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Semiparametric Estimation of a Panel Data Proportional
Hazards Model with Fixed Effects

1 Introduction

Much empirical research in economics is concerned with the analysis of duration data. In
many applications multiple durations of a given individual are observed together with pos-
sible covariates. This paper is concerned with estimating a panel duration model that has a
proportional hazards specification with unobserved heterogeneity. The model is formulated
in terms of the hazard functions of successive positive random variables Tj (the durations of
interest) conditional on d x 1 vectors of observed covariates X; and an unobserved random

variable U (the unobserved heterogeneity) for j = 1,...,J. The model is
Aty (tjlz 5, u) = Ao(t;) exp(2)8 + u), (1)

where Ar, is the hazard of T; = ¢; conditional on X; = z; and U = u, )¢ is the baseline
hazard function, and 3 is a d x 1 vector of constant parameters. The random variable U
represents unobserved, permanent attributes of individuals. 77 and 75 are assumed to be
conditionally independent given X, X, and U.! The observed covariates X ;j are assumed
to be constant within each spell but vary over spells, whereas the unobserved heterogeneity
U is assumed to be constant over spells.? Covariates that are constant over spells are not
included explicitly. They can be included in U, and their § coefficients are not identified. U
may be arbitrarily correlated with X; and, therefore, is a fized effect. Unlike the random-
effects approach, the fixed-effects approach does not require X; and U to be statistically
independent of one another or to have any other known statistical relationship.® It is
assumed throughout most of the paper that J = 2. The extension to larger J is discussed

briefly in Section 5.3.

1This requires that covariates be strictly exogenous. This weakness is a general problem of (nonlinear)
fixed effects estimators.

2There could be another source of heterogeneity that varies over spells. For example, in work history
data, there could be job-specific heterogeneity across workers, which varies over spells. In this paper, it is
assumed implicitly that this kind of heterogeneity is observed and thus part of Xj.

3If the data are cross-sectional or single-spell, then the fixed-effects approach in this paper cannot be
applied. See Horowitz (1999) for estimating the baseline and integrated baseline hazard functions nonpara-
metrically in a cross-sectional proportional hazards model with random effects. Also, see Van der Berg
(2001) for comparison between single-spell and multiple-spell models.



This paper presents methods for estimating Ag(-) and the integrated baseline hazard
function Ag(-) = [, Ao(s)ds nonparametrically.* That is, this paper shows how to estimate
Ao and Ag without assuming that they belong to known, finite-dimensional families of
functions. Several existing estimators assume that Ay belongs to a parametric family. For
example, Chamberlain (1985) considers a marginal likelihood approach for models with
Weibull, gamma, and lognormal specifications. Ridder and Tunali (1999) assume that \g is
piecewise constant. This paper shows how to estimate A\g and Ay nonparametrically when
observations of T are uncensored and when they are right-censored.

This paper also considers estimation of 3 when observations of T} are subject to right-
censoring. An estimator of 8 based on a partial likelihood approach already exists for
the uncensored and independently censored cases. See Chamberlain (1985), Kalbfleisch
and Prentice (1980, 8.1.2), Lancaster (2000), and Ridder and Tunali (1999) among others.
The partial likelihood method cannot be applied to censored panel durations because the
standard independent censoring assumption is likely to be violated. In many applications
durations are observed over a fixed period. For example, in work history data, the duration
of the most recent job of a respondent may be right-censored at the last interview date.
Because of the fixed effect, the censoring threshold of T} is not independent of 7T} unless j =
1. Therefore, # cannot be estimated consistently by using the partial likelihood approach.
This paper presents a consistent estimator of § under dependent censoring.

The estimation approach developed here consists of two steps. The first step is to ex-
press Ag, Ag, and 3 as functionals of the population distribution of (7}, X;) by utilizing
an identification result of Honoré (1993). The second step is to construct suitable em-
pirical analogs for the unknown population quantities that appear as arguments of these
functionals, depending on whether or not observations of T} are censored.

Let Ao and A,g, respectively, denote nonparametric estimators of Ay and Ay, where
n is the sample size. It will be shown that A,y and A, are uniformly consistent, and

nd/ et (N5 — \g) and n'/?(A,0 — Ag) are asymptotically normal, where ¢ denotes the

4A recent working paper by Woutersen (2000) proposes a nonparametric estimator of Ao for the case of
independent censoring. Woutersen (2000) does not provide the asymptotic distribution of his estimator and
does not consider estimation of Ag.



order of smoothness of \g.> It will also be shown that the new estimator 3, of 8 under
dependent censoring is consistent, and nl/? (6, — ) is asymptotically normal.

The remainder of the paper is organized as follows. Section 2 provides an informal
description of the estimators of Ay, Ag, and (3. Section 3 presents the formal, asymptotic
results for the uncensored case. Section 4 provides rule-of-thumb, data-driven methods for
choosing bandwidths needed to estimate Ag and Ag for the uncensored case. Extensions of
the estimators of Ag and A are discussed in Section 5. Section 6 presents the results of
some Monte Carlo experiments that illustrate the finite-sample properties of the estimators.
Concluding comments are given in Section 7. The proofs of theorems are in Appendix A.

Appendix B presents the asymptotic properties of the estimators for the censored case.

2 Informal Description of the Estimators
2.1 The Uncensored Case

This section provides an informal description of our estimators of \g and Ag under the
assumption that observations of 7T} are uncensored and J = 2. In this case, an estimator of
(3 is already available (see Section 1).% Let b, denote the estimator of 3.

The estimation approach developed here is based on an identification result of Honoré
(1993). When the model (1) is identified, A9 and Ag can be expressed as functionals of the
population distribution of (71,75, X1, X2). Then estimators of A\g and Ay can be obtained
by replacing unknown population quantities with their empirical analogs.

To identify Ao and Ag, observe first that 7; depends on X; only through the index
Zj = X;p for j = 1,2. Assume conditional on (Z1,22,U), T1 and T are independent.

®The nonparametric estimator of Ag can be used to construct a specification test of the model (1). Since
Ano converges in probability faster than Ao, a test based on Ao would be more powerful than a test based
on Apo. The details of the test are beyond the scope of the paper. Roughly speaking, the specification
test consists of testing the distribution of log Ao(71) — log Ao(T2) + (X1 — X2)3, which is distributed as the
logistic distribution and independent of X; and X5 under the null hypothesis that the model (1) is correct.

SFor example, one may use the estimator of Chamberlain (1985). This estimator is based on the fact
that the probability of one spell being larger than the other spell, conditional on covariates, is independent
of the fixed effects and can be expressed as a logit model.



Then the joint conditional survivor function of T3 and 75 is

S(tl,t2|21,22) = PI"(Tl > tl,TQ > tQ‘ZI = Zl,ZQ = ZQ)

= /eXP [—Ao(t1)e ™™ — Ag(t2)e™> ™| dP, .,

where P, denotes the distribution of U conditional on (Z1, Z2) = (21, 22). By differen-

|21,22
tiation of S(t1,ta|z1, 22),

85(151, tz’Zl, 22)/6t1 _ )\O(tl)
85(t1,t2’21,22)/8t2 )\o(tg)

exp(z1 — 22). (2)

A scale normalization is needed to make identification possible. This is accomplished here

we(t)
/ST Ao(t) =1

where w; is a scalar-valued function with compact support Sr that satisfies | Sp wy(t)dt =1

by assuming that

and other conditions in Section 3. This scale normalization is useful for the estimators
developed here, as will be seen below.
Let R(t1,t2]z1,22) denote the left-hand side of (2). Under the scale normalization, (2)

implies that Ag has the form

Do) = / wy(ta) exp(za — 1) R(t tal21, 2) dis
St

for every (z1,22). Let w,(-) be a scalar-valued function with compact support Sz that
satisfies sz w;(2)dz = 1 and other conditions in Section 3. Also, let w(ta,21,22) =

wy(t2)w,(21)w,(22). Then

)\Q(t) = / dtg/ d21 / dZQ w(tQ, Z1, 2’2) eXp(ZQ - Zl)R(t, t2|2’1, 2’2). (3)
St Sz Sz

Equation (3) identifies A\g and is the basis for the estimators of Ao and Ag proposed here.”

This completes the first step of our estimation strategy.

"Observe that Ao can also be written as
)\o(t) = / dtl / le / dZQ w(tl, Z1, 2’2) exp(z1 — ZQ)R(tl,t|21,22)71. (4)
St Sy Sy

This equation can be the basis for another estimator of Ag. One can use the arguments of Appendix A to
establish asymptotic results for an estimator based on (4). Hence, we just focus on the estimator of Ao based
on (3). Also, one can use a linear combination of these estimators. This will be discussed in detail in Section
5.



In the second step, estimators of A9 and Ay are obtained by replacing the unknown
function R(t1,t2]z1,22) in (3) with a uniformly consistent estimator R, (t1,t2|z1,22). The

resulting estimators of A\g and Ag are

)\no(t):/ dtg/ dzl/ dZQ ’lU(tQ,Zl,ZQ)GXp(ZQ—Zl)Rn(t,t2’21,22) (5)
St Sz Sz

and .

t) = /O Auo(t1)dt1. (6)
Section 3 gives conditions under which \,g and A, are uniformly consistent, and
nd/ et (N — \g) and n/?(A,0 — Ag) are asymptotically normal, where ¢ denotes the
order of smoothness of \g. Intuitively, the rates n=%/(2¢+1) and n=1/2 are possible because
integration over (to, 21, 22) or (t1, 12, 21, 22) in (5)-(6) creates averaging effects that mitigate
the curse of dimensionality. Similar averaging effects occur estimation of single index models
(e.g., Horowitz and Hardle (1996), Powell, Stock, and Stoker (1989)), partially linear models
(e.g., Robinson (1988)), additive models (e.g., Horowitz (2001), Linton and Hardle (1996)),
and transformation models (e.g., Horowitz (1996), Horowitz and Ggrgens (1999)).

In this paper, R is estimated with kernels. To describe the estimator, let py, (1,221, 22)
denote the probability density function of 77 and 7% conditional on Z1 = 21 and Zy = zo.
Write -

I pe=(tis salzn, 22)dsa A(ty, to] 21, 20)

R(tq,to|21, = ) 7
(b, ol 22) = I py=(s1,tal21, 22)dst Bt ta|z1, 22) ™)

Let {Tj1,Ti2, Xi1, Xio}~; denote a random sample of (11,75, X1, X») in (1). Define Z,;; =

X/,b,, and Zyi0 = X/[5by,. Since [ is unknown (and therefore, Z;; and Zjo are unknown), the
estimator is based on {Tj1, Ti2, Zni1, Zni2};—,. Let K1 and Kz be kernel functions of scalar
arguments, and let {hp1}, {hn2}, and {h,.} (n =1,2,...) be sequences of bandwidths that
converge to zero as n — oo. Conditions that Kp, Kz, hy1, hne, and h,, need to satisfy
are given in Section 3. Let p.(z1, 2z2) denote the probability density function of Z; and Z,.
Estimate p,(z1, z2) by

Znj — Zni
Pnz(21,22) = (nh.) IZKZ ( 1) Kz <22hZ> :

nz



Let 1(-) be the indicator function. Define

n
—1 t1 —1T;
Ap(t, ta]21, 22) = [nhp1h2 pnz(21, 22)] § (T2 > t2) Kt <1 ll)
=1

_ hnl
X Ky (Zl ; Zm1> K (22 ; Zni?)

and

-1 to —T;
By (t1, 2|21, 22) = [nhnahl,pp=(21, 22)] W(Th > t1)Kr <M>

< Ky (21 Z Zm’1> Ky <22 ; Zmz) .
nz nz

The estimator of R(t1,t2]z1,22) is obtained by
Ry (t1,t2|21, 22) = An(t1, 2|21, 22)/Bn(t1, ta| 21, 22). (8)

A higher-order kernel is needed for Kz to insure that certain bias and remainder terms in
the asymptotic expansions of nQ/(2q+1)()\n0 — Xp) and nl/Q(Ano — Ap) vanish as n — oo.
For estimation of A\g(t), it is advisable to let h,2 converge to zero faster than hy; to reduce
bias. For estimation of Ag(t), it is necessary to have both h,; and hy converge to zero
faster than n~1/(2¢+D) which is the asymptotically optimal rate for \,o(t), to prevent the

asymptotic distribution of n'/2(A,9 — Ag) from having a non-zero mean.

2.2 The Censored Case

This section provides informal descriptions of estimators of 3, Ag, and Ag when 77 and T5
are subject to dependent right censoring. There are many possible censoring mechanisms
for T1 and T5. In this section, we focus on a pure renewal process in the sense that 17 and
T5 are the same type of durations and there is no time spent on other states.

We assume that the successive durations, T and 715, are observed over a time period
of length C, where C is random with an unknown probability distribution. It is assumed
that C' is observed for every individual and that C is independent of 77 and T» given X;

and X».® The censoring mechanism here governs the sum of 7} and 75, rather than each

8This assumption seems reasonable for pure renewal processes, for example, car insurance claim durations
analyzed in Abbring, Chiappori, and Pinquet (2003).



separately. In this case, one observes not T; but Y; = min(7},C}), where C; = C and
Cy = (C—Ty)1(Ty < C).2 Observe that Cy depends on T}, and, therefore, on Ty because of
the fixed effect. Hence, the censoring mechanism here violates the standard independence
assumption, under which C; is independent of T} given X; for j =1, 2.19 Define indicator
variables by A; = 1(T; < Cj) for j = 1,2. An observed random sample now consists of

{(Yi1, Yio, Xi1, Xio, Di1, Aip, Cy) 1i=1,...,n}.
2.2.1 Estimating

This subsection shows how to estimate § under dependent right censoring. As was discussed
in Section 1, 8 cannot be estimated consistently by using the partial likelihood approach.
This is because Pr(Y; < Y3| X1, Xo, U, min(71,T2) < min(C1, Cy)) is now dependent on the
fixed effect. An approach based on (2), however, can be used to obtain a consistent estimator
of . Abusing notation a bit, let S(t1,te|x1,x2) = Pr(Ty > t1,Ts > to| X1 = x1, Xo = x9).

As in (2),
8S(t, t]a:l, 332)/8751
BS(t, t]xl, $2)/3t2

by setting t; = to = t. Let Rg(t|x1,22) denote the left-hand side of (9). Since (9) holds for

= exp|(z1 — x2) ] (9)

any t, write

/S ws(t) Ry (tn, w9) dt = expl(1 — 22) 8], (10)
B

where wg(+) is a scalar-valued function with compact support Sg that satisfies |, Ss wg(t)dt =

1 and other conditions in Appendix B.1. This yields

B=[EX1—X5)(X; — X,)]'E

(X1 — X>)log (/S ws(t) Ry (1] X1, Xa) dt)] (11)
B

provided that E(X; — X2)(X; — X2)' is nonsingular. Define V = fsﬁ wa(t)Rp(t| X1, X2) dt
and AX = X; — Xy. Equation (11) suggests that § can be estimated by a no-intercept
OLS regression of a sample analog of logV on AX.

9With minor modifications, arguments in this section apply to standard censoring mechanisms where C;
is conditionally independent of T} given X; for j = 1,2. We are grateful to an anonymous referee who raised
this issue. Under the standard censoring mechanism, 5 can be estimated by the partial likelihood approach
as well.

Lin, Sun, and Ying (1999), Visser (1996), and Wang and Wells (1998) have considered estimation of the
joint survivor (or distribution) function of 71 and T> (without covariates) under the same type of dependent
censoring.



Carrying out this OLS regression requires an estimator of Rg(t|z1,z2). There may be
several methods for estimating Rg(t|x1, z2) under dependent right censoring, but we present
here a simple estimator based on Burke (1988) and Wang and Wells (1998). An alternative
estimator of Rg(t|x1,x2) will be described briefly in Appendix B.3.

Define the joint conditional sub-distribution function F(t1, ta|x1, x2) = Pr(Y; <t1,Ys <
ty, A1 = Ay = 1| X1 = 21, Xo = x9) and its density f(t1,ta|x1, 12) = 0> F(t1, ta|w1, 22)/0t10ts.
Also, let G(c|z1,x2) = Pr(C > ¢| X1 = 21, X2 = 2) denote the survivor function of C' con-
ditional on X; = x7 and X = 3. As in equation (7) of Wang and Wells (1998), observe
that

S(tl,tzlxl,m)z/ / fonslznes) 440 (12)
t1 to

G Sl + 82|$1,$2)
Therefore, R(t|x1,z2) can be written as
ft t 82‘1‘1,$2)/G(t+82‘1’1,$2) d$2 Ag(ﬂxl,xg)

tlry, x = — . 13
Bolthonw2) = o p e ey 22))Glsr & tlan,wa) ds1 — Ba(tar, o) (13)

The right-hand side of (13) can be estimated with kernels. For simplicity, assume that
the distribution of X; and X5 is absolutely continuous with respect to Lebesgue measure
on R??. Tt is straightforward to include discrete covariates. Let Kx be a kernel function of
d-dimensional arguments, {h,,} (n = 1,2,...) be a sequence of bandwidths that converge
to zero as n — o0, and p,(x1,x2) denote the probability density function of X; and Xo.

Let ppy (21, x2) and Gy, (c|z1, x2) denote the kernel estimators of p,(x1, x2) and G(c|x1, x2),

that is
1 r1 — X1 T2 — X
na = h2d) K — | K _
o = () o (2525 o ()

and

-1 X —Xi X —Xl
Gulelwr,a2) = [nh2pa(er,2)| S 1G> K <1hl> Ky (22> .

Define

n

i Nj21(Yig > t) t—=Yu
N |: ’ ] 21 7 7 K
nﬁ(t‘l'l,l‘z) nhn1hnxpm T1,T2 ; Gn( 1+ Y;Z’Xd’ ) T hnt

xr1 — Xil o — Xi2
K — | K —_
X Kx ( hmc > X ( hnz >




and
Zn: A1 Al (Y > t) Ky <75 - Yiz>
— Gn(Yi + Yio| X1, Xip) hin2

x1 — Xi1 2 — X
K — | K —_— .
. * ( hnw > X < hna: )

The estimator of Rg(t|x1,x2) can be obtained by

~ —1
Bn,@(t‘xl) xQ) = [nthhiipnz(xlv xQ)]

Rnﬁ(ﬂ:ﬁl; xg) = Ang(t’xl, xg)/Bng(t|x1, .732). (14)

Observe that Rn[g(t!xl, x9) only uses uncensored data (A;; = Ao = 1) and is weighted by
the inverse of (G;, to take into account the effect of censoring.
Let w,(+) be a scalar-valued function with compact support Sx that satisfies conditions

in Appendix B.1. Then the OLS estimator G, of 3 is

n -1 n

i=1 i=1
where Wy = wm(Xﬂ)wm(Xig), AXZ' = Xﬂ — XZ'Q and Vm' = fSﬁ wg(t)Rng(t‘Xﬂ, Xig)dt. The
weight function w, is introduced here to estimate § without being overly influenced by the

tail behavior of the distributions of X7 and X5.
2.2.2 Estimating )y and Ay

In this subsection, we present modified versions of the estimators of A\g and Ay described
in Section 2.1. Observe that (3) holds for the latent variables 77 and T5. Therefore, Ao
and A can be estimated by using (5) and (6) if a consistent estimator of R(t1,t2]z1, 22) is
available.

For simplicity, it is assumed in this subsection that C' is independent of (77, Ts, X1, X3).
Abusing notation a bit, define F(t1,t9|z1,22) = Pr(Y1 < t1,Ys < 19, A1 = Ay = 1|Z; =
21,79 = 2z3), f(t1,ta]z1,20) = O%F(t1,ta|21,20)/0t10ta, and G(c) = Pr(C > ¢). As in

Section 2.2.1, R(t1,t2|z1, 22) can be written as

> f(t1, s0]21,22)/G(t1 + s9) ds Aty t
Rty tale1, 22) = ftiof( 1, 82|21, 22) /G (t1 + s2) dsa _ A(t,talz1,22) (16)
S f(s1,ta]z1,22)/G(s1 + ta) ds1 Bt ta]21, 22)

10



Again the right-hand side of (16) can be estimated with kernels. Estimate G(-) by the

empirical survivor function'!

Define

~ —1
An(tb t2|21, ZQ) = [nhnlhizpnz(zla Z2)]

" A Al (Yig > tQ)K (tl - Yz‘1>
i—1 Gn(Yﬂ + YYzQ) h

_Zm’ _Zni
XKZ<Zlh 1>Kz<22h 2)

nl

and

N 71nAiAi11/¢>t s —Y;
Bn(ty,t2|21, 22) = [nhnohl ,pp=(21, 22)] 1821 (Ya > 11) T( 2h >

i—1 Gn(}/;l + }/’LQ)

< K (21 ; Zm'1> Ky (Zz ; Zmz) _
nz nz

The estimator of R(t1,t2]z1,22) is obtained by

n2

Ry(t1,ta|21, 22) = An(ty, ta|21, 22)/ Ba(ty, ta] 21, 22). (17)
3 Asymptotic Properties of the Estimators

This section establishes the asymptotic properties of A9 and A,g proposed in Section 2.1
under the assumption that complete spells of T and T5 are available. Appendix B.1 gives
conditions under which n!/ 2(B, — B) is asymptotically normal, and Appendix B.2 presents
the asymptotic properties of A\,g and A, for the censored case.

We make the following assumptions:

Assumption 3.1 (Random Sampling). {T;1, T2, X1, X0 : i = 1,...,n} is a random
sample of (T1, T3, X1, X2) in (1).

Assumption 3.2 (Conditional Independence). T} and Ts are conditionally independent

given X1, Xo, and U.

Y1f only min(C, Ty + T) is observed, then the Kaplan-Meier estimator of G' can be used.

11



Assumption 3.2 is used to identify Ao and Ag. It precludes the possibility of lagged

duration dependence, which is not treated in this paper.'?
Assumption 3.3 (Normalization). [;°[w;(t)/Ao(t)]dt = 1.

As was explained in Section 2.1, Assumption 3.3 is useful to create averaging effects.

The same type of scale normalization is used for a similar reason in Horowitz (2001).

Assumption 3.4 (Covariates). X; and Xo have bounded support.'3

Let p(t1,t2, 21, 22) denote the probability density function of (71, 7s, Z1, Z2). In what

follows, ¢ > 2 and r are integers such that r > 4 for A\,g and r > 6 for A,g.

Assumption 3.5 (Smoothness). The distribution of (T1,Ta, Z1, Z2) is absolutely contin-
uous with respect to Lebesque measure on R*. Furthermore, there are intervals of the real
line, It and Iz, such that

(a) It = [0, 77), where 7p < 0o, and Iz is open,

(b) p(t1,ta, 21, 22) is bounded on I X Ip X Iz x Iz,

(c) p(t1,ta, 21, 22) is positive for all (t1,t2,21,22) € int(Ip X I7 X Iz X Iz), and

(d) p(ti,t2, 21, 22) has bounded partial derivatives up to order q with respect to t; and up to

order r with respect to z; for j =1,2.

In view of (2) and (7), condition (c) is equivalent to the condition that Ag(¢) > 0 for all
t € int(I7) and condition (d) implies that Ag is g-times differentiable. Assumption 3.5 also
implies that the distribution of (Z7, Z3) is absolutely continuous with respect to Lebesgue

measure on R? and p.(z1, 22) is positive in the interior of the support of the distribution.!*

Assumption 3.6 (Weight Functions). (a) The weight function wy(-) is a bounded, non-
negative function with compact support St C It such that fST wy(t)dt =1 and wy is q times

continuously differentiable on St.

2Honoré (1993) achieves identification of the lagged duration model through an analytic continuation.
The resulting identifying relation is very different from (3), and the estimation approach developed here is
not applicable to it.

13 Assumption 3.4 can be relaxed at the expense of more complicated proofs.

14 Assumption 3.5 is not satisfied if all of the covariates are discrete. However, in that case, the estimators
of Ao and Ag can be easily modified and, in fact, are simpler than the estimators presented in Section 2.1.

12



(b) The weight function w,(-) is a bounded, non-negative function with compact support

Sz C Iz such that sz wy(2)dz =1 and w, is r times continuously differentiable on Sy.

Assumption 3.7 (Estimator of 3). There is a dx 1-vector-valued function Q(t1,ta, x1,x2)
such that

(a) EQTY, Ts, X1, X2) = 0,

(b) the components of E[Q(T1,Ta, X1, X2)Q(T1, To, X1, X2)'| are finite, and

(c) as n — oo,

by —B=n""> T, T, Xir, Xia) + 0p(n~'/?).
=1

Assumption 3.7 is satisfied by the partial likelihood estimator of § mentioned in Section

Assumption 3.8 (Kernels). (a) Kr has support [—1,1], is bounded and symmetrical

about 0, has bounded variation, and satisfies

. 1 =0,
/)MK&WMu: 0 ifj=1<j<g-1,
-1 Cr ifj=q,
where Cp is a positive constant.
(b) Kz has support [—1,1], is bounded and symmetrical about 0, has bounded variation, and
satisfies
. 1 ifj=0,
/“wkywmu: 0 fj=l<j<r—1,
-1 Cz ifj=r,
where Cy is a positive constant.
c) Ky is everywhere differentiable. K, (v) = dKz(v)/dv is bounded and Lipschitz contin-
Y Z

wous and has bounded variation.

Assumption 3.8 requires Kz to be a higher-order kernel. A higher-order kernel is used to
insure that certain bias and remainder terms in the asymptotic expansions of n4/(2¢+1) (Ano—

Ao) and nl/2 (Ano — Ap) are negligibly small.

Assumption 3.9 (Bandwidths). (a) For the estimator Ayo, nh th8_ — co, nhl T4 -

0, nhnih>y — 0, nhyh2. — 0, logn/(nhaihd )4 — 0, and logn/(nhth2,h% )14 — 0.
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(b) For the estimator Ao, nhS, — oo, nh*l — 0, nh’l — 0, nh2, — 0,

logn/(nh2,h )1/4 — 0, and logn/(nh2,hi, )1/4 -0,

Assumptions 3.8 and 3.9 (a) are satisfied, for example, if K7 is a second-order kernel, Kz
is a fourth-order kernel, hp1 & Y%, hyo o< n752, and hy,, o n~ %, where 1/5 < ko < 2/5,
1/10 < k, < 1/5, and kg + 2k, < 3/5. Also, Assumptions 3.8 and 3.9 (b) are satisfied, for
example, if K7 is a second-order kernel, K7 is a sixth-order kernel, h,1 o n™%, hpo ox n™F,
and hy,, x n=" where 1/4 <k <1/3,1/12 < k, < 1/8, and k + 2k, < 1/2.

Define

P(ta, 21, 22) = p2(21, 22) "w(ta, 21, 22) exp(z2 — 21),
C(t1,t2, 21, 20) = B(t1,ta|21, 20) "Lop(ta, 21, 22),
D(ty,te, 21,22) = B(tl,tg\zl,zQ) A(ty, to|z1, 22)p(ta, 21, 22),
Ye(Tix, Tiz, X1, Xio) = [ STC (t,to, Zin, Zip)1(Ti2 > tz)dfz] hlanT <t;:;21> — Ao(t),

and
L'i(Tit, Tio, Xin, Xio) = [ C(Ti1, ta, Zin, Zin)1(Tio > t2)dt2] 1(0<T; <t)
St

/ D(t1,Ti2, Zin, Zio)1(Tin > t1) dtq
— Aot [/ le/ dz wzzlwz(zz)} E[X1 — Xo]'Q(Th, Tia, Xi1, Xi2).
Sz Sz bz 217'22)

In addition, define

01
B)\(t) = / dtQ/ dzl/ dZQ |:/ C(t, SQ,Zl,Zz)l(tQ > 82) d82:| wp(t,tg,zl,@)
St Sz Sz St 1

1
— w!Kp(u)du
q' )

and

2
—/ dtg/ dzl/ dZQ |: C(t,SQ,Zl,ZQ)l(tQ >82)d82:| p(t,tg,zl,ZQ)
ST SZ SZ ST

1
X / K2(u)du
-1

The following theorem gives the main result of this section.
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Theorem 3.1. Let Assumptions 3.1-3.9 hold. Let [0,7] C I7 be a compact interval. Then

as n — oo,
(a) Ano(t) = Ao(t) =n! zn:%(TihTiQ,Xil, Xi2) = E[y(Th, Ts, X1, X2)]
i=1
+ Rl By(t) + op [(nhnl)_l/ﬂ +op (1)) and
B A~ Ao(0) =1t S (T, T, Xit, Xi) + 0, (n7?)

i=1

uniformly over t € [0, 7).

Theorem 3.1 implies that the rate of convergence in probability of A,g to A\g is maximized
at a n~9 24t rate by setting hp1 o n~/(24+1) and that A, converges to Ag in probability
uniformly at a n~1/2 rate. Let = denote weak convergence in the space of bounded, real-
valued functions on [0, 7] equipped with the uniform metric. The following corollary of

Theorem 3.1 is easily proved.

Corollary 3.2. Let the assumptions of Theorem 3.1 hold.

(a) Assume hypy oc n= Y/ CatD - Fort € [0, 7],
nd/ Gt X0 (t) — Ao(t)] —a N (Ba(t), Va(t)) .

(b) On [0,7],
nY?[Ano(t) — Ao(t)] = xa(t),

where xA(t) is a tight Gaussian process with mean 0 and covariance function E[xa(t)xa(t')] =

E(Th,To, X1, Xo)Ty (11, To, X1, X2)].

Under the assumptions of Corollary 3.2, the asymptotic distribution of n?/ (2(1“)()\”0 —
Ao) is not centered at zero. The asymptotic bias By can be removed by undersmoothing A,
(equivalently, by letting h,; converge faster than n=1/ (2‘1“)) at the expense of the reduced
rate of convergence. The asymptotic variance V) of A, and the covariance function of xx
can be estimated consistently by replacing unknown quantities with sample analogs. See

Appendix A.2 for details.
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4 Bandwidth Selection

This section describes rule-of-thumb, data-driven methods for choosing the values of the
bandwidths hy,1, hno, and h,, for the uncensored case.

We first consider the choice of h,1. An asymptotically optimal bandwidth £, in estima-
tion of Ay can be defined as a minimizer of the weighted asymptotic integrated mean-square
error of Ao. It follows from Section 3 that h%, = c,n™ "2+ where

[ Jw@®Va(t)dt 1/(2¢+1)
2 fw()B3(1) dt

Cx

and w(-) is a weight function. A feasible bandwidth requires an estimate of the constant
factor ¢,. To develop a rule of thumb for choosing h,1, assume that ¢ = eV has a gamma
distribution with mean 1 and unknown variance 6 and is independent of X;. Also, assume
that Ag belongs to a known parametric family. In the Monte Carlo experiments reported in

Section 5, we use the following form
)\o(t, Oé) = Oqtal_l + OégOQta2_1,

where o = (a1, a2, a3) is a vector of unknown positive constants. This form can be viewed
as a mixture of Weibull hazards and is flexible enough to exhibit non-monotone hazards.
Under the parametric specification of Ag, it is straightforward to show that the probability
density function of 77 and T5 conditional on Z; = z1 and Z5 = z has the form

(14 0)Xo(t1, ) Ao (ta, a)e’r +22
[0Ao(t1, a)e*r + OAo(ta, )e + 1]2+1/9'

Py (1, t2]21, 20) = (18)

This suggests that § and o can be estimated by maximizing the log-likelihood function
obtained from p;.. Once § and « are estimated, then ¢, can be evaluated numerically

with an additional assumption about the distribution of Z; and Zs. In the Monte Carlo

1 21— my 22 — M2
p=(21,72) = 8182¢( s1 ) ¢ (82) ’

where ¢ is the probability density function of the standard normal distribution, and m,; and

experiments, we use

sj are the sample mean and standard deviation of Z,,; for each j = 1,2. Let ¢, denote the

resulting constant factor.
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Now consider hy,s and h,, in estimation of \g. Unlike h,1, hy2 and h,, do not affect
the asymptotic distribution of A,y if Assumption 3.9 is satisfied. Therefore, the values of
hno and h,, are less critical than the value of h,;. If K1 is a second-order kernel and
K7 is a fourth-order kernel, then the following rule of thumb can be used: h,s = éem—2/9
and h,, = S« é*n_l/g, where s, = (s1 + s2)/2. This rule satisfies Assumption 3.9 and the
Monte Carlo experiments in Section 5 indicate that it performs well. Similarly, one can
choose the values of bandwidths in estimation of Ag. If Kp is a second-order kernel and
K7 is a sixth-order kernel, then one can use the following rule: h,; = h,2 = én~2/7 and
Ry = S« é*n_l/n.

A similar, data-based method could be developed to choose the values of the bandwidths
for the censored case, although details for the censored case would be quite different from

those for the uncensored case. The rule-of-thumb bandwidths presented here can be used

as pilot bandwidths for more sophisticated plug-in methods.

5 Extensions
5.1 Time-varying Covariates

This section outlines an extension of the model (1) that allows for time-varying covari-
ates, provided that the time-varying covariates have the same known time paths for all

individuals. The model has the form
tj /
>\Tj (tj’xj, {l'vj(sj)}o ,u) = )\[)(tj) exp (l‘Jﬂ + l‘vj(tj)ﬂv + u) y

where X,; is an (additional) real-valued, time-varying explanatory variable, 3, is an un-
known coefficient of X,;, and {xvj(sj)}gj denotes the time path of X,; up to ¢; for j =1, 2.
Moreover, assume that X, ;(t;)’s have the same time path for all individuals and are constant
on intervals, for example X,;(t;) = 1(t; > 7;) for some known 7; satisfying 7 # 7.

First consider the uncensored case. The partial likelihood approach of Chamberlain
(1985) and Ridder and Tunali(1999) allows for time-varying covariates and thus estimators
of 8 and (3, are available. Hence, as in Section 2.1, we only consider estimation of Ag and Ay.

Let Z,;(t;) = Xu;(t;)By for j = 1,2 and let S(t1,ta|21, 22, {zv1(51) }5', {2z02(52) }i?) denote
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the joint survivor function of T} and T, conditional on Z; = 21, Zs = 29, {Zvl(sl)}gl =

{z1(s1)}5!, and {Zy2(s2)}2 = {zv2(s2)}2. Tt is straightforward to show that

/\O(tl) . aS(t1,t2|Zl,22,{Zvl(Sl)}tl,{ZUQ(SQ) t2)/8t1 . . _ I .
olh) 3S(t1,tz|21,22,{zm(sl)}gl,{zvz(sQ) 22)/6752 exp (—[z1 — 2z2] — [201(t1) — 202(t2)]) -

Then estimators of Ay and Ay can be obtained by methods identical to those in Section 2.1

except that the averaging is now done interval by interval.'®

Now consider the censored case. Abusing notation a bit, let
S(t1, ta|21, T2, {zp1(s1)}, {Te2(52)}i2) denote the joint survivor function of T3 and Ty con-
ditional on X; = @1, X = @2, {Xu1(51)}5 = {zu1(s1)}5!, and {Xua(s2)}5 = {mpa(s2)}i?

By setting t; = t3 = t, we have

! [as(t»ﬂwlal‘%{!Evl(sl)}éa{%2(82)}6)/3751
85(15, t|21, 29, {l'vl (51)}6, {$v2(82)}6)/8t2

By integrating out over t, we have

OS(t, tlw1, xa, {1 (s1) }5, {we2(s2) }5) /Ot
/Sg wott)os [asw te, 22, {on (51) Hos {@0n(52)Y0) /0t ] “

] o1 — 2] B + 201 (1) — 2oa(D)] .

= [z1 — zo) B+

/ wg(t)[zp1(t) — xv2(t)]dt] By.
Sp

The estimation methods in Section 2.2 now can be adapted to develop estimators of 3, 3,,

Ao and Ay for the censored case.

5.2 Combination of Possible Estimators

This section presents a method for combining possible estimators of A and Ag. As was noted

in Section 2, \p can be expressed as (3) or (4). Combining these expressions yields

)\Q(t) = Oé(t)/ dtQ/ le / dZQ ’w(tz, 21, Z2) eXp(ZQ — Zl)R(t, tg’Zl, 22)
St Sz Sz

(19)

+(1- a(t))/ dtl/ dzl/ dzo w(ty, 21, 22) exp(z1 — 22) R(t1, t]z1, 20) 7!
ST Sz Sz

for any «a(t) such that 0 < a(t) < 1 for all t. This suggests that A\g can be estimated by
(19) with R replaced by its consistent estimator R,,. Let Ano denote the resulting estimator

of )\().

15We are grateful to an anonymous referee who pointed this out.
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For simplicity, we consider only uncensored case and assume that h,; = hno = hy.

Under the assumptions of Theorem 3.1, it can be shown that as n — oo,

n

A =T
S = olt) [ C(t,t2, Zin, Zi2)1(Tiz > t2) dt?} Kz <t 1>
1—oft) « A e
" nhn()z [ ) C(t1,t, Zin, Zia)1 (T > tl)dtl] KT( ho, 2)
i=1 T

= Ao(t) + 0p | (nhy) ]
uniformly over ¢t € [0, 7], where
C(t1,ta, 21, 22) = [A(t1, tal21, 22)p2(21, 22)] " w(t1, 21, 22) exp(z1 — 22).

The weight function a(t) can be chosen to minimize the mean squared error of Ay (t) for
each t € [0, 7].

Similarly, Ag can be expressed as
t
Ao(t) = a(t)/ dtl / dtg/ le / dZQ ’w(tg, 21, 2’2) exp(22 — Zl)R(tl, tg‘zl, 22)
0 St Sz Sz
t
(1 — a(t))/ dtQ/ dtl/ d21/ dZQ w(tl, 2’1,2’2) exp(z1 - ZQ)R(tl,t2|Zl, 22)71.
0 St Sz Sz

A new estimator of Ag can be obtained by replacing R in the equation above with R,,.

5.3 Estimation with Longer Panels

The estimation approach described in this paper extends easily to the case of longer panels.
First consider the case when observations of T are uncensored. Observations of any pair
of the set {1,...,J} can be used to construct nonparametric estimators of Ao and Ay as
in Section 2.1 (or as in Section 5.1). This gives J(J — 1)/2 different estimators, and these
can be linearly combined to construct a more efficient estimator. It may be an interesting
question what linear combination yields the smallest integrated mean square error among
all linear combinations possible, but it is beyond the scope of this paper. Chamberlain
(1985) discusses estimation of 3 when J completed spells are available for each individual.

For the censored case, we assume that C; = C and C; = (C' — Zi:l Ti)1(Tj—1 < Cj—1)

for 5 = 2,...,J. Here, C is conditionally independent of T} given X;. As in Section 2.2,
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observe that C' censors the sum of 7}, not each separately, and that A; =1 for j < J if
Ay=1.

To describe an estimator of 3, let (¢;,t;) be a pair such that [ # k. Define the joint
survivor function S(t;, tg|z, zx) = Pr(T; > ¢, T > ti|X; = 21, X = x1), the joint condi-
tional sub-distribution function F(ty,...,ts|lx;, zr) = Pr(Y1 <t1,...,Y; <t;,A;=1|X; =
xy, X), = x1,) , its corresponding density f(t1,...,ts|z;, xx) = 07 F(ty,. .., ts|x, x1) /0t ... Oty
and the conditional survivor function of the censoring threshold G(c|xi,z2) = Pr(C >
c| X =z, Xy = xp).

As in the equation (12),

o[ © f(s15- -0, 80]70, 78)
S(t, tg|r, :/ / / / ds_j dsy dsy, 20
(l k| : k) t ty J—o00 —00 G(81 +"'+SJ‘xl7xk> e ( )

where ¢t_;; denotes a vector containing all components of (¢1,...,t;) except t; and t;. By

differentiating S with respect to ¢; and t; and then setting t; =t = ¢,

0S(ty, tg|zy, ) /Ot
8S(tl, tk\xl, a:k)/c‘)tk

= exp[(x; — x1) 3] (21)

Now [ can be estimated by using a procedure similar to the one described in Section 2.2.1.

Estimators of A\g and Ay can also be developed analogously.

6 Monte Carlo Experiments

This section presents the results of a small set of Monte Carlo experiments that illustrate
the numerical performance of the estimators of Ay, Ag, and 5. Samples were generated
by simulation from model (1) with J = 2. In the experiments, § = 1, X; ~ N(0,1),
X9 ~ N(0,1), and X; and Xy are independent. The fixed effect was generated by U =
(X1 4+ X2)/2. Experiments were carried out with two baseline hazard functions, which are
taken from Horowitz (1999). One is A\g(¢) = 0.087¢, which makes (1) a Weibull proportional
hazard model with unobserved heterogeneity. The other baseline hazard function is \o(t) =
0.05(t/5)~2/3 + 0.57(t/5)°, which is U-shaped.

Experiments were also carried out for both the uncensored and censored cases. The
censoring threshold C' was generated from the exponential distribution with mean 20. Recall

that C1 = C and Cy = (C —T1)1(T1 < C). Under this censoring mechanism, the means of
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A1 and As are about 0.78 and 0.64, respectively, for the Weibull hazard model and about
0.87 and 0.76, respectively, for the U-shaped hazard model.

The experiments used sample sizes of n = 100 and 500. There were 100 Monte Carlo
replications per experiment, and the experiments were carried out in GAUSS using GAUSS
pseudo-random number generators.

We first focus on the finite sample performance of the estimators of A\g and Ag for the
uncensored case. The partial likelihood estimator was used to estimate (3. The kernel

functions used in estimation of \g are
Kr(u) = (15/16)(1 — u?)?1(Ju| < 1) (22)
and

Kz(u) = (105/64)(1 — 5u? + Tu* — 3uS)1(|u| < 1). (23)

These are second-order and fourth-order kernels. The following sixth-order kernel along

with (22) is used in estimation of Ag:
Kz(u) = (315/2048) (15 — 140u? + 378u* — 396u5 + 143u8)1(|u| < 1). (24)

All the kernel functions are taken from Miiller (1984). The bandwidths were chosen by the
data-based methods described in Section 4. The weight functions and the means of the
values of bandwidths used in the experiments are shown in Table 1.16 It is not difficult to
compute \yg and A,g. The triple integral in (5) was evaluated numerically using the Gauss-
Legendre quadrature method. The quadruple integral in (6) was first evaluated analytically
with respect to t; and the remaining triple integral was evaluated numerically. See Horowitz
and Gorgens (1999, 2.4) for details how the integral in (6) can be evaluated analytically
with respect to t1.

The results of the experiments are summarized graphically in Figure 1 for the Weibull
model and Figure 2 for the U-shaped hazard model. The left-hand panels of the figures show
the means of 100 estimates of Ao and Ay (solid lines) and the true A\g and Ag (dashed lines).

The weight function w:(-) does not satisfy the differentiability requirement of Assumption 3.6. This
does not matter in a finite sample because there are no observations of 75 at discontinuous points.
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The right-hand panels show five individual estimates of Ay and Ay (solid lines) and the true
Ao and Ay (dashed lines). The baseline hazard functions used in the experiments do not
satisfy the scale normalization; hence, the estimates were normalized by dividing them by
fooo wy(t)/Ao(t)dt. Tt can be seen that the true functions and the means of the estimates are
quite close to one another, especially when n = 500. It is not surprising that the estimates
of Ao are more variable than those of Ay given the rates of convergence of the estimators
obtained in Section 3. Most of the individual estimates are reasonable approximations to
the functions they estimate.

In order to investigate whether there is an advantage to using a combined estimator of
Ao described in Section 5, we computed Ao using equal weight for each ¢ («(t) = 0.5) with
the same bandwidths used in A,g. Figure 3 shows the means of 100 estimates of A\g and
five individual estimates. It can be seen that the biases of j\nO remain virtually the same as
those of Ao but the variances of j\nO are somewhat smaller than those of \,g. This is not
surprising given the fact that Ano i8 just a weighted average of consistent estimators.

We now turn to investigate the small sample performance of the estimators for the
censored case. The parameter 3 was estimated by the method described in Section 2.2.1.
The regularity conditions established in Appendix B.1 require K7 to be a higher-order
kernel in order to prevent (3, from having the asymptotic bias. As is well known, however,
kernel estimates with second-order kernels often outperform those with higher-order kernels
for small sample sizes.!” Due to this reason, the experiments were carried out using both
the second-order and fourth-order kernels (22) - (23) for K7.'® The second-order kernel (22)
was used for Kx. The single integral in V,,; in Section 2.2.1 was evaluated numerically using
the quadrature method. As in the uncensored case, the kernels (22) and (23) were used
in estimation of Ag; the kernels (22) and (24) were used for A,o. Estimates of § with the
fourth-order kernel were used as (3, in estimation of A\g and Ag. The weight functions and
the values of bandwidths used for the censored case are shown in Table 2. The bandwidths

were chosen to roughly minimize the (integrated) mean square errors of the estimators.

"For example, see Efromovich (2001) for theoretical arguments why the higher-order kernels perform
poorly in small samples.

8When the fourth-order kernel is used, Vj,; in (15) can be negative for finite samples. To deal with this
problem, we set wg; = 0 when V,,; is not strictly positive.
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The results for the censored case are summarized in Table 3 and Figures 4-5. Table
3 reports the results of the experiments for G,,. It is not surprising that the estimates of
06 exhibit some biases when the second-order kernel is used, given the fact that a higher-
order kernel is needed to remove the bias. On the other hand, the use of the higher-order
kernel reduces the biases at the expense of increased variances. In order to compare the
censored estimator of 5 to the uncensored estimator, we computed the root mean square
error (RMSE) of the partial likelihood estimator without censoring. The resulting RMSE’s
were 0.228 and 0.098, respectively, for sample sizes of n = 100 and 500.'° Thus, the RMSE
of the censored estimator is quite larger than that of the uncensored estimator roughly by a
factor of 2. Figures 4 and 5 show the means of 100 estimates of A\g and Ay and five individual
estimates, as was shown in Figures 1 and 2. It can be seen that as in the uncensored case,
the true functions and the means of the estimates are quite close to one another and the

individual estimates are reasonable approximations to the functions they estimate.

7 Conclusions

This paper has presented nonparametric estimators of the baseline and integrated baseline
hazard functions in a panel data proportional hazards model with fixed effects. The paper
has also shown how the parametric part of the model can be estimated consistently with
dependent right censoring, under which the partial likelihood estimator is inconsistent.

Although our censored estimator is a n /2

-consistent estimator, it seems to have quite large
variance as compared to the uncensored counterpart. Therefore, it may be an interesting
problem to develop a more efficient estimator than one proposed here. Furthermore, it may
also be interesting to find the semiparametric efficiency bound for the parametric part of

the model by extending the result of Hahn (1994). These are topics for future research.
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A Appendix: Uncensored Case
A.1 Proofs of Theorems

This subsection of Appendix A presents the proofs of Theorem 3.1 and Corollary 3.2. Define a Fu-
clidean class of functions as in Pakes and Pollard (1989). Define A(t1,to, 21, 22) = A(t1, t2|21, 22)p. (21, 22),
B(t1,t2, 21, 22) = B(t1,t2]21, 22)p- (21, 22), An(t1,t2, 21, 22) = An(t1,ta|21, 22)Pnz(21, 22), and

B, (t1,to, 21, 22) = Bp(t1,t2]21, 22)pn2(21, 22). Equation (8) can be rewritten as
Ry, (t1,ta]21, 22) = Ay (th, ta, 21, 22) / Bn(ti, ta, 21, 22). (25)

In order to prove Theorem 3.1 and Corollary 3.2, it is more convenient to use (25) than (8).
Before we prove Theorem 3.1, it is useful to prove some lemmas that establish asymptotic linear
approximations of A, (t1,ts, 21,22) and By (t1,ta, 21, 22). Define

1 ¥ t -1, 5 -7 s
Agll)(tthaZlyZz) = WZI(T’Q >t2)KT< 1h 1) Kz (lhl) Ky <2h2>’

nl nz nz

t1 —T;
AP (¢t Tiy > t5) 1 -d
n (1, 2721,22) nhmh ; i2 2 .

_Zi _Zi Z_Zz Z—Zi
e (3 1)Kz(2h ) (B o (377 e
nz nz nz nz

0 0
APty 10,21, 20) = _87Z1A(t1’t2|zl’z2)EX1 - @A(tl’tﬂzl’@)EXz’

and

Sa=n"1Y " T, Tiz, Xi1, Xia)-

i=1
Lemma A.1. Asn — oo, the following holds uniformly over (ti,ta,21,22) € [0,7] X ST X Sz X Sz:
(@)  An(tr,ta, 21,20) = A (81, b2, 21, 20) + AP (t1, 12, 21, 22) Sy
+ Op (n7'hy2) + 0y [log n/(n?’hnlh;z)l/ﬂ + op (n_l/Q) .
(b) AW (1,1, 21, 20) = A(t1, t2, 21, 22) + O(h,) + O(h",) + 0 [logn/(nhnlhiz)l/ﬂ a.s.

(¢) AP (1, to, 21, 20) = AP (b, L0, 21, 20) + O(hL,) + O(h%.) + 0 {logn/(nhnlhiz)lm] a.s.
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Proof. Part (a): By a Taylor series expansion, write
— A (2) / (A4)
An(t17t27zlvz2) _An (t17t2321722) + An (tl,tg,Zl,ZQ) (bn_6)+Rn (tl,tQ,Zl,ZQ), (26)
where R%A) (t1,t2, 21, 22) is a remainder term such that

/
RV (ty,t2, 21, 22) = [R;Al)(tlat%zly@) + R (t17t2,21,22)} (bn — ),

1 - ti — T
ST Xa Ty > to) K [ 2
o 2 XM > 1) r (M

- Zi 29 — Zi2 21— Znia 29— Znio
<m0 (02 - (B ke (272 )
{ 2\ hns Z\ s 2\ hae 2\ he

- T
R (b, 12,21, 29) = i h3 ZXﬁl i2 >752)KT< o )
i—1 n

21— Zin ) [ 2 — Zia 21— Znil / z2 — Zmz
K — | K — | - K — | K _
X{Z< - ) Z( i ) Z( he )\ b ) S

Inij = Xi’jl;n for j = 1,2, and b, is between b,, and 3.

R;Al)(tla tQa 21, ZQ) -

Further, write
R,(lAl)(tl,tz, 21, 22) = Hr(LAl)(tl,t% z1,%22) + HéAz)(tthaZla z2) + HT(LAB)(thtz, 21, 22),
where

H’r(LAl)(tlv t27 21, 22)

—Tn
WZXﬂl 2 > o) Krp < h >

i=1 nl

-7 7 — 7.
XKZ(h ) Kz(ZZh 12>_KZ<th )

T,
H,(LA2)(t1,t2721,Z2) Y h ZXul i2 >t2)KT< W Zl)
nl i—1 nl
29 — Zi2 y (Zl _Zﬂ) , 21— Znia
x Ky (222 gy (220 gy (2L 2na
Z( hin ) 2\ hns 2\ T

1 - t1 — T
e N X U(T > b)) Ky (A
o b3 > Xal(Ti2 > to) T( hin )

nz =1 !
o [Kz (Zthm'z> K, <22hZi2> [K/Z (Zlhzil) _ K} (Zthnﬂ)

Assumption 3.8 implies that Kz is Lipschitz continuous, so for some M; < oo,

M b,L z —Zi
[HAD (t1, 2, 21, 22) || < Millsn ~ 5l § Z ( ) L(Tiz2 > t2) ‘K/z (1,11)‘ ([ X ||| Xz

nhn1h4
= M, ||b, — 5||HnA1)(t1,t2, 21).

)

)

and

H’r(zAg) (tla t?v 21, 22)
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It is not difficult to show that the summand in ﬁ,(lAl)(tl,tg, z1) belongs to a Euclidean class. By

Theorem 2.37 of Pollard (1984),

sup |[HAY (L1, tg,21) — EﬁéAl)(tl,tQ,Zl)} =o0 [logn/(nhnlhzm)l/ﬂ a.s.

t1,t2,21

In addition, a change of variables gives Ef{T(LAl)(tl,tg,zl) =0 (h_3) uniformly over (t1,t2,21) €

[0,7] x Sp x Sz. Hence, since ||b, — 5] = op (n*1/2), -

[HAD (41,82, 21, 22) ]| = 0, [logn/(thnlhzz)l/Q} +0, (n_l/zh,:j’) 27)
uniformly over (t1,%2, 21, 22) € [0,7] x S7 x Sz x Sz. By the same arguments,

[HAD (81, ta, 21, 22) || = 0, [logn/(nzhnlhzz)l/ﬂ +0, (n‘”%;j) (28)

uniformly over (t1, 12,21, 22) € [0,7] X ST X Sz x Sz. In addition, for some My < oo,

_T
Kt (tlhz> 1(Ti2 > ta)

nl

n

Mo||b, — B
HA3) (4, ¢ < 2221 7 P
| H (t, ta, 21, 22) || < e ;:1

= Ma|lb, — B|PHS) (t1,12).

X |1 Xz |

Again, by Theorem 2.37 of Pollard (1984),

tsutp H7(1A3)(t1,t2) — EFIT(LA3) (tl,tg)‘ =o0 {log 1”L/(7”Lhnlh,1g)1/2 a.s.
1,02

Moreover, a change of variables gives EFNI,(LAS) (t1,t2) = O (h_5

»2) uniformly over (t1,t2,21) € [0,7] x

St x Sz. Hence,
[H) (t1, 12, 21, 22) || = 0p (logn)/(n?’hnlhig)l/ﬂ + 0, (n7'h,2) (29)

uniformly over (t1,%2,21,22) € [0,7] X S X Sz x Sz. It follows from (27), (28), and (29) that under

the assumption that nh,,, — oo,
IR (1, t2, 21, 22) | = 0p [log n/ (n* Rk ) 2] + Oy (n™1/2072)
uniformly over (t1,12,21,22) € [0,7] X ST X Sz X Sz. Similarly,
IR (11, 12,21, 20)| = 0y [logn/(n*hanhf,.) 2] + 0, (n™"/21;2)
uniformly over (¢1,t2, 21, 22) € [0,7] X S7 x Sz x Sz. Therefore,
IREY (1, t2, 21, 22) | = 0y [logn/(n?’hnlh;z)l/z} +0yp (n7'hy2) (30)
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uniformly over (t1,t2,21,22) € [0,7] X ST X Sz x Sz. Part (a) follows by combining (30) with the
fact that b, — 3 = Sq + 0,(n~1/2).

Part (b): Another application of Theorem 2.37 of Pollard (1984) yields

sup Agll)(tl,t%zh z9) — EAS)(tl,tz,zl, 22)‘ =0 [log n/(nhnlhiz)lm] a.s.

t1,t2,21,22

In addition,

t _ _
EAD (t1,t, 21, 23) = (hmhgz)*l/us2 > tQ)KT< 1h 51) Ky (zl “’1>

nl hnz

x Kz (ZQh_ wQ) p(81, 82, w1, ws) dsi1dsadw;dws

= /1(1/12 > t2) Kr (1) Kz (&) Kz (&2)
X p(ty — hp1tp1, Y2, 21 — hn2éa, 22 — hi&o) diprdapadéydés
= A(tl, tQ, 21, 22) + O(hgu) + O(h:lz)

uniformly over (¢1,t2,21,22) € [0,7] X ST X Sz X Sz. Thus, this proves part (b).

Part (c): This can be proved by using the similar arguments as in part (b). O
Define
1 " to — T; 21— 7 20 — Z;
BW (¢, + - - 1Ty >t K 2T g (LT A e (227 282
n (t1,t2, 21, 22) nhngh?w; (Tin > t1)Krp I z I z I )
1 = to —T;
B (t,,t =——— N 1(Th > t))K :
n ( 15 2721722) nthh%Z ; ( 1> 1) T hnz

21— 2y 29 — Z; 21— 4y 29 — Zio
K, |m— K — 1 X; K = "R )VK | =X,
Qs (2w (222 ) o (220w (222
and
) 0 0
B (t1,ta, 21,22) = —5—B(t1, t2|21, 22) EX1 — = B(t1, t2|21, 22) EX>.
0z 0z

Lemma A.2. Asn — oo, the following holds uniformly over (ti,ta,21,22) € [0,7] X ST X Sz X Sz:

(a)  Bu(ti,t2,21,22) = BV (t1, 12,21, 22) + BY (t, ta, 21, 22) S
+ 0y (n7h32) + 0 [logn/ (nhuoh ) V2] + 0 (n72)
(b) B (t1ta, 21, 22) = B(ty, by, 21, 22) + O(hl) + O(hy.) + 0 {logn/(nhnzhiz)l/z} a.s.

() BD(ty,ts,21,20) = BD(t1,t, 21, 22) + O(h%y) + O(RT.) + 0 [log n/(nhnghﬁz)l/‘z] a.s.
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Proof. The lemma follows by repeating the same arguments as in the proof of Lemma 1. O

Proof of Theorem 3.1. Part (a): By the definition and a Taylor series expansion,

An(tth,ZlaZQ) A(t1;t2721722)
Mo(t) = Ao(t) = [ dts | d dzo w(ts, 21, f —
o(®) = ho(®) /ST 2/32 o /sz 22 w(tz, 21, 22) exp(zz — 21) By(ti,ta, z1,20)  B(t1,to, 21, 22)

= / dtz / le dZQ
ST SZ SZ

X [C(thtz,21,22)An(t1,t2721,z2) — D(t1,t2, 21, 22)Br(t1,ta, 21, 22) + Rﬁﬁ)(thtz,zl,@)} )

where the remainder term Rg{\) (t1,t9, 21, 22) satisfies
RN (1,9, 21, 22) = O [(A — A)(B,, — B) + (B, — B)?].
It follows from Lemmas A.1 and A.2 and Assumption 3.9 (a) that
Ap(t1,to,21,22) = Agll)(tl,tg,zl,ZQ) + o0, {(nhnl)_l/ﬂ ,
B (t1,t2,21,22) = B,Sll)(tl,tg,Zl,Zg) + o, [(nhnl)_l/ﬂ ,
[An(ts b2, 21, 22) = Al ta, 21, 22)| = 0p [ (ko) 774

and

| By (t1,t2, 21, 22) — B(t1,t2, 21, 22)| = 0p {(nh7zl)71/4}

uniformly over (t1,t2, 21, 22) € [0,7] X ST X Sz x Sz. Thus, it follows that

A'rLO / dt?/ le/ dZZ tlatQa21722)A£Ll)(t17t2721722)
St Sz Sz

7/ dtg/ le/ dZQ D(tl,tg,Zl,ZQ)BT(LI)(tth,Zl,ZQ) + Op |:(7’Lhn1)71/2:| (31)
ST SZ SZ

= I (t) + La(t) + o, {(”hnl)_l/ﬂ

uniformly over ¢ € [0, 7].
It now remains to evaluate the integrals in (31). Observe that by a change of variables and a

Taylor series expansion,
I1(t / dtg/ le/ dzo C t Jto, 21,29)1(T52 > to
lt) = > [, e = 22)1(Tiz > to)

—Ti 1 — Zi 2 — Ziz
K Ky| ——— | Kz | —
8 g ( hnl ) 7 < hnz > z < hnz )

1 n t
= Cl(t,ta, Zi1, Zia)1(Tia > ta2) dta| K1
Tlh,nl =1 S

-7
1)+ow;>

nl

=M + o)
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uniformly over ¢ € [0, 7]. Similarly,

1 n
I Q(t) = - / dtg/ dz1 dza D(t,tg,zl,ZQ)l(T‘l > t)
" nhn2h’l2’7,z ; St Sz Sz !

to — T2 21— Zn 29 — Z;
K K — | K -
* AT ( hn2 ) z < hnz > i ( hnz )

1 n
=— > D(t,Tia, Zin, Zin)1(Ti1 > t) + Op(hy) + O(h1,.)
=1

= ¢BY(1) + O(hly) + O(hn.)

uniformly over ¢ € [0, 7].

Combining these results with the condition that (nhy,;)*/2h!, — 0 and (nh,1)"/2hL, — 0 gives

Ano(t) = Ao(t) = GV () + PV (1) + o, [(”hnl)_1/2] (32)
uniformly over ¢ € [0, 7]. It is straightforward to show that E| T(LBl)(t)] = —Xo(t). Furthermore, it is

not difficult to show that by Theorem 2.37 of Pollard (1984),
¢V (@) = BIGPY (@) = o (logn/n'/?)
uniformly over ¢ € [0, 7]. Therefore, (32) can be rewritten as
Xuo(8) = o(t) = (A1) = Ao(t) + 0 (k1) /2] (33)

uniformly over ¢t € [0, 7]. Using integration by parts and a change of variables, it is not difficult to

show that
E[GV(t) = Ao(t)] = Ba(t) + o(hiy). (34)
Part (a) now follows by combining (33)-(34).

Part (b): As in the proof of part (a), using Lemmas A.1 and A.2, it can be shown that

An(t17t2721522) A(t17t2721a22)

Bp(ti,t2,21,22)  B(t,ta, 21, 22)
- C(tla t23 21, 22)A7(11)(t17 t27 21, ZQ) - D(t17 t27 21, ZQ)B’y(ll)(tla t27 21, 22) (35)

/
+ [C’(tl,t2,21,22)14(2)(??1,732,21,22) — D(tutz,21,22)3(2)@17?52721,22)] Sa + o0y (n_1/2>

uniformly over (t1,te, 21,22) € [0,7] X Sp x Sz x Sz. Observe that Assumption 3.9 (b) is necessary

to ensure that the remainder term is of order op(nfl/ 2,
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It now remains to integrate the leading terms in (35) over (t1,t2,21,22). It follows from the

proof of part (a) that

t
/ dtl/ dtg/ le/ dZQ C(tl,tg,Zl,ZQ)A,ELl)(tl,tg,Zl,ZQ)
0 ST Sz Sz
Ti

1 - [ t —
Z/ [ C(ti,t2, Zin, Zin)1(Ti2 > tz)dtz] Kr <1h
i=1"0

nhnt — St nl

= QM (t) + O(hy,.)

) dty + O(h;,,)

uniformly over ¢ € [0, 7].
Define RSV (¢) = QY (¢) — QY (¢), where

n

. 1
Q%A)(t) = Z { C(Tin,te, Zin, Zi2)1(Tig > ta) dta| 1(0 < T3y < t).
i=1 /ST

By integration by parts, it is easy to show that EQ%A) (t) = Ao(t). Combining (34) with Fubini’s
theorem yields EQYY (t) = Ao(t) + Op(hl,) uniformly over ¢t € [0,7]. Thus, ERY (t) = Op(hl))
uniformly over ¢ € [0,7]. Furthermore, we can show that the summand in R (t) is Euclidean.

Therefore, by Theorem 2.37 of Pollard (1984),
sup |[R(1) — ER(1)] = o [ (logm) /m' /2]

almost surely. Therefore, QM (t) = ~,(1A)(t) + 0,(n~1/2) uniformly over ¢ € [0, 7].

Now consider the second term in (35). Again, by the result of the proof of part (a),
t
/ dtl / dtz / le dZQ D(tl,tg,Zl,Zg)B,,(ll)(tl,tg,Zl,Zg)
0 St Sz Sz
I [*
==Y [ Dt T Za Za)1 (T > 1) dta + O(hty) + 000
i=170

uniformly over ¢ € [0, 7].

Finally, consider the remaining terms in (35). Use integration by parts and (2) to obtain

t
/ dt, / dts / dzy | dz CA® — DB®
0 St Sz Sz
t
0 A(t,t2|21, 22)
=FX dt dt d dzg —(t B
1/0 1/ST 2/52 Zl /Sz . azlcp( 2’21,22)B(t1,t2|2172’2)

t
0 A(tlat2‘21722)
+EX/dt/dt/dz/dz— ty, 21, 29) 2 12121, 22)
“Jo s P s, s, 2322@(2 ' 2)B(tlﬂfz|21722)

= —Ao()E[X; — Xo] / do [ dzy WPwe(z2),
Sz Sz D= (217 22)
Part (b) follows by combining these results. O
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Proof of Corollary 3.2. Part (a) follows from Theorem 3.1 (a) and an application of a triangular-
array central limit theorem. It is not difficult to show that the summand in T, (¢) is Euclidean. Then
part (b) can be easily proved by combining Theorem 3.1 (b) with the empirical process method
described in Pollard (1984) and Pakes and Pollard (1989). O

A.2 Estimation of V) (t) and E[xa(t)xa(t')]

The asymptotic variance V) (t) and the covariance function E[xx(t)xx(t')] can be estimated consis-

tently by replacing unknown quantities with sample analogs. Define
Pn(ta, 21, 22) = pnz(21, 22) " w(t2, 21, 22) exp(z2 — 21),
Ch(t1,ta, 21, 22) = By(t1, ta|21, 22) " n(ta, 21, 22),

and

Dn(t17t27 21, 2:2) = Bn(t17t2|217 ZQ)_2An(t1,t2|Zl, ZQ)SOTL(t27ZI7 22)7

where py., A, and B, are defined in Section 2.1. Let X; be the sample means of X; and let €2, be
a consistent estimator of (2. It is easy to obtain the formula for calculating €2,, corresponding to the

partial likelihood estimator of 3. Define

- 2
1 LT,
nt(Tin, Tiz, Xin, Xio) = Cr(t,ta, Znit, Zni2)1(Tiz > tz)dt2] —Kr ( 1) ,
LS ST hnl h’nl
and
Lt (Tin, Tio, Xin, Xio) = Cr(Ti1sta, Znit, Zni2)1(Tio > ta) dtz} 1(0<Th <t)
St

/D tlaTzQaanthzQ)l(Tzl>t1)dt1

wz 21)w, (2
_AnO [/ dZ1/ dzy 1(2)} [Xl XQ] Qn( il 223X7.1;X12)
Sy Sy Pnz(21,22)

Using the fact that p,., A, Bn, and A,g converge in probability uniformly, It is straightforward to

show that under the assumptions of Theorem 3.1, V) (¢) is estimated consistently by

n 1
nilz”Ynt(nhnZinlaXiZ)/ K7 (u)du
i=1 -1

and that E[xx(t)xa(t')] is estimated consistently by

n~ 'Y Toi(Tin, Tig, Xit, Xio) D (Tor, Toz, X, Xia).

=1
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B Appendix: Censored Case

B.1 The Asymptotic Distribution of n'/?(3, — 3)

This section of Appendix B presents conditions under which n'/2(3, — 3) is asymptotically normally
distributed. In this section, let ¢ and r be integers such that ¢ > 2 and r > dg/(¢—1). We maintain

Assumptions 3.2-3.4 and make the following additional assumptions:

Assumption 3.1’ (Random Sampling). {(Y;1,Yie, Xi1, Xi2, Ai1,80,C;) 1 4 = 1,...,n} is a
random sample of (Y1,Ys, X1, Xo, A1, Ay, C).

Assumption 3.5’ (Smoothness). The distribution of (Y1, Y2, X1, Xo, A1, As) is absolutely contin-
uous with respect to the product of Lebesque measure on R2+) and counting measure on {0,1}2.
Furthermore, there are an interval of the real line, Iy, and an open rectangle of R, Ix, such that
(a) It = [0, 77), where 77 < 00,

(b) f(t1,ta]z1,22) and p.(x1,22) are bounded on Ip x Iy x Ix X Ix,

(c) f(t1,ta]z1,22) and p,(x1,z2) are positive for all (t1,ta,x1,22) € int(Ir X It X Ix X Ix), and
(d) f(t1,ta]x1,x2) and py(x1,x2) have bounded partial derivatives up to order q with respect to t;,

and up to order r with respect to x; for j =1,2.
The conditions in Assumption 3.5’ are parallel to those in Section 3.

Assumption 3.6’ (Weight Functions). (a) The weight function wg(-) is a bounded, non-negative
function with compact support Sg C It such that fSB wa(t)dt = 1 and wg is q times continuously
differentiable on Sg.

(a) The weight function w,(-) is a bounded, non-negative function with compact support Sx C Ix

such that w, is continuously differentiable on Sx.

Assumption 3.8’ (Kernels). (a) K1 has support [—1, 1], is bounded and symmetrical about 0, has

bounded variation, and satisfies

1 1 ifj =0,
/ w Kp(u)du =< 0 ifj=1<j<q-1,
-1 Cr ifj=q

where Cr is a positive constant.

(b) Kx has support [—1,1]%, is bounded and symmetrical about 0, has bounded variation, and satisfies

| 1 ifj=o,
/ WEKxu)du=4q 0 ifj=1<j<r-—1,
(=t Cx ifj=r,

where C'x is a positive constant.
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Assumption 3.9’ (Bandwidths). nh2l — 0, nh2% — 0, nhi" — 0, nhid — oo, logn/(nh2, hA%)1/4 —

0, and logn/(nh2,hid )1/ — 0.

Assumptions 3.8 and 3.9’ are satisfied, for example, if Kt is a fourth-order kernel, Kx is a

r-th-order kernel, h,; = hpo & n= Y7, and hp, o< n= %= where 1/(4r) < k. < 5/(28d).

Assumption B.1 (Censoring). The censoring threshold C is independent of Ty and Ty given X,
and Xo. The conditional distribution of C given X1 = x1 and Xo = xo is absolutely continuous
with respect to Lesbesgue measure for all x1 and xo. Furthermore, G(c|xy,x2) is positive for every

(¢, x1,22), and G(c|z1,x2) is continuously differentiable with respect to x1 and x4 for each c.

Assumption B.2 (Full Rank Condition). The matriz @5 = E|w,(X1)w,(X2)AXAX'] is non-

singular.
Define

Q(Yi1, Yiz, Xi1, Xiz, Ai1, Aiz)
1 A1 Ao Wy AX; wp(Yi1)1(Yie > Yin) 5(Y12)GXP(AX B)1(Yi1 > Yi2)

=d
7 exp(AX[3) G(Yir + Yia| Xz, Xiz) | Bs(Yar | Xin, Xio) Bp(Yio| Xi1, Xio)
The following proposition provides the main result of this section.

Proposition B.1. Let Assumptions 3.1’, 3.2-8.4, 3.5', 3.6', 3.8’, 3.9', and B.1-B.2 hold. As

n — oo,

1 -~
Bn—B= o ZQ(YM, Yio, Xi1, Xio, A1, Ag2) + Op(n71/2)~

i=1
In particular, n1/2(ﬂn — ) is asymptotically normal with mean zero and covariance matriz Vg =

E[Q(Y1, Ya, X1, X2, A1, Ag)Q(Y1, Yo, X1, X2, Ar, Ao)'].

The covariance matrix V can be estimated consistently by a sample analog estimator:
n ~
Vnﬁ =n ZQ 7,1;1/123X117X127A213A12) ( 117K27X117X123A117Az2)
where (I)nﬁ = ’I’L_1 Z’?:l wm(Xll)ww(Xlg)AXzAXz’ and

Qn(Yir, Yiz, X1, X2, Aji, Aj2)
—1 A11A12 wszX ( )1( i2 > }/7/1) wﬁ(n?) ( Xlﬁn) ( i1 > Y;Q)

=&
nﬁexp( Xlﬂn) n( 11+K2|X123X7,2> ( zl‘Xd, ) Bn ( 12|X117X12)
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Proof of Proposition B.1. Define Ag(t,x1,x2) = Ag(t|x1, x2)ps(z1, x2), Ba(t,x1,22) = Bg(t|zy, z2)
Py (21, 02), Ang(t, 1, 32) = App (|21, 22)pne (21, 22), and Bps(t, @1, w2) = Bug(t|r1, 22)ppa (21, 72).

Equation (14) can be rewritten as
Rpp(t|z1,20) = App(t, w1, w2)/ Bug(t, 21, 2). (36)

As in the uncensored case, it is more convenient to use (36) than (14). We will split the proof into

several steps.

Step 1. We first establish asymptotic linear approximations of flng (t,z1,22) and Bnﬁ(t, Z1,T2).
Write

App(t,z1,20) = flﬁfﬁ)(t, x1,22) + Afg(twhxz)

and
Bug(t,x1,12) = Bgﬂ)(t,xl,xg) + Bfﬁ)(t,xl, x2),
where
~ " A A 1 >t) t—Y; 1 — X1 To — X;o
A( ) ¢ 11832 12 K i K T2 0 B L2 — A2
( $1»$2 h%dz ; G i1+ )/12|X117X12) hnl X hnr X hnz

i AitApl(Yig > t) t =Y 21 — Xar T2 = Xiy
e 1A K R (B ) a2
nﬁ( ,1’1,%2) ’I’Lhnthd 7,2:: G il + }112|X117X12) T hnl X h‘niﬂ X hnx

x Gt (Yir + Yio| X1, Xi2)[Gn (Yir + Yio| X1, Xi2) — G(Yiz + Yio| Xi1, X)),
~ i A A 1 >t) t— Yo x1 — X1 To — X;o
B( ) n 11832 i1 K i K L1 — Adl K L2 — A2
( - :EQ n2h2d ; G 7l + }/;2|X117 XlZ) r th X hnr X hnz ’

and

= (2) A Apl(Yi > t) t—Yio T1 — X T2 — X0
Bn,@ (t7 o x2) nhn2h2d lz:: G2 21 + Yvﬂ ‘lev XzZ) KT hn2 KX hna: KX hnz

x G (Yir + Yiel Xit, Xi2)[Gr (Yir + Yie| Xi1, Xi2) — G(Yia + Yia| X1, Xin)].

Observe that G(Y;1 + Yi2| X1, Xy2) is bounded away from zero as long as A;; = A;s = 1. Thus,
G Y (Y + Yol Xi1, Xio) = Op(1) uniformly in {i : A;; = A;o = 1}. Combining this with uniform

consistency of G, to G on a compact set gives

ARt w1, 20) = A (8,21, 22)[1 + 0p(1)]
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and
o N
B (t,w1,22) = B (¢, 21, 22)[1 + 0p(1)]

uniformly over (¢, z1,z2) € ST X Sx X Sx. In addition, arguments similar to those used in the proof

of Lemma A.1, it can be shown that
~ ~ 1/2
A0t 21, 22) = Ag(t, 21, 32) + O(hS,) + O(h,) + 0 [logn/ (nharh24) / | as
and

B (t,21,22) = Ba(t 21,2) + O(hihy) + O(h},) + 0 [logn/ (nhy2h2) *]  as.
uniformly over (¢,z1,22) € ST x Sx x Sx.

Step 2. Using the fact that logV; = AX/3, write

n -1 n
B — B = (nl > wmAXiA&f) (nl > wiAX; [log Vi — log VJ) : (37)

i=1 =1

By a Taylor series expansion,
log Vi —log Vi = V7 (Ve = Vi) + Oy [(Vei = Vi)?] - (38)
Observe that by a Taylor series expansion, the result of Step 1, and Assumption 3.9/,
Vi = Vi = /s wg(t) [Rpp(t, X1, Xi2) — Ra(t, X1, Xio)] dt
5

_ wg(t) 1) vy ay (1) oy ~1/2
-/ BT Xor, o) A0 Xt Xia) — exp(AXI BB (1 X, Xeo)| 1+ 0,(1)] + 0, (%)

= L[l + 0p(1)] + 0 (n'72)
uniformly over (X;1, X;2) € Sx x Sx. By a change of variables and a Taylor series expansion,
J— Aj1Aj, (Xﬂ - X; > <Xi2Xv )
I3 = J Ky (28251 e (22 52
o nh2d ; G(Yj1 + Y2l X1, Xj2) X Pz X P
" [wﬁ(yjl)l(yﬂ >Yj1)  ws(YVje) exp(AX]3)1(Yj1 > Yja)

Bs(Yj1, Xi1, Xio) Bg(Yj2, Xi1, Xi2)
= Ingi + O(hl,) + O(hily)

] L O(ht,) + O(ht)

uniformly over (X1, X;2) € Sx x Sx. Therefore, we have

Vni — ‘/Z = jnﬁz[l + Op(].)] + Op (n_1/2)



uniformly over (X1, X;2) € Sx x Sx.
Step 3. Combining the result of Step 2 with (38) gives

n~'> weiAX;[log Vi — log Vi]

=1
1~ waAX; s s
- Z eXp(AX ﬂ) ’ﬂﬁz[l + Op(l)] + Op ('rl )
— w:E’LAX A]lAJQ Xi2 _ )(J2
7n2h2d ;Zexp AX!3) G(Yi1 + Yio| X1, Xj2) ( > X( I
wp(Yi1)1(Yje > Yin)  wg(Yj2) exp(AX]B)1(Yj1 > Yio) e
[ Bg(Y}-l,Xﬂ,Xm) Bg(Yja, Xi1, Xiz) [140p(1)] + 0p (n )

- n2h2d ZZ&J [L+o0p(W)] +0p (n71/2) '

i=1 j=1

Write further the leadlng term as

1 n
n2h2d ZZ&J n2h2d Z Z §ij + n2h2d Zfii
nT =1 j=1 NT =1 4=1,i#j nT =1

= ILp1 + Ingo.
The order of I,,32 is at most of order O,[1/(nh22)], so that using Assumption 3.9/, I,52 = 0,(n~1/2).

In particular, we require here that nhi? — co. To deal with I,,51, observe

A
Jl Jj2
nm Z G j1+ 2|X]17XJ2)

1 = Wai AX Xin— X5 Xio — Xjo
_ K J K e 7)e
2t Z exp(Axgﬁ) X ( h ) X ( h >

nT

[ >Y; 1) _ wB(YjQ)eXp(AXZ(ﬂ)l(yjl > ng)}
bp YJLXU’XQ) Bg(Yj2, Xi1, Xi2)
A Wi AX;
J1 72 vj
(X1, X;
JZI Yin + Y| X1, Xja) eXp(AX’ﬁ)p (X1, Xj2)

{w[;(le)l(YjQ >Yj) wp(Yj2) exp(AX]B)1(Yj1 > Yﬂ)} [+ 0,(1)]
Bp(Yj1, Xj1, Xj2) By (Yja, Xj1, Xj2) :
by using arguments similar to those used to prove the uniform consistency of the kernel density

estimator. The proposition follows easily by combining the result of this step with (37). O

B.2 Asymptotic Properties of \,; and A,

This section of Appendix B presents conditions under which the estimators of A\g and Ag in Section
2.2 are uniformly consistent and asymptotically normally distributed. We maintain Assumptions

3.17,3.2-3.4, 3.6, and 3.8-3.9 and make the following additional assumptions:
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Assumption 3.5” (Smoothness). The distribution of (Y1,Ya, Z1, Za, A1, As) is absolutely con-
tinuous with respect to the product of Lebesgue measure on R* and counting measure on {0,1}2.
Furthermore, there are intervals of the real line, It and Iz, such that

(a) It = [0,7r), where 7p < 00, and Iz is open,

(b) f(t1,ta]z1,22) and p.(z1,22) are bounded on It X It x Iz x Iz,

(c) f(t1,ta]21, 22) and p. (21, 22) are positive for all (t1,ts,21,22) € int(Ip X It X Iz x Iz), and

(d) f(t1,t2]21,22) and p.(z1, 22) have bounded partial derivatives up to order q with respect to t; and

up to order v with respect to z; for j =1,2.

Assumption 3.7’ (Estimator of 5). There is a d x 1-vector-valued function Q(yl, Y2, 1, T2, 01,02)
such that

(a) EQ(Y1,Ya, X1, X2, A1, Ag) = 0,

(b) the components of E[Q(Y1,Ya, X1, Xa, Ay, Ao)Q(Y1, Yo, X1, Xo, A1, Ay)'] are finite, and

(c) as m — oo,
n
Z Y1, Yio, Xit, Xia, Air, Aiz) 4 0p(n~'/?).
This assumption is satisfied by (3,,, as was shown in Proposition B.1.

Assumption B.1’ (Censoring). The censoring threshold C is independent of (Th,Ta, X1, X2).
The distribution of C' is absolutely continuous with respect to Lesbesgue measure. Furthermore, G(c)

is positive for every c.
Define
C(t1,t2, 21, 22) = B(t1, 2|21, 22) " o(ta, 21, 22)

and

D(tl,tg, 21, ZQ) = B(tl,t2|21, 22)72A(t1,t2|21,22)@(t2, 21, ZQ).
Define

Ty (Yir, Yio, X1, Xio, A1, Ag2)

A1 ~
GVn + Yi2){ [/ST C(Yi1,to, Zin, Zin)1(Yia > t2) dt2:| 1(0<Y; <)

/ D(t1, Yiz, Zun, Zio)1(Yir >t1)dt1}

— Ao(t) [ / iz / dz wz”"(“)] EIX1 — X/ Q(Yir, Yia, X, Xiz Ao D).
Sz Sz Pz 2177«’2)
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In addition, define

5 A 07 f(t1,t2, 21, 20)
By (t) = dt d d C(t, 82, 21, 1(to > d — "
A( ) /ST 2/SZ 21 /SZ 22 |: S ( S2, 21 22) ( 2 52) 82:| 8t’f G(tl +t2)

1
wlKp(u)du
—1

t1=t

q!

and

2
Z/ dtz/ le/ dZQ |: é(t,$2721,22)1(t2 > S2)d$2/G(t+t2):| f(t,tQ,Zl,Zg)
ST SZ SZ ST

1
X / K2 (u)du
-1

The following proposition gives the main result of this section.

Proposition B.2. Let Assumptions 3.1, 3.2-3.4, 3.5", 3.6, 3.7', 8.8-3.9, and B.1' hold.
(a) Assume hyy oc n~ Y RatD  Fort € [0, 7],

nt/ D g (8) = do(t)] —a N (BA), Va(®))
(b) On [0, 7],
02 [Ano(t) — Ao(t)] = Xa(t),
where Xa(t) is a tight Gaussian process with mean 0 and covariance function E[Xa(t)xXa(t)] =
E[Ly(T1, Ty, X1, X2)Pw (Th, T, X1, Xo).

As in the uncensored case, the asymptotic variance Vi of Ang and the covariance function of

can be estimated consistently by replacing unknown quantities with sample analogs.

Proof of Proposition B.2. The proof of Proposition B.2 is similar to those of Theorem 3.1 and Propo-
sition B.1. We will only indicate the differences. Define fl(tl,tg, 21,22) = fl(tl,t2|zl, 29)p2(21, 22),
B(t1,t2, 21, 22) = B(t1, t2]21, 22)p2 (21, 22), An(t1,t2, 21, 22) = An(ty, ta|21, 22)Pnz (21, 22), and

Bn(tl,tg, 21,29) = Bn(tl,t2|zl, 29)Pnz(21, 22). Equation (17) can be rewritten as
Ry (t1,t2]21, 22) = Ap(t1,ta, 21, 22)/ B (t1, ta, 21, 22). (39)

As before, it is more convenient to use (39) than (17).

Part (a): By the definition and a Taylor series expansion,

)\nO(t) — )\O(t> = / dtz/ le / dZQ ’w(tz, 21, 22) exp(zz — Zl)
ST Sz Sz

/ dtz / le / dZQ
ST Sz Sz

[C(tl,tz,ZhZz)A (t1,t2,21,22) — D(thtz,zhZz)Bn(tl,tQ,thz)+R£[\)(t1,t2,2’1722)} ;

An(ty, b2, 21, 22) B A(ty, tg, 21, 22)
Bp(ti,t2,21,22)  Blt1,t2, 21, 22)
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where R%A) (t1,ta,21,22) is a remainder term.

Define

A A 1 >t2) t1 — Y 21— Zi1 29 — Zio
A( ) tot i1 12 72 K % K A K A
( 1 2)217Z2 nhnth ; 11 +)/12) T hnl A h Z h

nz nz

and

A, 1 >t1) to — Yo 21— Zi1 29 — Zio
B(l) tot Ll L2 il K ) K % K 2 )
( 15 2721722 ﬂh Qh ’Lz:: 21 +K2) T th Z hnz Z hnz

By arguments similar to those used in the proofs of Lemmas A.1-A.2 and Proposition B.1, it can be

shown that

Ano(t) — Xo(t) :/ dt2/ dzl/ dzg Oty t2, 21, 20) A (t1, 12, 21, 22)
S Sz Sz

/ dtg/ le/ dZQ tl,tQ,Zl,ZQ)B( )(tl,tg,zl,ZQ) —+ Op [(nhn1)71/2:|
ST SZ SZ

uniformly over ¢ € [0, 7].

Repeating the same arguments given in the proof of Theorem 3.1 (a) gives

t—Y;

1 & Andyp ~
Ano(t) — Ao(t) = Ct,to, Zir, Zis)1(Yig > to) dts| K ~ Aot
o) =20(0) = i Gt s | [ 02 20 > ) e (5 ) )

+ o, {(nhnl)fl/z} .

Then part (a) follows easily.
Part (b): This can be proved by repeating arguments similar to those used to prove part (b)
of Theorem 3.1. O

B.3 Alternative Estimator of Rj(t|x;, z2)

This part of Appendix B provides an alternative estimator of Rg(t|x1,22). There may be several
methods for estimating Rg(t|z1,x2) under dependent right censoring, but we present here an alter-
native estimator of Rg(t|z1,x2) based on Visser (1996) and Wang and Wells (1998). See Lin, Sun,
and Ying (1999) and Wang and Wells (1998) for more possible methods. The same idea as those
described here can be applied to estimate R(t1,ta]21,22) in Section 2.2.2.

To describe an alternative estimator of Rg(t|x1,x2), it is useful to introduce some notation. De-

fine the conditional distribution functions Fi(t1]z1) = Pr(Ty < t11X1 = 1) and Fa(talt, x2) =
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PT(TQ S t2|T1 = tl,XQ = LUQ). AISO7 define fl(tl\ml) = (9F1(t1|.%‘1)/8t1 and fg(fg‘thl‘g) ==
OF5(talt1, 2)/0ta. Using the fact that
o0
S(t1,t2|21, 22) =/ [1 — Fy(ta]s1, x2)]dFi(s1|x1),
t1

write
(1 — Fo(t[t, x2)] f1(t]z1)

J;foo f2(t‘317.'172)dF1(31|x1) '
An alternative estimator of Rg(t|x1,z2) can be obtained by replacing fi, fa, F1, and F in (40)

Rﬁ(tl.’L‘l,Zg) = (40)

with their sample analogs. Fj can be estimated by using the conditional Kaplan-Meier estimator.
Although C5 is dependent on T, the conditional Kaplan-Meier estimator can also be used to estimate
F,. This is because Cy is conditionally independent of 715 given T and Xs. It is worthwhile to
observe that Kaplan-Meier-type estimators are step functions, thereby implying that f; and fs
cannot be estimated by dF,(t1|z1)/dt1 and dF,s(talt1,x2)/dts. However, it is not difficult to
develop consistent estimators of fi and fo based on the kernel method. See Dabrowska (1987, 1989)
for the details of the conditional Kaplan-Meier estimator.

There are advantages and disadvantages to using this alternative estimator as opposed to the
estimator of Rg(t|x1,x2) in Section 2.2.1. The advantages are that (1) the alternative estimator
uses more data than the proposed estimator in Section 2.2.1, and (2) the censoring variable C
does not have to be random; however, the disadvantages are that (1) the alternative estimator is
computationally burdensome, (2) it is more complicated to derive asymptotic properties, and (3) it
is difficult to extend to the case of longer panels. We chose to use the estimator in Section 2.2.1

mainly because of its attractive simple form.
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Table 1.  Weight functions and means of data-driven bandwidths used in estimation of Ag
and Ag. [Uncensored Case]

n = 100 n = 500
)\nO AnO )\nO AnO

Weibull Model

hn1 420 2.83 2.65 1.56
hna 379 283 231 1.56
hn: 6.69 734 457 5.19
we(w) 1(0.5 <u <3.5)/3
w;(u) Equation (22)

U-shaped Hazard Model
hn1 3.16 2.13 229 1.34
hno 285 213 199 1.34
hn, 498 547 3.93 4.45
we(w) 1(0.2 <u <5)/4.8
w(u) Equation (22)
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Table 2.  Weight functions and bandwidths used in estimation of 3, Ao, and Ag.
[Censored Case]

Estimation of Ag and Ag Estimation of
n = 100 n = 500 n =100 n =500
/\nO AnO AnO AnO /Bn ﬂn

‘Weibull Model

hn1 35 3.0 25 20 hn1 4.5 3.5
hno 35 3.0 25 20 hno 4.5 3.5
Bz 5.0 7.0 4.0 5.0 Bz 1.0 0.7
we(u)  1(0.5 <u<3.5)/3 wg(u) 1(0.56 <uw<3.5)/3
w,(u) Equation (22) wy(u) 1(Jul < 1)

U-shaped Hazard Model

hn1 30 25 20 15 hn1 5.0 4.0
hno 3.0 25 20 15 hno 5.0 4.0
Bz 6.0 7.0 40 5.0 Pz 1.2 0.9
we(u)  1(0.2 <u<5)/4.8 wg(u) 1(0.2 <u <5)/4.8
w,(u) Equation (22) wy(u) 1(jul <1)
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Table 3.  Monte Carlo results for the estimator of 3 (Censored Case).

Mean Bias Median Bias Std. Dev. RMSE MAE

Weibull Model
Second-Order Kernel

n = 100 -0.209 -0.225 0.294 0.360 0.274
n = 500 -0.166 -0.155 0.150 0.216 0.174
Fourth-Order Kernel

n = 100 -0.024 -0.073 0.381 0.381 0.230
n = 500 -0.015 -0.045 0.205 0.206 0.142

U-shaped Hazard Model
Second-Order Kernel

n = 100 -0.200 -0.198 0.308 0.367 0.230
n = 500 -0.120 -0.128 0.162 0.207 0.137
Fourth-Order Kernel

n = 100 -0.089 -0.095 0.414 0.424 0.271
n = 500 -0.036 -0.058 0.291 0.293  0.188

Note: Table 3 presents the mean bias, median bias, standard deviation, root mean squared
error (RMSE), and median absolute error (MAE) of the estimator.
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Figure 1. Monte Carlo results for the Weibull model (Uncensored Case).
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Figure 2. Monte Carlo results for the U-shaped model (Uncensored Case).
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Figure 3. Monte Carlo results for the linearly combined estimator (Uncensored Case).
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Figure 4. Monte Carlo results for the Weibull model (Censored Case).
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Figure 5. Monte Carlo results for the U-shaped model (Censored Case).
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