufr u]/m = E[(n; — oyeei/02) (i — oyeei/02) 207 2] /m
= (B = 09e0yc/02) Elzi(02) " 2] fm

= (8, — ‘7776‘7;75/‘752)/‘73-

Then, assuming 7/, 7,,,n/u? — A for a nonsingular matrix A, the asymptotic variance

matrix for pu, (3 — Bo) will be
V=02A""+ ko2 ATN(S, — oye0) J02) AT

This variance for the CUE is identical to the asymptotic variance of LIML under many

weak instrument asymptotics calculated by Stock and Yogo (2005). Thus we find that in
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the linear homoskedastic model the CUE and LIML have the same asymptotic variance
under many weak moment asymptotics. As shown by Hansen, Hausman, and Newey

(2005), the Bekker (1994) standard errors are consistent under many weak instruments,

2

nV will have the same limit as the Bekker standard errors in a homoskedastic

so that u
linear model. Since ,u,%V will also be consistent with heteroskedasticity, one can think of 1%
as an extension of the Bekker (1994) variance estimator to GEL with heteroskedasticity.

It is interesting to compare the asymptotic variance V' of the CUE with the usual as-
ymptotic variance formula H~' for GMM. When x = lim(m/u2) = 0 or dg:(8)/08
is constant V' = H~! but otherwise the variance here is larger than the standard
formula. For further comparison we consider a corresponding variance approximation
V, for f for a sample size of size n. Replacing H with (n/p2)G’Q'G and A* by
A, = (m/p?)E|UQU;)/m, and dividing by pu? (the square of the convergence rate)

gives the variance approximation for sample size n of

Vo = (G'Q'Gn/pd)  pl + (G Gn/pl) M (G'Q G i)
— (G'QG) Y n + %(G’Q‘lG)‘l(E[U{Q‘lUi] Im)(G'Q1G) " /.
The usual variance approximation for B is (G’Y71G) 7! /n. The approximate variance V;,
includes an additional term which can be important in practice. When Var(Q~20g;(3,)/08) >>
G'QY7'G, as seems descriptive of many IV settings, E[U/Q1U;]/m may be very large rel-
ative to G'QQ71G, leading to the additional term being important, even when m/n is
small.
It is interesting to note that the usual term is divided by n and the additional term

by n?

. In asymptotic theory with fixed m this makes the additional term a ”higher-
order” variance term. Indeed, by inspection of Donald and Newey (2003), one can see
that the additional term corresponds to a higher order variance term involving sample
variability of the Jacobian. There are also additional higher order terms that come from
the estimation of the weight matrix, but the Jacobian term dominates as identification

becomes weak. For example, in the linear homoskedastic example suppose that E[e3]z;] =

0 and FEle}|z] = Ele}] and let A, = 7/, Tmn. The higher-order variance approximation

[14]



for GEL from Donald and Newey (2003) is

Vn = 2A 1/n+(m/n) 214 ( 0',750' /U) ’:Ll/n

+(5 = 1) + p3(0)(3 = K)]oZ AL (i Elll 2| *2i2] mn ) Ay /.

The last term corresponds to estimating of the weight matrix and will tend to be small
when 7,,, is small, as it is under the asymptotics we consider. In this sense the many
weak moment asymptotics accounts well for variability of the derivative of the moment
conditions but takes no account of variability of the weight matrix.

For asymptotic normality in the general i.i.d. case we make the following assumption:

Assumption 4: g(z, 3) is twice continuously differentiable in a neighborhood N of (3,
{Elllg:(Bo)lI"] + E[19g:(0)/0B"} (m/n + 1/m/n) — 0, and for all § € N we have
Amax(E[09:(8)/08:{09:(8)/08;Y]) < O, Amax(E[0?9:(8)/08,08:{0%9:(8)/08;08:}]) <

C for a constant C.

This condition imposes a stronger restriction on the growth rate of the number of

moment conditions than was imposed for consistency. If g;;(/5) were uniformly bounded

a sufficient condition would be that m?3/n — 0. Let A7(8) = 37,{0¢:(8)/98;}9:(B)
and A7(B3) = E[{0g:(8)/08;}9:(8)"].

Assumption 5: For all 3 on a neighborhood N of /3 i) each of supsc v [|G(8)|/(1ny/n),
subgen 109(8)/0B51l/ (av/n), and supsey [1029(8) /08,08l / (1ny/n) are bounded in prob-
ability; if) cach of E[|g:(8)|1)/n, E[|0g:(8)/06;1%1/n, E1I55:(8)/08;064]1") fm comverge
to zero; iii) supge y [[n A (8) = A (B)|| = 0, supjey |0~ 0*U(B) /05,05 —0*B)/08;084]| -
0.

Let Q(8) = §(8)UB)3(8)/2nu2, DI(B) = [03(8)/08; — AT (BYUB)3(B)]) [/,
and D(8) = [DY(B), ..., D?(B)].

Assumption 6: 02Q(3)/90603" and D(B)'Q(B)"1D(3) are stochastically equicontinu-

ous.

[15]



Under these and other regularity conditions we can show that B is asymptotically

normal and that the variance estimator is consistent. Let B/ = Q7 1E[g;09;(5) /85}],
U/ = 09:(50)/08; — E[0g:(50)/05;] = BY'g;, and U; = [U}, ..., U7].

THEOREM 3: If Assumptions 1, 2, and 4-6 are satisfied and E[U/Q7U;]/u2 — A*
then for V.= H '+ H'A*H!

1 (B = Bo) = N(0,V), 12V 2 V.

This result specializes to the linear model under previous conditions and a slight

strengthening of rate condition for the instruments.

THEOREM 4: If Assumptions 1 1), i), and 3 are satisfied, E[U/QU;|/u2 — A*,
and E|[(/z;)*lm/n — 0 then

pn(B = Bo) 5 N(0,V), 12V 5 V.,

This limiting distribution can also be derived by a sequential asymptotics calculation
based on Stock and Wright (2002). If one takes their limiting distribution of the CUE
under weak identification and lets the number of moment restrictions and the degree of
identification grow at the same rate then one obtains the same limiting distribution as
in Theorem 3.

The last result shows that the Kleibergen (2005) K-statistic has the usual chi-squared

distribution:
THEOREM 5: If Assumptions 1, 2, and 4-6 are satisfied A,, — A* and Sy = B then
T(5) = X*().
5 Monte Carlo Results

We first carry out a Monte Carlo for the linear IV model of equation (2.1) where the

disturbances and instruments have a Gaussian distribution, T; = z/7m. The parameters of

[16]



this experiment are the correlation coefficient p between the structural and reduced form
errors, the concentration parameter E[n’'Z'Zrw|/Var(n), and the number of instruments
m.

The data generating process is given by

yi = zibo+ei

!/
Ty = zZmAn

ei = pnit+y\/1—p*y

CcP

T = —lm,
mn

where ¢, is an m-vector of ones. The concentration parameter in this design is equal
to C'P. We generate samples of size n = 200, with values of C'P equal to 10, 20 or 35;
number of instruments m equal to 3, 10 or 15; values of p equal to 0.3 or 0.5; and 5y = 0.

Table 1 presents the estimation results for 10, 000 Monte Carlo replications. We report
median bias and interquartile range (IQR) of 2SLS, GMM, LIML and CUE. The results
for 2SLS and GMM are as expected. They are upward biased, with the bias increasing
with the number of instruments, the degree of endogeneity and a decreasing concentration
parameter. LIML and CUE are close to being median unbiased, although they display
some small biases, accompanied by large interquartile ranges, when C'P = 10 and the
number of instruments is larger than 3. There is a clear reduction in IQR for LIML and
CUE when both the number of instruments and the concentration parameter increase,
whereas the biases for 2SLS and GMM remain.

Table 2 presents rejection frequencies of Wald tests at 5% nominal level. The esti-
mators and standard errors utilised in the Wald tests are the two-step GMM estimator
with the usual standard errors (GMM2), with the Windmeijer (2005) standard errors
(GMM2C), the continuous updating estimator with the usual standard errors (CUE)
and with the standard errors presented here (CUEC). For purposes of comparison we
also give results for 2SLS and LIML with Bekker (1994) standard errors (LIMLC), and
the Kleibergen test statistic (KST).
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Table 1. Simulation results for linear IV model

CP =10 CP =20 CP =35
Med Bias IQR | Med Bias IQR | Med Bias IQR

p=0.3

m =3

2SLS 0.0474 0.3891 0.0258 0.2876 0.0145 0.2217
GMM 0.0466 0.3964 0.0248 0.2896 0.0151 0.2242
LIML -0.0017 0.4839 -0.0049 0.3238 -0.0016  0.2356
CUE -0.0055 0.4955 -0.0042 0.3245 -0.0012 0.2392
m = 10

2SLS 0.1438 0.3009 0.0972 0.2449 0.0615 0.1991
GMM2 0.1431 0.3140 0.0990 0.2499 0.0586 0.2066
LIML 0.0076  0.6060 0.0046 0.3725 -0.0034 0.2558
CUE 0.0140 0.6481 0.0041 0.4020 -0.0064 0.2771
m =15

2SLS 0.1792 0.2661 0.1262 0.2267 0.0847 0.1910
GMM2 0.1800 0.2791 0.1249 0.2364 0.0878 0.1986
LIML 0.0207 0.6572 0.0021 0.4111 -0.0021 0.2801
CUE 0.0339 0.7183 0.0044 0.4552 -0.0033 0.3159
p=0.5

m =3

2SLS 0.0970 0.3764 0.0494 0.2793 0.0297 0.2177
GMM 0.0970 0.3786 0.0502 0.2845 0.0308 0.2216
LIML 0.0099 0.4696 0.0011 0.3153 0.0020 0.2365
CUE 0.0092 0.4786 0.0031 0.3238 0.0022 0.2383
m = 10

2SLS 0.2384 0.2786 0.1575 0.2364 0.1062 0.1908
GMM2 0.2386  0.2940 0.1580 0.2446 0.1060 0.1987
LIML 0.0122 0.5680 -0.0001  0.3599 0.0019 0.2518
CUE 0.0226 0.6052 -0.0015 0.3862 0.0039 0.2692
m =15

2SLS 0.2985 0.2475 0.2122 0.2154 0.1458 0.1789
GMM2 0.2994 0.2590 0.2093 0.2222 0.1460 0.1895
LIML 0.0297 0.6335 0.0040 0.3980 -0.0025 0.2759
CUE 0.0384 0.7096 0.0030 0.4348 -0.0029 0.3091

Notes: n = 200; By = 0; 10, 000 replications
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Table 2. Rejection frequencies of Wald tests for linear IV model

p=0.3 p=0.5

CP=10 CP=20 CP=35|CP=10 CP=20 CP =235
m=3
2SLS 0.0448 0.0441 0.0507 0.0836 0.0707 0.0633
GMM 0.0477 0.0472 0.0539 0.0862 0.0761 0.0664
GMMC 0.0471 0.0452 0.0510 0.0805 0.0715 0.0626
LIML 0.0380 0.0388 0.0448 0.0609 0.0521 0.0516
LIMLC 0.0304 0.0334 0.0407 0.0490 0.0457 0.0480
CUE 0.0749 0.0605 0.0620 0.0932 0.0710 0.0639
CUEC 0.0338 0.0359 0.0442 0.0527 0.0475 0.0457
KST 0.0476 0.0448 0.0465 0.0461 0.0479 0.0448
m = 10
2SLS 0.1088 0.0923 0.0739 0.2546 0.1838 0.1393
GMM 0.1357 0.1155 0.0973 0.2806 0.2113 0.1674
GMMC 0.1091 0.0922 0.0757 0.2333 0.1727 0.1315
LIML 0.0770 0.0675 0.0595 0.0998 0.0749 0.0597
LIMLC 0.0344 0.0369 0.0391 0.0536 0.0465 0.0437
CUE 0.3384 0.2293 0.1606 0.3073 0.2104 0.1447
CUEC 0.0542 0.0496 0.0452 0.0773 0.0568 0.0477
KST 0.0371 0.0334 0.0344 0.0375 0.0375 0.0339
m =15
2SLS 0.1654 0.1296 0.1127 0.3993 0.3079 0.2231
GMM 0.2083 0.1732 0.1440 0.4391 0.3473 0.2649
GMMC 0.1565 0.1242 0.1012 0.3608 0.2730 0.1964
LIML 0.1054 0.0865 0.0813 0.1300 0.0894 0.0736
LIMLC 0.0381 0.0391 0.0438 0.0602 0.0495 0.0460
CUE 0.4741 0.3408 0.2516 0.4534 0.3176 0.2322
CUEC 0.0733 0.0621 0.0531 0.0963 0.0697 0.0558
KST 0.0346 0.0330 0.0315 0.0316 0.0328 0.0304

Notes: n = 200; Hy : Sy = 0; 10,000 replications, 5% nominal size
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The LIML Wald test using the Bekker standard errors has rejection frequencies very
close to the nominal size, correcting the usual asymptotic Wald test which is oversized.
Kleibergen’s K-statistic shows a tendency to be undersized with an increasing number
of instruments. The results for the rejection frequencies of the Wald test show that
even with low numbers of instruments the corrected standard errors for the continuous
updating estimator produce large improvements in the accuracy of the approximation.
When the instruments are not too weak, i.e. when C'P = 20 and larger, the observed
rejection frequencies are very close to the nominal size for all values of m, whereas those
based on the usual asymptotic standard errors are much larger than the nominal size.
When we consider the ”diagonal” elements, i.e. increasing the number of instruments
and the concentration parameter at the same time, we see that the CUEC Wald test

performs very well in terms of size.

We next analyze the properties of the CUE using the many weak instrument as-
ymptotics for the estimation of the parameters in a panel data process, generated as in

Windmeijer (2005):

Yie = BoZi + Ui, Uy =1 + Uy
Tig = YTy—1+ i +0.504_1 + i, ~ N (0,1) 64 ~ N (0,1)

Vg = 0 TiWi, Wip ~ <Xf — 1) 0, ~U[0.5,1.5] ;7 =05+0.1(t—1).

Fifty time periods are generated, with 7, = 0.5 fort = —49,...,0 and x; _49 ~ N (1—7’j—7, 17—172),
before the estimation sample is drawn. n = 250, T' =6, 5y = 1 and 10, 000 replications
are drawn. For this data generating process the regressor x;; is correlated with the un-
observed constant heterogeneity term 7; and is predetermined due to its correlation with
vit—1. The idiosyncratic shocks v;; are heteroskedastic over time and at the individual
level, and have a skewed chi-squared distribution. The model parameter [, is estimated

by first-differenced GMM (see Arellano and Bond (1991)). As x; is predetermined the

sequential moment conditions used are

9: (B) = ZjAu; (B),
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where

zia 0 0 0 . 0
7 — 0 =y Tip -+ 0 - 0 |
o 0 0 - xn -+ xT1
Auiy () Ayio — BAT;
Aui (B) = Auz3 (8) _ Ayis —:BA%:&
Auﬂ‘“ (B) Ayir —‘ BAZ;r

This results in a total of 15 moment conditions in this case, but only a maximum of 5
instruments for the cross section in the last time period.

The first two sets of results in Table 3 are the estimation results for values of v = 0.40
and 7 = 0.85 respectively. When v = 0.40 the instruments are relatively strong, but
they are weaker for v = 0.85. The reported empirical concentration parameter is an
object corresponding to the reduced form of this panel data model and is equal to 261
when v = 0.4 and 35 when v = 0.85. This is estimated simply from the linear reduced
form estimated by OLS and ignores serial correlation and heteroskedasticity over time.
This CP is therefore only indicative and does not play the same role as in the linear
homoskedastic IV model. Median bias and interquartile range (IQR) are reported for the
standard linear one-step and two-step GMM estimators and the CUE. When v = 0.40,
median biases are negligible for both GMM and CUE, with comparable interquartile
ranges. When v = 0.85 and the instruments are weaker, the linear GMM estimators are
downward biased, whereas the CUE is median unbiased but exhibits a larger interquartile

range than the linear GMM estimators.

Table 3. Simulation results for panel data model, N = 250, T' =6
v=040 (CP=261) v=0.85(CP=35 ~v=0.85(CP=054)
Med Bias IQR Med Bias IQR Med Bias IQR

GMM1 -0.0087 0.0784 -0.0689 0.2059 -0.0842  0.1780
GMM2 -0.0056 0.0714 -0.0508 0.1896 -0.0565  0.1617
CUE -0.0001 0.0740 0.0000 0.2557 0.0000 0.2186
Instr: Tit—1, -+, Lil Tit—1, -+, Li1 Lit—1y -+, Ti1; Yit—2, --Yi1




Figures 1 and 2 present p-value plots for the Wald tests for the hypothesis Hy : g = 1,
based on one-step GMM estimates (Wgarar ), on two-step GMM estimates (Wgarare), on
the Windmeijer (2005) corrected two-step Wald (Wgaraee), on the continuously updated
Wald test using the conventional asymptotic variance (Wepg) and on the continuously
updated Wald test using the variance estimate V described in Section 2, Wevgc. Further
displayed is the p-value plot for Kleibergen’s (2005) K statistic. It is clear that the usual
asymptotic variance estimate for the CUE is too small, especially when v = 0.85. This
problem is similar to that of the linear two-step GMM estimator, leading to rejection
frequencies that are much larger than the nominal size. In contrast, use of the variance
estimator under many weak instrument asymptotics leads to rejection frequencies that
are very close to the nominal size.

The third set of results presented in Table 3 is for the design with v = 0.85, but
with lags of the dependent variable y;; included as sequential instruments (y;¢—2, ..., Y1)
additional to the sequential lags of x;;. As there is feedback from y;_1 to x;; and x; is
correlated with 7; the lagged values of y;; could improve the strength of the instrument
set. The total number of instruments increases to 25, with a maximum of 11 for the
cross section in the final period. The empirical concentration parameter increases from
35 to 54. The GMM estimators are slightly more downward biased, especially GMMI1,
when the extra instruments are included. The CUE is still median unbiased and its
IQR has decreased by 15%. As the p-value plot in Figure 3 shows, use of the proposed
variance estimator results in rejection frequencies that are virtually equal to the nominal
size. Although Wgararec had good size properties when using the smaller instrument set,
use of the additional instruments leads to rejection frequencies that are larger than the

nominal size.
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6 Conclusion

We have given an asymptotic approximation for generalized empirical likelihood estima-
tors that accounts for many weak moment conditions by adding a term to the variance,
and have suggested an estimator for that variance. This approximation is shown to
perform well in a simple linear IV and panel data Monte Carlo.

There are several topics that could be considered in future research. One topic would
be more refined asymptotics where the number of moment conditions m grows slower
than the concentration parameter p?, i.e. where k = lim, _..(m/u2) = 0. Here we
have focused on the case where k > 0, leading to an asymptotic variance that is larger
than the usual one. When x = 0 the asymptotic variance is the same as the usual one,
but the standard errors given here may provide an improvement over the usual standard
errors. Intuitively, if m grows slower than, but close to 2, the standard errors may
still help account for the extra term. Hansen, Hausman, and Newey (2005) have shown
that Bekker (1994) standard errors in a homoskedastic linear model give an improved

approximation if m? grows faster than p2. We expect that this result will also hold here.
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Another interesting topic is the choice of moment conditions under many weak mo-
ment conditions. Donald, Imbens, and Newey (2003) give a criteria for moment choice
for GMM and GEL that is quite complicated. Under many weak moment conditions
this criteria should simplify. It would be useful in practice to have a simple criteria for
choosing the moment conditions.

A third topic for future research is the extension of these results to dependent obser-
vations. It appears that the variance estimator for the CUE would be the same except
that Q would include autocorrelation terms. It should also be possible to obtain sim-
ilar results for GEL estimators based on time smoothed moment conditions, like those

considered in Kitamura and Stutzer (1997).

7 Appendix A: Proofs of Theorems 1 - 5.

Throughout the Appendices, let C' denote a generic positive constant that may be dif-
ferent in different uses. Let CS, M, and T denote the Cauchy-Schwartz, Markov, and
triangle inequalities respectively. Also, let CM denote the conditional Markov inequality
that if E[|A,||B,] = O,(g,) then A, = O,(¢,) and let w.p.a.1 stand for ”with probability
approaching one.”

For the next two results let Y;, Z;, (¢ = 1,...,n) be i.i.d. m x 1 random vectors with
4th moments, that can depend on n, but where we suppress an n subscript for notational
convenience. Also, let

Y = 3 Vi/ny = BIY], Sy = EYY], Sy = E[ViZ]
i=1
and define the corresponding object with Z in place of Y.

LEMMA AL If Anax(AA4) < O Apax(A'4) < O, A Ery) < €, Aman(S22) < €,

E[(Y]Y:)?]/nm < C, E((Z;Z;)*] /nm < C, npy py /m < C, mpilypuz/m < C, then

nY'AZ[m = tr (ASy ) /m+nuy Apz/m + Op(1/y/m +1/n).

[25]



Proof: Let W; = AZ;. Then AYY, , = Xy, Az = uw,

)\ma)((E[WiWi/]) = )‘max(AEZZA/) S C)‘maX(AA/) S C
E[(W/W))*]/nm = E[(Z;A'AZ;)*]/nm < C.

Thus the hypotheses and conclusion are satisfied with W in place of Z and A = I.
Therefore, it suffices to show the result with A = 1.
Note that

E((Y]Z)"] < CE[Y/Y)| + CE(Z{Z:)*] < Cmn,
ElY/Z;Z}Y] = E[Y/Sz2Yi] < CE[Y}Y] = Ctr(Syy) < Cm,

J

|EY!ZYjZ| < C(EY/Z;Z;Yi] + E[Y;Z,Z}Y}]) < Cm.

For the moment suppose p, = p, = 0. Let W,, = nY'Z/m. Then E[W,] = tr (3 ,) /m

and
EW? = E Z Y!ZY} Zy/nP*m?| = E [(Y;’Zl-)ﬂ Jnm? + (1 — 1/n){E[W,)?
irjiky
+E[;/;’Zj}/;/2i]/m2 + EM’ZJ-Z;Y;]/m2} = E[W,]*> + O(1/m),
so that by M,

W, = tr (Zy4) /m + Oy(1/v/m).
In general, when py or pz are nonzero, note that E[{(Y; —puy)'(Yi—puy)}?] < CE[(Y!Y;)?]

and Apax(Var(Y;)) < Amax(Zyy), so the hypotheses are satisfied with Y; — uy replacing
Y; and Z; — uz replacing Y; and Z; respectively. Also,

Wo=n (Y = py) (Z = pz)/m +npe(Z = pz) fm +n(Y — py) pz/m + nﬂ&ﬂz/g- |
1

Note that
_ 2
E {{W;(z - uz)/m} } =y (S22 — pzpy)py /m* < nphSzzpy /m* < C/m.

so by M, the second and third terms in eq. (7.1) (with Y and Z interchanged) are
O,(1/y/m). Also, tr(uzpy)/m = n~ (nusyuz/m) = O(1/n). Applying the result for the
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zero mean case then gives

Wo = tr(Syy — pzpy)/m +nplypz/m+ Op(1/v/m)

= tr(Xy,)/m+nuyuz/m~+ Oy(1/v/m+1/n),Q.E.D..

For the next result, let X; denote a scalar random variable where we also suppress
dependence on n, let ¥ = X, Yyy +3%,, and let Az = Anax(Z22) and Ay = Apax(Zyy ).
LEMMA A2: IfE[X;] =0, E[Z] = E[Y;] =0, Xzz and Syy exist, nE[X?] — A,
nE[X} — 0, n?2tr(V) — A, mn* %)% — 0, and n*FE [|Y1’ZQ|4} — 0, then
S X+ > 2y, - N0, A+ A)
i=1 i#j

Proof: Let w; = (X;,Y;, Z;) and for any j < i, vy = Z]Y; + Z}Y;. Note that

E[wij\wi,l,...,wl] = O,
E[}] = E[(Z)Y;)+ (Z)Y;)* +2ZY;ZY;] = 2tr(V).

We have
ZXi +3°ZY; = (Xi+ Bin) + X1, Bin = >_ i

i=1 i#£j i=2 j<i
Note that E[X?] = (nE[X?])/n — 0, so X; - 0 by M. Also, E[X;By] =
E [XZ- dj<i %’j} =0 and

E[B| =E |

7,k<i

Z %’j%’k] = (i— 1)E[¢12J] =2(i — 1) tr(V¥).
Therefore
Sp = Zn:E[(XZ + Bm)2] =(n— 1)E[X,2] + 22(1 — 1) tr(P)

=2 1=2

S lnE[Xf] + ( >n2tr(\If) — A+ A"

n

TLQ—TL

n2

Next, for k # i and k # j define
©ij = Elbrithrs|wi, wy] = Y/ S z2Y; + Zi%yy Z; + Zi%y Y + ZJ/‘EYZY;-
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Let S\Z = )\max<zzz) and j\y = )\max(zyy) Note that

E[(Y/S22Y))?] = E[Y!S25vyY22Yi] < AWEY!SY2S 5,502V < A AZE[Y/S24Y))
< A AZEYYI] <mAL A
Similarly, E[(Z!Syy Z;)?] < mA2)%. We also have, by I, < AzX,, and Sy z3,,Y 7y <

ZYYa

E[(Z!Sy2Y;)?] = ElZSvzYvyYavZi| < WE[Z Xy 2Y2v Zi) < WAz E|Z Sy 255, Y 2v Zi)

Therefore, it follows that E[y?] < CmA¥ A%, so that
Elpj]/ElW3)? = Elgi)/[4tr(9)°] < Cmn* Ay N — 0.

It then follows as in the proof of Theorem 1 of Hall (1984) that

n

> (BB | wiy,..own| — E[BL]) 0.

=2

Note also that E[X?| = E[X? | w;_1, ..., w;] and that

n

> E[XiBin|wi 1, ywn] = iZE[ X; (205 + ZYi) | wir, oo

=2 1=2 j<1
= SHEXZ) | Y | + EXY) S 7
1=2 7<i j<l

_ n—1
= Zn—zY—i—EXY Zn—z
=1 =1
Therefore

E

n 2
(Z E[XiBin‘wi—la ey wl])

=2

< C(E[X;Y/|Sz2E[Y: X)) + E[X:Z|Syy E[Z:X,]) nf(n — )2

=1

< O AE[X?Y] < Chydgn® = Clmn*X2A2)Y2 /ml/? — 0.

Then by M, we have

n

ZE[XZBML | Wi—1, ...,U)l] & 0.

1=2
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By T' it then follows that

n

Z{E [(Xz + Bm)2 | Wi—1y nny wl} - F {(XZ + Bm)ﬂ}

=2
— i (B B | wi1,wn| — E[B}]) +2 iE[XiBm | Wi, ..y wy] 5 0
=2 =2

Next, note that
B[] EWE? < Cn'E [ Z%l"] / [2? e ()] — o,

It then follows as in the proof of Theorem 1 of Hall (1984) that Y7, E[B}] — 0.
Therefore, by T,

iEMﬂBMﬂg%ﬂﬁHCiﬂ%kw,

i=2 i=1
so that, as in Hall (1984), for any € > 0

S E[(Xi+ Bin)? 1(|Xi + Bun| > £5,)] — 0.
=2

The conclusion then follows from the martingale central limit theorem applied to >, (X;+

Bi,). Q.E.D.

Let Q(8) = §(8)'2(8)~'§(8) /nu;, and Q(B) = ng(B8)'UB) " g(8)/uy, +m/ .
LEMMA A3: If Assumption 2 is satisfied then supgcp 1Q(B) — Q(B)] == 0.

Proof: Since Q(f8) and Q(j3) are stochastically equicontinuous by Assumption 2, it
suffices by Newey (1991, Theorem 2.1) to show that Q(8) - Q(f) for each 5. Ap-
ply Lemma Al with Y; = Z; = m'?g;(8)/pun, and A = Q(B)~'. By Assumption 2,
Amax(A'A) = Anax(AA) = Anax(Q2(B)72) < C, Amax(Byy) = (m/117) Amax(2(B)) < C,
E((YY)2)frnm = mE[{g:(8) 9:(8)}2)frid < C. and mphppy fm < Crig(BYB)19(5) 122
CQ(B) < C where the last inequality follows by equicontinuity of Q(3) (which implies
Q(3) is uniformly bounded on the compact set B). Thus, the hypotheses of Lemma Al
are satisfied. Note that AY}, = AY,z; = AYyy = ml,,/u2, so by the conclusion of
Lemma Al

Q(B) = tr(Ln)/ iy +ng(B)QUB)9(8)/ 1, + 0p(1) = Q(B) + 0p(1).
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Q.E.D.

Proof of Theorem 1: We first will show that sup ‘2@ )/ 2 — (6)‘ 250. By T,
BeB

Lemma A3, equicontinuity of Q(3) and B compact, we have SUPgep 1Q(3 )| = Op(1). Let
a(B) = Q(B)14(8)/pn\/n. By Assumption 2,

la(B)I1* = (8 B)2B) " B) " 24(8)/nps; < CQ(B),
so that supgcp [|a(B)]] = Op(1). Also, we have

Aanin(2(B) /1) = Amin(QB))| < sup |2(B)/n = Q(B)|| = 0,

BeB

so that Amm(Q(8)/n) > C, and hence Amax((Q(B)/n)"1) < C for all § € B, w.p.a.l.

Therefore,

2Q(8)/uy — Q)] <

a(B)' [Q(B) — <>}a<6>\
+a(sy [2(8) - aB)] (B [ Q(8)] a(8)|
a(8) I (3) - 2(8)| 2s)[)

IN

It then follows by Assumption 2 that supgcp ‘2@(5)/u% — Q(ﬁ)‘ 2.0. Then Zlelg )2@(6)/;& -

0 by T and Lemma A3. The conclusion then follows by standard results. Q.E.D.

LEMMA A4: If Assumption 3 is satisfied then E|(y; — x.3)%|z;, Ti] > C. Also, for
Xi = (yi,27)', Bl XYz, 7] < C.

Proof: Note that for § = 5y — 5 we have y; — zi8 = &; + 16 + Y., so that
El(ys — 2i8)%|2:, Ti] = El(i +16)% |20, Ti] = (1,6")2i(1,6") > Ain (B) (1 + 6'8) > C,

giving the first conclusion. Also, E[||z;]|*|z, Ti] < CE[||nil|*|z:, Yi] + CE[||T;||*|2:, Ti] <
C and Ey}z, Y] < CE[||z:||*|| 8ol 2, Ti] + Elet|zi, Yi] < O, giving the second conclu-
sion. Q.E.D.

LEMMA Ab: If Assumption 3 is satisfied then there is a constant C such that for
every 3 and m, C7'I, < Q(B) < Cl,,.

[30]
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Proof: By Lemma A4 C~! < E[(y; — 2}8)?z:] < C, so that the conclusion follows by
I, = E[z2]] and Q(B) = Elziz/E|(y; — .8)%|z]]. Q.E.D.

LEMMA AG6: If Assumptions 1 i), ii), and 3 are satisfied then Assumption 1 iii) is
satisfied.

Proof: By Assumption 3 and Lemma A5, \puin(G'G) > CAuin(G'Q7'G) for large
enough n. Then 1by Lemma A5 and Assumption 1 ii),

ng(B)QUB)G(B) /1 = (B Bo)[nG'QUB) G /u2)(8 — Bo)
> C(8 - Bo) (nG'G/u2)(B — Bo) > C'||B = Bol*.Q.E.D.

LEMMA AT: If Assumptions 1 and 3 are satisfied then there is M = O,(1) with
i)109(8)/9B|l = O(pn//n), ii) [n~109(8) /08 — 9g(8) /9B = Op(ptn/ /), iii) supse [|9(B)|| =
Oin/ /1), 1) supsep 19(8)/nll = Oplpn/v/n), v)uz'Vallg(B) — g(B)|| < €15 - B,

vi) iy 'n 2| §(8) — §(B)I| < MI|B - B

Proof: Note first that 9g(8) /98 = —E[2;Y}] = G, so i) follows by G'G < CG'Q7'G =

O(p2/n). Also, we have

(n/p2)E /n = Elzjzmmnl/p; < CE[zlz)/p: = Cm/u2,

| < BT/ < (Bl(212)%)/n) 2 in BT/, } 72

ZZZT’/TL Bz

(n/p2)E

Therefore by M and T we have

|n"'043(8)/08 — 09(8) /08| < |3 zini/n| + Op(tn/ V),

Ti/n — Bl T =
=1

giving ii). For iii), note that by 5 in a compact set,

9B = 1109(8)/0B(8 — Bo)ll < C(pn/Vr)IB = Boll < Cpn/ /.

For iv), note that by T, i), and ii), and ||g(50)/n|| = O,(un/+/n) we have
sup 19(8)/nll = sup In~"[09(8)/9B1(B — Bo)ll + 1§(Bo)/nll = Oplpn/v/n).
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Finally, v) follows by i) and CS and vi) by i), ii), CS, and T. Q.E.D.
LEMMA A8: If Assumption 3 is satisfied, then supgep 1Q23)/n — Q(B)| 2 0,
sup [|n~"06(8)/08;~00(8) /08| == 0, sup In~"7(8) /98,08~ 0"UB)/08;05l| = 0.
€

Proof: Let X; = (y;,2}) and a = (1, —f3), so that y; — 28 = X/«. Note that

. p+l . n
7,k=1 i=1

Then E[X7 X7 |z] < C by Lemma A4 so that

A

Bl| |1 < CEI(zz)? BIX2 X2z /n < CE(z}2)%)/n — .

The conclusion then follows by B bounded and by the fact that Q( B)—Q(pB) is a quadratic
function of 3. Q.E.D.

LEMMA A9: If Assumption 8 is satisfied, then

a'QB) — Bl < Clalllpllls - Bl
|a'[09(5) /0516 — a'[0(5) /08,16l < CllallllBlll 5 — 5]l

Proof: Let 3; = E[X;X]|z;, T;], which is bounded. Then by o = (1, —0) bounded on
B we have |@'Y;6 — /Y| < C HB — BH Also, E[(d'z)?| = d'E[z2!]a = ||a||*. Therefore,

|d'QB)b — d'QB)| = | Bl(a'2) (V') B[(X[a)® — (X[a)?|z]]]
< Blla'zi] [Vl [6'Sid — o'Sial] < CB(a'2)*) 2 B[(0')*]V2)15 — 81l < Cllalll[bll|5 — B]-

We also have

|a'0Q5) /0836 — d'0B) /0B;8] = |2B((a’2:) (V' 2:) Elaiy X (@ — a)|2]]|
< Clalllollls = Bl < CElla’zi| V2] Ellzy || Xilll=:)I15 — 81l < Cllallloll|1 - 81|.Q-E.D.

Proof of Theorem 2: By Lemma A5, A\p,in(Q2(38)) > C. Also, by Lemma A4,

E[{g:(8) 9:(8)}*]/n = El(#2)*El(y: — 2i8)*|zll/n < CE[(#j2:)*]/n — 0.
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Lemma A8 gives supse | Q2(3)/n — Q(B)|| - 0. Let a(B, 8) = Q(8)"1g(8)v/n/ptn and
Q(B, ) = (n/u2)g(BY(B)~'5(B). By Lemmas A5 and A7, sup, 5. [a(8, B)|| < C. Let
Then by Lemma A9,

Q(B,5) = QB B)| = |a(B, B) [28) — B a(8,8)/2| < C' |3 - 8.

Also, by T and Lemma A7,

Q.5 - Q®)| < cwf2)|ad) g + 1)l ||ad) - a3)|)

< ol

IN

Then by T it follows that )Q(ﬁ) — Q(B)‘ <C|p - ﬁ’
An analogous argument with a(3, 3) = Q(8) ™' 3(8)/v/nm and Q(3, B) = §(B)'Q(B) " 4(B) /np?
replacing a(8, 3) and Q(8, 3) respectively implies that )Q(BN) — Q(ﬁ)‘ <M HB — B' , with
M = 0,(1), giving stochastic equicontinuity of Q(f). Thus, all the hypotheses of Assump-

, implying equicontinuity of Q(f3).

tion 2 are satisfied. Assumption 1 iii) follows by Lemma A6. Thus, all the hypotheses of
Theorem 1 are satisfied. The conclusion then follows by Theorem 1. Q.E.D.

For the next results g; = g:(8o), g = 9gi(50)/0Bk, @ = Q(Bo)/n, A¥ = X1, gigl /n,
AF = BLA¥), B* = 0-1AF, and BY = Q1A%
LEMMA A10: If Assumption 5 is satisfied then

Vml|Q = Q| = 0,v/m[| A — A¥|| 5 0, /m|| B¥ — B¥|| - 0.
Proof: By standard arguments and Assumption 5,
E[m||Q = Q|) < CmE[||gi||*]/n — 0, E[m||A* — A*|*] < CmE[||gf[1*|¢:l*] /n — 0,

so the first conclusion holds by M. Also, note that A¥A¥ < CA*Q~tA¥ < CE[gFg¥] and
Amin(©) > C w.p.a.1. Also, B¥B¥ < CAFAM < CE[gFgt]. Then

Vm||B* = B < /ml|(A" — AMQT| + V/m| BF(Q - )07
< Ovml||AF — A¥|| + Cvm||Q - Q|| 25 0.Q.E.D.

LEMMA A11: If Assumption 5 is satisfied then,
1t 0Q(B0) /08 =5 N(0, H + A¥).
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Proof: Let § = §(fo), G* = 03(50) /0B, G* = E[0gi(5%)/0p], and U* = GF—nGF—BV§.
Note that ndQ(Be) ™' /0y = —B¥Q~' — Q' B¥ . Therefore,

oo (Bo) = 07l (GO — g BRT ) = 4N (GMQT g + UM g /)

= PGP+ R UM QT G /.

Let U* = G*¥—nG*—B"§. Note that ||§]|>/n = O,(m) by M and that . (B*Q1Q1B¥) <
C. By Lemma A10 we have
VE|(OP — 0 ’“’Q‘l)ﬁ/n\/ﬁl
C1g'(B* = BNQ g /ny/m| + | B*QH(Q — 0)Q 7 g /nv/m)
< Cn Y gIPIIB* — B|/v/m + Cn’lllﬁ/BkQAIIII@IIIIQ = Q|l/Vm < Oy(m)oy(1/v/m)//m == 0.

IN

Similarly we have u'GMQ 1§ — - 'GMQ 1§ <5 0. Therefore, we have

—— (o) = " GFQ G+ /UM g /ny/m+ 0, (1).
Let U = [U), ..., U, . Then stacking over k gives

T 1(5’965 (Bo) = 1, GG + /R U'Q g /n/m + 0,(1). (7.2)

Next, let UF = g — G¥ — B¥g; and U; = [U},...,U"], so that U = Y™, U;. For any
vector A with [[A|| = 1 let X; = pu, ' NG'Q7tg;, Y = Q7 V2¢;, Z; = /R, YV2U N ny/m,
and A = NH\. Note that E[ZY;] = 0 and

E(Y; 2] < CE[|g;2 "0\ )/nm < (Blllga ') + Ellganl|*]) frn — o.

Then Y7, Z!Y; -2 0 by M. Then by eq. (7.2),
a n
%(50 ZX + Z ZY; +0,(1) =Y. X, + Y ZIY; + 0,(1).
=1 7,j=1 =1 i#£j
Now apply Lemma A2. Note that Xyy = I,, and Xzy = 0, so that ¥ = Y, =
knQ YV2E[UANU]Q Y2 /n?m. By Assumption 1 and the hypothesis of Theorem 3, we

71)\/

have
nE[X?] = (n/p2)NG'Q'GN — NHX = A,
n*tr(V) = n*E[ZZ] = kN E[UQTTUINm — kN AN
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Also, note that E[U;U]] < CYE_, Elglgl'] so that
Mmax (X22) < Chnax (1) /mn? < C/mn?.
It then follows that
M * Amax (Syy ) Amax (B22)? < Cmn*/(mn?)? < C/m — 0.
In addition, by Assumption 5 and ||u, /nG'Q7}|| < C we have for gz = 9g:(50)/00,

nE[| X[ )

IN

nE[|u; Vi@ g ') n? < CElg1 ) — o,
4
nE |V %|'] < CE[|giQ 0| )/nm? < CE[l|g || B0 |*)/nm?

< C(Elgl"l/mva)(Ellal’] + Elllgs ")/ (mvn) — 0.

The conclusion then follows by the conclusion of Lemma A2 and the Cramer-Wold device.
Q.E.D.
LEMMA A12: If Assumptions 2 and 4-6 are satisfied then for any B - Bo, 1 202Q(B) /0505 -
H.
Proof: For notational convenience, let §(5) = §(83)/uny/n, drop the 5 argument,
replace Q by p., 2@, QO by Q /n, and let k and ¢ denote derivatives with respect to 3 and
Be, €.g. 8@(5)/8& = Qy and 82Q(ﬁ)/8ﬁkaﬁg = QM. Then differentiating twice we have

Qv = G075 — g0 MO (7.3)

Qre = 3075+ 3.07 g, — 3070 g — 3,070

Note also that for Q = S50, Qre = 0*Q(3)/93r0B, has the same formula as Q.
with Q = Q(3) replacing Q. By Assumption 5 each of 272, Q2. and Q2, have largest

eigenvalue bounded above by a constant. Then by Assumption 7 it follows that

sup
BEN

GO — G707 < sup [|gi] sup |00 — Q71,07 sup 9]
BEN BEN BEN

= 0,(1)0,(1)0,(1) L 0.
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Therefore, we can replace () by €2 in the third term in Qk,g, from eq. (7.3), without
affecting its probability limit. Applying a similar argument to each of the six terms in

the above expression for QM, it follow that for Q = % 7071, by T,

sup
BEN

Qk,é — Qké’ 2 0.

By Assumption 8, Qu(ﬁ) is stochastically equicontinuous, so by 5 —— [y, the previous

equation, and T,

[0105) = Quito] = [003) - Q] + Q) - Gt =0

It therefore suffices to show that Qk,g 2, Hy,, where we now evaluate at [, i.e. QW =
9*Q(Bo)/0Bk0B. Next, note that Q) = QF + Q¥ for Q¥ = E[g;¢”]. Then by standard

properties of the trace of a matrix,
r( Q10710 = tr(Q7TIQOTIOY) + 4 (QTIQ0 IO
= Q71N + (VIO
= tr(Q7'QQTIOM) + tr(QYQTIOMQTY) = (OO,
Therefore, it follows by Lemma A1 that
—3 07105 — 0 0 g+ OO0 g
= —tr(Q'QQTIOR) /u2 — tr(Q Q0N /2
+tr(Q7 QT U0 TIQ) /12 + 0,(1) 5 0.

It also follows similarly that for Q* = E[g;gk] and Q¢ = E[gFg!],
tr(Q7H(QF + QF) = %tr(QIQk,g).
Then by Lemma Al, for g = u,*v/nE[g:(3)],
507G+ GG~ ST 0
— G+ (O 2 4 (@) [ — (710, 070 2 + 0, (1)
= G0 Q) — () 2+ 0,(1) = 727+ 0y (D).
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By Assumption 1, §,Q7'g, — Hj,. It then follows by T that QM -2, Hyy. The conclu-
sion for the CUE then follows by T and eq. (7.4). Q.E.D.
LEMMA A13: If Assumptions 4-6 are satisfied then D(3)Q'D(3)/u2 - H + A*.
Proof: For the CUE p(v) = v — v%/2 so that M) = Q(B8)'§(8) and pu(B) =
1 — §(B)YQUB)1g;(B). Let Ai(3), Al(B), DI(3), and D(B) be as defined in connection

with Assumptions 5 and 6. For the j™ unit vector e; we have

D(B)e; = 09(8)/08; — A7 (B)UB) " 3(B).

By Assumption 5, supge HAJ (B)/n — Aj(ﬁ)H %, 0. Then it follows similarly to the proof
of Lemma A10 that supge HAJ (B)QUB) T — Aj(B)Q(B)_lH - 0, so that by Assumption
6 i) and CS,

sup [ 59(8) /) -

VBB = ABUS) ™ sup [9(8)/ /]| - 0.

BEN " BeB
By Assumption 6 we also have supge ' D(3 H = O,(1) so that by T and CS,
| DBy D(B) /nuk — D(BYAB) " D(B)| (7.5)

A

D(B) (" —(B) " D(B)

Also, by Assumption 6, D(5)'Q(3)*D(B) — D(8,)’¥*D(8y) - 0. Note that D(j3,) =
', Ui/ iny/1 so that, in the notation of Lemma Al,

DI(Bo)'QID*(By)ex = nY'AZ /m
for A=Q7,Y; = /mU! /i, and Z; = /mU¥ /j1,,. Also note that
tr(ASy 20) fm = E[UTQ R /12— Ny mpty Apuz/m = nGIQGR [ — Hy.
Therefore, it follows from the conclusion of Lemma A1l that
D3 (Bo) Q7 D (Bo) = Ay + Hy + 0,(L).

The conclusion for the CUE now follows by T. Q.E.D.
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Proof of Theorem 3: The result follows from Lemmas A11l, A12, and A13 in the
usual way. Q.E.D.

Proof of Theorem 4: We proceed by verifying all of the hypotheses of Theorem
3. First consider Assumption 4. Note that g(w, ) = z(y — 2'f) is twice continuously

differentiable by inspection. Also, by Lemma A4 and the specified rate condition,
(Ellg:ll"] + Elll0g(wi, 80) /08| ")ym/n < CE[(}z)*Jm/n — 0.
Also by Lemma A4,

Amax (E[0gi(8)/08;{09:(8)/08;}]) = Amax(Elzizix3]) < Amax(CIm) < C,
Amax(E[0i(8)9:(8)]) < Amax(CElgig] + CE[0g:(8)/08;{89:(8)/08;}")
< Maax(CLn) +C < C.

It follows that Assumption 4 is satisfied.

It follows by Lemma A7 that Assumption 5 i) is satisfied. Assumption 5 ii) holds by
FE[(z/2;)?]/n — 0. Assumption 5 iii) holds by Lemma AS.

The proof of Assumption 6 follows similarly to the proof of stochastic equicontinuity

in the proof Q(f3) in the proof of Theorem 2. Q.E.D.

Proof of Theorem 5: It follows from Lemma A13, replacing ﬁ with [y, that

A —

D(BYQUB)*D(B) -2 H + kA*. Also, Lemma A1l gives u-'0Q(3)/08 - N(0, H +

kA*), so the conclusion follows in the usual way. Q.E.D.

8 Appendix B: Asymptotic Theory for GEL.

We give here results for GEL. For the consistency results we make use of the following

condition:

ASSUMPTION 7: i) p(v) is three times continuously differentiable;ii) there is v > 2

such that 0/ (Elsupscsy (B pin/ /i — 0.

The first two results are consistency in the general case and in the linear model.
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THEOREM 6: If Assumptions 1, 2, and 7 are satisfied thenB L By for any GEL

estimator B .

THEOREM T7: If Assumptions 1 i), 1 1), 3, and 7 i) are satisfied and for v > 2 we
have El|ei[?|2] < C, El|lni]|"|z] < C, 0V (E[[|2:)") i/ /1 — 0 then 8~ By for
any GEL estimator B

For the asymptotic normality results we make use of the following condition:

ASSUMPTION 8: For b; = maxgep max{||g;(0)|,109:(8)/0B||} there is v > 2 such
that '/ (E[b]1)"" i /+/n — 0, for di = maxsep max;{||g:(8)| . [99:(8) /98Il , 10°9:(5)/ 0803411},
E[d3]\/m/n — 0.

We now give the asymptotic normality results for the general case and the linear

model, respectively.

THEOREM 8: If Assumptions 1, 2, and /-8 are satisfied, and E[U/Q'U;]/u2 — A*
then for V.= H '+ H'A*H

1 (B = o) =2 N(0,V), 12V 25 V.

This result specializes to the linear model under previous conditions and a slight

strengthening of rate condition for the instruments.

THEOREM 9: If Assumptions 1 i), i), 3, 7 1) are satisfied,and for v > 2 we have
Elleil"|2] < C, Elllni]"|z:] < C, 2" (B[||z:")Y ) /7o — 0, BUIQU /iy, — A,
and E[(zz;)*m/n — 0 then

1 (B = o) =2 N(0,V), 12V 25 V.

Before proving these results we first give two additional Lemmas.

LEMMA Al14: If Assumptions 2 and 7 are satisfied then there is C > 0 such that
w.p.a.1 for all B € B A(B) = argmax, 5 5 Sy p(Ng:(B)) exists, |A(3)| < Cla(8)/nl
and supsep [A(B)| = Oplyin/ V).
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Proof: By Amax((3)) < C we have ||§(8)|* /np2 < CQ(B) and by Lemma A3,
supgep Q(B) = O,(1), s0 by T, supsep [9(8)|" = Op(nr). Let b = Zlelgﬂgi(ﬁ)ﬂ- By

a standard argument, max;<, b; = O,(nY7(E[b]])/7). By Assumption 7 there exists
6, with 0, = o(nfé(E[b?])_l/V) and p,/v/n = 0(0,). Let A, = {\:||\]| <J,} and
S(8,)) = iy p (Ngi(B)) - Note that

" = S(EBY) 2
aea g Ngi(B)] < dnmaxb; = Op(6un (E[b{])7) — 0,

so that A, C A,(f8) for all 8 w.p.a.1. Similarly, by continuity of ps(v) and ps(0) =

—1, supyea, gep.i<n P2(Ngi(B)) < —1/2 w.p.a.l. Since S(B, ) is concave in A, A\(8) =
arg max S(ﬁ, A) exists (for all 3). Also, w.p.a.1,

Auin (UB)/m) = Anin(B)) = [28)/n = 2B)| = € = sup [2(8)/n — 2B | >

Then by a Taylor expansion in A around zero with Lagrange remainder, for p;(v) =

& p(v)/ v

0 = S5(5,0) < 5(8.A(8) = MB)'§( B) [Xor, p2(N(BY 9:(8))g:(8)g:(BY | A(B)
< ABY3(B) = ABYQUBARB) /2 < A(B)3(8) — Cn||A(B \

Y

so that
cn B < ABya) < AB)a) < 3B 133)

Dividing through by Cn HS\(ﬁ)H we find that w.p.a. 1 for all 8
AN < 19(8)/nll < sup I3(B) /n = Oy (n/ V).

By in/v/n = 0(3,) it follows that A(8) € int A, for all 3 w.p.a.1. Then, since a local
maximum of the convex function S(8,\) over an open convex set int(A,) is a global

maximum, it follows that \(3) = 5\(5) w.p.a.l, giving the conclusion. Q.E.D.

LEMMA A15: If Assumptions 1, 2, and 7 are satisfied then for Q*(5) = §(8)'QUB)'4(8)/2,
supgep [Q(B) — Q*(B)] = 0, (k).

[40]



Proof: Expanding around A = 0 gives

Q) = W)’i(ﬁ)—%X(m’fz(ﬁ)&(ﬁ)ww)],
B = —Zps( 8(8) [0:8YAB)] .

where A(5) lies on the line joining A(3) and 0. Similarly to previous arguments there
is C with Amax(Q(8)/n) < C for all § € B w.p.a.l, SUPge B i<n IA(B)g:(8)| - 0, and
SUPge.i<n |A(B) 9i(5)] 0. Therefore, by p3(v) bounded in a neighborhood of v = 0,
It then follows that

rﬁ)\soz”;gxm'&(ﬁ))%n sup A(8) gu(B)AB)[8) /mlA(B) = 0,122).

BEB,i<n

Also, as shown above A(3) € A,, € A(B), so that A\(8) € int A(8) for all § w.p.a.1.. Thus,
w.p.a.1 () satisfies the first-order conditions

0= zm (ABY9:(8)) 9:(8)

Note that max;<, bipin//n —= 0, i.e. max;c,b; = 0p(v/1/tr). Then expand around
A = 0 to obtain

0 = §(8) - QBAB) + R(B) zm (8)) [9:(3/MB)] 9:(5),
[R®)| < CmaxbABYAAAB) < 0(vn /mnopwn/n)—op(mn).

It follows from the last inequality and Amin((3)/n) > C w.p.a.1 that

R(BYQUB) ™ R(B) < Csup [ R(8 )| /n = 0.

Then solving for 5\(5) = Q(ﬁ)*l[g(ﬁ) + }?(ﬁ)] and plugging into the expansion for Q(ﬁ)

gives

QB) = a(B)UB)a(B) + R(B)] — [a(B) + R(B)'QB)[3(B) + R(B)]/2 + #(B)
= Q"(B) — R(BYQB)'R(B)/2+ 7(B).

[41]



It then follows by T that

sup [Q(B) — Q*(8)] < sup R(B)QUB) " R(B)/2 + sup |F(B)] = op(12).Q.E.D.

BEB BeB BeB

Proof of Theorem 6: The conclusion of Lemma A14 shows that the difference of
the CUE and GEL objective functions, divided by 2, converges to zero uniformly in 3.
The remainder of the proof then follows from the proof for the CUE.

Proof of Theorem 7: All of the hypotheses of Theorem 6 are satisfied, so the

conclusion follows by Theorem 6.
Proof of Theorem 8: First, we show that for GEL,
1" 0Q(80) /08~ N(0, H + vA").

Let G, = g¥/n and AF =¥ gig g¥ /n, as before. Also, let A= 5\(60). By the envelope

theorem and an expansion,
aQ / A/ ~5' 3 3 / \/ 17 \2
=2 Xgim(Ng) = nG/ A —nX A5 +7.7 = 3 Nglps (Na1) (Vai) /2

853
O, (1/77’1/71) It

2,0, so that max;<y, )pg (S\’gi) <Cw.p.a. 1l LetG; =
dg:(B0)/083 and b; = max{||Gi| . ||g:||}. As above, b = max;<,, b; = O,(n*(Eb])Y7). Tt
then follows that, by Ayax (Q) = O,(1) and Assumption 8,

where HS\H < HXH By M, ||g]| = O, (v/m), so by Lemma Al4, ’ A

follows as above that max;<,, )5\/ Ji

pt 1] < g C A bn X QX = O, i 20 (B /) £ 0.

It also follows similarly to previous arguments that w.p.a.l )\ satisfies the first-order

conditions
Zpl (5\/%) 9: = 0.
Expanding and solving give Z
A=07'/Vn+ RR=Q7Y ps (Ng)) 9: (Vi) /.

[42]



As previously,
|R]| < CONQX = O, (" (B Ym/n).
Now, plug this expansion for A back in the expression for 8@(60)/ 03; to obtain
2 (Bo) = VRGO G — g AT g R
+u 'nGI'R — i 'nRAR — /R (Aj + Aj’) Q1.
g1 = tr(Elglg!)) < mAnas(Elgll]) < Cm. There-

z]>1/2 /ﬁ) _ Op(m) = O,(in/+/n). We also have

Note that by Assumption 5, E|

G -l =0, ((E Iz
IG?|| = O (ptn/+/n) . Therefore,

fore, '

i G < i (160~ + ) ] = 0,0 ) e 20
Tt also follows that Apax (Aﬂ' + Aﬂ") < C w.p.a.l, so that

i R AR] < i [R] = 0, ({2 (BB m ) n)?) Lo 0.
We also have HQ*lgH = 0, (v/m) , so that by \/m = O(j),

VAR (A + A)) Q71

= 0, (W (EW))"m//n) - 0.

By T' it now follows that

s 1%
The expression between the equality sign and o,(1) is equal to y,, 18@(50) /0p for the
CUE, so the conclusion for a general GEL estimator follows by the conclusion for the
CUE.

Next we show that for any 3 — By, 1,;20%Q(3)/0p83" - H. Tt follows as in
Lemma A14 of Donald, Imbens, and Newey (2003) that ||§ <B> /nH =0, (\/m_/n> Then
by Lemma A14, we have Hj\ (B) H =0, (\/m_/n) . Also, as in the proof of Lemma A14,
w.p.a. 1 A(f) € int (An (6)) for all 3 € B. Therefore w.p.a.1, for all 3 € B, A (f) solves

> (MO () 98 =0

[43]



As above we have

sup max | A(8) g:(8)| = 0,

BEB 1 <n

so that for all HS\H <\ (8) and all 3,

=D (Ng:(8)) g:(B)gi(B) /n > C>_gi(B)gi(B) /n = CUP),

and so w.p.a.l the matrix preceding the inequality is nonsingular. It then follows by the

implicit function theorem that A (3) is differentiable and
8/\ -
86] [ ZIO2 ( )) gz(ﬁ)gi(ﬁ)/] X

> (A®)9(9) )agz + Y (Mo ))gz(ﬁ)a%iéf)lx

To simplify derivations we will henceforth evaluate at 3, unless otherwise notified, and

drop the § argument. Thus, in what follows g; = g; (ﬁ), A=A (ﬁ), etc.  Also,

let superscripts denote derivatives, e.g. so that ¢/ = dg;(3)/ 0p;. Then evaluating the
previous equation at 3 and letting = — > P2 <5\/ gi> g:g./n, we have

N =1 lz {,01 (ng) gl + po ()\ gl) 9:9 )\} /n]
Let O = — S, po <5\’ gi> gig{' /n, where X is somewhere on the line between A and zero,
and where, for notational simplicity, we do not distinguish different such A. Then an
expansion gives
N = [gf - (67 + 07) A

Next, by the envelope theorem it follows that

Mn aQ / /

n 98 ( ) Z'Ol (Agz))\ !/n.

Differentiating again and using the expansion p; (5\’ gi> =14 po (5\’ gi) N gi, We obtain

%%ij = Z[Pl (5\/91‘) (S\k,gf + j\lgzjk) + p2 (5\/5]:‘) Ng] (S\klgi + N )]/ n
= n Z [(1 + p2 (5\/91‘> 5\’9:‘) (S\klgf + j\lgzjkﬂ — AR — NEPFA
A N NI APOIA (@ 4 ) &

[44]



where V% = — % py (Ng:) gigl™ Jn, @F = = Sipa (Nai) glgl /n, &7 = Tigl/n, and
Gk =, go* /n. Substituting the formula for M we obtain
Pagy = 37079 — X (@ + ) Qg + Nt — XYWk 4 N (@F + Q) &
O (@ + OF) QA (@ 1 ) A

Next, a mean value expansion of the first-order conditions for A gives

3 N—1~ A 1 & 3 /

A= g [V, 2 = —— > 2 (Agi) 919

i=1
where § now comes from the result for the CUE. Noting also that ¢/ = gju./v/n
Qi = a7+ 70 g

—FOT (M) Qg - g (Y + Q) Qg

QY+ ) QT (PO Qg

—%ENI,Q_l (F + Q0 + PV + ) O
Comparing with equation (7.3) we can see that this expression is identical to that for the

CUE with €7 4+ Q7' replacing Qj and Q% + Qik 4 QFF 4 QUM replacing Q]k Evaluate
the CUE expressions at the GEL estimator, and note that

HQJ- — (Qj + QJ)H < QZ ‘,02 (5\,91'> + 1‘ lg:ll |l 47| /n

= O, (E lzgg(HQiHQ gl )] M/ﬁ) 50

by CS. It follows similarly that

£50.

bt B [ (8 0 )

Then it follows similarly to the proof for the CUE that one can replace ) there by €
that the difference of the expression for the CUE and for GEL converges in probability

to zero.
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Finally, we prove that D(3)Q'D(5)/u2 - H + xA* for GEL. Like like those in
previous proofs,
D; = Y m(Ng)gl =& =3 pp(Ng)glg/ A = G = HQ4(B),
A= =3 ,a(Ngi)glgifn. Q=37 —pa(Ngi)gigi/n,

where the two A may differ but each lies on the line joining 5\(5) and zero. It follows as

in previous proofs that

| = 4| < A Zsun|at ()] 1l5:8)1)/n = Op(m/nEd]) - 0.

It follows similarly that HQ — QH . 0. Then it follows similarly to eq. (7.5) that
v/ i, times the difference of the expressions of D; for GEL and the CUE converges in
probability to zero. It then follows by arguments similar to those already given that the
w2 times the difference of D'Q'D for the GEL estimator and the CUE converges in

probability to zero. The conclusion then follows by T. Q.E.D.
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