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Abstract
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as college enrollment increases in the economy, average college wages decrease and average high
school wages increase, and therefore inequality between college and high school groups decreases.
Moreover, selection bias causes us to understate the growth of different measures of the average
return to schooling in our sample. It also leads us to understate the increase in wage dispersion
at the top of the college wage distribution, and to overstate it at the bottom of the college wage
distribution.
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1 Introduction

The rise in wage inequality over the last 30 years in the US has been extensively documented in the

economics literature (e.g., Katz and Autor, 1999). Inequality increased both within and between

education groups, and these changes have been associated with increases in the return to schooling

and ability. Several arguments have been put forward as explanations for these trends such as skill

biased technical change, changes in the supply of college graduates or changes in institutions (e.g.,

Autor, Katz and Kearney, 2004). However, it is not straightforward to infer price changes from

observed trends in inequality because individuals are heterogeneous and self-select into different

levels of schooling. This implies that measures of within and between group inequality are taken

from self-selected samples of individuals, and therefore contaminated by selection bias. Furthermore,

increases in wage dispersion were accompanied by increases in the educational attainment of the

population. These lead to changes in the composition of different education groups, affecting the

trend in wage dispersion. Therefore, bias occurs when trying to assess the determinants of inequality.

Observed changes in inequality are a combination of changes in prices, changes in composition and

changes in selection bias. In this paper we provide an empirical analysis of the role of heterogeneity

and self-selection for the study of inequality.

The literature on the returns to schooling emphasizes the importance of accounting for hetero-

geneity for both the estimation and interpretation of this parameter (e.g., Card, 1999, Carneiro,

Heckman and Vytlacil, 2003). In contrast, most analyses of inequality ignore these concerns and

consider instead representative agent models of the labor market (e.g., Katz and Murphy, 1992,

Card and Lemieux, 2001). The main reason for neglecting selection is lack of adequate data. Tra-

ditionally the analysis of inequality is done with datasets that provide reliable wage information

on a large number of individuals over a long period of time (essential for a complete description of

the evolution of inequality) but only scarce information on individual characteristics that determine

schooling decisions (essential for a complete study of selection).1 The latter is usually only available

in smaller datasets that follow individuals over relatively short periods of time. However, for several

economic problems of interest, results from small scale empirical studies are increasingly being used

to inform and guide the empirical analysis of more macro trends (or macro models).2 In this pa-

per we analyze the consequences of heterogeneity and self-selection into schooling for the empirical
1For example, in the US these are the Census and the Current Population Survey (CPS). In the UK these are the

Family Expenditure Survey or the General Household Survey.
2See, for example, the discussion in Browning, Hansen and Heckman (1999). While several macro problems have

traditionally been analyzed in representative agent frameworks, evidence from micro data shows that heterogeneity is
prevalent in a variety of economic problems. In current research heterogeneity has become a central feature of many
analyses of macro problems.
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study of wage inequality using data from the National Longitudinal Survey of Youth (NLSY) over

the 1990s. The NLSY is a nationally representative sample for the U.S. with very rich detail on

individual characteristics related to schooling choices and wages, but with a smaller sample size and

covering a shorter period than what is used in standard work in this field. Moreover, for all the

years we analyze, the wage distribution in the NLSY is similar to the wage distribution in the CPS.3

From our study we are able to draw general lessons for analyses of inequality.

Using the NLSY we estimate a semiparametric selection model of schooling and wages. We

use measures of the costs of school attendance as instruments for schooling: tuition in local four

year public colleges, distance to the nearest college and the local unemployment rate in the area

of residence in the late adolescent years. Our assumption is that these variables provide exogenous

variation in schooling conditional on the extensive set of controls we include in the wage regres-

sions (cognitive ability, parental education, number of siblings and local labor market conditions).

The model is estimated using the method of local instrumental variables (Heckman and Vytlacil,

1999, 2001, 2005; Carneiro, Heckman and Vytlacil, 2003). This method was developed for average

parameters and we extend it to the estimation of marginal distributions of outcomes in each sector.

In all the years we analyze we find that individuals sort into the level of education where they

are comparatively and absolutely better, consistent with Willis and Rosen (1979) and Carneiro,

Heckman and Vytlacil (2003). College graduates would have been relatively “low quality” high

school graduates had they not gone to college, and high school graduates would have been relatively

“low quality” college graduates had they gone to college. As college enrollment increases in the

economy we expect average college wages to decrease and average high school wages to increase,4 and

therefore inequality between college and high school groups should decrease.5 Moreover, selection

bias causes us to understate the level and growth of the average return to schooling6 in our sample. It

also leads us to understate the increase in wage dispersion at the top of the college wage distribution,

and to overstate it at the bottom of the college wage distribution.

Our findings are of general interest for analyses of inequality. For example (using data from the

US Census) the return to college for white males7 in the 1980s increased from 22% to 33% and

the college participation rate went from 41% to 55%. Simulations from our model suggest that in

the absence of any increase in college participation the return to college would have increased by
3For white males born between 1957 and 1964, the demographic group studied in this paper.
4Assuming that skill prices are fixed, as in a partial equilibrium framework.
5This is just the OLS estimate of the return to college (not including any controls in the regression).
6There are different definitions of the average return to college we could consider. Here we refer to the average

return for individuals who attend college (usually termed treatment on the treated). In our empirical work we also
look at trends in other measures of returns.

7Estimated by Ordinary Least Squares (OLS).
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7% more during that decade (from 22% to 40%). Furthermore, if the patterns of sorting and the

evolution of skill prices in the 1980s were similar to those of the 1990, this estimate is affected by

selection bias and understates the growth in the average return to college in the economy.

There exist a few papers that account for heterogeneity and self-selection in the study of inequal-

ity, although many of them do not focus on schooling. Most similar to us are Heckman and Sedlacek

(1985) and Gould (2001), but they consider selection into industries and occupations. Taber (2001),

Chay and Lee (2001) and Chen and Khan (2005) consider selection into schooling with different

models than ours. The first two focus on average parameters, while the latter focuses on a cross sec-

tion and does not systematically consider the role of sorting, selection bias and composition changes.

Juhn, Kim and Vella (2005) examine the role of composition changes on the return to schooling using

the Census and argue that these can only explain a small fraction of the trend in the OLS estimate

of this parameter.8 Finally, the impact of selection into employment on observed inequality trends

has been considered in several papers. Two examples (among many others) are Heckman and Todd

(2000) who study the trend in black white wage convergence9, and Blundell, Reed and Stoker (2003)

who focus on aggregate wage growth in the UK.10 In our paper we ignore selection into employment,

which is not likely to be empirically important in our sample.

The remainder of this paper is organized as follows. In section 2 we present an econometric

model which underlies our empirical work. In section 3 we apply our model to the study of wage

inequality using white males in the NLSY. Using our estimates we document the patterns of sorting

of individuals to different levels of schooling and the empirical importance of selection bias and

composition effects. Section 4 gives some concluding remarks. In the Appendix we provide a

detailed description of the data, and of estimation and testing procedures.

2 Model

Our point of departure is the binary treatment model that is standard in the programme evaluation

literature.11 Let Y1 and Y0 be potential individual outcomes in two states, 1 and 0. In this paper
8Also related is Gosling, Machin and Meghir (2000), who show that most of the evolution of inequality in the UK

is explained by cohort effects, and suggest that (among other things) these may be related to changes in composition
of different schooling groups.

9They show that selective dropout of blacks from employment accounts for most of the recent black-white wage
convergence. Chandra (2003) reiterates their conclusion and proposes alternative methods for accounting for the
unemployment of blacks. Neal (2004) also shows that accounting for self-selection into unemployment among females
changes our characterization of the black-white wage gap among females.

10They show that increasing unemployment in the UK accounts for most of the increase in aggregate wage growth
since the 1970s. Blundell, Gosling, Ichimura and Meghir (2004) illustrate how different allocations of the unemployed
into different sections of the observed distribution of income affects the study of inequality.

11The econometric model used in this paper is based on Heckman and Vytlacil (2005) and Carneiro, Heckman
and Vytlacil (2003). We consider only two schooling levels, which is a limitation of our analysis, but nevertheless
common practice in the literature on inequality. Heckman and Vytlacil (2005) consider models with multiple levels
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Y1 and Y0 are potential log wages in college and high school for several years in the 1990s.12 We

assume

Y1 = µ1 (X, U1) and Y0 = µ0 (X, U0) , (1)

where X is a vector of observed random variables influencing potential outcomes, µ1 and µ0 are

unknown functions, and U1 and U0 are unobserved random variables. The return to schooling is

β = Y1 − Y0 and it varies across individuals.

We assume that individuals choose to be in state 1 or 0 (prior to the realizations of the outcomes

of interest) according to the following equation:

S = 1 if µS (Z)− US > 0, (2)

where Z is a vector of observed random variables influencing the decision equation, µS is an unknown

function of Z, and US is an unobserved random variable. In our paper S = 1 is college attendance

and S = 0 is college non-attendance. Equation (2) can be interpreted as the reduced form of a

well-specified economic model of college attendance.13 For each individual, the observed outcome Y

is

Y = SY1 + (1− S)Y0.

The set of variables in X can be a subset of Z. For identification, assume that there is at least one

variable in Z that is not in X (exclusion restriction). Furthermore, Z is independent of (U1, U0, US)

given X. As in Heckman and Vytlacil (1999, 2001, 2005), we can rewrite (2) as:

S = 1 if P > V,

where V = FUS |X [US |X], P = FUS |X [µS(Z)|X], and FUS |X(us|x) is the CDF of US conditional on

X = x. By construction, V ∼ Unif [0, 1] conditional on X. Notice that the higher V is, the less

likely an individual is to attend a college.

Throughout the paper, for any random vector X, fX (x) denotes the PDF of X and FX (x)

denotes the CDF of X. In addition, for any random variables X and Y , fY,X(y, x), fY |X(y|x), and

FY |X(y|x) denote the joint PDF of Y and X and the conditional PDF and CDF of Y on X = x,

respectively. We suppress subscripts in the notation whenever this can be done without causing

confusion.

of schooling.
12In our empirical work, we follow the NLSY respondents over time and estimate the econometric model described

in this section for each year. To simplify presentation, we suppress dependence on time scripts.
13Carneiro, Heckman and Vytlacil (2003) use this model to examine heterogeneity in the returns to college and

present an economic model that can justify the specification in (2).
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2.1 Consequences of Heterogeneity and Selection for the Study of Wage
Inequality

Standard analyses of inequality usually start from the following framework:

Y = X ′γ + ε, (3)

where Y is log wage and X is a vector of observable variables, such as the level of schooling and

work experience, gender or race. In this model “between group inequality” corresponds to the

coefficient(s) on X in the equation (3) (γ), and “within group inequality” refers to the dispersion

in ε. A common exercise consists in trying to understand the role of different observable (X) and

unobservable (ε) variables in the evolution of wage inequality, as in (for example) Juhn, Murphy and

Pierce (1993), DiNardo, Fortin and Lemieux (1996), Autor, Katz and Krueger (1998) or Autor, Katz

and Kearney (2004). In this paper we consider a more general setting given by equation (1) where

schooling (one of the variables in X) is allowed to be endogenous and there can be different levels of

dispersion in different schooling groups (U1 and U0).14 Our goal is to understand the determinants

of inequality.

For illustration, suppose we take a simple version of the model of equation (1) where (ignoring

X):

Y1 = µ1 + γ1U1

Y0 = µ0 + γ0U0 (4)

In this model U1 and U0 are abilities in each sector and γ1 and γ0 are their prices, and we assume

that E[U1] = E[U0] = 015 (µ1 and µ0 are the two other fundamental prices in this framework). The

standard measure of between group inequality (which is usually called the college wage premium)

can be written as:

βOLS = E (Y1|S = 1)− E (Y0|S = 0)

= µ1 − µ0 (average return to schooling)

+γ1E (U1|S = 1)− γ0E (U0|S = 1) (“sorting gain”)

+γ0 [E (U0|S = 1)− E (U0|S = 0)] (selection bias).

14We also consider a richer set of observable individual characteristics including a measure of cognitive skill and
family background, which are usually absent in these studies.

15Model (1) is more general than the factor model in (4). It allows X variables to affect µ1 and µ0 in a flexible way
and it allows for nonlinear relationships between (Y1, Y0) and (U1, U0).
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Several other alternative decompositions are possible.16 As emphasized in the returns to schooling

literature, βOLS does not measure the return to schooling for anyone in the economy (since it

compares individuals who are not comparable), and can change over time for reasons which are

unrelated with changes in the fundamental prices in the economy (µ1, µ0, γ1 and γ0), such as

changes in the composition of different skill groups (which translate into changes in the distribution

of U1 and U0 for each group) and changes in the selection bias. Composition effects and selection

bias can also affect the evolution of observed within group inequality.

In summary, in order to understand movements in the supply and demand for different skills

in the economy one needs to estimate changes in γ1, γ0, µ1 and µ0, which requires accounting for

selection in the analysis of changes in within and between group inequality.17 Considering these

effects is one of the goals of our paper, although we do it in the more general model of equations (1)

and (2), where wages can be nonlinear functions of underlying skills. We estimate the evolution of

“pricing functions” for observed and unobserved skills over the 1990s, and simulate how changes in

educational attainment affect the evolution of inequality.

2.2 Accounting for Selection

It is well known that (in general) the joint distribution of Y1 and Y0 cannot be nonparametrically

identified in a cross section.18 Nevertheless, as shown in Heckman and Smith (1998), it is possible

to identify fY1|X,V (y1|x, v) and fY0|X,V (y0|x, v), and we estimate these objects in our paper. This

section provides our main identification result and section 2.3 gives an informal description of our

estimators. Our econometric model builds on Heckman and Vytlacil (1999, 2001, 2005), who develop

the Marginal Treatment Effect (MTE from now on, a parameter introduced in the literature by

Bjorklund and Moffit, 1987) and use this parameter to unify the literature on treatment effects.19

16For example:

βOLS = E (Y1|S = 1)− E (Y0|S = 0)

= µ1 − µ0 (average return to schooling)

+γ1E (U1|S = 0)− γ0E (U0|S = 0) (“sorting loss”)

+γ1 [E (U1|S = 1)− E (U1|S = 0)] (selection bias).

17Even in a representative agent framework where γ1 = γ0 and U1 = U0, if schooling is endogenous and educational
attainments change over time, selection bias and composition changes could still mask the true evolution of prices in
the economy. Thus, in general it is not possible to understand the determinants of the evolution of inequality without
accounting for selection.

18Heckman, Smith and Clemens (1996) compute bounds for fY1,Y0 (y1, y0) using data from a training program.
Carneiro, Hansen and Heckman (2003) estimate fY1,Y0 (y1, y0) assuming that Y1 and Y0 have a factor structure that
governs all the dependence between the two variables. They fit models with two independent factors which have a
flexible mixture of normals distribution. They develop identification results for models with an arbitrary number of
factors. Cunha, Heckman and Navarro (2005) extend this work and estimate models with more than two factors.

19Carneiro, Heckman and Vytlacil (2003) apply this framework to an analysis of heterogeneity in the returns to
schooling.
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We extend their method of local instrumental variables to the estimation of marginal distributions of

potential outcomes. Estimation of marginal distributions of potential outcomes has been previously

considered by Imbens and Rubin (1997), Abadie (2002) and Abadie, Angrist and Imbens (2002)

under the local average treatment effect (LATE) framework of Imbens and Angrist (1994). Our

empirical framework draws on Carneiro, Heckman and Vytlacil (2003).

Using the model of Heckman and Vytlacil (1999, 2001, 2005) (as shown in section 2.3), we can

construct multiple counterfactuals of interest as weighted averages of these two marginal densities

and their functionals. As by-products, we also estimate a variety of treatment parameters. Esti-

mation of counterfactual distributions and treatment effect parameters allows us to gain important

insights into the sources of heterogeneity in the labor market, how they determine the main patterns

of sorting into schooling and the evolution of the wage distribution.

The following lemma, which is an extension of Heckman and Vytlacil (1999, 2001, 2005), provides

identification of our objects of interest in the nonparametric model given by (1) and (2).

Lemma 1 Consider the nonparametric selection model given by (1) and (2). Let V = FUS |X [US |X]

and P = FUS |X [µS(Z)|X]. Assume that (1) µS(Z) is a nondegenerate random variable conditional

on X; (2) (U1, US) and (U0, US) are independent of Z conditional on X; (3) The distributions of

US and µS(Z) conditional on X are absolutely continuous with respect to Lebesgue measure; (4) For

a measurable function G, E|G(Y1)| < ∞, and E|G(Y0)| < ∞; and (5) 0 < Pr(S = 1|X) < 1. Then

E [G(Y1)|X = x, V = p] = E [G(Y )|X = x, P = p, S = 1] + p
∂E [G(Y )|X = x, P = p, S = 1]

∂p

E [G(Y0)|X = x, V = p] = E [G(Y )|X = x, P = p, S = 0]− (1− p)
∂E [G(Y )|X = x, P = p, S = 0]

∂p

provided that E [G(Y )|X = x, P = p, S = 1] and E [G(Y )|X = x, P = p, S = 0] are continuously dif-

ferentiable with respect to p for almost every x.

Proof. Assumptions (1) and (3) ensure that P is a nondegenerate, continuously distributed

random variable conditional on X. Assumption (5) guarantees that P is strictly between 0 and 1

conditional on X. Assumption (4) is needed to ensure that expectations considered below are finite.

Notice that

E [G(Y )|X = x, P = p, S = 1] = E [G(Y )|X = x, P = p, V < p]

=
∫ p

0

E [G(Y1)|X = x, V = v] dv/p,

where the second equality follows from assumption (2) and the fact that V is uniformly distributed

on [0, 1] conditional on X. The first conclusion follows by multiplying both sides of the equation
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above by p and differentiating both sides with respect to p. The proof of the second conclusion is

similar.

The assumptions in Lemma 1 are basically identical to those of Heckman and Vytlacil (1999,

2001, 2005). The conditional means of Y1 and Y0 given X = x and V = v are identified by taking

G(Y ) = Y and therefore the MTE, defined as E (Y1 − Y0|X = x, V = v), is identified. Furthermore,

the conditional distributions of Y1 and Y0 given X = x and V = v are identified by choosing

G(Y ) = 1(Y ≤ y), where 1(·) is the standard indicator function, and therefore the conditional

densities and quantiles are also identified.

Notice that we can only identify E (Y1|X = x, V = p) over the support of P for individuals in

S = 1 conditional on X = x, and E (Y0|X = x, V = p) over the support of P for individuals in S = 0

conditional on X = x. As a consequence, we can only identify E (Y1 − Y0|X = x, V = p) over the

common support of P for individuals in S = 1 and S = 0 conditional on X = x.

Our procedure has a standard instrumental variables intuition (see also Carneiro, Heckman and

Vytlacil, 2003). When we use instrumental variables in a random coefficient model we interpret the

estimates as a local average treatment effect or a weighted average of local average treatment effects

(see Imbens and Angrist, 1994; Angrist, Graddy and Imbens, 2000; Heckman and Vytlacil, 2005;

Carneiro, Heckman and Vytlacil, 2003). Suppose that we have a continuous valid instrument Z

(e.g., tuition), and we pick a sample of individuals who have values of the instrument which are very

similar, say z1 and z2. If we use this subsample to estimate the return to college using standard IV,

we identify the average return to college for individuals induced to switch from high school to col-

lege when the instrument switches from z1 to z2. Similarly, by comparing E (Y1|S = 1, Z = z1) and

E (Y1|S = 1, Z = z2) (and Pr (S = 1|Z = z1) and Pr (S = 1|Z = z2)) we can identify the average col-

lege wages for individuals who change their schooling decision when Z moves from z1 to z2 (similarly

for high school wages). Finally, from the knowledge of f (Y1|S = 1, Z = z1) and f (Y1|S = 1, Z = z2)

it is possible to identify the marginal distributions of college wages for this same group of individuals

(and analogously for high school). The latter is the same reasoning behind the results in Imbens

and Rubin (1996). These individuals define a particular margin: they are indifferent between going

to college or not when the instrument is between z1 and z2 (and therefore they switch when the

instrument varies over this range). By comparing pairs of z values over the whole observed range of

Z we can identify all the objects above for individuals at different margins. This is what we show

in Lemma 1.
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2.3 Estimating Counterfactual Distributions

The identification result in Lemma 1 is very general since it does not impose any restrictions on the

functional forms of µ1 and µ0 in (1). However, such a flexible framework has some disadvantages that

limit its practical usefulness. One important disadvantage is that the precision of a nonparametric

estimator based on Lemma 1 decreases rapidly as the number of continuously distributed components

of X increases (curse of dimensionality). Another disadvantage is that it is difficult to have full

support of P for some observed values of X, thereby implying that treatment parameters such as

ATE, TT, and TUT or counterfactuals distributions such as fY1 (y1) and fY0 (y0) are not identified.

To circumvent these disadvantages in our implementation of Lemma 1, we specify and estimate

a separable version of (1)20 under a more stringent assumption on unobservables, but one that is

relatively standard in empirical work: we assume that (U1, U0, US) are independent of (Z,X).21 In

addition, we impose flexible but parametric forms for µ1, µ0, and µS on the model so that estimating

the model reduces to a feasible semiparametric estimation problem.22

We first consider estimation of E[Y1|X = x, V = v] and E[Y0|X = x, V = v]. Under the

assumption that (U1, U0, US) are independent of (Z,X),

E[Y1|X = x, V = v] = µ1(x, β1) + E[U1|V = v],

and

E[Y0|X = x, V = v] = µ0(x, β0) + E[U0|V = v],

where the functional forms of µ1 and µ0 are specified up to finite dimensional parameters β1 and

β0. Thus, estimates of E[Y1|X = x, V = v] and E[Y0|X = x, V = v] can be obtained by estimating

β1, β0, E[U1|V = v], and E[U0|V = v].

We estimate β1 and β0 using a semiparametric version of the sample selection estimator of Das,

Newey, and Vella (2003). Notice that under the assumption that U1 and V are independent of X

and Z, we have

E[Y |X = x, P = p, S = 1] = µ1(x, β1) + λ1(p), (5)

where λ1(·) is an unknown function of P . Equation (5) suggests that β1 can be estimated by
20The assumption of separability implies the following modification in our model:

Y1 = µ1(X) + U1

Y0 = µ0 (X) + U0,

as opposed to Y1 = µ1 (X, U1) and Y0 = µ0 (X, U0).
21In contrast, Lemma 1 only requires that (U1, U0, US) are independent of Z given X, which allows for depen-

dence between (U1, U0, US) and X. The separability and independence assumptions we impose are standard in most
empirical work in economics.

22µ1 (X), µ0 (X) and µS (Z) will be functions of second degree polynomials and pairwise interactions between their
arguments. Exact specifications are given in section 3.1.
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a partially linear regression of Y on X and P using only observations with S = 1. Since P is

unobserved, Das, Newey, and Vella (2003) suggest a two-step procedure. The first step consists in

the construction of the estimated P and the second step consists in the estimation of β1 using the

estimated P . In this paper, the first step is carried out by a logit regression of S on Z using a flexible

but parametric form of µS(z), and the second step is accomplished using a Robinson (1988)-type

estimator with the estimated P .23 Analogously, β0 can be estimated by a partially linear regression

of Y on X and estimated P using only observations with S = 0.

Once we estimate βj and λj(p), estimation of E[Uj |V = v] for j = 0, 1 comes from directly

applying Lemma 1 with G(u) = u:

E (U1|V = v) = E [U1|P = v, S = 1] + v
∂E [U1|P = v, S = 1]

∂p
(6)

E (U0|V = v) = E [U0|P = v, S = 0]− (1− v)
∂E [U0|P = v, S = 0]

∂p
. (7)

Equations (6) and (7) are the basis for nonparametric estimators of E[U1|V = v] and E[U0|V = v]

proposed in this paper. Local polynomial estimation is used here to estimate E(U1|P = v, S = 1)

(which corresponds to λ1 (p) |p = v in equation (5)), E(U0|P = v, S = 0) and their partial derivatives

with respect to P . This is because local polynomial estimation not only provides a unified framework

for estimating both a function and its derivative but also has a variety of desirable properties in

comparison to other available nonparametric methods. Fan and Gijbels (1996) provide a detailed

discussion of the properties of local polynomial estimators. In Appendix B.1 we present a detailed

description of the method for estimating E[U1|V = v] and E[U0|V = v].

Finally, notice that fY1|X,V (y1|x, v) and fY0|X,V (y0|x, v) can be obtained by location shifts from

fU1|V (u1|v) and fU0|V (u0|v), i.e.,

fY1|X,V (y1|x, v) = fU1|V (y1 − µ1(x, β1)|v) and

fY0|X,V (y0|x, v) = fU0|V (y0 − µ0(x, β0)|v) .

To obtain fY1|X,V (y1|x, v) and fY0|X,V (y0|x, v), once we know β1 and β0 we only need to esti-

mate fU1|V (u1|v) and fU0|V (u0|v). As in (6) and (7), we can obtain identifying relationships for

fU1|V (u1|v) and fU0|V (u0|v) and resulting sample analog estimators can be constructed. Note that

given estimators of PDF’s, it is straightforward to obtain estimators of corresponding CDF’s by

integrating the estimated PDF’s, and to obtain estimators of corresponding quantiles by inverting

the estimated CDF’s (see Appendix B.2 for details).

23Series estimation is used in Das, Newey, and Vella (2003) for both the first and second steps. See also Heckman,
Ichimura, Smith and Todd (1998).
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Heckman and Vytlacil (1999, 2001, 2005) show how we can construct a variety of treatment

effect parameters as weighted averages of E (Y1 − Y0|X = x, V = v), and develop weights for several

parameters of interest. Drawing on their work, we can estimate E[Yj ], E[Yj |S = 1], and E[Yj |S = 0]

by integrating out our estimator of E[Yj |X = x, V = v] with some suitable weights for j = 0, 1.

Specifically, we obtain estimators of E[Yj ], E[Yj |S = 1], and E[Yj |S = 0] by the sample analogs of

the following formulae:

E[Yj ] =
∫ ∫ 1

0

E[Yj |X = x, V = v]fX(x) dv dx,

E[Yj |S = 1] =
∫ ∫ 1

0

E[Yj |X = x, V = v]
1− FP |X(v|x)

Pr(S = 1)
fX(x) dv dx,

and

E[Yj |S = 0] =
∫ ∫ 1

0

E[Yj |X = x, V = v]
FP |X(v|x)
Pr(S = 0)

fX(x) dv dx.

(8)

for j = 0, 1. See Appendix B.3 for a detailed description of the estimation procedure. Using

estimates of these conditional expectations, standard treatment effect parameters can be estimated:

ATE = E[Y1] − E[Y0], TT = E[Y1|S = 1] − E[Y0|S = 1], TUT = E[Y1|S = 0] − E[Y0|S = 0], and

OLS = E[Y1|S = 1] − E[Y0|S = 0]. E[Y1|S = 1] and E[Y0|S = 0] can also be estimated directly

by taking sample means of observed college and high school wages. Therefore, comparison between

model-based and direct estimates of E[Y1|S = 1] and E[Y0|S = 0] provides a goodness-of-fit check

of our model. Similarly, integrating our estimators of fYj |X,V (yj |x, v) for j = 0, 1 with the weights

in (8), we can obtain estimators of fYj (·), fYj |S=1(·|S = 1), and fYj |S=0(·|S = 0) for j = 0, 1. We

use counterfactual wage distributions of Y1 and Y0, namely fY1(·) and fY0(·), to study the evolution

of inequality in the economy accounting for self-selection into schooling. Note that fY1|S=1(·|S = 1)

and fY0|S=0(·|S = 0) can also be estimated directly by taking sample analogs of observed college

and high school wages, which again allows us to do a goodness-of-fit check of our model.

3 Selection Bias, Composition Effects and the Evolution of
Inequality

3.1 Data and Specification of the Model

The dataset we use consists of a sample of white males surveyed in the NLSY. Most analyses of the

evolution of inequality in the US are based on the CPS (for a recent example see Autor, Katz and

Kearney, 2004). The CPS is an annual, representative sample of the entire US population with a

large sample size. However, the relative lack of detail on individuals in the CPS does not allow us to

properly model the process of selection into schooling and its influence on wages. For this purpose,
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the NLSY is considerably better because the NLSY provides much richer individual data than the

CPS.24 In the NLSY there exists detailed information on cognitive ability and family background,

which are important determinants of both schooling and labor market outcomes. Furthermore we

know the place of residence of most respondents in the NLSY during their adolescent years. As a

result, we can construct school and labor market characteristics in different areas of residence of

adolescent NLSY respondents and use them as instrumental variables for schooling.25 The reason

we choose to start our analysis in the 1990s and not before is because NLSY respondents were very

young in the 1980s.26 Unfortunately we are unable to separate age and time effects in our analysis,

but this problem is not specific to our study.27 We estimate the model for 1992, 1994, 1996, 1998

and 2000.

Our sample consists of white males born between 1957 and 1964. The hourly wage measure we

use was created by the NLSY. In order to minimize measurement error and reduce concerns with

selective unemployment, our wage measure for each year is a 5 year average of all non-missing wages

reported in the five year interval centered in the year of interest.28 The model of section 2 only

allows for selection into two levels of schooling, so we need to group some schooling categories into

these two. The two groups we consider are: high school graduates plus high school dropouts; and

some college plus college graduates and above. The main reason for doing this aggregation in our

paper is the lack of the credible exclusion restrictions needed to estimate a model with multiple

levels of schooling (see Heckman and Vytlacil, 2005). Furthermore, this type of aggregation is very

common in the literature on wage inequality where often only two schooling groups are considered.29

24Descriptions of the NLSY and the CPS are available from the Bureau of Labor Statistics: http://www.bls.gov.
See also appendix A for a description of the data we use in the paper.

25However, the NLSY has three disadvantages: it surveys a very limited set of cohorts (individuals born between
1957 and 1964), the sample size is much smaller than in the CPS, and it is only collected bi-annually after 1994.
Therefore, it is important to know whether the patterns of inequality in the NLSY for the 1990s are similar to the
patterns of inequality in the CPS for the same cohorts and same time periods. In appendix we show that we can
roughly replicate the wage distribution in the CPS during the 1990s for the cohorts born between 1957 and 1964 using
the NLSY (see figure 11, which shows percentiles 10, 25, 50, 75 and 90 of the CPS and NLSY wage distribution for
each year we study). The NLSY has one more important advantage in addition to the richness of the data: it is a
longitudinal study. However, we do not emphasize this advantage in this paper because we only use the longitudinal
structure of the NLSY to construct our measure of wages.

26Even though many of our respondents are still relatively young during the period of our analysis, we wanted to
avoid using measures of labor market outcomes very early in each individual’s career since this is known to be a very
turbulent period.

27Furthermore, even if a large part of the price changes in our data are due to age effects, it is still interesting to
correct these for selection. For the purposes of our analysis (although not for the purposes of interpretation), it does
not matter which forces are behind the changes in skill prices.

28The percentage of individuals in our sample who have a missing observation for our measure of wages (due to
unemployment or non-reporting) is the following for each year: 4.1% in 1992, 3.8% in 1994, 3.6% in 1996, 2.8% in
1998 and 2.8% in 2000 (on top of this there is attrition in the panel, which we also ignore in the paper). When we use
different measures of wages such as yearly wages or averages over three years of wages, our results are qualitatively
similar but they are more imprecise.

29This type of aggregation is also common in studies of the returns to schooling using selection models, such as
Willis and Rosen (1979) or Carneiro, Heckman and Vytlacil (2003). We start by defining four schooling categories:
high school dropouts, high school graduates, some college and college graduates. Because there are multiple useful
reports of schooling in the NLSY we construct the educational categories as follows: individuals without a high school
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We now turn to the exact specification of the equations that we estimate. The X vector in the

log wage equations includes years of actual experience30, the Armed Forces Qualifying Test score

(AFQT, a measure of cognitive ability)31, number of siblings, mother’s years of schooling, father’s

years of schooling, and the state unemployment rate in the current state of residence (five year

average centered in the year of interest). Each variable enters with a linear and a quadratic term.

We also interact number of siblings, mother’s education and father’s education. Finally, we include

a dummy variable for being a high school dropout, another dummy variable for being a college

attendee without a college degree, and interactions of these variables with quadratic polynomials in

experience and AFQT. This is an attempt to allow for some selection on observables within each

broad schooling category.

The Z vector in the school choice equation consists of AFQT, number of siblings, mother’s

education, father’s education, distance to any college at age 14, average tuition in four year public

colleges in the county the individual lived in at age 1932, and the unemployment rate in the state

of residence in 1979.33 The variables that we exclude from the outcome equations are distance to

college, tuition, and local unemployment rate. AFQT and family background enter the schooling

choice equation but do not play the role of an instrument since they are included in the X vector

as well. In the school choice model, all variables enter with a linear and a quadratic term and are

interacted with each other. Our flexible but parsimonious specification of the outcome and choice

equations does not restrict the patterns of sorting allowed for our model and ensures that our results

are driven by genuine variation in the data, and not by the nonlinearity of the selection equation.

The instrumental variables we use for identification of the model (exclusion restrictions) are

intended to measure different costs of attending college and are based on the geographic location of

individuals in their late adolescence (and they are essentially the same instruments used in Carneiro,

Heckman and Vytlacil, 2003). If the decision of going to college and the (prior) location decision are

correlated then our instruments may not be valid (if the determinants of location are correlated with

wages). For example, individuals who are more likely to enroll in college may choose to locate in

degree are high school dropouts; individuals with a high school degree but with less than 13 years of schooling are
high school graduates; those reporting 13 to 15 years of schooling and without a four year college degree go into the
some college group; finally, those reporting a four year college degree or 16 or more years of schooling are considered
to be four year college graduates. GED recipients who never attend college are included in the group of high school
graduates.

30Measured in weeks of actual work experience (then converted into years of experience by dividing by 52).
31We adjust the AFQT score by the amount of schooling each individual has at the time they take the test (see

Hansen, Heckman and Mullen, 2004, and appendix A).
32Alternatively we could use the county of residence at age 17. The results are essentially the same but the

instrument is less strong, so we prefer to present the specification with tuition at 19.
33We experimented other instruments such as distance to four year college only (and other measures of distance at

different ages), tuition in two year colleges (and other measures of tuition at different ages), and other versions of the
unemployment rate, but these are weaker predictors of college attendance than the variables we decided to use.
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areas where colleges are abundant and inexpensive. However, in our wage equations we control for

measured ability and several family background variables (mother’s years of schooling, father’s years

of schooling and number of siblings). Therefore, our assumption is that our instruments are valid

conditional on measured ability and family background variables, which are also correlated with

location choice. Distance to college was first used as an instrument for schooling by Card (1993)

and was subsequently used by Kling (2001) and Cameron and Taber (2004). Carneiro and Heckman

(2002) show that distance to college in the NLSY79 is correlated with a measure of ability (AFQT),

but in this paper we include this measure of ability in the outcome equation. Tuition was used by

Kane and Rouse (1995) (although not in the published version of their paper). Average tuition

in the county of residence may also be a problematic instrument if it is correlated with average

college quality in the county. Notice, however, that we only consider 4-year public institutions,

and therefore, exclude all private universities for whom the link between price and quality may be

stronger. Again, our assumption is that the included ability and family background are enough to

control for the individual and family choice of college quality. Finally, local labor market variables

have been used by Cameron and Taber (2004). However, they use a measure of local wage, instead of

a measure of local unemployment. They also control for long term wages in the county of residence

both in the selection and in the outcome equations, so that the instrument measures business cycle

fluctuations orthogonal to the long term quality of the location of residence. Finally, they use county

level local labor market variables while we use state level variables. In the outcome equations that

we estimate we include the state unemployment rate in the year in which wages are measured.34

Sample statistics are presented in table 1. In each year of our data, individuals who attend

college have on average higher wages than those who do not attend college. They also have higher

levels of cognitive ability, fewer siblings, more educated parents, live nearer to colleges, in counties

with lower average tuition and in states with lower unemployment rates in year 1979 than those

individuals who never enrolled in college. It can be seen that college enrollment rates increase from

50% (1992) to 53% (2000), although we follow relatively mature cohorts for college enrollment (the

NLSY respondents in year 1992 are between 28 and 35 years old).35

34Furthermore, our estimates of the coefficients on the observables in the outcome and selection equations are
roughly robust to the inclusion of dummy variables for state of residence at 14 in the selection and outcome equations,
although they become more imprecise. The largest differences between models with and without state dummies are
observed in the outcome equations for 1998, and in the effect of unemployment on the selection equation for 1996-2000,
but even these ones are not substantial (these tables are available on request). Including such a dummy removes time
invariant effects of the state of residence in adolescence, such as a permanent state college quality effect or higher
education policy concern, or permanent state labor market conditions.

35If we use this data to produce standard OLS and IV estimates of the returns to college we get estimates roughly
in line with the literature (although estimates of returns to college are not very common). Using our data we run
the following regression:

Y = α + βS + γ′X + u

14



We use a logit model for schooling choice.36 The flexible logit model used here provides good

estimation precision, allows for nonlinear effects of Z, and ensures that the estimated probability

lies between 0 and 1. Furthermore, since the dependence between V and (U1, U0) is not constrained

in any way, assuming this parametric form for the choice equation is probably not restrictive. We

estimate one logit model for each year.37 Average derivatives are presented in table 2. Ability and

family background are strong predictors of college attendance. Tuition is also an important determi-

nant of enrollment in college. Even though distance and local unemployment do not strongly predict

college attendance on average, we choose to include them in the model because they potentially play

a useful role in the expansion of the support of P and may affect college enrollment of some specific

groups of individuals, although not for all individuals.

The identification of the objects of interest was discussed in section 2.2. The exact procedure

which we use to estimate this model is described in detail in appendix B. For each year we estimate

fY1|X,V (y1|x, v) and fY0|X,V (y0|x, v) and then weight these objects with appropriate weights to

construct the counterfactuals of interest, as described in section 2.3. However, it is only possible to

estimate these functions within the support of the data. In particular, we can only estimate them for

values of X and P (accordingly V ) for which we have individuals both in the college and high school

groups. Figure 1 shows the support of the data for 1994, a representative year in our sample.38

The top two figures refer to P and the bottom two figures refer to AFQT. AFQT is only one of the

variables in the X vector on which we condition, but it is the most important one and is also most

likely to have non-overlapping supports among X (see table 1).39 Notice that the support of P is

almost the full unit interval which allows us to estimate our model over the full support of V . We

are able to achieve large support for P because: (i) we combine multiple instruments into an index;

more importantly, (ii) if we assume that X is independent of (U1, U0, V ) we can trade-off variation

in X and Z to increase the support of P (since X is controlled for in the outcome equations in a

where Y is our measure of log hourly wages, S is a dummy for college attendance and X includes all the Xs we
include in our own outcome equations, entering with linear, quadratic and interaction terms. OLS estimates of β go
from 0.236 in 1992 (standard error of 0.05) to 0.372 in 2000 (standard error of 0.05), while IV estimates go from 0.902
(0.344) to 0.997 (0.336) over the same period. For comparison, using least squares and much less controls than us,
and using weekly wages (from the CPS) instead of hourly wages (for 1993-1997, a comparable time period), Welch
(1999) estimates (by OLS) a dropout-high school premium of 30-33%, a some college-high school premium of 24-35%
and a college graduate-high school premium of 84-96%.

36The propensity score P (Z) could be estimated nonparametrically; however, dimension reduction is needed here
to achieve reasonable precision of estimates since the dimension of Z is large.

37Alternatively we could have estimated a single selection model for all the years of the sample. The reason we
choose not to do it is that, even though these individuals are well into their adult years in the beginning of the 1990s,
there are still changes in schooling attainment during the decade. In particular, the college enrollment rate in this
sample increases from 50% to 53%. A similar pattern is found in the CPS. When we redo the analysis considering
that schooling is fixed at a particular level for all the years the overall results do not change substantially.

38Other years are available from the authors on request. This figure changes very little across years.
39On results available on request, we show that if we show similar figures for an index of X variables (namely,

E [µS (X, Z) |X]) we get roughly the same conclusions.
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very flexible way).40

3.2 Empirical Results

There are three components in our empirical analysis. First, we characterize how individuals sort

into different levels of schooling and illustrate how sorting affects inequality. Second, we study

the determinants of inequality and of its evolution over time. Third, we investigate the role of

composition changes in the evolution of inequality. We also characterize the effect of education

policy on wage inequality in a partial equilibrium framework.41

3.2.1 Characterizing the Patterns of Sorting

We start by presenting our estimates of E (Y1|X,V ) and E (Y0|X,V ) for 1994, a representative year

in our sample. Figure 2 shows estimates of E (Y1|AFQT, X, V = 0.5), E (Y0|AFQT,X, V = 0.5),

and E (Y1 − Y0|AFQT, X, V = 0.5), as functions of AFQT, along with 90% bootstrap confidence

intervals for E (Y1 − Y0|AFQT, X, V = 0.5). We fix years of experience at 10 to abstract from life-

cycle effects, V at its median value, and the remaining variables in X at: 3 siblings, 12 years

of mother’s and father’s education, and 7% of local unemployment rate. In figure 3 we graph

E (Y1|AFQT = 0, X, V ), E (Y0|AFQT = 0, X, V ), E (Y1 − Y0|AFQT = 0, X, V ) (the MTE of Heck-

man and Vytlacil, 1999, 2001, 2005), as functions of V , along with 90% bootstrap confidence intervals

for E (Y1 − Y0|AFQT = 0, X, V ). Again we fix years of experience at 10 and the remaining X vari-

ables at the values described above apart from AFQT, which we fix at its mean value 0. We focus on

AFQT and V because they are both strong determinants of college attendance and they are strongly

correlated with wages. The wage-AFQT gradient is steep in college but not in high school, and as a

consequence the returns to college increase with AFQT. As for V , it has a negative correlation with

college wages and a positive correlation with high school wages. Recall that the higher the V is, the

smaller the likelihood that an individual enrolls in college.

For every year in our sample we find strong evidence favoring existence of selection on unob-
40The intuition for this can be given by the following example: variation in Z for individuals with high levels of X

(say AFQT) will mostly affect individuals with high levels of V , while variation in Z for individuals with low levels
of X will affect mostly individuals with low levels of V . This assumption is standard in the empirical literature but
its use is not made as explicit as here. This procedure has some similarities with the use of interactions between X
and Z as instruments for the endogenous variables (controlling for X in the outcome regression). It is also often used
in selection models (although this is rarely stated explicitly). In our application, this independence assumption plays
an important role in the practical implementation of the method of local instrumental variables since it allows us
to extend the support of the instrument. Since we are very flexible in the way we include X in the wage regression
we can be confident that this type of expansion in the support of the instrument does not compromise its validity,
provided that both X and Z are independent of (U1, U0, US).

41In the appendix we carry out an informal goodness-of-fit of our model by comparing objects that can be estimated
using the model and directly from the data. As shown in figure 12 and explained in appendix C, our model fits the
data considerably well. This result was not guaranteed to happen given the multiple step procedure we adopt, and
therefore it gives us confidence in the specification of the model.
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servables for college wages and selection on AFQT, family background, and unobservables for both

college and high school wages using simple Hausman-type tests. These results suggest that the pat-

terns reported above and throughout the paper are genuinely important in the data, and therefore

we need to account for heterogeneity and selection in analyses of inequality. A detailed description

of the tests performed and of the results can be found in appendix C.

Our results confirm the findings in Willis and Rosen (1979), Carneiro, Heckman and Vytlacil

(2003), and Carneiro and Lee (2004). Those individuals most likely to enroll in college (the ones

with high levels of AFQT and low levels of V ) have high wages if they decide to go to college (since

college wages increase with AFQT and decrease with V ) but have low wages if they decide not to

go to college (since high school wages do not move substantially with AFQT and increase with V ).

Conversely, individuals less likely to enroll in college have low college wages and high high school

wages. Individuals sort into the sector where they have both comparative and absolute advantage.

Single skill models of the labor market implicit in standard specifications of earnings equations with

no heterogeneity predict college individuals to have higher earnings both in the high school and

college sectors than high school individuals. Our findings are inconsistent with such a model.

These results have important implications for the study of inequality which we develop in sections

3.2.2 and 3.2.3. First they indicate that selection bias may play an important role in standard

estimates of the returns to schooling and of the effects of different variables on wage inequality.

Second, they suggest that, if anything, both the observed high school and college wage distributions

may be “missing” their lower tails, since the “worst” individuals in each sector choose to enter

the other sector. If we observe increases in educational attainment in the population (composition

changes), they are likely to be caused by individuals who (on average) leave the bottom of the high

school wage distribution and enter (on average) the bottom of the college wage distribution. As a

result, changes in the educational attainment of the population can induce changes in within and

between group inequality even in the absence of changes in the price of skill.

Similar patterns are found for other years, although with some differences (the absolute advantage

pattern is basically always present in one form or another). In figure 4 we plot these curves for 1992

and 2000, the first and last years that we analyze.42 There is an upward sloping relationship between

AFQT and college log wages for all the years in the sample, which moves up and becomes flatter over

time. This indicates an overall rise in wages (either over time or over the life-cycle), but a decrease

in the slope of the AFQT-Wage gradient. If the slope of this function could be interpreted as the

price of AFQT, this movement would be analogous to a fall in the price of AFQT in college. In
42In the appendix we present the figures for all the years we analyze.
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high school, log wages are slightly increasing in 1992 but they have an inverse U-shape relationship

with AFQT for 2000.43 In terms of the V -Wage gradient, heterogeneity seems to be quantitatively

important in high school for both 1992 and 2000, but in the college sector once again this function

flattens out over time.44 In the appendix we present average marginal effect of each observable

variable on high school and college wages which confirm what we see in the pictures.45

Although we tentatively referred to these functions as pricing functions in the discussion above,

it is not completely clear how to interpret them. Heckman and Sedlacek (1985) interpret them as

production functions of sector specific tasks, and the price of the task is given by the intercept of

the function.46 Alternatively, we could interpret these as pricing functions for individual attributes

X and V , and we allow for nonlinear pricing of attributes as well as sector specific prices. However,

apart from AFQT, it is not clear whether the variables in X and V are relevant measures of skill.47

It is more likely that they proxy relevant skills, or are inputs in the production of relevant skills, as

in a version of the approach of Heckman and Sedlacek (1985) with multiple skills within each sector.

Probably we need a mixture of both models.48

There may also be unobserved skills whose prices also change over time, but on which agents do

not select when making their schooling decisions, and which we have ignored so far. Even after we

condition on X and V (the sources of selection in our model) there is substantial dispersion in Y1

and Y0. Carneiro, Hansen and Heckman (2003) and Cunha, Heckman and Navarro (2005) interpret

43Recall that due to limitations of the data we aggregate high school dropouts and high shool graduates in the
same sector, which may give rise to some of the patterns we observe. Say low AFQT individuals are high school
dropouts, high AFQT individuals enroll in college and the remaining are high school graduates. Then, if forced into
the high school sector, high school dropouts would have low wages as would college graduates, while actual high school
graduates would have the highest wages. This may partly explain why such a U-shaped pattern can emerge. Carneiro
and Lee (2004) exclude dropouts from the sample and get a strong pattern of absolute advantage both in terms of
observables and unobservables.

44In 2000 there is an upward sloping section in the expectation of Y1 as a function of V that we cannot explain,
but which can be due to sampling error. However, for most of its range the function is downward sloping, as in 1992.

45Notice that even though the average derivatives reported in the appendix do not seem to be very precisely
determined, we can test and reject that these variables do not belong in the wage equations, as reported in appendix
C. Furthermore, since some of these functions are non-monotonic the average derivatives reported here may not
always be interesting objects to examine.

46Even though this is a very appealing interpretation, a change in the price of sector specific task cannot lead
to an increase in within group log wage inequality, which is not an attractive feature in studies of the evolution of
inequality since it is a restriction at odds with the data. Furthermore, since we allow not only the intercept but the
whole function to vary across different years, this would imply that the production function can change over time and
changes in prices could only be distinguished from changes in technology through arbitrary normalization.

47Furthermore, since V represents everything that is unobservable and determines selection, it is likely to be an
index of multiple variables.

48As emphasized above, the problem is that in that case it is not possible to distinguish changes in technology
from changes in prices. For simplicity, if we assume that the technology of skill specific skills is fixed then changes in
these functions are given by changes in prices (even though in any given year it is not possible to distinguish prices
of skills and the production function of skills). In such a setting, our results could indicate that the prices of the
skills associated with characteristics X and V are declining over time. At the same time, we also observe a rise in the
overall level of wages (these functions shift up over time), especially in the college sector. So, more specifically, our
results indicate an increase in the average price of different skills but a decline in their marginal price. However, even
though we attempt to fix experience when plotting these figures, in reality we cannot hope to distinguish experience
from time effects. This increase in wages may just be reflecting the effect of experience on wages.
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E (Y1|X,V ) and E (Y0|X,V ) as ex-ante heterogeneity and f (y1|x, v) and f (y0|x, v) as uncertainty

faced by the agents at the time they are making the college decision (since agents do not select

on it). As emphasized in these papers, the magnitude of uncertainty is very large. In table 3 we

compute the variance of counterfactual wages in each sector for all the years and decompose it into

a component due to X, a component due to V and the residual component that we emphasize in

this paragraph.49 It is clear that it is the latter that accounts for most of the variance in both high

school and college wages, and that its importance increases dramatically over time in both sectors,

although it declines slightly in high school for the last two years of the sample. This has important

implications both for the interpretation of inequality patterns and for our study of selection bias

and composition effects. For example, the R-square of standard wage regressions is usually low

indicating that education explains a small amount of the variance of wages and therefore education

policy is not likely to strongly affect wage inequality. Table 3 suggests that even if we include in

this regression all of the observable and unobservable variables correlated both with schooling and

wages (often referred to as ability) this conclusion will not change dramatically.

Figure 5 presents estimates of the 25th, 50th and 75th percentiles of f (u1|v) and f (u0|v) for 1992

and 2000 (which correspond up to location to f (y1|x, v) and f (y0|x, v) since we do not allow the

dispersion of log wages conditional on X to vary with X). In this figure, U1 and U0 are normalized to

have mean zero. These three quantiles vary with V in the same way average wages in each schooling

level vary with V . While there is a non-monotonic relationship between the dispersion in Y1 and

V (which is flat over a large range of V in 1992) the dispersion in Y0 is clearly increasing with V .

This indicates that the components of heterogeneity that do not determine selection are either more

disperse for individuals with a higher level of V (indicating more uncertainty in high school wages

as an individual becomes more and more likely to belong to the high school sector) or the prices of

the skills underlying this heterogeneity are higher for individuals with a high V . Notice also that it

is implicit in table 3 that the dispersion in f (y1|x, v) and f (y0|x, v) increases from 1992 to 2000.

Therefore, even though this type of heterogeneity does not determine selection in the same way X

and V do, we observe that individuals with more uncertain wages both in high school and in college

select into high school. One interpretation is that there is a large overlap in the high school and
49In particular:

Var (Y1) = Var [µ1 (X)] + Var (U1)

= Var [µ1 (X)] + Var [E (U1|V )] + E [Var (U1|V )] ,

where Var [E (U1|V )] is the component of variance due to V and E [Var (U1|V )] is the remainder. Var (Y0) can be
decomposed in the same way. The first row of table 3 corresponds to E [Var (U1|V )], the part of the variance that
cannot be associated with selection, the second corresponds to Var [µ1 (X)], the third corresponds to Var [E (U1|V )]
and the fourth corresponds to E [Var (U1|V )]/Var (Y1), the fraction of the variance in Y1 that is not due to any variable
related to selection into schooling.
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college wage distributions, and for those individuals who face larger dispersion of high school wages

it may pay off not to undertake the cost of going to college because they can achieve a high wage in

the high school sector, if they are “lucky”. Alternatively, we can interpret individuals with high V

as high school dropouts (since we group high school graduates and high school dropouts in the same

schooling group) and they can be riskier individuals for many possible reasons. Of course, there are

other possible interpretations for this pattern.50

3.2.2 The Importance of Selection Bias

There exist only small changes in educational attainment over time (composition changes) in our

sample since we follow a particular cohort, namely NLSY respondents. Nonetheless, as we show in

this section, even in the absence of composition changes the pattern of self-selection documented in

section 3.2.1 has important consequences for the study of the evolution of the return to schooling

and for the study of the determinants of within group wage inequality.

Figure 6 displays the evolution of E (Yj) and E (Yj |S = j) for j = 0, 1.51 Notice that on one

hand, there are large differences in the level as well as the evolution over time between counterfactual

and observed means of college wages and on the other hand, there are relatively small differences

between counterfactual and observed means of high school wages, although they are not zero. This

suggests that selection bias may be quantitatively more important in the college sector than in

the high school sector.52 As a result, the trend in the OLS estimate of the college premium does

not correspond to the trend in more meaningful measures of the returns to schooling. In figure 7

we plot the OLS estimate of the college premium (E (Y1|S = 1) − E (Y0|S = 0)), and estimates of

E (Y1 − Y0) (average treatment effect, or ATE), E (Y1 − Y0|S = 1) (treatment on the treated, or TT)

and E (Y1 − Y0|S = 0) (treatment on the untreated, or TUT) over the 5 years we study. There are

two measures of OLS: the one based on our model and the other using data directly. They are quite

similar in both the level and trend, implying that we fit the data well. The OLS parameter based

on the data directly increases from 35% (in 1992) to 47% (in 2000). However, as emphasized in

section 2.1 and in the whole literature on the returns to schooling, OLS does not correspond to the

return to schooling for anyone in the economy. As shown in Carneiro, Heckman and Vytlacil (2003)

and confirmed in our work for several years of data, the OLS parameter understates the level of TT
50We need to acknowledge that our model has a limitation since it does not allow the dispersion of log wages to vary

with X, something that has been emphasized in recent papers such as Lemieux (2004) or Autor, Katz and Kearney
(2004). Nevertheless, the main X variables considered in those papers are education, experience and institutional
variables. We ignore the latter and allow the variance of wages to vary with education, so the restriction is only
obvious for experience (a variable that does not determine selection).

51The evolution of fYj
(yj) and fYj |S=j(yj |S = j) for j = 0, 1, is available on request.

52This is consistent with results of tests for selection reported in appendix C.
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and overstates the level of TUT. The estimation of OLS relies on the comparison of non-comparable

individuals. Individuals who do not enroll in college have higher high school wages than average

college participants would have had they not enrolled in college (E[Y0|S = 0] > E[Y0|S = 1]).

Therefore, the former overstate the high school wages of the latter. In consequence the estimated

return for these individuals is understated (OLS < TT). Conversely, those who do not attend college

would be poor college individuals (E[Y1|S = 0] < E[Y1|S = 1]), and therefore the comparison group

we use grossly overstates their opportunities as college graduates, leading to an overstatement of the

return (OLS > TT).53 We observe that TT is declining from 1992 to 1994 but it rises by 35% over

the rest of the period, ATE increases by 39% from 1992 to 2000 and TUT increases by 49% over the

same period. The trend in the OLS estimate of the return to schooling plays a fundamental role in

modern characterizations of the labor market and of the demand for skill, as in Katz and Murphy

(1992) and Card and Lemieux (2001). It is clear how this parameter is severely contaminated by

selection bias, as is its trend. Furthermore, as we discuss below in section 3.2.3, composition changes

can also affect the OLS parameter even in the absence of (fundamental) variation in parameters such

as TT, ATE or TUT.

In section 3.2.1 we have described the evolution of prices of observed and unobserved skills in

the economy. A natural question is: how do these price changes drive the evolution of inequality?

To answer it we could, for example, follow the procedure of Juhn, Murphy and Pierce (1993) and

decompose the increase in inequality in functions of observable and unobservable variables (or al-

ternative procedures by DiNardo, Fortin and Lemieux, 1996, or Autor, Katz and Kearney, 2004).

We adopt a similar idea but we account for selection, and we allow within group inequality to differ

across skill groups (instead of just examining the residual of a wage regression pooling all schooling

groups). In figure 8 we present the evolution of several measures of inequality in college and we

break it into components due to observables and components due to unobservables. In the panels

in the left hand column we account for selection while, for comparison, in the panels in the right

hand column we do not, as is standard in the literature.54 The panels in the first row plot changes

in the 90-10 differential (difference between log wages in the 90th and 10th percentiles of the college

distribution), those in the second row plot changes in the 90-50 differential and those in the third

row plot changes in the 50-10 differential. In each panel we have three lines: one refers to the overall

evolution of the inequality measure (circles), the other refers to the evolution we would observe in

inequality if the distribution of U1 were kept fixed at its 1992 values (triangles) and a third one

53Carneiro and Heckman (2002) show that this pattern can explain why IV estimates of the returns to schooling
are usually larger than OLS estimates of this parameter.

54In the latter case we estimate college and high wage equations separately using ordinary least squares.
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that plots the evolution of inequality if the distribution of µ1(X,β1) were kept at its 1992 values

(squares). In the appendix B.4 we explain the exact procedure used.

Starting from figure 8, the first thing to notice is that the level of inequality in fY1 (y1) (left hand

panels) is very different than the level of inequality in fY1|S=1 (y1|S = 1) (right hand panels). For

example, in 1992 the 90-10 differential in terms of fY1 (y1) is close to 1.5 while the corresponding

measure in terms of fY1|S=1 (y1|S = 1) is 1.26, a difference of more than 0.2. Even though the level

of inequality (as measured by the 90-10 differential) is very different in the two top panels of figure

8, the trend in inequality is very similar. In both panels there is an increase of around 0.2 in this

measure over the 1990s. However, when we look at the remaining panels of this figure we observe

that this is not a general result: both the level and the trend in other measures of inequality are

quite different whether we are looking to fY1 (y1) or fY1|S=1 (y1|S = 1). The differences between the

right and left panels of the figure exist for two reasons: (i) they concern the evolution of different

objects (fY1 (y1) vs. fY1|S=1 (y1|S = 1)); (ii) the estimates of µ1 (X) on the right hand side panel

are contaminated by selection bias.

It is clear from the three left panels of figure 8 that most of the increase in the evolution of

counterfactual college inequality (which in principle accurately reflects changes in skill prices) is

driven by changes in the distribution of unobservables (due, for example, to a rise in the price of

unobserved ability, or abilities, which affects mostly the top of the wage distribution). Changes in the

function µ1 (X) do not translate into significant changes in inequality at the top of the distribution

(90-50 differential, presented in the second row of panels), but may have induced an increase in

inequality at the bottom of the college wage distribution around 1996 (50-10 differential, shown in

the third row of panels). When we do not account for selection (as is standard in the literature), we

get very different answers. At the top of the wage distribution, the increase in “observed” inequality

(not accounting for selection) not only is much smaller than the increase in counterfactual inequality,

but its increase is attributable to both X and U1, especially in the later years. At the bottom of

the wage distribution observed inequality increases throughout the period and this is mainly due to

X.55 Given the results of table 3, it is not surprising that X plays a small role in the evolution of

inequality, and it is also unlikely that skills associated with V play a substantial role. As emphasized

in section 3.2.1, most of the variance of wages is driven by components of heterogeneity that are

neither X nor V .

Figure 9 presents the same analysis for high school inequality. In this case, even though there

are some differences between counterfactual and observed inequality, they are much smaller than in
55We could do similar types of decomposition using any other year as our base year. In results available on request

we show that using 2000 as our base year instead of 1992 does not change our basic conclusions.
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figure 8, probably because selection into high school does not play as important role in our paper as

selection into college. The main determinant of the evolution of high school wage inequality is U0.

Movement in µ0 (X) does not translate into any significant change in high school wage inequality,

although it plays some role in college inequality. This is probably due to the fact that AFQT, the

main determinant of wages in our X vector, plays a more important role in college than in high

school.

3.2.3 Composition Effects and Education Policy

The third exercise of our empirical section is an examination of the importance of composition

effects. Unfortunately, since we follow a single cohort of individuals over time, there are no significant

composition changes to examine in the raw data. Therefore, instead of looking directly to the data

for evidence of composition effects, we adopt an alternative strategy. Using our estimates of the

selection and outcome equations we simulate what would happen to inequality if college enrollment

rates were different than the ones we observe, keeping prices fixed (partial equilibrium framework56).

The difficulty of this exercise is to determine which individuals shift across schooling levels when

the college enrollment rate changes. In general these individuals could come from anywhere in the

potential college and high school wage distributions, but in principle those individuals at the margin

between choosing to enroll in college or not will be the ones most likely to change their decision.

In this paper we simulate changes in college enrollment by moving the intercept of the selection

equation (equation (2)), and then we identify who are the individuals induced to go to college by

this change (individuals at the margin). By looking at their potential high school and college wages

we can determine how their movement affects the wage distribution. It is possible to imagine several

other alternative ways to change the college enrollment rate in the economy (for example, through a

tuition subsidy), and our conclusions about the effect of composition on inequality can certainly be

affected by our choice. However, we feel this is a realistic approximation to a change in educational

attainment. In this experiment, those individuals who are most likely to move first are just at the

margin between attending college or not. As more and more people are induced to enter college they

come further away from the margin. Therefore, even though we use one specific way to implement

this simulation, the main patterns that we document will be present in any simulation that affects

mostly individuals at the margin.

The mechanics of the simulation are simple: first we change the intercept of the schooling equation

and we identify the distribution of (X,V ) for individuals induced to enroll in college; second we

56See also Ferreira and Leite (2005).
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generate the distribution of high school and college wages for this set of individuals; third, we

compute how their exit from the high school sector affects the high school wage distribution and how

their entry into the college sector affects the college wage distribution. The details of the simulation

procedure are presented in Appendix B.5. The results are shown in figure 10, and they are based on

our estimates for 1992 (we could have picked any other year as a base year to perform this exercise).

We do not simulate settings where the average college enrollment rate is either very close to 0 or

very close to 1. Instead, we restrict ourselves to cases where the average college enrollment rate

is between 0.35 and 0.66 (the mean in the data is close to 0.5). An important concern with our

simulations is that the model does not allow us to consider general equilibrium effects, and therefore

does not allow skill prices to change as the quantities of different skills change in the economy. We

hope that our simulation results will be more realistic if we restrict ourselves to a smaller (but still

relatively large) range of values than the full possible range.

Figure 10 has six panels. In the top-left panel we show how the least squares measure of the college

premium (E (Y1|S = 1)−E (Y0|S = 0)) changes as the probability of going to college increases. In the

top right panel we show the evolution of the two components of the college premium: E (Y1|S = 1)

and E (Y0|S = 0). The OLS estimate of this parameter rises sharply from 0.29 to 0.43 (an increase

of 14%) as the proportion of individuals attending college decreases from 0.66 to 0.35 (a decrease of

31%). Roughly speaking, a 1 percent increase in college enrollment can induce a 0.5 percent decrease

in this OLS estimate. The reason behind this is that the population of college graduates becomes

more selective and of better quality as the cost of attending college increases, and therefore their

average wages increase. Simultaneously, the population of high school graduates becomes of lower

quality and average high school wages decrease (although this effect is very small in our data). As

a result, the OLS estimate increases with the rise in the cost of attending college.

In the middle panels and the bottom left panel we look at trends in different quantiles of the

college and high school wage distributions. In the bottom-right panel we examine changes in overall

inequality (changes in the distribution of Y ) as well as changes in within-skill-group inequality

(changes in the distributions of college and high school wages, shown separately) by computing the

difference between the 90th and the 10th percentiles of the distribution of Y , Y1 conditional on

S = 1, and Y0 conditional on S = 0.

Median college wages decrease by 15% and median high school wages stay flat (an increase of

about 1%) as the proportion of individuals with a college education increases from 0.35 to 0.66. The

overall median wage increases by 5% as more individuals enter the college group. We observe the

same behavior at the upper and lower tails of the distributions of high school, college and overall
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wages. Furthermore, the observed (conditional on S = 1) 90-10 college wage differential increases

by 7%, but the 90-10 high school wage differential stays essentially flat (a decrease of less than

1%). Again there is only a slight change in the distribution of high school wages. In summary, as

the proportion of individuals attending college increases, between-group-inequality decreases, high

school within-group-inequality stays flat and college wage inequality increases. Therefore, overall

inequality can increase or decrease. In our sample, the overall 90-10 wage differential increases by

4% as college enrollment increases from 0.35 to 0.66.57 In conclusion, relatively large increases in

educational attainment can lead to relatively small increases in overall inequality.

At first glance it seems surprising to find large effects of composition on between group inequality

but small effects on within group and overall inequalities. However, it is possible to reconcile these

facts. In the presence of selection there can be large effects on parameters involving means at the

same time that there are small effects on dispersion parameters. This will happen if the amount of

heterogeneity on which individuals select does not explain a lot of the dispersion in wages. Indeed,

results already described in table 3 confirm that only a small amount of total variance is explained by

selection and therefore it is quite conceivable that selection and composition changes have little effect

on the dispersion parameters. In spite of this, as shown in section 3.2.2, selection bias substantially

changes the description of within group wage inequality. When we examine selection bias we compare

the observed data to very extreme counterfactuals: we compare fY1|S=1 (y1|S = 1) to fY1 (y1) and

fY0|S=0 (y0|S = 0) to fY0 (y0). This is analogous to simulating very large changes in composition,

shifting everyone to one schooling level of the other. Our analysis of selection bias shows that, in

spite of the results of table 3, such extreme movements in composition can have an effect on wage

dispersion.

The analysis of figure 10 suggests that composition changes may play some role in explaining

changes in inequality, especially changes in the least squares measure of the college premium (al-

though so far we experimented with larger changes in educational attainment than the ones observed

in the data, say, over a decade). For example, over the 1980s, a period of sustained increase in in-

equality, using the Census we observe that the percentage of white males aged 25-65 with some

college or more increased from 41% (1980) to 55% (1990). How did this change in college enrolment

affect the rise in inequality? Using our estimates of the selection model and taking as the base year

1992, we simulate a change in college enrollment from 41% to 55%. The numbers we obtain from

the simulation are not directly comparable with the ones we obtain from the Census, since the age
57The relationship between college enrollment and overall inequality does not even need to be monotone. Given

that between group and within group inequality move in opposite directions, it is simple to design very reasonable
examples where a non-monotonic relationship arises.
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group with which we estimated the selection model is quite restricted and our base year is 1992,

but this exercise is still instructive. Table 4 shows the result of our experiment. The first columns

are computed from the US Census, and the second two columns correspond to the simulations. The

OLS estimate of the return to schooling decreases from 40% to 33%. This indicates that, if anything,

the measured return to schooling in the 1980s would have increased by 7% more in the absence of

composition changes. Furthermore, if the 1980s description of inequality is affected by selection bias

in the same way as the 1990s description of inequality (as seen in section 3.2.2), there is a further

understatement of the trend in the average return to college in the 1980s.

The changes in within group inequality and overall inequality, as measured by the 90-10 percentile

wage differential, are quite smaller. In college, this measure increases from 1.30 to 1.34, an increase

of 4%, while in the Census the 90-10 differential in college increases by 11%. In high school, the

90-10 percentile wage differential decreases from 1.13 to 1.12, a decrease of 1%, while in the Census

the 90-10 differential in high school increases by 9%.58 Overall there is a very small increase in

inequality, which increases from 1.28 to 1.29.59 Nevertheless, the effect on the standard measure of

between group inequality is quite substantial (the OLS estimate of the return to college decreases

by 7%), indicating that selection and composition effects do play an important role. As mentioned

above, this can have important consequences for studies of the evolution of inequality and of the

returns to schooling, such as Katz and Murphy (1992), Card and Lemieux (2003) or Gosling, Machin

and Meghir (2000).

The results in this section also have immediate consequences for the study of the effects of

education policy on wage inequality in a partial equilibrium framework. Policies that increase

college attendance lead to substantial reductions in the average “quality” of college graduates and

may lead to some increase in the average “quality” of high school graduates. As a consequence,

the difference between college and high school average wages is likely to decline. These effects are

substantial even for increases in college enrollment of about 10-15% (comparable to the increase in

educational attainment observed in the 1980s). At the same time there are much smaller changes

in within group and overall inequalities. This suggests that education policy can have large effects

on the OLS measure of the return to schooling, but much smaller effects on the overall level of

inequality. The reason is that, even though there is selection into college, the variables on which

individuals select explain a small fraction of the total variance of wages. Furthermore, the difference
58Therefore we “explain” roughly 30% of the increase in within group inequality in college with composition changes.

But we explain none of the increase in within group inequality in high school because in our simulation, changes in
composition give rises to a small decrease in within group inequality while the same measure increased in the Census
data.

59A larger change in composition could lead to a substantial change in inequality. In the extreme, given our 1992
estimates, overall inequality would increase from 1.26 to 1.49 if everyone were forced to enroll in college.
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in average wages of college and high school graduates is also a very small fraction of the overall

dispersion in wages, and wages are more disperse in college than in high school.60

4 Conclusion

Most of the literature on inequality ignores that individuals are heterogeneous and self-select into

different levels of schooling. Our paper is an attempt to account for selection into schooling in the

empirical study of inequality. We focus on a sample of white males from the NLSY, and examine

the evolution of their wages during the 1990s. This is neither the sample that is commonly used

in studies of this type (such as the CPS, or the Census), nor the time period with greater changes

in inequality (the 1980s). We pick this sample for a reason: its richness of individual information

allows to model the process of selection into schooling in a way that is almost impossible in other

data. Furthermore, this is a nationally representative sample of males, with a reasonable sample

size, and the wage distributions are very similar for the CPS and the NLSY during the 1990s (for

the same cohorts of white males).

We estimate a semiparametric selection model with two levels of schooling (high school and

college) using five years of data (1992, 1994, 1996, 1998 and 2000) and use it for three different

exercises. First, we use them to understand the main patterns of sorting of individuals into different

levels of schooling. We find that individuals sort into the level of schooling where they have absolute

and comparative advantage. Second, we use them to analyze the evolution of inequality and of

its determinants in our sample during the 1990s, purging our estimates of selection bias. We find

that selection bias causes us to understate the growth in different measures of the average return to

schooling. Furthermore, it leads us to understate the increase in inequality at the top of the college

wage distribution and to understate it at the bottom of the college wage distribution. Third, we use

them to simulate changes in schooling attainment and examine their effects on the wage structure. In

our data increases in educational attainment lead to reductions in between group inequality but do

not have substantial effects on within group inequality, unless the change in educational attainment

is very large.

Some of the effects we emphasize in this paper are also present in some analyses of larger sam-

ples, in particular the Census. Juhn, Kim and Vella (2005) find evidence of cohort quality effects

systematically related to the educational attainment of different cohorts, but argue these can only

explain a small fraction of recent fluctuations in the college premium. Using a different approach,
60This also suggests that even in the absence of selection, it may well be that if we induce a large fraction of the

population to enroll in college we will not have a large reduction in inequality (or poverty).
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Carneiro and Lee (2005) also find suggestive evidence of composition effects using Census data from

1960 to 2000, by linking differences in college and high school wages across cohorts to educational

attainment across cohorts, accounting for equilibrium effects of college enrollment on skill prices (as

emphasized by, for example, Card and Lemieux, 2001). Furthermore, using data from the Interna-

tional Adult Literacy Survey for the US, they also show that (after controlling for age effects) cohorts

with relatively large college enrollment rates in the sample tend to have lower average literacy wages

among college graduates, indicating a decline in the average quality of the college graduate in these

cohorts.

In summary, the literature on the returns to schooling emphasizes that heterogeneity and self-

selection are important features of labor markets. In this paper we show that selection into schooling

seems to be an important factor to take into account in studies of wage dispersion. It can substan-

tially change our perception of the forces that shape the evolution of wage inequality.

Appendix

A Description of the Data

We restrict the NLSY sample to white males. We define individuals in the high school group as

individuals having up to a high school degree, or having completed up to 12 grades and never

reporting college attendance. We define participation in college as having ever gone to college or

having complete more than 12 grades in school. GED recipients that do not have a high school degree,

who have less than 12 years of schooling completed and who never reported college attendance are

excluded from the sample. The wage variables we use are deflated (to 1983) non-missing hourly wages

from 1990 to 2002. We use these to construct 5 year averages which we use in the analysis. We

delete all wage observations that are below $1 and above $100. Experience is actual work experience

in weeks accumulated from 1979 to the year of interest (annual weeks worked are imputed to be

zero if they are missing in any given year). The remaining variables that we include in the X and

Z vectors are number of siblings, father’s years of schooling, mother’s years of schooling, schooling

corrected AFQT, average deflated (to 1993) tuition of the colleges in the county the individual lives

in at 19, distance to the nearest college at age 14 and local unemployment rate in state of residence

in 1979. For the construction of the tuition variable see Cameron and Heckman (2001). Distance

to college is constructed by matching college location data in HEGIS with county of residence in

NLSY. For a description of the NLSY sample see BLS (2001). The NLSY79 has an oversample of

poor whites which we exclude from this analysis. We also exclude the military sample. To remove

the effect of schooling on AFQT we implement the same procedure as in Carneiro, Heckman and

Vytlacil (2003) (based on Hansen, Heckman and Mullen, 2004).
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B Details of Estimation Procedure

B.1 Estimating E[U1|V = v] and E[U0|V = v]

This section gives a detailed description of nonparametric estimators of E[U1|V = v] and E[U0|V =

v]. First consider local polynomial estimation of E[U1|V = v]. In general, use of higher order

polynomials may reduce the bias but increase the variance by introducing more parameters. Fan

and Gijbels (1996) suggest that the order π of polynomial be equal to π = µ+1, where µ is the order

of the derivative of a function of object. That is, Fan and Gijbels (1996) recommend a local linear

estimator for fitting a function and a local quadratic estimator for fitting a first-order derivative.

Following suggestions of Fan and Gijbels (1996), E(U1|P = v, S = 1) is estimated by a local linear

estimator using observations with S = 1 and ∂E(U1|P = v, S = 1)/∂p is estimated by a local

quadratic estimator.

To be more specific, let {(Û1i, P̂i, Si) : i = 1, . . . , n} denote observations of estimated U1 and P

along with S, where Û1i = Yi − µ1(Xi, β̂1) for i = 1, . . . , n. The local linear estimator Ê(U1|P =

v, S = 1) is obtained by solving the problem

min
c0,c1

n∑

i=1

Si

[
Û1i − c0 − c1(P̂i − v)

]2

K

(
P̂i − v

hn1

)
,

where K(·) is a kernel function and hn1 is a bandwidth. The resulting value of c0 is the local linear

estimator of E(U1|P = v, S = 1). Similarly, the local quadratic estimator ∂̂E(U1|P = v, S = 1)/∂p

is obtained by solving the problem

min
c0,c1,c2

n∑

i=1

Si

[
Û1i − c0 − c1(P̂i − v)− c2(P̂i − v)2

]2

K

(
P̂i − v

hn2

)
,

where hn2 is a bandwidth that can be different from hn1. The resulting value of c1 is the local

quadratic estimator of ∂E(U1|P = v, S = 1)/∂p. Then the estimator of E[U1|V = v] is given by

Ê[U1|V = v] = v
∂̂

∂p
E(U1|P = v, S = 1) + Ê(U1|P = v, S = 1). (9)

Similarly, the estimator of E[U0|V = v] can be obtained by replacing unknown functions in the right

hand side of (7) with their nonparametric estimators.

In our empirical work, we first need to estimate β1 and β2. They are estimated by a Robinson

(1988)-type estimator with a bandwidth of 0.10. The data are trimmed by 10% of the observations

with the smallest density estimates of the estimated P . The estimation results do not change much

as we use alternative bandwidths (0.05 and 0.20) or an alternative trimming (5%).

Estimating E(U1|P = v, S = 1) and its derivative requires choices of two bandwidths hn1 and

hn2. A reasonable data-driven bandwidth selection rule is important to carry out nonparametric

estimation. We carry out some initial search for bandwidths using a method called residual squares

criterion (RSC) proposed in Fan and Gijbels (1996, Section 4.5). After experimenting different

bandwidths around RSC-chosen bandwidths, we finally choose hn1 = 0.35 and hn2 = 1.25hn1 for

estimating both E (Y1|X,V ) and E (Y0|X, V ) for all the years. Varying the value of hn1 from 0.2 to

0.5 does not make any important changes in the estimation results. Throughout the paper, we use
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the standard normal density function as the kernel function K. Bootstrap confidence intervals shown

in figures 2 and 3 are obtained by the bootstrap percentile method with 499 bootstrap replications.

B.2 Estimating f(u1|v) and f(u0|v)

This section describes nonparametric estimators of f(u1|v) and f(u0|v). As in (6) and (7), an

application of Lemma (1) yields the following relationships

fU1|V (u1|v) = fU1|P,S=1(u1|v, S = 1) + v
∂

∂p
fU1|P,S=1(u1|v, S = 1) and (10)

fU0|V (u0|v) = fU0|P,S=0(u0|v, S = 0)− (1− v)
∂

∂p
fU0|P,S=0(u0|v, S = 0). (11)

Sample analogs of the right-hand sides of equations (10) and (11) can be obtained by some suitable

nonparametric estimators.

We only discuss estimation of f (u1|v) in detail, since estimation of f (u0|v) is similar. To develop

an estimator of f (u1|v) using the equation (10), it is necessary to estimate fU1|P,S=1(u1|p, S = 1)

and its derivative with respect to p. Specifically, the estimator of f (u1|v) can be obtained by

f̂(u1|v) = v
∂̂

∂p
fU1|P,S=1(u1|v, S = 1) + f̂U1|P,S=1(u1|v, S = 1), (12)

where f̂U1|P,S=1(u1|v, S = 1) and ∂̂fU1|P,S=1(u1|v, S = 1)/∂p are defined below.

In order to compute f̂U1|P,S=1(u1|v, S = 1) and ∂̂fU1|P,S=1(u1|v, S = 1)/∂p in (12), we begin with

estimated data {(Û1i, P̂i) : i = 1, . . . , n, Si = 1}, where Û1i = Yi−µ1(Xi, β̂1). One could estimate the

conditional density of U1 given P and its derivative by estimating the joint and marginal densities

using the standard kernel density estimators, and then taking the ratio between them to estimate

the conditional density, and finally computing a derivative of the conditional density. This indirect

method would yield consistent estimators but it is quite cumbersome. Instead we use a direct method

of Fan, Yao, and Tong (1996), who develop local polynomial estimators of the conditional density

function and its derivative. To motivate the estimators of Fan, Yao, and Tong (1996), notice that,

as δn → 0,

E

[
δ−1
n K

(
U1 − u1

δn

) ∣∣∣∣P = v, S = 1
]
≈ fU1|P,S=1(u1|v, S = 1)

≈ fU1|P,S=1(u1|v0, S = 1) +
∂

∂p
fU1|P,S=1(u1|v0, S = 1)(v − v0)

for any v in a neighborhood of v0, where K is a nonnegative density function and δn is a band-

width. This suggests that the local linear estimator of fU1|P,S=1(u1|v, S = 1) can be defined as

f̂U1|P,S=1(u1|v, S = 1) ≡ ĉ0, where (ĉ0, ĉ1) solves the problem

min
c0,c1

n∑

i=1

Si

[
δ−1
n K

(
Û1i − u1

δn

)
− c0 − c1(P̂i − v)

]2

K

(
P̂i − v

hn1

)
, (13)

and the local quadratic estimator of ∂fU1|P,S=1(u1|v, S = 1)/∂p can be defined as ∂̂fU1|P,S=1(u1|v, S =

1)/∂p ≡ ĉ1, where (ĉ0, ĉ1, ĉ2) solves the problem

min
c0,c1,c2

n∑

i=1

Si

[
δ−1
n K

(
Û1i − u1

δn

)
− c0 − c1(P̂i − v)− c2(P̂i − v)2

]2

K

(
P̂i − v

hn2

)
. (14)
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The estimator defined in (12) is an unrestricted estimator. Thus, it can be negative for a given

finite sample, although it is a consistent estimator of f(u1|v) under certain regularity conditions. To

ensure that the estimator is positive in finite samples, we consider a trimmed version of (12):

f̂pdf (u1|v) = max[ε, f̂(u1|v)],

where ε is a fixed, very small positive number.

Now we describe estimators of F (u1|v) and F (u0|v). Again we only discuss estimation of

F (u1|v). To develop an estimator of F (u1|v), note that

F (u1|v) = FU1|V (u1|v) +
∫ u1

u1

fU1|V (u|v)du, (15)

for any fixed constant u1 < u1. We estimate F (u1|v) by replacing FU1|V (u1|v) and fU1|V (u|v) in

(15) with their sample analogs. More specifically, the estimator of FU1|V (u1|v) is defined as

F̂ cdf
U1|V (u1|v) = max[0, F̂U1|V (u1|v)],

where

F̂U1|V (u1|v) = v
∂̂

∂p
FU1|P,S=1(u1|v, S = 1) + F̂U1|P,S=1(u1|v, S = 1), (16)

and F̂U1|P,S=1(u1|v, S = 1) and ∂̂FU1|P,S=1(u1|v, S = 1)/∂p, respectively, are local linear and

quadratic estimators that solve the problems similar to those in (13) and (14) with δ−1
n K

(
(Û1i − u1)/δn

)

replaced by 1(Û1i ≤ u1). Then our estimator of F (u1|v) is defined as

F̂cdf (u1|v) = min

[
1, F̂ cdf

U1|V (u1|v) +
∫ u1

u1

f̂pdf (u|v)du

]
.

Notice that by construction, our estimator is a strictly increasing, continuous function of u1 (for

u1 > u1) and is restricted to be between 0 and 1. In other words, our estimator is a distribution

function for a given finite sample. One could use an unrestricted estimator (16), which is not

necessarily a distribution function in finite samples.

To estimate these conditional PDF’s and CDF’s, we adopt the same bandwidths hn1 and hn2

that are used to estimate the corresponding conditional means. The bandwidth δn is chosen by

Silverman’s normal reference rule (Silverman, 1986, p.45). These choices of bandwidths are arbitrary,

but the estimation results are not very sensitive to the choices of the bandwidths.

Notice that as a by-product of estimating F̂cdf (u1|v), we obtain an estimator of the τ -th quantile

of U1 conditional on V = v for any τ ∈ (0, 1), which is denoted by QU1|V (τ |v). Simply, the estimator

is given by

Q̂U1|V (τ |v) = F̂−1
cdf (τ |v) ,

where the right-hand side is unique for a given finite sample provided that u1 is sufficiently small,

since F̂cdf (u1|v) is a strictly increasing function when u1 > u1. Furthermore, under the assumption

that U1 and V are independent of X and Z, the τ -th quantile of Y1 conditional on X = x and V = v

can be estimated by

Q̂Y1|X,V (τ |x, v) = µ1(x, β̂1) + Q̂U1|V (τ |v).
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Therefore, we can also obtain estimators of quantile treatment effects, which are defined as

Q̂Y1|X,V (τ |x, v)− Q̂Y0|X,V (τ |x, v).

In the recent econometrics literature, quantile treatment effects have been considered by Abadie,

Angrist, and Imbens (2002), Chernozhukov and Hansen (2005), Chesher (2003), and Imbens and

Newey (2003) among others.

B.3 Obtaining Sample Analogs of (8)

Estimators of E[Yj ], E[Yj |S = 1], and E[Yj |S = 0] are obtained by

E[Yj ] = n−1
n∑

i=1

∫ 1

0

Ê[Yj |X = Xi, V = v] dv,

E[Yj |S = 1] = n−1
n∑

i=1

∫ 1

0

Ê[Yj |X = Xi, V = v]
1− F̂P |X(v|Xi)

P̂r(S = 1)
dv,

and

E[Yj |S = 0] = n−1
n∑

i=1

∫ 1

0

Ê[Yj |X = x, V = v]
F̂P |X(v|Xi)

P̂r(S = 0)
dv,

(17)

where Ê[Yj |X = x, V = v] = µj(x, β̂j) + Ê[Uj |V = v] is defined in the main text, F̂P |X(v|x) is a

nonparametric estimator of FP |X(v|x), and P̂r(S = j) is the sample proportion of S = j for j = 0, 1.

The integration with respect to v can be evaluated numerically.

B.4 Estimating Counterfactual Changes in Inequality as a Function of
Observables and Unobservables

This subsection describes how we obtain results shown in Figure 8. The results in Figure 9 are

obtained similarly.

Figure 8 consists of 6 panels. The left-hand panels exhibit 90-10, 90-50 and 50-10 differences

of the counterfactual distribution of Y1. In these figures, solid lines with circles are obtained from

estimates of the counterfactual distributions of Y1 over different years; closely dotted lines with

squares are computed from estimates of the counterfactual distributions of Y1 by on one hand,

varying estimates of µ1(x, β1) over different years and on the other hand, fixing fU1 at the 1992

estimate; dotted lines with triangles are from estimates of the counterfactual distributions of Y1 by

on one hand, varying estimates fU1 over different years and on the other hand, fixing µ1(x, β1) at

the 1992 estimate. To carry out this procedure, it is necessary to impose location normalization on

U1. We achieve this by setting E[U1] = 0 for all the years.

The right-hand panels show 90-10, 90-50 and 50-10 differences of the observed distributions of

Y1 conditional S = 1. To obtain these figures, we run an OLS regression of Y1 on X using only

S = 1 to obtain estimates of µ1(x, β1) and U1. Solid lines with circles are obtained directly from

observed data on college wages over different years; closely dotted lines with squares are computed

from OLS estimates of µ1(x, β1) over different years and the 1992 OLS residuals; the dotted lines

with triangles are from the 1992 OLS estimate of µ1(x, β1) and OLS residuals over different years.
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B.5 Simulating Wage distributions of Different Compositions of Educa-
tion Groups

This subsection describes how we carry out simulations whose results are shown in Figure 10. Sup-

pose there is a policy that shifts the distribution of P in the population from FP |X (p|x) to F ∗P |X (p|x),

but has no effect on f (y0|x, v) nor f (y1|x, v) (for example, tuition subsidies). In view of (8), the

post-policy distributions of college and high school wages are

f(y1|S = 1) =
∫ ∫ 1

0

f(y1|x, v)
1− F ∗P |X(v|x)

Pr∗(S = 1)
fX(x) dv dx,

and

f(y0|S = 0) =
∫ ∫ 1

0

f(y0|x, v)
F ∗P |X(v|x)

Pr∗(S = 0)
fX(x) dv dx.

(18)

Thus, in order to simulate wage distributions of different compositions of education groups, we need

to compute only F ∗P |X (p|x) and Pr∗(S = 1). Recall that in our empirical work, P = L(µS(Z)),

where L is the CDF of the logistic distribution, We simulate changes in college enrollment rates

simply by varying the intercept of µS . Then F ∗P |X (p|x) can be estimated by a nonparametric kernel

regression of 1{L(µ̂S(Z) + c∗) ≤ p} on X with an estimated choice index µ̂ and Pr∗(S = 1) can be

estimated by a sample average of L(µ̂S(Z) + c∗), where we vary c∗ from a small number to a large

number to simulate a range of college enrollment rates. Finally the results shown in Figure 10 can

be obtained by sample analogs of (18).

C Goodness-of-fit of the Model Specification and Tests for
Selection

This section report an informal goodness-of-fit check of our model specification and results of simple

tests for selection. First, we provide evidence on the goodness-of-fit of our model specification. Figure

12 compares estimates of E (Y1|S = 1), E (Y0|S = 0), Quantile (Y1|S = 1) and Quantile (Y0|S = 0)

from the model with the corresponding quantities in the data, for all the years of our analysis.

Overall, our model fits the data relatively well. Even though the estimation of these objects involves

a multiple step procedure, our estimates of the means of high school and college wages and the data

match almost perfectly, although the fit is not as good in the lower tail of the college and high school

wage distributions. This gives us some confidence in the specification of the model.

We next report results of simple tests for selection, summarized in table 6. We carry out tests for

selection for both college and high school wages. Four different null hypotheses are tested: (1) no

selection on unobservables, (2) no selection on family background and unobservables, (3) no selection

on AFQT and unobservables, and (4) no selection on AFQT, family background and unobservables.

We describe a test for the first null hypothesis in detail. Other tests are similar. Our test is based

on the fact that E[(E[Yj |X]−E[Yj |X, Z])2] ≥ 0 with equality holding only if E[Yj |X] = E[Yj |X,Z]

almost surely, in which case we have no selection on unobservables but selection on only observables.

Although there is a literature on testing this type of hypothesis against a general nonparametric

alternative (see, for example, Fan and Li 1996), we decide to carry out a simpler test against a
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parametric but flexible alternative. Specifically, our simple test for no selection on unobservables is

a Hausman-type bootstrap test, which is based on the mean square difference between fitted values of

the restricted and unrestricted parametric models. The restricted model is a linear regression model

with X whose specification is already described in section 3.1. The unrestricted model is a linear

regression model with the same X above along with the following additional regressors: linear,

quadratic, and interaction terms of instruments (tuition, distance, unemployment in 1979) and

interactions between instruments and AFQT and family background variables (number of siblings,

mother’s education, and father’s education). For tests for the null hypotheses (2)-(4), the restricted

models are linear regression models with similar specifications except that corresponding observables

are omitted from the specifications and the unrestricted models are identical to one used for testing

the null hypothesis (1). Each p-value reported in table 6 is obtained (without Studentization) by

wild bootstrap (e.g. see Wu, 1986) imposing the null hypothesis with 999 bootstrap replications.

Finally, for comparison, the likelihood ratio (LR) test is carried out via the maximum likelihood

estimation using the normal selection model.

It can be seen that for college wages, the null hypothesis of no selection on unobservables is

rejected at 10% level for all the years and rejected at 5% level for three years, and for high school

wages we fail to reject no selection on unobservables at any conventional levels (p > 0.1) for all the

years. These results conform to those of the LR tests using the normal selection model. It can also

be seen that (1) AFQT is an important determinants of selection for both college and high school

wages, (2) family background variables matter only for selection in terms of college wages, and (3)

the null hypothesis of no selection on AFQT, family background and unobservables is rejected at all

conventional levels (p < 0.01) almost for all college and high school wages (except for high school

wages in 2000 with p-value of 0.044). These results suggest that selection on unobservables may

exist for standard analyses of wage inequality because a measure of cognitive ability and/or family

background variables are usually absent in standard analyses.

We end this section by mentioning some limitation of our simple tests. Evidence against selection

on unobservables for high school wages is by no means conclusive. One caveat of our tests is that

they may have a low power against an alternative that is different from the one we specify above (or

our test may even not be consistent). To see how sensitive our bootstrap tests are against different

alternatives, we carry out some Monte Carlo experiments in which we use same S, X and Z as in 1992

and simulate Y using our estimates (details are available on request). We find that indeed our test

for no selection on unobservables (the null hypothesis (1)) is much less powerful against alternatives

are not nested in our specification. However, when the null hypothesis is correct, then there is

virtually no difference between the true and nominal probabilities of rejecting the null hypothesis.

The main purpose of this paper is to analyze wage inequality allowing for selection rather than to

prove that there is no selection. Therefore, we are on the conservative side and consequently we opt

not to develop a more powerful test. One main concern with a test against a general nonparametric

alternative is the curse of dimensionality. It would be interesting to develop an omnibus test that is

free from the curse of dimensionality in the setup of selection models, but this is beyond the scope

of this paper.
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Table 1: Summary Statistics of Data

Variable Year 1992 Year 1994 Year 1996 Year 1998 Year 2000
Mean SD Mean SD Mean SD Mean SD Mean SD

College (S = 1) n = 822 n = 806 n = 779 n = 773 n = 750
Log Wage 2.72 0.56 2.75 0.55 2.83 0.57 2.89 0.58 2.94 0.60
Years of Experience 6.43 3.43 7.92 3.86 9.36 4.19 10.84 4.71 12.65 5.07
Current Unemployment 7.03 2.21 7.26 2.34 6.55 2.38 5.56 2.39 4.61 2.53
Corrected AFQT 0.57 0.76 0.56 0.76 0.57 0.75 0.53 0.78 0.50 0.80
Number of Siblings 2.63 1.67 2.65 1.69 2.68 1.75 2.71 1.77 2.68 1.74
Mother’s Schooling 12.90 2.25 12.89 2.21 12.90 2.24 12.84 2.25 12.83 2.22
Father’s Schooling 13.67 3.09 13.68 3.08 13.71 3.09 13.68 3.12 13.61 3.10
Average County Tuition 19.80 8.16 19.69 8.21 19.66 8.14 19.78 8.14 19.62 8.24
Distance to College 3.15 9.78 3.16 10.07 3.30 10.19 3.33 10.20 3.10 9.54
Unemployment in 1979 6.29 1.69 6.28 1.68 6.28 1.70 6.29 1.67 6.27 1.66
Some College 0.45 0.50 0.45 0.50 0.44 0.50 0.45 0.50 0.46 0.50

High School (S = 0) n = 820 n = 789 n = 750 n = 717 n = 654
Log Wage 2.37 0.60 2.37 0.57 2.41 0.51 2.46 0.54 2.47 0.58
Years of Experience 9.03 3.64 10.56 4.05 12.00 4.48 13.50 4.96 15.22 5.32
Current Unemployment 7.19 2.28 7.40 2.46 6.73 2.61 5.78 2.57 4.80 2.64
Corrected AFQT -0.47 0.90 -0.48 0.89 -0.49 0.89 -0.49 0.89 -0.50 0.89
Number of Siblings 3.25 2.09 3.24 2.08 3.22 2.02 3.25 2.05 3.30 2.08
Mother’s Schooling 11.33 2.13 11.30 2.13 11.25 2.15 11.26 2.15 11.21 2.16
Father’s Schooling 11.16 2.98 11.13 2.93 11.08 2.94 11.00 2.91 10.94 2.88
Average County Tuition 20.61 8.31 20.67 8.34 20.62 8.34 20.68 8.32 20.91 8.39
Distance to College 4.23 10.30 4.34 10.44 4.41 10.52 4.47 10.63 4.35 10.45
Unemployment in 1979 6.40 1.69 6.40 1.71 6.37 1.69 6.38 1.71 6.43 1.73
High School Dropout 0.19 0.39 0.17 0.38 0.17 0.37 0.16 0.37 0.17 0.37

Note: Entries in this table are means and standard deviations of variables. In addition, n denotes
the sample size of each schooling group. The log wages are 5 year averages of non-missing hourly
wages. Years of experience are actual work experience from 1979. Current unemployment is the state
unemployment in percentage in the current state of residence. Correct AFQT is schooling-adjusted
and normalized to have mean zero in the NLSY population. Parental schooling is measured in years
of education. Average county tuition is averages of four year public colleges, in hundreds of dollars,
at age 19. Distance to college is distance to any college, in miles, at age 14. Unemployment in 1979
is in percentage. Finally, some college and high school dropout are indicator variables that have
value one when an individual belongs to corresponding education groups.
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Table 2: Average Derivatives for the College Attendance Logit Model

Variable Year 1992 Year 1994 Year 1996 Year 1998 Year 2000

Corrected AFQT 0.2206 0.2165 0.2229 0.2109 0.2018
(0.0140) (0.0140) (0.0145) (0.0144) (0.0144)

Number of Siblings -0.0148 -0.0143 -0.0159 -0.0129 -0.0151
(0.0067) (0.0066) (0.0066) (0.0068) (0.0070)

Mother’s Schooling 0.0236 0.0238 0.0208 0.0144 0.0179
(0.0063) (0.0064) (0.0064) (0.0065) (0.0068)

Father’s Schooling 0.0231 0.0248 0.0263 0.0313 0.0318
(0.0043) (0.0043) (0.0044) (0.0046) (0.0047)

Average County Tuition -0.0028 -0.0032 -0.0037 -0.0037 -0.0047
(0.0014) (0.0014) (0.0014) (0.0015) (0.0015)

Distance to College -0.0026 -0.0024 -0.0013 -0.0010 -0.0010
(0.0023) (0.0021) (0.0020) (0.0020) (0.0024)

Unemployment in 1979 0.0046 0.0067 0.0082 0.0117 0.0070
(0.0078) (0.0078) (0.0079) (0.0082) (0.0084)

Test for Instruments 0.113 0.057 0.052 0.060 0.015

Note: For each year, the average derivatives are obtained from a logit regression of college
attendance on a constant, linear, quadratic, and interaction terms of variables listed in the table.
Standard errors are in parentheses, obtained using asymptotic approximation and the delta method.
The last row shows p-values for testing the null hypothesis that the average derivatives of tuition,
distance, and unemployment in 1979 are jointly zero.

40



Table 3: Analysis of Counterfactual Variances of Y1 and Y0

Component Year 1992 Year 1994 Year 1996 Year 1998 Year 2000

Panel A: Variance Decomposition of Y1

E[Var(U1|V )] 0.252 0.240 0.284 0.257 0.297
Var[µ1(X)] 0.081 0.058 0.081 0.087 0.059
Var[E(U1|V )] 0.062 0.042 0.002 0.013 0.008
E[Var(U1|V )]/Var(Y1) 0.638 0.706 0.774 0.721 0.816

Panel B: Variance Decomposition of Y0

E[Var(U0|V )] 0.161 0.172 0.188 0.205 0.229
Var[µ0(X)] 0.016 0.019 0.021 0.027 0.030
Var[E(U0|V )] 0.062 0.010 0.006 0.014 0.044
E[Var(U0|V )]/Var(Y0) 0.674 0.852 0.873 0.833 0.756

Note: The first panel of this table decomposes the variance of Y1 in a component due to X
(second line), another due to V (third line) and a third one due neither to X nor V (first line).
The latter represents the variance in Y1 that is not related with selection and in the fourth line of
the panel we report the percentage of the total variance accounted for this component. The second
panel presents a similar decomposition for Y0.
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Table 4: Results of Simulating 1980’s

Variable Census 1980 Census 1990 Simulation 1980 Simulation 1990

College Enrollment Rates 0.41 0.55 0.41 0.55
Average Overall Wages 2.60 2.62 2.54 2.57
Average College Wages 2.72 2.76 2.77 2.71
Average High School Wages 2.50 2.43 2.37 2.38
College Premium (OLS) 0.22 0.33 0.40 0.33
90-10 Overall Wages 1.41 1.56 1.28 1.29
90-10 College Wages 1.46 1.57 1.30 1.34
90-10 High School Wages 1.34 1.43 1.13 1.12

Average Counterfactual College Wages at the Margin 2.55
Average Counterfactual High School Wages at the Margin 2.35
Average Treatment Effect at the Margin 0.20

Note: The first two columns present measures of average schooling and characteristics of the
wage distribution using Census data from 1980 and 1990 for white males. The second two columns
present characteristics of simulated wage distributions from our model under the assumption that
the college participation rate is 41% (third column) and 55% (fourth column). The last three lines
refer to individuals at the margin, which are defined as those who are induced to go to college by
the change of college enrollment rate from 41% to 55%.
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Table 5: Appendix Table: Average Derivatives for College and High School Wages

Variable Year 1992 Year 1994 Year 1996 Year 1998 Year 2000

Panel A: Average Derivatives for College Wages
Years of Experience 0.008 0.008 0.012 0.009 0.004

(0.013) (0.011) (0.010) (0.009) (0.008)
Current Unemployment -0.000 0.003 0.009 0.004 -0.010

(0.012) (0.012) (0.012) (0.013) (0.011)
Corrected AFQT 0.238 0.216 0.195 0.191 0.152

(0.138) (0.132) (0.138) (0.125) (0.136)
Number of Siblings 0.015 0.000 -0.017 -0.012 -0.011

(0.019) (0.018) (0.019) (0.018) (0.017)
Mother’s Schooling 0.023 0.005 0.012 0.008 0.015

(0.016) (0.018) (0.023) (0.021) (0.022)
Father’s Schooling 0.004 0.008 0.023 0.029 0.020

Panel B: Average Derivatives for High School Wages
Years of Experience 0.002 0.003 -0.002 -0.001 0.002

(0.006) (0.005) (0.005) (0.005) (0.006)
Current Unemployment 0.004 0.010 0.006 0.013 0.004

(0.013) (0.011) (0.009) (0.014) (0.016)
Corrected AFQT 0.058 0.060 -0.021 0.027 -0.049

(0.110) (0.104) (0.091) (0.084) (0.102)
Number of Siblings 0.004 -0.001 -0.008 -0.001 -0.004

(0.015) (0.015) (0.016) (0.022) (0.022)
Mother’s Schooling 0.006 0.007 0.019 0.029 0.021

(0.016) (0.017) (0.017) (0.020) (0.023)
Father’s Schooling 0.003 0.003 -0.009 -0.018 -0.013

(0.013) (0.014) (0.019) (0.030) (0.034)

Note: The average derivatives are obtained from partially linear regressions of log wages using
observations with S = 1 and S = 0, respectively. The X vector in the wage equations are described
in section 3.1. The nonparametric component of the partially linear regression is the predicted
probability of attending college. The predicted probability is estimated by a logit regression reported
in Table 2. Standard errors are in parentheses, obtained from 200 bootstrap replications.
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Table 6: Appendix Table: P-values of Tests for Selection

Test Year 1992 Year 1994 Year 1996 Year 1998 Year 2000

College Wages
No selection 0.011 0.032 0.086 0.021 0.094
on unobservables

No selection on family 0.040 0.074 0.019 0.000 0.002
background and unobservables

No selection on AFQT 0.000 0.000 0.002 0.000 0.005
and unobservables

No selection on AFQT, family 0.000 0.000 0.000 0.000 0.000
backgound and unobservables

LR Test for no selection 0.116 0.052 0.033 0.022 0.033
on unobservables

High School Wages
No selection 0.359 0.185 0.206 0.498 0.783
on unobservables

No selection on family 0.225 0.129 0.137 0.270 0.346
background and unobservables

No selection on AFQT 0.013 0.001 0.003 0.004 0.004
and unobservables

No selection on AFQT, family 0.003 0.001 0.001 0.009 0.044
backgound and unobservables

LR Test for no selection 0.862 0.000 0.556 0.741 0.343
on unobservables

Note: Entries in the table are p-values of tests for selection for college and high school wages.
The first four tests are Hausman-type bootstrap tests, which are based on the mean square dif-
ference between fitted values of the restricted and unrestricted models. For tests for no selection
on unobservables, the restricted models are linear regression models with specifications that are
identical to the parametric parts of partially linear models reported in table 5. For all tests, the
unrestricted models are linear regression models with the same specifications above along with the
following additional regressors: linear, quadratic, and interaction terms of instruments (tuition,
distance, unemployment in 1979) and interactions between instruments and AFQT and family back-
ground variables (number of siblings, mother’s education, and father’s education). For tests for no
selection on some observables and unobservables, the restricted models are linear regression models
with similar specifications except that corresponding observables are omitted from the specifications.
Each p-value is obtained (without Studentization) by wild bootstrap with 999 bootstrap replications.
Finally, for comparison, the likelihood ratio (LR) test is carried out via the maximum likelihood
estimation using the normal selection model.
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Figure 1: Support of P and AFQT (Year 1994)
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Figure 2: MTE as a Function of AFQT (Year 1994)

Figure 3: MTE as a Function of V (Year 1994)
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Figure 4: E[Y1|X,V ] and E[Y0|X, V ] (Years 1992 and 2000)
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Figure 5: Q[U1|V ] and Q[U0|V ] (Years 1992 and 2000)
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Figure 6: Counterfactual Means of College and High School Wages

Figure 7: Treatment Effect Parameters
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Figure 8: Counterfactual Changes in Within Group Inequality (College)
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Figure 9: Counterfactual Changes in Within Group Inequality (High School)
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Figure 10: Simulation Results of Wage Distributions of Different Compositions of Education Groups
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Figure 11: Appendix Figure: Trends of Inequality in CPS and NLSY in the 1990s for the Same
Cohorts
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Figure 12: Appendix Figure: A Goodness of Fit Check
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Figure 13: Appendix Figure: E[Y1|X, V ] and E[Y0|X,V ] (All Years)
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