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Abstract

This paper presents a method for estimating a class of panel data duration models,
under which an unknown transformation of the duration variable is linearly related to
the observed explanatory variables and the unobserved heterogeneity (or frailty) with
completely known error distributions. This class of duration models includes a panel
data proportional hazards model with fixed effects. The proposed estimator is shown
to be n1/2-consistent and asymptotically normal with dependent right censoring. The
paper provides some discussions on extending the estimator to the cases of longer panels
and multiple states. Some Monte Carlo studies are carried out to illustrate the finite-
sample performance of the new estimator.
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Estimating Panel Data Duration Models with Censored
Data

1 Introduction

Panel durations consist of multiple, sequentially observed durations of the same kind of

events on each individual. In a large number of applications across different scientific fields,

these panel durations are observed along with possible explanatory variables. Examples

of panel durations include recurrences of a given illness (Wei, Lin, and Weissfeld (1989)),

unemployment spells and job durations (Heckman and Borjas (1980), Topel and Ward

(1992)), birth intervals (Newman and McCullogh (1984)), car insurance claim durations

(Abbring, Chiappori, and Pinquet (2003)) and household inter-purchase times of a give

product (Jain and Vilcassim (1991)). This paper is concerned with estimating a class of

panel data duration models that can be viewed as panel data transformation models.

One econometric model that has been widely used in duration analysis is the mixed

proportional hazards model. This model is often defined in terms of the hazard function

of a positive random variable T (duration variable) conditional on a vector of observed

explanatory variables X (covariates) and an unobserved random variable U (the unobserved

heterogeneity or frailty). One form of this model is

λ(t|x, u) = λ0(t) exp(x′β + u), (1)

where λ(t|x, u) is the hazard that T = t conditional on X = x and U = u, the function λ0 is

the baseline hazard function, and β is the vector of unknown parameters. Here, x′ denotes

the transpose of x.

It is well known (see, for example, Section 4 of Van der Berg, 2001) that the mixed

proportional hazards model (1) can be written as the linear transformation model

log Λ0(T ) = −X ′β − U + ε, (2)

where Λ0(t) ≡
∫ t
0 λ0(u)du is the integrated baseline hazard function, and ε is an unob-

served random variable that is independent of X and U and has the type 1 extreme value

distribution function. The model (2) belongs to a class of linear transformation models

H(T ) = −X ′β − U + ε, (3)
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where H(·) is an unknown strictly increasing function, and ε has a completely specified

distribution function F (·). If F is the type 1 extreme value distribution F (u) = 1−exp(−eu),

model (3) is the mixed proportional hazards model in (2). If F is the logistic distribution

F (u) = eu/(1+eu), model (3) can be called a mixed proportional odds model. For example,

see Cheng, Wei, and Ying (1995) and Horowitz (1996, 1998 Chap. 5) for detailed discussions

of applications of the transformation models.

This paper considers a panel data version of (3):

Hi(Tij) = −X ′
ijβ − Ui + εij , (i = 1, . . . , n, j = 1, . . . , J), (4)

where i denotes an individual and j denotes a duration. For example, Tij denotes the i-th

individual’s j-th duration. It is assumed here that duration variables are successive and

observed sequentially. That is, Ti1 is followed by Ti2, which is followed by Ti3, and so on.

The observed covariates Xij are assumed to be constant within each spell but vary over

spells, whereas the unobserved heterogeneity Ui is assumed to be identical over spells. Thus,

Ui represents unobserved, permanent attributes of the i-th individual. Covariates that are

constant over spells are not included explicitly. They can be included in Ui, and their β

coefficients are not identified. We allow Ui to be arbitrarily correlated with Xij and do

not impose any distributional assumptions on Ui, and therefore, Ui is a fixed effect. Panel

data structure allows unobserved heterogeneity to have a very general form, compared to

unobserved heterogeneity in the single-spell duration models (e.g., Murphy, 1995).

It is also assumed that the unknown link function Hi(·) is strictly increasing but can be

different across individuals. Therefore, the model (4) allows for unobserved heterogeneity

in the shape of the link function as well. Finally, it is assumed that εij are independent of

Xij and independently and identically distributed (i.i.d.) across individuals and durations

with a completely specified distribution. As in the cross-sectional transformation model

(3), model (4) includes a panel data mixed proportional hazards model as a special case.

The focus of this paper is on estimating β in (4) when Tij is censored.1 It is well known

(see, e.g., Kalbfleisch and Prentice (1980, 8.1.2), Chamberlain (1985), Ridder and Tunalı

(1999), and Lancaster (2000)) that β can be estimated by a “stratified” partial likelihood

approach when Tij is uncensored or independently censored and F (u) = 1 − exp(−eu).
1In this paper, we regard β as parameters of interest while we treat Hi nuisance parameters. To give a

specific example where β is of interest, consider a recent empirical work by Abbring, Chiappori, and Pinquet
(2003). They test for moral hazard by checking whether car insurance claim intensities show negative
occurrence dependence. This can be modelled semiparametrically in our setup by using dummy variables
for panel durations of claims as part of X. A very general form of individual heterogeneity can be allowed
by not specifying Hi.
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The usefulness of the stratified partial likelihood approach for panel duration data would

be limited since dependent right censoring is almost inevitable in the analysis of panel

duration data. The standard independent censoring assumption is likely to be violated if

panel durations Tij are correlated. For example, see Visser (1996), Wang and Wells (1998),

and Lin, Sun, and Ying (1999) for discussions of the dependent censoring problem in terms

of estimating survivor functions without covariates.

The contribution of this paper is on developing an estimator of β when Tij is dependently

censored and F is known, not necessarily the type 1 extreme value distribution. Therefore,

this paper extends the transformation regression approach of Cheng, Wei, and Ying (1995)

to panel duration data and provides alternatives to the marginal regression approach of

Wei, Lin, and Weissfeld (1989). In a related paper, Horowitz and Lee (2004) developed an

estimator of β (among other things) when Tij is dependently censored, Hi(·) is the same

across individuals, and F (u) = 1 − exp(−eu). The proposed estimator in this paper is

based on a simple idea that the effect of censoring can be taken into account by using some

proper weights. The use of weighting is widespread in many contexts, and there are many

estimators based on weighting to deal with censoring. See for example, Koul, Susarla, and

Van Ryzin (1981) and Cheng, Wei, and Ying (1995) among many others.2

The paper is organized as follows. The next section describes the duration model and

gives an informal description of the estimator of β. Asymptotic properties of the proposed

estimator are given in Section 3. Extensions are discussed in Section 4. Section 5 presents

results of some Monte Carlo studies. Concluding remarks are in Section 6. The proof of

the main theorem is in Appendix.

2 Estimation of the Panel Data Duration Model

It is useful to begin with a description of the censoring mechanism. It is assumed in this

section that the number of durations J = 2. Let T1 and T2 be the duration variables of two

consecutive and adjacent events. For J = 2, the model (4) has the form

H(T1) = −X ′
1β − U + ε1 and H(T2) = −X ′

2β − U + ε2. (5)

Censoring is an inevitable part of modelling in duration analysis. To describe a censoring

mechanism for successive durations T1 and T2, we assume that T1 and T2 are observed
2See equations (3.51) and (3.52) of Powell (1994, p.2505) for a concise explanation of the idea behind the

estimator of Koul, Susarla, and Van Ryzin (1981).
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consecutively over a time period C, where C is random with an unknown probability distri-

bution. As discussed in Visser (1996) and Wang and Wells (1998), there are three possible

cases:

(1) if C ≥ T1 + T2, both T1 and T2 are uncensored;

(2) if T1 ≤ C < T1 + T2, T1 is uncensored but T2 is censored;

(3) if C < T1, T1 is censored and T2 is unobserved.

Notice that T1 is censored by C1 ≡ C and that T2 is censored by C2 ≡ (C1 − T1)1(T1 ≤
C1), where 1(·) is the usual indicator function. Under this censoring mechanism, C2 is

correlated with T2 because T1 and T2 are correlated by unobserved heterogeneity. This

indicates that it would be quite difficult to estimate a (cross-sectional) duration model for

T2 in separation from T1 with censored data. However, we will show below that β in (4)

can be estimated consistently.

To do so, we assume that one observes a pair of (Yj , ∆j) not Tj , where Yj = min(Tj , Cj)

and ∆j = 1(Tj ≤ Cj) for j = 1, 2. The observed data consist of i.i.d. realizations

{(Yi1, Yi2, Xi1, Xi2, ∆i1,∆i2) : i = 1, . . . , n} from (Y1, Y2, X1, X2, ∆1,∆2). Let G(c) denote

the survivor function of C, that is G(c) = Pr(C ≥ c), and let ∆X = X1 − X2. Assume

that C is independent of (T1, T2, X1, X2, U). Let L(u) = Pr[(ε1− ε2) > u] for any real value

u. Also, let l(u) = −dL(u)/du, that is l(·) is the probability density function of (ε1 − ε2).

Then if we assume that ε1 and ε2 are independently and identically distributed with the

common distribution function F ,

L(u) =
∫ ∞

−∞
[1− F (u + v)]dF (v). (6)

Assume further that ε1 and ε2 are independent of X1 and X2. Notice that under these

assumptions made above,

E

[
∆1∆2

G(Y1 + Y2)

{
1(Y1 > Y2)− L(∆X ′β)

}∣∣∣∣X1, X2

]

= E

[
E

[
1(T1 + T2 ≤ C)

G(T1 + T2)

{
1(T1 > T2)− L(∆X ′β)

}∣∣∣∣T1, T2, X1, X2

]∣∣∣∣X1, X2

]

= E
[
1(T1 > T2)− L(∆X ′β)

∣∣X1, X2

]

= E
[
1{H(T1) > H(T2)} − L(∆X ′β)

∣∣X1, X2

]

= Pr
[
(ε1 − ε2) > (X1 −X2)′β

∣∣X1, X2

]− L(∆X ′β)

= 0. (7)
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This implies that β satisfies the moment condition

E

{
wh(∆X ′β)∆X

∆1∆2

G(Y1 + Y2)

[
1(Y1 > Y2)− L(∆X ′β)

]}
= 0, (8)

where wh(·) is a weight function.3

Our estimation strategy in this paper is to solve the sample analog of the population

moment condition (8). In other words, our estimator bn of β is the solution to the following

estimating equation

n−1
n∑

i=1

{
wh(∆X ′

ib)∆Xi
∆i1∆i2

Gn(Yi1 + Yi2)

[
1(Yi1 > Yi2)− L(∆X ′

ib)
]}

= 0, (9)

where Gn is an estimator of G. Since C is censored independently by T1 + T2, we will use

the Kaplan-Meier estimator of G for Gn. Specifically, Gn is estimated based on the data

{(Yi1 + Yi2, 1−∆i1∆i2) : i = 1, . . . , n}.4
We end this section by mentioning some connection to well-known estimation methods.

If wh(·) = l(·)/{L(·)[1−L(·)]}, the estimator defined in (9) can be thought of as a weighted

maximum-likelihood type estimator, meaning that bn is the solution to

max
b

n−1
n∑

i=1

∆i1∆i2

Gn(Yi1 + Yi2)

{
1(Yi1 > Yi2) log[L(∆X ′

ib)] + 1(Yi1 ≤ Yi2) log[1− L(∆X ′
ib)]

}
.

When F is the type 1 extreme value distribution function, it can be seen that the proposed

estimator is a weighted logit estimator with weight equal to the inverse of the probability

that T1 and T2 are uncensored.

3 Asymptotic Properties of the Estimator

This section establishes the n−1/2-consistency and asymptotic normality of bn. To do so,

we make the following assumptions:

Assumption 1. β is an interior point of the parameter space B, which is a compact subset

of Rd.
3Obviously there are other moment conditions that can be derived from (7). It may be useful to develop

a more efficient GMM-type estimator using a set of possible moment conditions; however, it is beyond the
scope of this paper to investigate the issue of efficiency.

4Since C is also censored independently by T1, the Kaplan-Meier estimator Gn could be estimated based
on the data {(Yi1, 1−∆i1) : i = 1, . . . , n} as well.
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Assumption 2. The data {(Yi1, Yi2, Xi1, Xi2,∆i1, ∆i2) : i = 1, . . . , n} are i.i.d. realizations

from (Y1, Y2, X1, X2,∆1, ∆2) in (5).

It is possible that Xi1 and Xi2 are missing when durations of interest are censored,

especially when Xi1 and Xi2 are observed characteristics of durations. This does not cause

any problem for the estimation procedure in Section 2 because the estimating equation (9)

mainly uses observations corresponding to complete durations (that is, ∆i1 = ∆i2 = 1).

Observations with incomplete durations are only used to obtain an estimator of G to take

into the account of the effect of dependent right censoring. Since C is independent of X1

and X2, it is unnecessary to observe X1 and X2 when durations are censored.

Assumption 3. (1) ε1 and ε2 have the same distribution function F (·), which is com-

pletely specified. (2) There exists a corresponding probability density function f(·), which is

bounded, continuous, and positive everywhere along the real line. (3) Furthermore, ε1 and

ε2 are independent of each other and independent of (X1, X2).

As already discussed, this condition is satisfied by the panel data proportional hazards

model with unobserved heterogeneity.

Assumption 4. The function H(·) is strictly increasing.

It can be seen from (7) that the link function H(·) can be different across individuals.

This allows for arbitrary heterogeneity in the shape of the link function. As a matter of fact,

U is not identified from H(·) since H(·) can vary over individuals. However, the model is

expressed in the form of (4) to emphasize connections between our model (4) and duration

models with unobserved heterogeneity.5

Assumption 5. The weight function wh(·) is bounded and positive everywhere along the

real line and has a bounded, continuous derivative.

A simple choice of wh would be to set wh ≡ 1. As suggested by Cheng, Wei, and Ying

(1985), one might use wh(·) = l(·)/{L(·)[1− L(·)]} to mimic the quasi-likelihood approach.

Let ‖‖ denote the Euclidean norm.

Assumption 6. E ‖∆X‖4 < ∞ and E[∆X∆X ′] is nonsingular.
5The stratified partial likelihood approach also allows the baseline hazard function to vary over individ-

uals. See, for example, Chamberlain (1985) and Ridder and Tunalı (1999) for details.
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This condition requires that covariates vary over spells, thereby excluding the constant

term and spell-constant covariates.6

Assumption 7. (1) The censoring variable C is random with an unknown continuous

probability distribution. In addition, C is independent of (T1, T2, X1, X2, U).

(2) The survivor function of C, G(c) ≡ Pr(C ≥ c) is positive for every c ∈ R.

Assumption 7 (1) is a convenient assumption under which we utilize results of counting

process and martingale methods for the Kaplan-Meier estimator of G(·).7 Assumption 7

(2) is a rather strong condition and especially it excludes the case of fixed censoring.8 The

same condition is assumed in Koul, Susarla, and Van Ryzin (1981, Assumption A1).

To present our main result, define π(s) = Pr(Y1 + Y2 ≥ s) and

Mi(s) = 1(Yi1 + Yi2 ≤ s,∆i1∆i2 = 0)−
∫ s

0
1(Yi1 + Yi2 ≥ c) dΛC(c),

where ΛC is the cumulative hazard function of C. In addition, define

Ω = E
[
wh(∆X ′β)l(∆X ′β)∆X∆X ′]

and

ϕ(Yi1, Yi2, Xi1, Xi2, ∆i1, ∆i2)

= wh(∆X ′
iβ)∆Xi

∆i1∆i2

G(Yi1 + Yi2)

[
1(Yi1 > Yi2)− L(∆X ′

iβ)
]

+
∫ ∞

0

Γ(s)
π(s)

dMi(s),

where

Γ(s) = E

{
wh(∆X ′β)∆X

∆1∆2

G(Y1 + Y2)

[
1(Y1 > Y2)− L(∆X ′β)

]
1(Y1 + Y2 ≥ s)

}
.

The following theorem provides the main result of the paper.
6As is common among fixed-effects estimators, if regression coefficients of spell-constant covariates vary

over spells, then the difference between two coefficients can be identified and estimated using the method
developed in this paper.

7See, for example, Assumption 6.2.2 of Fleming and Harrington (1991, p.232). In principle, one could
allow C to depend on X1 and X2. This would make the estimator and asymptotic theory more complicated
since the conditional Kaplan-Meier estimator is then needed. See, e.g., Dabrowska (1989) for details of the
conditional Kaplan-Meier estimator.

8Roughly speaking, this assumption requires that there is a chance of observing a complete spell no
matter how large the spell is. This might not be palatable in some applications, so that we carry out Monte
Carlo experiments that investigate how the proposed estimator performs when Assumption 7 (2) is violated.
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Theorem 1. Let Assumptions 1-7 hold. Then

n1/2(bn − β) = −n−1/2
n∑

i=1

Ω−1ϕ(Yi1, Yi2, Xi1, Xi2, ∆i1, ∆i2) + op(1).

In particular, n1/2(bn − β) is asymptotically normal with mean zero and covariance matrix

Vβ ≡ Ω−1ΦΩ−1, where

Φ = E

[
[wh(∆X ′β)]2∆X∆X ′ ∆1∆2

[G(Y1 + Y2)]2
L(∆X ′β)[1− L(∆X ′β)]

]
−

∫ ∞

0

Γ(s)Γ(s)′

π(s)
dΛC(s).

Notice that the covariance matrix Vβ is smaller (in the matrix sense) than one that would

be obtained with a true G(·) instead of an estimated Gn(·).9 It is straightforward to obtain

a consistent estimator of the covariance matrix Vβ. Define π̂(s) = n−1
∑n

i=1 1(Yi1 +Yi2 ≥ s)

and

Γ̂(s) = n−1
n∑

i=1

{
wh(∆X ′

ibn)∆Xi
∆i1∆i2

Gn(Yi1 + Yi2)

[
1(Yi1 > Yi2)− L(∆X ′

ibn)
]
1(Yi1 + Yi2 ≥ s)

}
.

One can estimate Vβ by its sample analog estimator V̂β = Ω̂−1Φ̂Ω̂−1, where

Ω̂ = n−1
n∑

i=1

wh(∆X ′
ibn)

∆i1∆i2

[Gn(Yi1 + Yi2)]
l(∆X ′

ibn)∆Xi∆X ′
i,

and

Φ̂ = n−1
n∑

i=1

[wh(∆X ′
ibn)]2∆Xi∆X ′

i

∆i1∆i2

[Gn(Yi1 + Yi2)]2
L(∆X ′

ibn)[1− L(∆X ′
ibn)]

− n−1
n∑

i=1

(1−∆i1∆i2)
Γ̂(Yi1 + Yi2)Γ̂(Yi1 + Yi2)′

[π̂(Yi1 + Yi2)]2
.

Notice that the second term of Φ̂ is a sample analog of the second term of Φ using the

Nelson cumulative hazard estimator of ΛC .10

9This result is not surprising; see, for example, Koul, Susarla, and Van Ryzin (1981), Srinivasan and
Zhou (1994) and Cheng, Wei, and Ying (1995) for cases of smaller asymptotic variances with estimated Gn.
See, also, Wooldridge (2002) for similar results in the context of inverse probability weighted M-estimation
for general selection problems.

10One could estimate Ω using Ω̃, where Ω̃ is the same as Ω̂ without the weighting term ∆i1∆i2/Gn(Yi1 +
Yi2). Instead we decide to use Ω̂ because it is expected that due to the use of weighting, Ω̂ might have a
smaller variance than Ω̃. This conjecture was confirmed by a small Monte Carlo experiment, although we
did not calculate the asymptotic variances of Ω̂ and Ω̃.
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4 Extensions

4.1 Estimation with Longer Panels

The estimation method in Section 2 easily extends to the case of longer panels. To consider

estimation when J > 2, it is important to notice that panel durations Tij in (4) are censored

by Cij , where Ci1 = Ci and Cij = (Ci −
∑j−1

k=1 Tik)1(Ti,j−1 ≤ Ci,j−1) for j = 2, . . . , J . As

before, one observes Yij = min(Tij , Cij) and ∆ij = 1(Tij ≤ Cij) together with covariates

Xij for j = 1, . . . , J and i = 1, . . . , n. Using the fact that the sum of Tij ’s is censored

independently by C, the estimating equation (9) can be extended to longer panels. To do

so, let S be a set of pairs of indices such that S = {(j, k) : j < k, j = 1, . . . , J, k = 1, . . . , J},
∆ijk = Xij −Xik, and Wij =

∑j
k=1 Yik, that is the sum of the first j observed spells. Then

an estimator of β is the solution to the following estimating equation

n−1
n∑

i=1

∑

(j,k)∈S

{
wh(∆X ′

ijkb)∆Xijk
∆ij∆ik

Gn(Wik)

[
1(Yij > Yik)− L(∆X ′

ijkb)
]}

= 0. (10)

As in Section 2, the effect of censoring is adjusted by multiplying the inverse of the estimates

Gn(Wik) of the probability that Yij and Yik are uncensored for j < k. It is straightforward

to obtain asymptotic properties of this estimator.

4.2 Estimation with Multiple States

This subsection shows how the estimation method in Section 2 can be extended to the

case of multiple-state duration models. The censoring mechanism described in Section 2

considers a pure renewal process in the sense that T1 and T2 are the durations of the same

kind and there is no time spent on other states. This pure renewal process assumption

might be implausible in some applications, for example, employment and unemployment

durations in labor economics. Fortunately, it is easy to extend the estimation method in

Section 2 to multiple-state duration models.

Assume now that there is a different type of duration between two durations of interest,

say T̃ . For example, T1 may be the duration of the first job, T̃ the duration of being

unemployed or out of labor force, and T2 the duration of the second job. Assume that C

is independent of T1, T2, X1, X2, and T̃ . One observes uncensored durations of T1 and

T2 when C ≥ T1 + T̃ + T2. Hence, ∆i1∆i2 = 1(Ci ≥ Ti1 + T̃i + Ti2). Then a consistent

estimator of β can be obtained by solving the same estimating equation as (9), except that

Gn(Yi1 + Yi2) is now replaced with Gn[min((Ti1 + T̃i + Ti2), Ci)].
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Basically, the estimation method in Section 2 can be extended to any censoring mecha-

nism, provided that the probability of at least two durations of interest being uncensored is

positive and can be estimated consistently. The main idea behind the estimation method

is to use only observations corresponding to complete durations and to correct for the in-

duced selection bias by using proper weights, namely the inverse of the probability of two

durations being uncensored.

5 Monte Carlo Studies

This section presents the results of some simulation studies that illustrate the finite-sample

performance of the estimator. For each Monte Carlo experiment, 1,000 samples were gen-

erated from the following model with J = 2:

H(T1) = −X11β1 −X12β2 −X13β3 − U + ε1,

H(T2) = −X21β1 −X22β2 −X23β3 − U + ε2,

where H is the natural log function, X11 and X21 were independently drawn from a uniform

distribution on [0,1], X12 and X22 were independent dummy variables with being equal to

one with probability 0.5, X13 and X23 were also dummy variables such that X31 = 0 and

X32 = 1, and ε1 and ε2 were independently drawn from the type 1 extreme value dis-

tribution. The unobserved heterogeneity U was generated by U = (X11 + X21)/2 and is

the only source of correlation between T1 and T2. The true parameters are (β1, β2, β3) =

(−1,−1,−1). Finally, we experiment with two types of distributions for the censoring mech-

anism. Firstly, the censoring threshold C was generated from the exponential distribution

with mean µ, and secondly, C was from the uniform distribution with support [0, ν], where

different µ’s and ν’s were chosen to investigate the effects of censoring. Assumption 7 (2)

is satisfied by the exponential distribution, but not by the uniform distribution. The lat-

ter distributed is considered to see how the estimator performs when Assumption 7 (2)

is violated. The simulations used sample sizes of n = 100, 200, 400 and 800, and all the

simulations were carried out in GAUSS using GAUSS pseudo-random number generators.

Throughout the simulations, the weight function was wh ≡ 1.

Table 1 reports the mean bias and standard deviation (S.D.) for the estimate of each

coefficient for the case of censoring with the exponential distribution. It can be seen that

for each coefficient and for each level of censoring, the bias is negligible. Furthermore, the

standard deviation decreases quite quickly as the sample size increases about a rate of n−1/2,
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although the estimator does not perform well when the proportion of censoring exceeds 50%.

Table 2 reports the mean bias and standard deviation for the estimate of each diagonal

component of the variance matrix Vβ/n. To compute the biases and standard deviations,

the finite-sample variances of estimates of coefficients (obtained by 1000 simulations) are

treated as the true values of the variances. Again the variance estimator performs well

except for heavy censoring. Note that the standard deviation shrinks quite fast with the

sample size because the true variance also shrinks.

We now consider the case of censoring with the uniform distribution. The results are

summarized in Tables 3 and 4. Not surprisingly, the performance of the estimator is worse

compared to the case with the exponential distribution. Note that the asymptotic biases

are quite small for light censoring (up to 30%) and they get larger for heavier censoring.

Similar conclusions can be drawn for variance estimates.

In summary, our simulation results suggest that (1) the new estimator and its variance

estimator perform very well in finite samples for light and moderate censoring (up to 50%)

when the censoring variable has infinite support, (2) they perform quite well for light cen-

soring (up to 30%) when the censoring variable has finite support, and (3) the performance

deteriorates rapidly as the proportion of censoring exceeds 50% for both cases of censoring.

In view of these results, we recommend the new estimator when the censoring involves less

than 50% of observations, especially with small sample sizes.

6 Conclusions

This paper has considered the estimation of panel data duration models with unobserved

heterogeneity. In particular, this paper has provided a method for estimating the regression

coefficients under dependent right censoring. The new estimator has its strengths and

weaknesses. The strengths are that the estimator is fairly easy to implement and can

be extended easily to the cases of longer panels and multiple states. However, there are

weaknesses regarding the regularity conditions on the censoring variable. The new estimator

may not be consistent without infinite support for the censoring variable; however, when

this assumption is not satisfied, the estimator performs pretty well in the Monte Carlo

experiments for the cases with light censoring (up to 30% of observations).

Another possible extension that is not included in Section 4 is to let F (·) be unknown.

Under this generalization, (7) can be thought of as a single index mean regression model,

in which ∆1∆2
G(Y1+Y2)1(Y1 > Y2) is the dependent variable. Thus, it is expected that β can
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be estimated (up to scale) at a n−1/2 rate by combining methods similar to those used in

the analysis of single index models (see, e.g., Ichimura (1993), Klein and Spady (1993),

Powell, Stock, and Stoker (1989), Horowitz and Härdle (1996), and Hristache, Juditski,

and Spokoiny (2001)) with some tail behavior restrictions on the Kaplan-Meier estimator

of G(·). This is a topic for future research.

Appendix: Proof of Theorem 1

It is assumed in Appendix that Assumptions 1-7 hold. The following lemma is useful to

prove Theorem 1.

Lemma 1. Let Ŝn(b) denote the left-hand side of (9). Then Ŝn(b) converges uniformly in

probability to S0(b), where

S0(b) = E

[
wh(∆X ′b)∆X

{
L(∆X ′β)− L(∆X ′b)

}]
.

Proof of Lemma 1. Define C̄n = maxi{Yi1 + Yi2}. For any value of τ > 0, write Ŝn(b) =

Ŝn1(b; τ) + Ŝn2(b; τ), where

Ŝn1(b; τ) = n−1
n∑

i=1

{
wh(∆X ′

ib)∆Xi1(Yi1 + Yi2 ≤ τ)
∆i1∆i2

Gn(Yi1 + Yi2)

[
1(Yi1 > Yi2)− L(∆X ′

ib)
]}

and

Ŝn2(b; τ) = n−1
n∑

i=1

{
wh(∆X ′

ib)∆Xi1(τ < Yi1 + Yi2 ≤ C̄n)
∆i1∆i2

Gn(Yi1 + Yi2)

[
1(Yi1 > Yi2)− L(∆X ′

ib)
]}

.

Let Sn(b) denote the same expression as Ŝn(b) except that Gn(Yi1 + Yi2) is replaced with

G(Yi1 + Yi2), so that Sn(b) = Sn1(b; τ) + Sn2(b; τ), where

Sn1(b; τ) = n−1
n∑

i=1

{
wh(∆X ′

ib)∆Xi1(Yi1 + Yi2 ≤ τ)
∆i1∆i2

G(Yi1 + Yi2)

[
1(Yi1 > Yi2)− L(∆X ′

ib)
]}

and

Sn2(b; τ) = n−1
n∑

i=1

{
wh(∆X ′

ib)∆Xi1(τ < Yi1 + Yi2 ≤ C̄n)
∆i1∆i2

G(Yi1 + Yi2)

[
1(Yi1 > Yi2)− L(∆X ′

ib)
]}

.

First, consider the limiting behavior of Ŝn1(b; τ). Notice that sup{c : G(c) > 0} = ∞.

Thus, by the property of Kaplan-Meier estimator (see, for example, Fleming and Harrington,

1991), Gn(c) converges to G(c) uniformly on [0, τ ] and {Gn(c) : c ∈ [0, τ ]} and {G(c) : c ∈
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[0, τ ]} are bounded away from zero for sufficiently large n for any fixed but arbitrary τ > 0.

This implies that

|Ŝn1(b; τ)− Sn1(b; τ)| ≤ sup
i

∣∣∣∣
1(Yi1 + Yi2 ≤ τ)

G(Yi1 + Yi2)
G(Yi1 + Yi2)−Gn(Yi1 + Yi2)

Gn(Yi1 + Yi2)

∣∣∣∣

× n−1
n∑

i=1

‖∆Xi‖ 2|wh(∆X ′
ib)|

= op(1)Op(1) = op(1)

uniformly over (b, τ). In addition, since {G(c) : c ∈ [0, τ ]} is bounded away from zero, by

uniform laws of large numbers (e.g., Lemma 2.4 of Newey and McFadden, 1994, p.2129),

Sn1(b; τ) converges uniformly over (b, τ) in probability to S01(b; τ), where

S01(b; τ) = E

[
wh(∆X ′b)∆X1(T1 + T2 ≤ τ)

{
L(∆X ′β)− L(∆X ′b)

}]
.

Next, consider the limiting behavior of Ŝn2(b; τ). We will show in the below that this

term is negligible for a large τ using arguments similar to those used in Srinivasan and Zhou

(1994, Section 5). Notice that

|Ŝn2(b; τ)− Sn2(b; τ)| ≤ sup
Yi1+Yi2≤C̄n

∣∣∣∣
G(Yi1 + Yi2)−Gn(Yi1 + Yi2)

Gn(Yi1 + Yi2)

∣∣∣∣

× n−1
n∑

i=1

∣∣∣∣1(Yi1 + Yi2 > τ)
∆i1∆i2

G(Yi1 + Yi2)

∣∣∣∣ ‖∆Xi‖ 2|wh(∆X ′
ib)|.

(11)

By Zhou (1991, Theorem 2.2),

sup
c<C̄n

∣∣∣∣
G(c)−Gn(c)

Gn(c)

∣∣∣∣ = Op(1). (12)

Taking Gn(·) to be a left-continuous version of the Kaplan-Meier estimator (i.e. Gn(·−) =

Gn(·); see, also, equation (5.7) of Srinivasan and Zhou, 1994),

sup
Yi1+Yi2≤C̄n

∣∣∣∣
G(Yi1 + Yi2)−Gn(Yi1 + Yi2)

Gn(Yi1 + Yi2)

∣∣∣∣ = Op(1). (13)
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By Markov inequality, for any M > 0 and for any τ > 0,

Pr

(
n−1

n∑

i=1

1(Yi1 + Yi2 > τ)
∆i1∆i2

[G(Yi1 + Yi2)]
‖∆Xi‖ > M

)

= Pr

(
n−1

n∑

i=1

1(Ti1 + Ti2 > τ)∆i1∆i2

[G(Ti1 + Ti2)]
‖∆Xi‖ > M

)

≤ M−1E

[
1(T1 + T2 > τ)

∆1∆2

G(T1 + T2)
‖∆X‖

]

= M−1E [ 1(T1 + T2 > τ) ‖∆X‖ ]

≤ M−1(E[1(T1 + T2 > τ)])1/2(E ‖∆X‖2)1/2.

(14)

Combing (13) and (14) with (11) gives that

|Ŝn2(b; τ)− Sn2(b; τ)| = Op(1) (15)

uniformly over b for any τ . In view of (14), it can also be shown that

|Sn2(b; τ)− S02(b; τ)| = Op(1) (16)

uniformly over b for any τ , where

S02(b; τ) = E

[
wh(∆X ′b)∆X1(T1 + T2 > τ)

{
L(∆X ′β)− L(∆X ′b)

}]
.

Thus, (15) and (16) imply that |Ŝn2(b; τ)−S02(b; τ)| can be arbitrarily small by choosing a

large τ . Therefore, we have proved the lemma.

Proof of Theorem 1. It is obvious that S0(b) is continuous and is zero only when b = β.

Therefore, in view of Lemma 1, bn is consistent, i.e. bn →p β.

Now a first-order Taylor series approximation of Ŝn(bn) at β gives

0 = n1/2Ŝn(bn) = n1/2Ŝn(β) +
∂Ŝn(b∗n)

∂b
n1/2(bn − β), (17)

where b∗n is between bn and β, and ∂Ŝn/∂b is the matrix whose (l, k) element is the partial

derivative of the l-th component of Ŝn with respect to the k-th component of b. Let

ẇh(u) = dwh(u)/du. Notice that for any b,

∂Ŝn(b)
∂b

= Tn1(b) + Tn2(b),
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where

Tn1(b) = n−1
n∑

i=1

wh(∆X ′
ib)

∆i1∆i2

Gn(Yi1 + Yi2)
l(∆X ′

ib)∆Xi∆X ′
i

and

Tn2(b) = n−1
n∑

i=1

{
ẇh(∆X ′

ib)∆Xi∆X ′
i

∆i1∆i2

Gn(Yi1 + Yi2)

[
1(Yi1 > Yi2)− L(∆X ′

ib)
]}

.

By arguments similar to those used to prove Lemma 1 with the assumption that E ‖∆X‖4 <

∞, we have

sup
b∈B

∥∥Tn1 − E[wh(∆X ′b)l(∆X ′b)∆X∆X ′]
∥∥ = op(1)

and

sup
b∈B

∥∥∥Tn2 − E
[
ẇh(∆X ′b)∆X∆X ′(L(∆X ′β)− L(∆X ′b)

)]∥∥∥ = op(1).

Therefore, an application of the continuous mapping theorem yields
∥∥∥∥∥
∂Ŝn(b∗n)

∂b
− Ω

∥∥∥∥∥ = op(1). (18)

Now consider n1/2Ŝn(β). Using the same notation as in the proof of Lemma 1, write

Ŝn(β) = Ŝn1(β; τ) + Ŝn2(β; τ). That is,

Ŝn1(β; τ) = n−1
n∑

i=1

{
wh(∆X ′

iβ)∆Xi1(Yi1 + Yi2 ≤ τ)
∆i1∆i2

Gn(Yi1 + Yi2)

[
1(Yi1 > Yi2)− L(∆X ′

iβ)
]}

and

Ŝn2(β; τ) = n−1
n∑

i=1

{
wh(∆X ′

iβ)∆Xi1(Yi1 + Yi2 > τ)
∆i1∆i2

Gn(Yi1 + Yi2)

[
1(Yi1 > Yi2)− L(∆X ′

iβ)
]}

.

For any c ≤ τ , by a martingale integral representation for the Kaplan-Meier estimator (see,

for example, Fleming and Harrington, 1991),

G(c)−Gn(c)
Gn(c)

= n−1
n∑

k=1

∫ ∞

0

1(c ≥ s)
π(s)

dMk(s) + op(n−1/2),

where π(s) and Mk(s) are defined in the main text. Using this, we have

Ŝn1(β; τ) = Sn1(β; τ) + Rn1(β; τ) + op(n−1/2)
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for any arbitrary but fixed τ , where

Sn1(β; τ) = n−1
n∑

i=1

S1i(β; τ),

Rn1(β; τ) = n−1
n∑

k=1

∫ ∞

0
n−1

n∑

i=1

Sn1i(β; τ)
1

π(s)
dMk(s),

and

S1i(β; τ) = wh(∆X ′
iβ)∆Xi1(Yi1 + Yi2 ≤ τ)

∆i1∆i2

G(Yi1 + Yi2)

[
1(Yi1 > Yi2)− L(∆X ′

iβ)
]
.

Then standard arguments for obtaining the projection of a U-statistic (see, for example,

Lemma 8.4 of Newey and McFadden, 1994, p.2201) gives

Rn1(β; τ) = n−1
n∑

k=1

∫ ∞

0

Γ(s)
π(s)

dMk(s) + op(n−1/2),

where

Γ(s; τ) = E

{
wh(∆X ′β)∆X1(Y1 + Y2 ≤ τ)

∆1∆2

G(Y1 + Y2)

[
1(Y1 > Y2)− L(∆X ′β)

]
1(Y1 + Y2 ≥ s)

}

Now consider the tail part, i.e. Ŝn2(β; τ). Write

Ŝn2(β; τ) = Sn2(β; τ) + Rn21(β; τ) + Rn22(β; τ), (19)

where

S2i(β; τ) = wh(∆X ′
iβ)∆Xi1(Yi1 + Yi2 > τ)

∆i1∆i2

G(Yi1 + Yi2)

[
1(Yi1 > Yi2)− L(∆X ′

iβ)
]
,

Sn2(β; τ) = n−1
n∑

i=1

S2i(β; τ),

Rn21(β; τ) = n−1
n∑

i=1

Sn2i(β; τ)
G(Yi1 + Yi2)−Gn(Yi1 + Yi2)

G(Yi1 + Yi2)
,

and

Rn22(β; τ) = n−1
n∑

i=1

Sn2i(β; τ)
[G(Yi1 + Yi2)−Gn(Yi1 + Yi2)]2

G(Yi1 + Yi2)Gn(Yi1 + Yi2)
.

In view of Theorem 2.1 of Gill (1983),

sup
Yi1+Yi2≤C̄n

∣∣∣∣
G(Yi1 + Yi2)−Gn(Yi1 + Yi2)

G(Yi1 + Yi2)

∣∣∣∣ = Op(n−1/2).
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Using this and (13), we can show that each term in (19) is of order Op(n−1/2) for any τ . This

implies that Ŝn2(β; τ) can be of order op(n−1/2) by taking τ sufficiently large. Therefore,

combining results above with a choice of a sufficiently large τ gives the first conclusion of

the theorem.

It now remains to calculate the asymptotic variance, in particular Φ. First, note that

by the variance calculation for a martingale (see, e.g., Theorems 2.4.5 and 2.5.4 of Fleming

and Harrington, 1991),

var
{∫ ∞

0

Γ(s)
π(s)

dMi(s)
}

=
∫ ∞

0

Γ(s)Γ(s)′

π(s)
dΛC(s).

Furthermore,

2cov
{

wh(∆X ′
iβ)∆Xi

∆i1∆i2

G(Yi1 + Yi2)

[
1(Yi1 > Yi2)− L(∆X ′

iβ)
]
,

∫ ∞

0

Γ(s)′

π(s)
dMi(s)

}

= −2cov
{

wh(∆X ′
iβ)∆Xi

∆i1∆i2

G(Yi1 + Yi2)

[
1(Yi1 > Yi2)− L(∆X ′

iβ)
]
,

∫ ∞

0
1(Yi1 + Yi2 ≥ s)

Γ(s)′

π(s)
dΛc(s)

}

= −2
∫ ∞

0

Γ(s)Γ(s)′

π(s)
dΛC(s).

Then the second conclusion of the theorem follows immediately.
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Honoré, B.E. (1990) Simple estimation of a duration model with unobserved heterogeneity,

Econometrica, 58, 453-473.
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Table 1. Simulation Results for Estimates of Coefficients

[Censoring Variable: Exponential Distribution]

Proportion of Sample β1 β2 β3

Censoring Size Bias S.D. Bias S.D. Bias S.D.

10% 100 -0.060 0.672 -0.035 0.393 -0.032 0.271
200 0.009 0.466 -0.010 0.261 -0.010 0.188
400 -0.013 0.323 -0.017 0.185 -0.004 0.129
800 -0.005 0.221 0.003 0.130 -0.005 0.090

20% 100 -0.060 0.708 -0.034 0.417 -0.022 0.285
200 0.011 0.493 -0.005 0.275 -0.008 0.200
400 -0.013 0.335 -0.014 0.193 -0.005 0.135
800 -0.005 0.232 0.003 0.135 -0.002 0.095

30% 100 -0.065 0.795 -0.026 0.447 -0.023 0.312
200 0.019 0.536 0.000 0.302 -0.005 0.214
400 -0.006 0.358 -0.013 0.208 -0.005 0.147
800 -0.002 0.252 0.006 0.145 0.003 0.101

40% 100 -0.062 0.890 -0.024 0.502 -0.010 0.346
200 0.026 0.608 0.000 0.334 0.006 0.237
400 -0.003 0.401 -0.009 0.235 -0.003 0.162
800 0.010 0.288 0.010 0.157 0.008 0.112

50% 100 -0.056 1.054 -0.012 0.578 0.000 0.404
200 0.024 0.706 0.005 0.393 0.017 0.275
400 0.022 0.473 0.001 0.270 0.014 0.185
800 0.011 0.332 0.017 0.179 0.014 0.130

60% 100 -0.016 1.290 0.010 0.713 0.020 0.492
200 0.053 0.828 0.036 0.471 0.042 0.334
400 0.038 0.571 0.024 0.326 0.033 0.235
800 0.031 0.418 0.036 0.220 0.036 0.167

70% 100 -0.004 1.736 0.001 0.997 0.048 0.681
200 0.077 1.077 0.074 0.601 0.074 0.426
400 0.072 0.750 0.045 0.424 0.053 0.311
800 0.049 0.539 0.063 0.302 0.068 0.218

Note: Bias denotes the mean bias and S.D. stands for standard deviation.
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Table 2. Simulation Results for Estimates of the Variances

[Censoring Variable: Exponential Distribution]

Proportion of Sample β1 β2 β3

Censoring Size Bias S.D. Bias S.D. Bias S.D.

10% 100 -0.015 0.102 0.002 0.038 0.001 0.018
200 -0.015 0.030 0.005 0.011 0.000 0.005
400 -0.005 0.010 0.001 0.004 0.001 0.002
800 0.000 0.003 0.001 0.001 0.000 0.001

20% 100 0.006 0.130 0.008 0.049 0.006 0.024
200 -0.006 0.041 0.010 0.015 0.001 0.007
400 0.003 0.013 0.004 0.005 0.002 0.002
800 0.003 0.005 0.002 0.002 0.001 0.001

30% 100 -0.001 0.201 0.023 0.069 0.011 0.033
200 0.004 0.069 0.013 0.022 0.005 0.011
400 0.014 0.022 0.008 0.008 0.004 0.004
800 0.007 0.008 0.004 0.003 0.002 0.001

40% 100 0.021 0.332 0.034 0.116 0.021 0.056
200 0.006 0.105 0.024 0.037 0.011 0.019
400 0.028 0.045 0.012 0.016 0.008 0.008
800 0.013 0.017 0.009 0.006 0.005 0.003

50% 100 0.009 0.604 0.058 0.192 0.033 0.103
200 0.023 0.191 0.038 0.072 0.020 0.037
400 0.044 0.093 0.023 0.032 0.015 0.015
800 0.031 0.044 0.018 0.015 0.009 0.007

60% 100 0.009 1.150 0.098 0.502 0.051 0.212
200 0.073 0.353 0.061 0.148 0.032 0.081
400 0.084 0.176 0.042 0.064 0.022 0.034
800 0.046 0.089 0.032 0.035 0.014 0.016

70% 100 0.055 3.859 0.099 1.173 0.055 0.700
200 0.079 0.842 0.108 0.321 0.048 0.159
400 0.149 0.467 0.084 0.168 0.043 0.097
800 0.107 0.250 0.058 0.091 0.030 0.046

Note: Bias denotes the mean bias and S.D. stands for standard deviation. The finite-sample
variances of estimates of coefficients (obtained by 1000 simulations) are treated as the true
value of the variances.
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Table 3. Simulation Results for Estimates of Coefficients

[Censoring Variable: Uniform Distribution]

Proportion of Sample β1 β2 β3

Censoring Size Bias S.D. Bias S.D. Bias S.D.

10% 100 -0.057 0.671 -0.032 0.392 -0.029 0.271
200 0.013 0.466 -0.009 0.260 -0.009 0.188
400 -0.012 0.322 -0.016 0.186 -0.003 0.129
800 -0.004 0.222 0.004 0.130 -0.003 0.090

20% 100 -0.046 0.713 -0.024 0.419 -0.012 0.285
200 0.028 0.491 0.006 0.273 0.004 0.199
400 -0.001 0.338 -0.005 0.193 0.005 0.136
800 0.007 0.235 0.011 0.135 0.007 0.095

30% 100 -0.027 0.786 0.012 0.449 0.019 0.313
200 0.053 0.543 0.037 0.297 0.037 0.217
400 0.034 0.372 0.024 0.210 0.034 0.151
800 0.041 0.261 0.040 0.146 0.043 0.103

40% 100 0.034 0.869 0.053 0.498 0.068 0.350
200 0.090 0.619 0.084 0.338 0.085 0.242
400 0.085 0.421 0.071 0.238 0.085 0.170
800 0.089 0.293 0.092 0.166 0.093 0.120

50% 100 0.069 0.994 0.108 0.601 0.137 0.397
200 0.160 0.692 0.143 0.394 0.152 0.265
400 0.147 0.459 0.139 0.278 0.152 0.187
800 0.146 0.342 0.165 0.189 0.155 0.136

60% 100 0.170 1.193 0.192 0.734 0.202 0.471
200 0.217 0.803 0.211 0.474 0.224 0.323
400 0.232 0.535 0.228 0.321 0.236 0.228
800 0.238 0.394 0.245 0.228 0.231 0.161

70% 100 0.259 1.578 0.261 0.899 0.275 0.557
200 0.366 0.940 0.344 0.560 0.307 0.379
400 0.356 0.647 0.335 0.392 0.324 0.249
800 0.326 0.490 0.354 0.281 0.334 0.192

Note: Bias denotes the mean bias and S.D. stands for standard deviation.
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Table 4. Simulation Results for Estimates of the Variances

[Censoring Variable: Uniform Distribution]

Proportion of Sample β1 β2 β3

Censoring Size Bias S.D. Bias S.D. Bias S.D.

10% 100 -0.013 0.101 0.003 0.037 0.001 0.018
200 -0.013 0.031 0.006 0.012 0.000 0.005
400 -0.005 0.010 0.001 0.004 0.001 0.002
800 0.000 0.004 0.001 0.001 0.000 0.001

20% 100 0.002 0.135 0.006 0.050 0.007 0.024
200 -0.003 0.043 0.010 0.015 0.002 0.007
400 0.003 0.015 0.005 0.006 0.002 0.003
800 0.003 0.006 0.003 0.002 0.001 0.001

30% 100 0.006 0.207 0.019 0.074 0.010 0.036
200 0.002 0.096 0.017 0.027 0.005 0.015
400 0.011 0.040 0.009 0.013 0.004 0.006
800 0.007 0.017 0.005 0.006 0.003 0.003

40% 100 0.016 0.318 0.028 0.116 0.012 0.059
200 -0.013 0.138 0.021 0.051 0.008 0.025
400 0.013 0.082 0.012 0.030 0.006 0.016
800 0.012 0.044 0.008 0.019 0.003 0.008

50% 100 0.005 0.519 -0.002 0.206 0.011 0.082
200 -0.005 0.218 0.020 0.097 0.013 0.041
400 0.032 0.121 0.011 0.045 0.009 0.025
800 0.017 0.100 0.012 0.030 0.006 0.019

60% 100 -0.045 1.178 -0.035 0.499 0.010 0.173
200 -0.010 0.358 0.011 0.135 0.008 0.076
400 0.033 0.212 0.018 0.097 0.007 0.043
800 0.026 0.187 0.013 0.069 0.008 0.044

70% 100 -0.356 2.610 -0.046 0.772 0.028 0.329
200 0.009 0.691 0.014 0.244 0.016 0.188
400 0.014 0.336 0.011 0.111 0.015 0.058
800 0.000 0.258 0.010 0.068 0.006 0.060

Note: Bias denotes the mean bias and S.D. stands for standard deviation. The finite-sample
variances of estimates of coefficients (obtained by 1000 simulations) are treated as the true
value of the variances.
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