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Semiparametric Estimation of a Panel Data Proportional
Hazards Model with Fixed Effects

1 Introduction

Much empirical research in economics is concerned with the analysis of duration data. In

many applications multiple durations of a given individual are observed together with pos-

sible covariates. This paper is concerned with estimating a panel duration model that has a

proportional hazards specification with unobserved heterogeneity. The model is formulated

in terms of the hazard functions of successive positive random variables Tj (the durations of

interest) conditional on d× 1 vectors of observed covariates Xj and an unobserved random

variable U (the unobserved heterogeneity) for j = 1, . . . , J . The model is

λTj (tj |xj , u) = λ0(tj) exp(x′jβ + u), (1)

where λTj is the hazard of Tj = tj conditional on Xj = xj and U = u, λ0 is the baseline

hazard function, and β is a d × 1 vector of constant parameters. The random variable U

represents unobserved, permanent attributes of individuals. T1 and T2 are assumed to be

conditionally independent given X1, X2, and U .1 The observed covariates Xj are assumed

to be constant within each spell but vary over spells, whereas the unobserved heterogeneity

U is assumed to be constant over spells.2 Covariates that are constant over spells are not

included explicitly. They can be included in U , and their β coefficients are not identified. U

may be arbitrarily correlated with Xj and, therefore, is a fixed effect. Unlike the random-

effects approach, the fixed-effects approach does not require Xj and U to be statistically

independent of one another or to have any other known statistical relationship.3 It is

assumed throughout most of the paper that J = 2. The extension to larger J is discussed

briefly in Section 5.3.
1This requires that covariates be strictly exogenous. This weakness is a general problem of (nonlinear)

fixed effects estimators.
2There could be another source of heterogeneity that varies over spells. For example, in work history

data, there could be job-specific heterogeneity across workers, which varies over spells. In this paper, it is
assumed implicitly that this kind of heterogeneity is observed and thus part of Xj .

3If the data are cross-sectional or single-spell, then the fixed-effects approach in this paper cannot be
applied. See Horowitz (1999) for estimating the baseline and integrated baseline hazard functions nonpara-
metrically in a cross-sectional proportional hazards model with random effects. Also, see Van der Berg
(2001) for comparison between single-spell and multiple-spell models.
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This paper presents methods for estimating λ0(·) and the integrated baseline hazard

function Λ0(·) ≡
∫ ·
0 λ0(s)ds nonparametrically.4 That is, this paper shows how to estimate

λ0 and Λ0 without assuming that they belong to known, finite-dimensional families of

functions. Several existing estimators assume that λ0 belongs to a parametric family. For

example, Chamberlain (1985) considers a marginal likelihood approach for models with

Weibull, gamma, and lognormal specifications. Ridder and Tunalı (1999) assume that λ0 is

piecewise constant. This paper shows how to estimate λ0 and Λ0 nonparametrically when

observations of Tj are uncensored and when they are right-censored.

This paper also considers estimation of β when observations of Tj are subject to right-

censoring. An estimator of β based on a partial likelihood approach already exists for

the uncensored and independently censored cases. See Chamberlain (1985), Kalbfleisch

and Prentice (1980, 8.1.2), Lancaster (2000), and Ridder and Tunalı (1999) among others.

The partial likelihood method cannot be applied to censored panel durations because the

standard independent censoring assumption is likely to be violated. In many applications

durations are observed over a fixed period. For example, in work history data, the duration

of the most recent job of a respondent may be right-censored at the last interview date.

Because of the fixed effect, the censoring threshold of Tj is not independent of Tj unless j =

1. Therefore, β cannot be estimated consistently by using the partial likelihood approach.

This paper presents a consistent estimator of β under dependent censoring.

The estimation approach developed here consists of two steps. The first step is to ex-

press λ0, Λ0, and β as functionals of the population distribution of (Tj , Xj) by utilizing

an identification result of Honoré (1993). The second step is to construct suitable em-

pirical analogs for the unknown population quantities that appear as arguments of these

functionals, depending on whether or not observations of Tj are censored.

Let λn0 and Λn0, respectively, denote nonparametric estimators of λ0 and Λ0, where

n is the sample size. It will be shown that λn0 and Λn0 are uniformly consistent, and

nq/(2q+1)(λn0 − λ0) and n1/2(Λn0 − Λ0) are asymptotically normal, where q denotes the
4A recent working paper by Woutersen (2000) proposes a nonparametric estimator of λ0 for the case of

independent censoring. Woutersen (2000) does not provide the asymptotic distribution of his estimator and
does not consider estimation of Λ0.
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order of smoothness of λ0.5 It will also be shown that the new estimator βn of β under

dependent censoring is consistent, and n1/2(βn − β) is asymptotically normal.

The remainder of the paper is organized as follows. Section 2 provides an informal

description of the estimators of λ0, Λ0, and β. Section 3 presents the formal, asymptotic

results for the uncensored case. Section 4 provides rule-of-thumb, data-driven methods for

choosing bandwidths needed to estimate λ0 and Λ0 for the uncensored case. Extensions of

the estimators of λ0 and Λ0 are discussed in Section 5. Section 6 presents the results of

some Monte Carlo experiments that illustrate the finite-sample properties of the estimators.

Concluding comments are given in Section 7. The proofs of theorems are in Appendix A.

Appendix B presents the asymptotic properties of the estimators for the censored case.

2 Informal Description of the Estimators

2.1 The Uncensored Case

This section provides an informal description of our estimators of λ0 and Λ0 under the

assumption that observations of Tj are uncensored and J = 2. In this case, an estimator of

β is already available (see Section 1).6 Let bn denote the estimator of β.

The estimation approach developed here is based on an identification result of Honoré

(1993). When the model (1) is identified, λ0 and Λ0 can be expressed as functionals of the

population distribution of (T1, T2, X1, X2). Then estimators of λ0 and Λ0 can be obtained

by replacing unknown population quantities with their empirical analogs.

To identify λ0 and Λ0, observe first that Tj depends on Xj only through the index

Zj ≡ X ′
jβ for j = 1, 2. Assume conditional on (Z1, Z2, U), T1 and T2 are independent.

5The nonparametric estimator of Λ0 can be used to construct a specification test of the model (1). Since
Λn0 converges in probability faster than λn0, a test based on Λn0 would be more powerful than a test based
on λn0. The details of the test are beyond the scope of the paper. Roughly speaking, the specification
test consists of testing the distribution of log Λ0(T1)− log Λ0(T2) + (X1 −X2)β, which is distributed as the
logistic distribution and independent of X1 and X2 under the null hypothesis that the model (1) is correct.

6For example, one may use the estimator of Chamberlain (1985). This estimator is based on the fact
that the probability of one spell being larger than the other spell, conditional on covariates, is independent
of the fixed effects and can be expressed as a logit model.
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Then the joint conditional survivor function of T1 and T2 is

S(t1, t2|z1, z2) ≡ Pr(T1 > t1, T2 > t2|Z1 = z1, Z2 = z2)

=
∫

exp
[−Λ0(t1)ez1+u − Λ0(t2)ez2+u

]
dPu|z1,z2

,

where Pu|z1,z2
denotes the distribution of U conditional on (Z1, Z2) = (z1, z2). By differen-

tiation of S(t1, t2|z1, z2),

∂S(t1, t2|z1, z2)/∂t1
∂S(t1, t2|z1, z2)/∂t2

=
λ0(t1)
λ0(t2)

exp(z1 − z2). (2)

A scale normalization is needed to make identification possible. This is accomplished here

by assuming that ∫

ST

wt(t)
λ0(t)

dt = 1,

where wt is a scalar-valued function with compact support ST that satisfies
∫
ST

wt(t)dt = 1

and other conditions in Section 3. This scale normalization is useful for the estimators

developed here, as will be seen below.

Let R(t1, t2|z1, z2) denote the left-hand side of (2). Under the scale normalization, (2)

implies that λ0 has the form

λ0(t) =
∫

ST

wt(t2) exp(z2 − z1)R(t, t2|z1, z2) dt2

for every (z1, z2). Let wz(·) be a scalar-valued function with compact support SZ that

satisfies
∫
SZ

wz(z)dz = 1 and other conditions in Section 3. Also, let w(t2, z1, z2) =

wt(t2)wz(z1)wz(z2). Then

λ0(t) =
∫

ST

dt2

∫

SZ

dz1

∫

SZ

dz2 w(t2, z1, z2) exp(z2 − z1)R(t, t2|z1, z2). (3)

Equation (3) identifies λ0 and is the basis for the estimators of λ0 and Λ0 proposed here.7

This completes the first step of our estimation strategy.
7Observe that λ0 can also be written as

λ0(t) =

Z
ST

dt1

Z
SZ

dz1

Z
SZ

dz2 w(t1, z1, z2) exp(z1 − z2)R(t1, t|z1, z2)
−1. (4)

This equation can be the basis for another estimator of λ0. One can use the arguments of Appendix A to
establish asymptotic results for an estimator based on (4). Hence, we just focus on the estimator of λ0 based
on (3). Also, one can use a linear combination of these estimators. This will be discussed in detail in Section
5.
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In the second step, estimators of λ0 and Λ0 are obtained by replacing the unknown

function R(t1, t2|z1, z2) in (3) with a uniformly consistent estimator Rn(t1, t2|z1, z2). The

resulting estimators of λ0 and Λ0 are

λn0(t) =
∫

ST

dt2

∫

SZ

dz1

∫

SZ

dz2 w(t2, z1, z2) exp(z2 − z1)Rn(t, t2|z1, z2) (5)

and

Λn0(t) =
∫ t

0
λn0(t1)dt1. (6)

Section 3 gives conditions under which λn0 and Λn0 are uniformly consistent, and

nq/(2q+1)(λn0 − λ0) and n1/2(Λn0 − Λ0) are asymptotically normal, where q denotes the

order of smoothness of λ0. Intuitively, the rates n−q/(2q+1) and n−1/2 are possible because

integration over (t2, z1, z2) or (t1, t2, z1, z2) in (5)-(6) creates averaging effects that mitigate

the curse of dimensionality. Similar averaging effects occur estimation of single index models

(e.g., Horowitz and Härdle (1996), Powell, Stock, and Stoker (1989)), partially linear models

(e.g., Robinson (1988)), additive models (e.g., Horowitz (2001), Linton and Härdle (1996)),

and transformation models (e.g., Horowitz (1996), Horowitz and Gørgens (1999)).

In this paper, R is estimated with kernels. To describe the estimator, let pt|z(t1, t2|z1, z2)

denote the probability density function of T1 and T2 conditional on Z1 = z1 and Z2 = z2.

Write

R(t1, t2|z1, z2) =

∫∞
t2

pt|z(t1, s2|z1, z2)ds2∫∞
t1

pt|z(s1, t2|z1, z2)ds1
≡ A(t1, t2|z1, z2)

B(t1, t2|z1, z2)
. (7)

Let {Ti1, Ti2, Xi1, Xi2}n
i=1 denote a random sample of (T1, T2, X1, X2) in (1). Define Zni1 =

X ′
i1bn and Zni2 = X ′

i2bn. Since β is unknown (and therefore, Zi1 and Zi2 are unknown), the

estimator is based on {Ti1, Ti2, Zni1, Zni2}n
i=1. Let KT and KZ be kernel functions of scalar

arguments, and let {hn1}, {hn2}, and {hnz} (n = 1, 2, . . .) be sequences of bandwidths that

converge to zero as n → ∞. Conditions that KT , KZ , hn1, hn2, and hnz need to satisfy

are given in Section 3. Let pz(z1, z2) denote the probability density function of Z1 and Z2.

Estimate pz(z1, z2) by

pnz(z1, z2) = (nh2
nz)

−1
n∑

i=1

KZ

(
z1 − Zni1

hnz

)
KZ

(
z2 − Zni2

hnz

)
.
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Let 1(·) be the indicator function. Define

An(t1, t2|z1, z2) =
[
nhn1h

2
nzpnz(z1, z2)

]−1
n∑

i=1

1(Ti2 > t2)KT

(
t1 − Ti1

hn1

)

×KZ

(
z1 − Zni1

hnz

)
KZ

(
z2 − Zni2

hnz

)

and

Bn(t1, t2|z1, z2) =
[
nhn2h

2
nzpnz(z1, z2)

]−1
n∑

i=1

1(Ti1 > t1)KT

(
t2 − Ti2

hn2

)

×KZ

(
z1 − Zni1

hnz

)
KZ

(
z2 − Zni2

hnz

)
.

The estimator of R(t1, t2|z1, z2) is obtained by

Rn(t1, t2|z1, z2) = An(t1, t2|z1, z2)/Bn(t1, t2|z1, z2). (8)

A higher-order kernel is needed for KZ to insure that certain bias and remainder terms in

the asymptotic expansions of nq/(2q+1)(λn0 − λ0) and n1/2(Λn0 − Λ0) vanish as n → ∞.

For estimation of λ0(t), it is advisable to let hn2 converge to zero faster than hn1 to reduce

bias. For estimation of Λ0(t), it is necessary to have both hn1 and hn2 converge to zero

faster than n−1/(2q+1), which is the asymptotically optimal rate for λn0(t), to prevent the

asymptotic distribution of n1/2(Λn0 − Λ0) from having a non-zero mean.

2.2 The Censored Case

This section provides informal descriptions of estimators of β, λ0, and Λ0 when T1 and T2

are subject to dependent right censoring. There are many possible censoring mechanisms

for T1 and T2. In this section, we focus on a pure renewal process in the sense that T1 and

T2 are the same type of durations and there is no time spent on other states.

We assume that the successive durations, T1 and T2, are observed over a time period

of length C, where C is random with an unknown probability distribution. It is assumed

that C is observed for every individual and that C is independent of T1 and T2 given X1

and X2.8 The censoring mechanism here governs the sum of T1 and T2, rather than each
8This assumption seems reasonable for pure renewal processes, for example, car insurance claim durations

analyzed in Abbring, Chiappori, and Pinquet (2003).
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separately. In this case, one observes not Tj but Yj ≡ min(Tj , Cj), where C1 = C and

C2 = (C−T1)1(T1 ≤ C).9 Observe that C2 depends on T1, and, therefore, on T2 because of

the fixed effect. Hence, the censoring mechanism here violates the standard independence

assumption, under which Cj is independent of Tj given Xj for j = 1, 2.10 Define indicator

variables by ∆j = 1(Tj ≤ Cj) for j = 1, 2. An observed random sample now consists of

{(Yi1, Yi2, Xi1, Xi2, ∆i1,∆i2, Ci) : i = 1, . . . , n}.

2.2.1 Estimating β

This subsection shows how to estimate β under dependent right censoring. As was discussed

in Section 1, β cannot be estimated consistently by using the partial likelihood approach.

This is because Pr(Y1 < Y2|X1, X2, U,min(T1, T2) < min(C1, C2)) is now dependent on the

fixed effect. An approach based on (2), however, can be used to obtain a consistent estimator

of β. Abusing notation a bit, let S(t1, t2|x1, x2) = Pr(T1 > t1, T2 > t2|X1 = x1, X2 = x2).

As in (2),
∂S(t, t|x1, x2)/∂t1
∂S(t, t|x1, x2)/∂t2

= exp[(x1 − x2)′β] (9)

by setting t1 = t2 = t. Let Rβ(t|x1, x2) denote the left-hand side of (9). Since (9) holds for

any t, write ∫

Sβ

wβ(t)Rβ(t|x1, x2) dt = exp[(x1 − x2)′β], (10)

where wβ(·) is a scalar-valued function with compact support Sβ that satisfies
∫
Sβ

wβ(t)dt =

1 and other conditions in Appendix B.1. This yields

β = [E(X1 −X2)(X1 −X2)′]−1E

[
(X1 −X2) log

(∫

Sβ

wβ(t)Rβ(t|X1, X2) dt

)]
(11)

provided that E(X1 −X2)(X1 −X2)′ is nonsingular. Define V =
∫
Sβ

wβ(t)Rβ(t|X1, X2) dt

and ∆X = X1 − X2. Equation (11) suggests that β can be estimated by a no-intercept

OLS regression of a sample analog of log V on ∆X.
9With minor modifications, arguments in this section apply to standard censoring mechanisms where Cj

is conditionally independent of Tj given Xj for j = 1, 2. We are grateful to an anonymous referee who raised
this issue. Under the standard censoring mechanism, β can be estimated by the partial likelihood approach
as well.

10Lin, Sun, and Ying (1999), Visser (1996), and Wang and Wells (1998) have considered estimation of the
joint survivor (or distribution) function of T1 and T2 (without covariates) under the same type of dependent
censoring.
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Carrying out this OLS regression requires an estimator of Rβ(t|x1, x2). There may be

several methods for estimating Rβ(t|x1, x2) under dependent right censoring, but we present

here a simple estimator based on Burke (1988) and Wang and Wells (1998). An alternative

estimator of Rβ(t|x1, x2) will be described briefly in Appendix B.3.

Define the joint conditional sub-distribution function F (t1, t2|x1, x2) = Pr(Y1 ≤ t1, Y2 ≤
t2, ∆1 = ∆2 = 1|X1 = x1, X2 = x2) and its density f(t1, t2|x1, x2) = ∂2F (t1, t2|x1, x2)/∂t1∂t2.

Also, let G(c|x1, x2) = Pr(C > c|X1 = x1, X2 = x2) denote the survivor function of C con-

ditional on X1 = x1 and X2 = x2. As in equation (7) of Wang and Wells (1998), observe

that

S(t1, t2|x1, x2) =
∫ ∞

t1

∫ ∞

t2

f(s1, s2|x1, x2)
G(s1 + s2|x1, x2)

ds1ds2. (12)

Therefore, Rβ(t|x1, x2) can be written as

Rβ(t|x1, x2) =

∫∞
t f(t, s2|x1, x2)/G(t + s2|x1, x2) ds2∫∞
t f(s1, t|x1, x2)/G(s1 + t|x1, x2) ds1

≡ Ãβ(t|x1, x2)
B̃β(t|x1, x2)

. (13)

The right-hand side of (13) can be estimated with kernels. For simplicity, assume that

the distribution of X1 and X2 is absolutely continuous with respect to Lebesgue measure

on R2d. It is straightforward to include discrete covariates. Let KX be a kernel function of

d-dimensional arguments, {hnx} (n = 1, 2, . . .) be a sequence of bandwidths that converge

to zero as n →∞, and px(x1, x2) denote the probability density function of X1 and X2.

Let pnx(x1, x2) and Gn(c|x1, x2) denote the kernel estimators of px(x1, x2) and G(c|x1, x2),

that is

pnx(x1, x2) =
(
nh2d

nx

)−1
n∑

i=1

KX

(
x1 −Xi1

hnx

)
KX

(
x2 −Xi2

hnx

)

and

Gn(c|x1, x2) =
[
nh2d

nxpnx(x1, x2)
]−1

n∑

i=1

1(Ci > c)KX

(
x1 −Xi1

hnx

)
KX

(
x2 −Xi2

hnx

)
.

Define

Ãnβ(t|x1, x2) =
[
nhn1h

2d
nxpnx(x1, x2)

]−1
n∑

i=1

∆i1∆i21(Yi2 > t)
Gn(Yi1 + Yi2|Xi1, Xi2)

KT

(
t− Yi1

hn1

)

×KX

(
x1 −Xi1

hnx

)
KX

(
x2 −Xi2

hnx

)
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and

B̃nβ(t|x1, x2) =
[
nhn2h

2d
nxpnx(x1, x2)

]−1
n∑

i=1

∆i1∆i21(Yi1 > t)
Gn(Yi1 + Yi2|Xi1, Xi2)

KT

(
t− Yi2

hn2

)

×KX

(
x1 −Xi1

hnx

)
KX

(
x2 −Xi2

hnx

)
.

The estimator of Rβ(t|x1, x2) can be obtained by

R̃nβ(t|x1, x2) = Ãnβ(t|x1, x2)/B̃nβ(t|x1, x2). (14)

Observe that R̃nβ(t|x1, x2) only uses uncensored data (∆i1 = ∆i2 = 1) and is weighted by

the inverse of Gn to take into account the effect of censoring.

Let wx(·) be a scalar-valued function with compact support SX that satisfies conditions

in Appendix B.1. Then the OLS estimator βn of β is

βn =

(
n−1

n∑

i=1

wxi∆Xi∆X ′
i

)−1 (
n−1

n∑

i=1

wxi∆Xi log Vni

)
, (15)

where wxi = wx(Xi1)wx(Xi2), ∆Xi = Xi1−Xi2 and Vni =
∫
Sβ

wβ(t)Rnβ(t|Xi1, Xi2)dt. The

weight function wx is introduced here to estimate β without being overly influenced by the

tail behavior of the distributions of X1 and X2.

2.2.2 Estimating λ0 and Λ0

In this subsection, we present modified versions of the estimators of λ0 and Λ0 described

in Section 2.1. Observe that (3) holds for the latent variables T1 and T2. Therefore, λ0

and Λ0 can be estimated by using (5) and (6) if a consistent estimator of R(t1, t2|z1, z2) is

available.

For simplicity, it is assumed in this subsection that C is independent of (T1, T2, X1, X2).

Abusing notation a bit, define F (t1, t2|z1, z2) = Pr(Y1 ≤ t1, Y2 ≤ t2,∆1 = ∆2 = 1|Z1 =

z1, Z2 = z2), f(t1, t2|z1, z2) = ∂2F (t1, t2|z1, z2)/∂t1∂t2, and G(c) = Pr(C > c). As in

Section 2.2.1, R(t1, t2|z1, z2) can be written as

R(t1, t2|z1, z2) =

∫∞
t2

f(t1, s2|z1, z2)/G(t1 + s2) ds2∫∞
t1

f(s1, t2|z1, z2)/G(s1 + t2) ds1
≡ Ã(t1, t2|z1, z2)

B̃(t1, t2|z1, z2)
. (16)
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Again the right-hand side of (16) can be estimated with kernels. Estimate G(·) by the

empirical survivor function11

Gn(c) = n−1
n∑

i=1

1(Ci > c).

Define

Ãn(t1, t2|z1, z2) =
[
nhn1h

2
nzpnz(z1, z2)

]−1
n∑

i=1

∆i1∆i21(Yi2 > t2)
Gn(Yi1 + Yi2)

KT

(
t1 − Yi1

hn1

)

×KZ

(
z1 − Zni1

hnz

)
KZ

(
z2 − Zni2

hnz

)

and

B̃n(t1, t2|z1, z2) =
[
nhn2h

2
nzpnz(z1, z2)

]−1
n∑

i=1

∆i1∆i21(Yi1 > t1)
Gn(Yi1 + Yi2)

KT

(
t2 − Yi2

hn2

)

×KZ

(
z1 − Zni1

hnz

)
KZ

(
z2 − Zni2

hnz

)
.

The estimator of R(t1, t2|z1, z2) is obtained by

R̃n(t1, t2|z1, z2) = Ãn(t1, t2|z1, z2)/B̃n(t1, t2|z1, z2). (17)

3 Asymptotic Properties of the Estimators

This section establishes the asymptotic properties of λn0 and Λn0 proposed in Section 2.1

under the assumption that complete spells of T1 and T2 are available. Appendix B.1 gives

conditions under which n1/2(βn − β) is asymptotically normal, and Appendix B.2 presents

the asymptotic properties of λn0 and Λn0 for the censored case.

We make the following assumptions:

Assumption 3.1 (Random Sampling). {Ti1, Ti2, Xi1, Xi2 : i = 1, . . . , n} is a random

sample of (T1, T2, X1, X2) in (1).

Assumption 3.2 (Conditional Independence). T1 and T2 are conditionally independent

given X1, X2, and U .
11If only min(C, T1 + T2) is observed, then the Kaplan-Meier estimator of G can be used.
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Assumption 3.2 is used to identify λ0 and Λ0. It precludes the possibility of lagged

duration dependence, which is not treated in this paper.12

Assumption 3.3 (Normalization).
∫∞
0 [wt(t)/λ0(t)] dt = 1.

As was explained in Section 2.1, Assumption 3.3 is useful to create averaging effects.

The same type of scale normalization is used for a similar reason in Horowitz (2001).

Assumption 3.4 (Covariates). X1 and X2 have bounded support.13

Let p(t1, t2, z1, z2) denote the probability density function of (T1, T2, Z1, Z2). In what

follows, q ≥ 2 and r are integers such that r ≥ 4 for λn0 and r ≥ 6 for Λn0.

Assumption 3.5 (Smoothness). The distribution of (T1, T2, Z1, Z2) is absolutely contin-

uous with respect to Lebesgue measure on R4. Furthermore, there are intervals of the real

line, IT and IZ , such that

(a) IT = [0, τT ), where τT ≤ ∞, and IZ is open,

(b) p(t1, t2, z1, z2) is bounded on IT × IT × IZ × IZ ,

(c) p(t1, t2, z1, z2) is positive for all (t1, t2, z1, z2) ∈ int(IT × IT × IZ × IZ), and

(d) p(t1, t2, z1, z2) has bounded partial derivatives up to order q with respect to tj and up to

order r with respect to zj for j = 1, 2.

In view of (2) and (7), condition (c) is equivalent to the condition that λ0(t) > 0 for all

t ∈ int(IT ) and condition (d) implies that λ0 is q-times differentiable. Assumption 3.5 also

implies that the distribution of (Z1, Z2) is absolutely continuous with respect to Lebesgue

measure on R2 and pz(z1, z2) is positive in the interior of the support of the distribution.14

Assumption 3.6 (Weight Functions). (a) The weight function wt(·) is a bounded, non-

negative function with compact support ST ⊂ IT such that
∫
ST

wt(t)dt = 1 and wt is q times

continuously differentiable on ST .
12Honoré (1993) achieves identification of the lagged duration model through an analytic continuation.

The resulting identifying relation is very different from (3), and the estimation approach developed here is
not applicable to it.

13Assumption 3.4 can be relaxed at the expense of more complicated proofs.
14Assumption 3.5 is not satisfied if all of the covariates are discrete. However, in that case, the estimators

of λ0 and Λ0 can be easily modified and, in fact, are simpler than the estimators presented in Section 2.1.
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(b) The weight function wz(·) is a bounded, non-negative function with compact support

SZ ⊂ IZ such that
∫
SZ

wz(z)dz = 1 and wz is r times continuously differentiable on SZ .

Assumption 3.7 (Estimator of β). There is a d×1-vector-valued function Ω(t1, t2, x1, x2)

such that

(a) EΩ(T1, T2, X1, X2) = 0,

(b) the components of E[Ω(T1, T2, X1, X2)Ω(T1, T2, X1, X2)′] are finite, and

(c) as n →∞,

bn − β = n−1
n∑

i=1

Ω(Ti1, Ti2, Xi1, Xi2) + op(n−1/2).

Assumption 3.7 is satisfied by the partial likelihood estimator of β mentioned in Section

1.

Assumption 3.8 (Kernels). (a) KT has support [−1, 1], is bounded and symmetrical

about 0, has bounded variation, and satisfies

∫ 1

−1
ujKT (u)du =





1 if j = 0,
0 if j = 1 ≤ j ≤ q − 1,
CT if j = q,

where CT is a positive constant.

(b) KZ has support [−1, 1], is bounded and symmetrical about 0, has bounded variation, and

satisfies
∫ 1

−1
ujKZ(u)du =





1 if j = 0,
0 if j = 1 ≤ j ≤ r − 1,
CZ if j = r,

where CZ is a positive constant.

(c) KZ is everywhere differentiable. K ′
Z(v) ≡ dKZ(v)/dv is bounded and Lipschitz contin-

uous and has bounded variation.

Assumption 3.8 requires KZ to be a higher-order kernel. A higher-order kernel is used to

insure that certain bias and remainder terms in the asymptotic expansions of nq/(2q+1)(λn0−
λ0) and n1/2(Λn0 − Λ0) are negligibly small.

Assumption 3.9 (Bandwidths). (a) For the estimator λn0, nh−1
n1 h6

nz →∞, nh1+4q
n1 →

0, nhn1h
2q
n2 → 0, nhn1h

2r
nz → 0, log n/(nhn1h

4
nz)

1/4 → 0, and log n/(nh−1
n1 h2

n2h
4
nz)

1/4 → 0.
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(b) For the estimator Λn0, nh6
nz → ∞, nh2q

n1 → 0, nh2q
n2 → 0, nh2r

nz → 0,

log n/(nh2
n1h

4
nz)

1/4 → 0, and log n/(nh2
n2h

4
nz)

1/4 → 0.

Assumptions 3.8 and 3.9 (a) are satisfied, for example, if KT is a second-order kernel, KZ

is a fourth-order kernel, hn1 ∝ n−1/5, hn2 ∝ n−κ2 , and hnz ∝ n−κz , where 1/5 < κ2 < 2/5,

1/10 < κz < 1/5, and κ2 + 2κz < 3/5. Also, Assumptions 3.8 and 3.9 (b) are satisfied, for

example, if KT is a second-order kernel, KZ is a sixth-order kernel, hn1 ∝ n−κ, hn2 ∝ n−κ,

and hnz ∝ n−κz , where 1/4 < κ < 1/3, 1/12 < κz < 1/8, and κ + 2κz < 1/2.

Define

ϕ(t2, z1, z2) = pz(z1, z2)−1w(t2, z1, z2) exp(z2 − z1),

C(t1, t2, z1, z2) = B(t1, t2|z1, z2)−1ϕ(t2, z1, z2),

D(t1, t2, z1, z2) = B(t1, t2|z1, z2)−2A(t1, t2|z1, z2)ϕ(t2, z1, z2),

γt(Ti1, Ti2, Xi1, Xi2) =
[∫

ST

C(t, t2, Zi1, Zi2)1(Ti2 > t2) dt2

]
1

hn1
KT

(
t− Ti1

hn1

)
− λ0(t),

and

Γt(Ti1, Ti2, Xi1, Xi2) =
[∫

ST

C(Ti1, t2, Zi1, Zi2)1(Ti2 > t2) dt2

]
1(0 ≤ Ti1 ≤ t)

−
∫ t

0
D(t1, Ti2, Zi1, Zi2)1(Ti1 > t1) dt1

− Λ0(t)
[∫

SZ

dz1

∫

SZ

dz2
wz(z1)wz(z2)

pz(z1, z2)

]
E[X1 −X2]′Ω(Ti1, Ti2, Xi1, Xi2).

In addition, define

Bλ(t) =
∫

ST

dt2

∫

SZ

dz1

∫

SZ

dz2

[∫

ST

C(t, s2, z1, z2)1(t2 > s2) ds2

]
∂q

∂tq1
p(t, t2, z1, z2)

× 1
q!

∫ 1

−1
uqKT (u)du

and

Vλ(t) =
∫

ST

dt2

∫

SZ

dz1

∫

SZ

dz2

[∫

ST

C(t, s2, z1, z2)1(t2 > s2) ds2

]2

p(t, t2, z1, z2)

×
∫ 1

−1
K2

T (u)du.

The following theorem gives the main result of this section.
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Theorem 3.1. Let Assumptions 3.1-3.9 hold. Let [0, τ ] ⊂ IT be a compact interval. Then

as n →∞,

(a) λn0(t)− λ0(t) = n−1
n∑

i=1

γt(Ti1, Ti2, Xi1, Xi2)− E[γt(T1, T2, X1, X2)]

+ hq
n1Bλ(t) + op

[
(nhn1)−1/2

]
+ op (hq

n1) and

(b) Λn0(t)− Λ0(t) = n−1
n∑

i=1

Γt(Ti1, Ti2, Xi1, Xi2) + op

(
n−1/2

)

uniformly over t ∈ [0, τ ].

Theorem 3.1 implies that the rate of convergence in probability of λn0 to λ0 is maximized

at a n−q/(2q+1) rate by setting hn1 ∝ n−1/(2q+1) and that Λn0 converges to Λ0 in probability

uniformly at a n−1/2 rate. Let ⇒ denote weak convergence in the space of bounded, real-

valued functions on [0, τ ] equipped with the uniform metric. The following corollary of

Theorem 3.1 is easily proved.

Corollary 3.2. Let the assumptions of Theorem 3.1 hold.

(a) Assume hn1 ∝ n−1/(2q+1). For t ∈ [0, τ ],

nq/(2q+1)[λn0(t)− λ0(t)] →d N (Bλ(t), Vλ(t)) .

(b) On [0, τ ],

n1/2[Λn0(t)− Λ0(t)] ⇒ χΛ(t),

where χΛ(t) is a tight Gaussian process with mean 0 and covariance function E[χΛ(t)χΛ(t′)] =

E[Γt(T1, T2, X1, X2)Γt′(T1, T2, X1, X2)].

Under the assumptions of Corollary 3.2, the asymptotic distribution of nq/(2q+1)(λn0 −
λ0) is not centered at zero. The asymptotic bias Bλ can be removed by undersmoothing λn0

(equivalently, by letting hn1 converge faster than n−1/(2q+1)) at the expense of the reduced

rate of convergence. The asymptotic variance Vλ of λn0 and the covariance function of χΛ

can be estimated consistently by replacing unknown quantities with sample analogs. See

Appendix A.2 for details.
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4 Bandwidth Selection

This section describes rule-of-thumb, data-driven methods for choosing the values of the

bandwidths hn1, hn2, and hnz for the uncensored case.

We first consider the choice of hn1. An asymptotically optimal bandwidth h∗n1 in estima-

tion of λ0 can be defined as a minimizer of the weighted asymptotic integrated mean-square

error of λn0. It follows from Section 3 that h∗n1 = c∗n−1/(2q+1), where

c∗ =
[ ∫

w(t)Vλ(t) dt

2q
∫

w(t)B2
λ(t) dt

]1/(2q+1)

and w(·) is a weight function. A feasible bandwidth requires an estimate of the constant

factor c∗. To develop a rule of thumb for choosing hn1, assume that ε ≡ eU has a gamma

distribution with mean 1 and unknown variance θ and is independent of Xj . Also, assume

that λ0 belongs to a known parametric family. In the Monte Carlo experiments reported in

Section 5, we use the following form

λ0(t, α) = α1t
α1−1 + α3α2t

α2−1,

where α ≡ (α1, α2, α3) is a vector of unknown positive constants. This form can be viewed

as a mixture of Weibull hazards and is flexible enough to exhibit non-monotone hazards.

Under the parametric specification of λ0, it is straightforward to show that the probability

density function of T1 and T2 conditional on Z1 = z1 and Z2 = z2 has the form

pt|z(t1, t2|z1, z2) =
(1 + θ)λ0(t1, α)λ0(t2, α)ez1+z2

[θΛ0(t1, α)ez1 + θΛ0(t2, α)ez2 + 1]2+1/θ
. (18)

This suggests that θ and α can be estimated by maximizing the log-likelihood function

obtained from pt|z. Once θ and α are estimated, then c∗ can be evaluated numerically

with an additional assumption about the distribution of Z1 and Z2. In the Monte Carlo

experiments, we use

pz(z1, z2) =
1

s1s2
φ

(
z1 −m1

s1

)
φ

(
z2 −m2

s2

)
,

where φ is the probability density function of the standard normal distribution, and mj and

sj are the sample mean and standard deviation of Znj for each j = 1, 2. Let ĉ∗ denote the

resulting constant factor.
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Now consider hn2 and hnz in estimation of λ0. Unlike hn1, hn2 and hnz do not affect

the asymptotic distribution of λn0 if Assumption 3.9 is satisfied. Therefore, the values of

hn2 and hnz are less critical than the value of hn1. If KT is a second-order kernel and

KZ is a fourth-order kernel, then the following rule of thumb can be used: hn2 = ĉ∗n−2/9

and hnz = s∗ ĉ∗n−1/9, where s∗ = (s1 + s2)/2. This rule satisfies Assumption 3.9 and the

Monte Carlo experiments in Section 5 indicate that it performs well. Similarly, one can

choose the values of bandwidths in estimation of Λ0. If KT is a second-order kernel and

KZ is a sixth-order kernel, then one can use the following rule: hn1 = hn2 = ĉ∗n−2/7 and

hnz = s∗ ĉ∗n−1/11.

A similar, data-based method could be developed to choose the values of the bandwidths

for the censored case, although details for the censored case would be quite different from

those for the uncensored case. The rule-of-thumb bandwidths presented here can be used

as pilot bandwidths for more sophisticated plug-in methods.

5 Extensions

5.1 Time-varying Covariates

This section outlines an extension of the model (1) that allows for time-varying covari-

ates, provided that the time-varying covariates have the same known time paths for all

individuals. The model has the form

λTj

(
tj

∣∣∣xj , {xvj(sj)}tj
0 , u

)
= λ0(tj) exp

(
x′jβ + xvj(tj)βv + u

)
,

where Xvj is an (additional) real-valued, time-varying explanatory variable, βv is an un-

known coefficient of Xvj , and {xvj(sj)}tj
0 denotes the time path of Xvj up to tj for j = 1, 2.

Moreover, assume that Xvj(tj)’s have the same time path for all individuals and are constant

on intervals, for example Xvj(tj) = 1(tj > τj) for some known τj satisfying τ1 6= τ2.

First consider the uncensored case. The partial likelihood approach of Chamberlain

(1985) and Ridder and Tunalı(1999) allows for time-varying covariates and thus estimators

of β and βv are available. Hence, as in Section 2.1, we only consider estimation of λ0 and Λ0.

Let Zvj(tj) = Xvj(tj)βv for j = 1, 2 and let S(t1, t2|z1, z2, {zv1(s1)}t1
0 , {zv2(s2)}t2

0 ) denote
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the joint survivor function of T1 and T2 conditional on Z1 = z1, Z2 = z2, {Zv1(s1)}t1
0 =

{zv1(s1)}t1
0 , and {Zv2(s2)}t2

0 = {zv2(s2)}t2
0 . It is straightforward to show that

λ0(t1)
λ0(t2)

=
∂S(t1, t2|z1, z2, {zv1(s1)}t1

0 , {zv2(s2)}t2
0 )/∂t1

∂S(t1, t2|z1, z2, {zv1(s1)}t1
0 , {zv2(s2)}t2

0 )/∂t2
exp (−[z1 − z2]− [zv1(t1)− zv2(t2)]) .

Then estimators of λ0 and Λ0 can be obtained by methods identical to those in Section 2.1

except that the averaging is now done interval by interval.15

Now consider the censored case. Abusing notation a bit, let

S(t1, t2|x1, x2, {xv1(s1)}t1
0 , {xv2(s2)}t2

0 ) denote the joint survivor function of T1 and T2 con-

ditional on X1 = x1, X2 = x2, {Xv1(s1)}t1
0 = {xv1(s1)}t1

0 , and {Xv2(s2)}t2
0 = {xv2(s2)}t2

0 .

By setting t1 = t2 = t, we have

log
[
∂S(t, t|x1, x2, {xv1(s1)}t

0, {xv2(s2)}t
0)/∂t1

∂S(t, t|z1, z2, {xv1(s1)}t
0, {xv2(s2)}t

0)/∂t2

]
= [x1 − x2]′β + [xv1(t)− xv2(t)]βv.

By integrating out over t, we have
∫

Sβ

wβ(t) log
[
∂S(t, t|x1, x2, {xv1(s1)}t

0, {xv2(s2)}t
0)/∂t1

∂S(t, t|z1, z2, {xv1(s1)}t
0, {xv2(s2)}t

0)/∂t2

]
dt

= [x1 − x2]′β +

[∫

Sβ

wβ(t)[xv1(t)− xv2(t)]dt

]
βv.

The estimation methods in Section 2.2 now can be adapted to develop estimators of β, βv,

λ0 and Λ0 for the censored case.

5.2 Combination of Possible Estimators

This section presents a method for combining possible estimators of λ and Λ0. As was noted

in Section 2, λ0 can be expressed as (3) or (4). Combining these expressions yields

λ0(t) = α(t)
∫

ST

dt2

∫

SZ

dz1

∫

SZ

dz2 w(t2, z1, z2) exp(z2 − z1)R(t, t2|z1, z2)

+ (1− α(t))
∫

ST

dt1

∫

SZ

dz1

∫

SZ

dz2 w(t1, z1, z2) exp(z1 − z2)R(t1, t|z1, z2)−1
(19)

for any α(t) such that 0 ≤ α(t) ≤ 1 for all t. This suggests that λ0 can be estimated by

(19) with R replaced by its consistent estimator Rn. Let λ̂n0 denote the resulting estimator

of λ0.
15We are grateful to an anonymous referee who pointed this out.
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For simplicity, we consider only uncensored case and assume that hn1 = hn2 ≡ hn.

Under the assumptions of Theorem 3.1, it can be shown that as n →∞,

λ̂n0 =
α(t)
nhn

n∑

i=1

[∫

ST

C(t, t2, Zi1, Zi2)1(Ti2 > t2) dt2

]
KT

(
t− Ti1

hn

)

+
1− α(t)

nhn

n∑

i=1

[∫

ST

C̃(t1, t, Zi1, Zi2)1(Ti1 > t1) dt1

]
KT

(
t− Ti2

hn

)

− λ0(t) + op

[
(nhn)−1/2

]

uniformly over t ∈ [0, τ ], where

C̃(t1, t2, z1, z2) = [A(t1, t2|z1, z2)pz(z1, z2)]−1w(t1, z1, z2) exp(z1 − z2).

The weight function α(t) can be chosen to minimize the mean squared error of λ̂n0(t) for

each t ∈ [0, τ ].

Similarly, Λ0 can be expressed as

Λ0(t) = α(t)
∫ t

0
dt1

∫

ST

dt2

∫

SZ

dz1

∫

SZ

dz2 w(t2, z1, z2) exp(z2 − z1)R(t1, t2|z1, z2)

(1− α(t))
∫ t

0
dt2

∫

ST

dt1

∫

SZ

dz1

∫

SZ

dz2 w(t1, z1, z2) exp(z1 − z2)R(t1, t2|z1, z2)−1.

A new estimator of Λ0 can be obtained by replacing R in the equation above with Rn.

5.3 Estimation with Longer Panels

The estimation approach described in this paper extends easily to the case of longer panels.

First consider the case when observations of Tj are uncensored. Observations of any pair

of the set {1, . . . , J} can be used to construct nonparametric estimators of λ0 and Λ0 as

in Section 2.1 (or as in Section 5.1). This gives J(J − 1)/2 different estimators, and these

can be linearly combined to construct a more efficient estimator. It may be an interesting

question what linear combination yields the smallest integrated mean square error among

all linear combinations possible, but it is beyond the scope of this paper. Chamberlain

(1985) discusses estimation of β when J completed spells are available for each individual.

For the censored case, we assume that C1 = C and Cj = (C −∑j−1
k=1 Tk)1(Tj−1 ≤ Cj−1)

for j = 2, . . . , J . Here, C is conditionally independent of Tj given Xj . As in Section 2.2,
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observe that C censors the sum of Tj , not each separately, and that ∆j = 1 for j < J if

∆J = 1.

To describe an estimator of β, let (tl, tk) be a pair such that l 6= k. Define the joint

survivor function S(tl, tk|xl, xk) = Pr(Tl > tl, Tk > tk|Xl = xl, Xk = xk), the joint condi-

tional sub-distribution function F (t1, . . . , tJ |xl, xk) = Pr(Y1 ≤ t1, . . . , YJ ≤ tJ , ∆J = 1|Xl =

xl, Xk = xk) , its corresponding density f(t1, . . . , tJ |xl, xk) = ∂JF (t1, . . . , tJ |xl, xk)/∂t1 . . . ∂tJ ,

and the conditional survivor function of the censoring threshold G(c|x1, x2) = Pr(C >

c|Xl = xl, Xk = xk).

As in the equation (12),

S(tl, tk|xl, xk) =
∫ ∞

tl

∫ ∞

tk

∫ ∞

−∞
. . .

∫ ∞

−∞

f(s1, . . . , sJ |xl, xk)
G(s1 + · · ·+ sJ |xl, xk)

ds−lk dsk dsl, (20)

where t−lk denotes a vector containing all components of (t1, . . . , tJ) except tl and tk. By

differentiating S with respect to tl and tk and then setting tl = tk = t,

∂S(tl, tk|xl, xk)/∂tl
∂S(tl, tk|xl, xk)/∂tk

∣∣∣∣
tl=tk=t

= exp[(xl − xk)′β]. (21)

Now β can be estimated by using a procedure similar to the one described in Section 2.2.1.

Estimators of λ0 and Λ0 can also be developed analogously.

6 Monte Carlo Experiments

This section presents the results of a small set of Monte Carlo experiments that illustrate

the numerical performance of the estimators of λ0, Λ0, and β. Samples were generated

by simulation from model (1) with J = 2. In the experiments, β = 1, X1 ∼ N(0, 1),

X2 ∼ N(0, 1), and X1 and X2 are independent. The fixed effect was generated by U =

(X1 + X2)/2. Experiments were carried out with two baseline hazard functions, which are

taken from Horowitz (1999). One is λ0(t) = 0.087t, which makes (1) a Weibull proportional

hazard model with unobserved heterogeneity. The other baseline hazard function is λ0(t) =

0.05(t/5)−2/3 + 0.57(t/5)5, which is U-shaped.

Experiments were also carried out for both the uncensored and censored cases. The

censoring threshold C was generated from the exponential distribution with mean 20. Recall

that C1 = C and C2 = (C − T1)1(T1 ≤ C). Under this censoring mechanism, the means of
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∆1 and ∆2 are about 0.78 and 0.64, respectively, for the Weibull hazard model and about

0.87 and 0.76, respectively, for the U-shaped hazard model.

The experiments used sample sizes of n = 100 and 500. There were 100 Monte Carlo

replications per experiment, and the experiments were carried out in GAUSS using GAUSS

pseudo-random number generators.

We first focus on the finite sample performance of the estimators of λ0 and Λ0 for the

uncensored case. The partial likelihood estimator was used to estimate β. The kernel

functions used in estimation of λ0 are

KT (u) = (15/16)(1− u2)21(|u| ≤ 1) (22)

and

KZ(u) = (105/64)(1− 5u2 + 7u4 − 3u6)1(|u| ≤ 1). (23)

These are second-order and fourth-order kernels. The following sixth-order kernel along

with (22) is used in estimation of Λ0:

KZ(u) = (315/2048)(15− 140u2 + 378u4 − 396u6 + 143u8)1(|u| ≤ 1). (24)

All the kernel functions are taken from Müller (1984). The bandwidths were chosen by the

data-based methods described in Section 4. The weight functions and the means of the

values of bandwidths used in the experiments are shown in Table 1.16 It is not difficult to

compute λn0 and Λn0. The triple integral in (5) was evaluated numerically using the Gauss-

Legendre quadrature method. The quadruple integral in (6) was first evaluated analytically

with respect to t1 and the remaining triple integral was evaluated numerically. See Horowitz

and Gørgens (1999, 2.4) for details how the integral in (6) can be evaluated analytically

with respect to t1.

The results of the experiments are summarized graphically in Figure 1 for the Weibull

model and Figure 2 for the U-shaped hazard model. The left-hand panels of the figures show

the means of 100 estimates of λ0 and Λ0 (solid lines) and the true λ0 and Λ0 (dashed lines).
16The weight function wt(·) does not satisfy the differentiability requirement of Assumption 3.6. This

does not matter in a finite sample because there are no observations of T2 at discontinuous points.
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The right-hand panels show five individual estimates of λ0 and Λ0 (solid lines) and the true

λ0 and Λ0 (dashed lines). The baseline hazard functions used in the experiments do not

satisfy the scale normalization; hence, the estimates were normalized by dividing them by
∫∞
0 wt(t)/λ0(t)dt. It can be seen that the true functions and the means of the estimates are

quite close to one another, especially when n = 500. It is not surprising that the estimates

of λ0 are more variable than those of Λ0 given the rates of convergence of the estimators

obtained in Section 3. Most of the individual estimates are reasonable approximations to

the functions they estimate.

In order to investigate whether there is an advantage to using a combined estimator of

λ0 described in Section 5, we computed λ̂n0 using equal weight for each t (α(t) = 0.5) with

the same bandwidths used in λn0. Figure 3 shows the means of 100 estimates of λ0 and

five individual estimates. It can be seen that the biases of λ̂n0 remain virtually the same as

those of λn0 but the variances of λ̂n0 are somewhat smaller than those of λn0. This is not

surprising given the fact that λ̂n0 is just a weighted average of consistent estimators.

We now turn to investigate the small sample performance of the estimators for the

censored case. The parameter β was estimated by the method described in Section 2.2.1.

The regularity conditions established in Appendix B.1 require KT to be a higher-order

kernel in order to prevent βn from having the asymptotic bias. As is well known, however,

kernel estimates with second-order kernels often outperform those with higher-order kernels

for small sample sizes.17 Due to this reason, the experiments were carried out using both

the second-order and fourth-order kernels (22) - (23) for KT .18 The second-order kernel (22)

was used for KX . The single integral in Vni in Section 2.2.1 was evaluated numerically using

the quadrature method. As in the uncensored case, the kernels (22) and (23) were used

in estimation of λ0; the kernels (22) and (24) were used for Λn0. Estimates of β with the

fourth-order kernel were used as βn in estimation of λ0 and Λ0. The weight functions and

the values of bandwidths used for the censored case are shown in Table 2. The bandwidths

were chosen to roughly minimize the (integrated) mean square errors of the estimators.
17For example, see Efromovich (2001) for theoretical arguments why the higher-order kernels perform

poorly in small samples.
18When the fourth-order kernel is used, Vni in (15) can be negative for finite samples. To deal with this

problem, we set wxi = 0 when Vni is not strictly positive.
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The results for the censored case are summarized in Table 3 and Figures 4-5. Table

3 reports the results of the experiments for βn. It is not surprising that the estimates of

β exhibit some biases when the second-order kernel is used, given the fact that a higher-

order kernel is needed to remove the bias. On the other hand, the use of the higher-order

kernel reduces the biases at the expense of increased variances. In order to compare the

censored estimator of β to the uncensored estimator, we computed the root mean square

error (RMSE) of the partial likelihood estimator without censoring. The resulting RMSE’s

were 0.228 and 0.098, respectively, for sample sizes of n = 100 and 500.19 Thus, the RMSE

of the censored estimator is quite larger than that of the uncensored estimator roughly by a

factor of 2. Figures 4 and 5 show the means of 100 estimates of λ0 and Λ0 and five individual

estimates, as was shown in Figures 1 and 2. It can be seen that as in the uncensored case,

the true functions and the means of the estimates are quite close to one another and the

individual estimates are reasonable approximations to the functions they estimate.

7 Conclusions

This paper has presented nonparametric estimators of the baseline and integrated baseline

hazard functions in a panel data proportional hazards model with fixed effects. The paper

has also shown how the parametric part of the model can be estimated consistently with

dependent right censoring, under which the partial likelihood estimator is inconsistent.

Although our censored estimator is a n−1/2-consistent estimator, it seems to have quite large

variance as compared to the uncensored counterpart. Therefore, it may be an interesting

problem to develop a more efficient estimator than one proposed here. Furthermore, it may

also be interesting to find the semiparametric efficiency bound for the parametric part of

the model by extending the result of Hahn (1994). These are topics for future research.
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A Appendix: Uncensored Case

A.1 Proofs of Theorems

This subsection of Appendix A presents the proofs of Theorem 3.1 and Corollary 3.2. Define a Eu-

clidean class of functions as in Pakes and Pollard (1989). Define A(t1, t2, z1, z2) = A(t1, t2|z1, z2)pz(z1, z2),

B(t1, t2, z1, z2) = B(t1, t2|z1, z2)pz(z1, z2), An(t1, t2, z1, z2) = An(t1, t2|z1, z2)pnz(z1, z2), and

Bn(t1, t2, z1, z2) = Bn(t1, t2|z1, z2)pnz(z1, z2). Equation (8) can be rewritten as

Rn(t1, t2|z1, z2) = An(t1, t2, z1, z2)/Bn(t1, t2, z1, z2). (25)

In order to prove Theorem 3.1 and Corollary 3.2, it is more convenient to use (25) than (8).

Before we prove Theorem 3.1, it is useful to prove some lemmas that establish asymptotic linear

approximations of An(t1, t2, z1, z2) and Bn(t1, t2, z1, z2). Define

A(1)
n (t1, t2, z1, z2) =

1
nhn1h2

nz

n∑

i=1

1(Ti2 > t2)KT

(
t1 − Ti1

hn1

)
KZ

(
z1 − Zi1

hnz

)
KZ

(
z2 − Zi2

hnz

)
,

A(2)
n (t1, t2, z1, z2) = − 1

nhn1h3
nz

n∑

i=1

1(Ti2 > t2)KT

(
t1 − Ti1

hn1

)

×
{

K ′
Z

(
z1 − Zi1

hnz

)
KZ

(
z2 − Zi2

hnz

)
Xi1 + KZ

(
z1 − Zi1

hnz

)
K ′

Z

(
z2 − Zi2

hnz

)
Xi2

}
,

A(2)(t1, t2, z1, z2) = − ∂

∂z1
A(t1, t2|z1, z2)EX1 − ∂

∂z2
A(t1, t2|z1, z2)EX2,

and

SΩ = n−1
n∑

i=1

Ω(Ti1, Ti2, Xi1, Xi2).

Lemma A.1. As n →∞, the following holds uniformly over (t1, t2, z1, z2) ∈ [0, τ ]×ST ×SZ ×SZ :

(a) An(t1, t2, z1, z2) = A(1)
n (t1, t2, z1, z2) + A(2)

n (t1, t2, z1, z2)′SΩ

+ Op

(
n−1h−3

nz

)
+ op

[
log n/(n3hn1h

7
nz)

1/2
]

+ op

(
n−1/2

)
.

(b) A(1)
n (t1, t2, z1, z2) = A(t1, t2, z1, z2) + O(hq

n1) + O(hr
nz) + o

[
log n/(nhn1h

2
nz)

1/2
]

a.s.

(c) A(2)
n (t1, t2, z1, z2) = A(2)(t1, t2, z1, z2) + O(hq

n1) + O(hr
nz) + o

[
log n/(nhn1h

4
nz)

1/2
]

a.s.
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Proof. Part (a): By a Taylor series expansion, write

An(t1, t2, z1, z2) = A(1)
n (t1, t2, z1, z2) + A(2)

n (t1, t2, z1, z2)′(bn − β) + R(A)
n (t1, t2, z1, z2), (26)

where R
(A)
n (t1, t2, z1, z2) is a remainder term such that

R(A)
n (t1, t2, z1, z2) =

[
R(A1)

n (t1, t2, z1, z2) + R(A2)
n (t1, t2, z1, z2)

]′
(bn − β),

R(A1)
n (t1, t2, z1, z2) =

1
nhn1h3

nz

n∑

i=1

Xi11(Ti2 > t2)KT

(
t1 − Ti1

hn1

)

×
{

K ′
Z

(
z1 − Zi1

hnz

)
KZ

(
z2 − Zi2

hnz

)
−K ′

Z

(
z1 − Z̃ni1

hnz

)
KZ

(
z2 − Z̃ni2

hnz

)}
,

R(A2)
n (t1, t2, z1, z2) =

1
nhn1h3

nz

n∑

i=1

Xi21(Ti2 > t2)KT

(
t1 − Ti1

hn1

)

×
{

KZ

(
z1 − Zi1

hnz

)
K ′

Z

(
z2 − Zi2

hnz

)
−KZ

(
z1 − Z̃ni1

hnz

)
K ′

Z

(
z2 − Z̃ni2

hnz

)}
,

Z̃nij = X ′
ij b̃n for j = 1, 2, and b̃n is between bn and β.

Further, write

R(A1)
n (t1, t2, z1, z2) = H(A1)

n (t1, t2, z1, z2) + H(A2)
n (t1, t2, z1, z2) + H(A3)

n (t1, t2, z1, z2),

where

H(A1)
n (t1, t2, z1, z2) =

1
nhn1h3

nz

n∑

i=1

Xi11(Ti2 > t2)KT

(
t1 − Ti1

hn1

)

× K ′
Z

(
z1 − Zi1

hnz

) [
KZ

(
z2 − Zi2

hnz

)
−KZ

(
z2 − Z̃ni2

hnz

)]
,

H(A2)
n (t1, t2, z1, z2) =

1
nhn1h3

nz

n∑

i=1

Xi11(Ti2 > t2)KT

(
t1 − Ti1

hn1

)

× KZ

(
z2 − Zi2

hnz

) [
K ′

Z

(
z1 − Zi1

hnz

)
−K ′

Z

(
z1 − Z̃ni1

hnz

)]
,

and

H(A3)
n (t1, t2, z1, z2) =

1
nhn1h3

nz

n∑

i=1

Xi11(Ti2 > t2)KT

(
t1 − Ti1

hn1

)

×
[
KZ

(
z2 − Z̃ni2

hnz

)
−KZ

(
z2 − Zi2

hnz

)][
K ′

Z

(
z1 − Zi1

hnz

)
−K ′

Z

(
z1 − Z̃ni1

hnz

)]
.

Assumption 3.8 implies that KZ is Lipschitz continuous, so for some M1 < ∞,

‖H(A1)
n (t1, t2, z1, z2)‖ ≤ M1‖b̃n − β‖

nhn1h4
nz

n∑

i=1

∣∣∣∣KT

(
t1 − Ti1

hn1

)
1(Ti2 > t2)

∣∣∣∣
∣∣∣∣K ′

Z

(
z1 − Zi1

hnz

)∣∣∣∣ ‖Xi1‖‖Xi2‖

≡ M1‖b̃n − β‖H̃(A1)
n (t1, t2, z1).
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It is not difficult to show that the summand in H̃
(A1)
n (t1, t2, z1) belongs to a Euclidean class. By

Theorem 2.37 of Pollard (1984),

sup
t1,t2,z1

∣∣∣H̃(A1)
n (t1, t2, z1)− EH̃(A1)

n (t1, t2, z1)
∣∣∣ = o

[
log n/(nhn1h

7
nz)

1/2
]

a.s.

In addition, a change of variables gives EH̃
(A1)
n (t1, t2, z1) = O

(
h−3

nz

)
uniformly over (t1, t2, z1) ∈

[0, τ ]× ST × SZ . Hence, since ‖bn − β‖ = op

(
n−1/2

)
,

‖H(A1)
n (t1, t2, z1, z2)‖ = op

[
log n/(n2hn1h

7
nz)

1/2
]

+ Op

(
n−1/2h−3

nz

)
(27)

uniformly over (t1, t2, z1, z2) ∈ [0, τ ]× ST × SZ × SZ . By the same arguments,

‖H(A2)
n (t1, t2, z1, z2)‖ = op

[
log n/(n2hn1h

7
nz)

1/2
]

+ Op

(
n−1/2h−3

nz

)
(28)

uniformly over (t1, t2, z1, z2) ∈ [0, τ ]× ST × SZ × SZ . In addition, for some M2 < ∞,

‖H(A3)
n (t1, t2, z1, z2)‖ ≤ M2‖b̃n − β‖2

nhn1h5
nz

n∑

i=1

∣∣∣∣KT

(
t1 − Ti1

hn1

)
1(Ti2 > t2)

∣∣∣∣ ‖Xi1‖2‖Xi2‖

≡ M2‖b̃n − β‖2H̃(A3)
n (t1, t2).

Again, by Theorem 2.37 of Pollard (1984),

sup
t1,t2

∣∣∣H̃(A3)
n (t1, t2)− EH̃(A3)

n (t1, t2)
∣∣∣ = o

[
log n/(nhn1h

10
nz)

1/2
]

a.s.

Moreover, a change of variables gives EH̃
(A3)
n (t1, t2) = O

(
h−5

nz

)
uniformly over (t1, t2, z1) ∈ [0, τ ]×

ST × SZ . Hence,

‖H(A3)
n (t1, t2, z1, z2)‖ = op

[
(log n)/(n3hn1h

10
nz)

1/2
]

+ Op

(
n−1h−5

nz

)
(29)

uniformly over (t1, t2, z1, z2) ∈ [0, τ ]×ST ×SZ ×SZ . It follows from (27), (28), and (29) that under

the assumption that nhnz →∞,

‖R(A1)
n (t1, t2, z1, z2)‖ = op

[
log n/(n2hn1h

7
nz)

1/2
]

+ Op

(
n−1/2h−3

nz

)

uniformly over (t1, t2, z1, z2) ∈ [0, τ ]× ST × SZ × SZ . Similarly,

‖R(A2)
n (t1, t2, z1, z2)‖ = op

[
log n/(n2hn1h

7
nz)

1/2
]

+ Op

(
n−1/2h−3

nz

)

uniformly over (t1, t2, z1, z2) ∈ [0, τ ]× ST × SZ × SZ . Therefore,

‖R(A)
n (t1, t2, z1, z2)‖ = op

[
log n/(n3hn1h

7
nz)

1/2
]

+ Op

(
n−1h−3

nz

)
(30)
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uniformly over (t1, t2, z1, z2) ∈ [0, τ ] × ST × SZ × SZ . Part (a) follows by combining (30) with the

fact that bn − β = SΩ + op(n−1/2).

Part (b): Another application of Theorem 2.37 of Pollard (1984) yields

sup
t1,t2,z1,z2

∣∣∣A(1)
n (t1, t2, z1, z2)− EA(1)

n (t1, t2, z1, z2)
∣∣∣ = o

[
log n/(nhn1h

2
nz)

1/2
]

a.s.

In addition,

EA(1)
n (t1, t2, z1, z2) = (hn1h

2
nz)

−1

∫
1(s2 > t2)KT

(
t1 − s1

hn1

)
KZ

(
z1 − w1

hnz

)

× KZ

(
z2 − w2

hnz

)
p(s1, s2, w1, w2) ds1ds2dw1dw2

=
∫

1(ψ2 > t2)KT (ψ1)KZ (ξ1) KZ (ξ2)

× p(t1 − hn1ψ1, ψ2, z1 − hnzξ1, z2 − hnzξ2) dψ1dψ2dξ1dξ2

= A(t1, t2, z1, z2) + O(hq
n1) + O(hr

nz)

uniformly over (t1, t2, z1, z2) ∈ [0, τ ]× ST × SZ × SZ . Thus, this proves part (b).

Part (c): This can be proved by using the similar arguments as in part (b).

Define

B(1)
n (t1, t2, z1, z2) =

1
nhn2h2

nz

n∑

i=1

1(Ti1 > t1)KT

(
t2 − Ti2

hn2

)
KZ

(
z1 − Zi1

hnz

)
KZ

(
z2 − Zi2

hnz

)
,

B(2)
n (t1, t2, z1, z2) = − 1

nhn2h3
nz

n∑

i=1

1(Ti1 > t1)KT

(
t2 − Ti2

hn2

)

×
{

K ′
Z

(
z1 − Zi1

hnz

)
KZ

(
z2 − Zi2

hnz

)
Xi1 + KZ

(
z1 − Zi1

hnz

)
K ′

Z

(
z2 − Zi2

hnz

)
Xi2

}
,

and

B(2)(t1, t2, z1, z2) = − ∂

∂z1
B(t1, t2|z1, z2)EX1 − ∂

∂z2
B(t1, t2|z1, z2)EX2.

Lemma A.2. As n →∞, the following holds uniformly over (t1, t2, z1, z2) ∈ [0, τ ]×ST ×SZ ×SZ :

(a) Bn(t1, t2, z1, z2) = B(1)
n (t1, t2, z1, z2) + B(2)

n (t1, t2, z1, z2)′SΩ

+ Op

(
n−1h−3

nz

)
+ op

[
log n/(n3hn2h

7
nz)

1/2
]

+ op

(
n−1/2

)
.

(b) B(1)
n (t1, t2, z1, z2) = B(t1, t2, z1, z2) + O(hq

n2) + O(hr
nz) + o

[
log n/(nhn2h

2
nz)

1/2
]

a.s.

(c) B(2)
n (t1, t2, z1, z2) = B(2)(t1, t2, z1, z2) + O(hq

n2) + O(hr
nz) + o

[
log n/(nhn2h

4
nz)

1/2
]

a.s.
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Proof. The lemma follows by repeating the same arguments as in the proof of Lemma 1.

Proof of Theorem 3.1. Part (a): By the definition and a Taylor series expansion,

λn0(t)− λ0(t) =
∫

ST

dt2

∫

SZ

dz1

∫

SZ

dz2 w(t2, z1, z2) exp(z2 − z1)
[
An(t1, t2, z1, z2)
Bn(t1, t2, z1, z2)

− A(t1, t2, z1, z2)
B(t1, t2, z1, z2)

]

=
∫

ST

dt2

∫

SZ

dz1

∫

SZ

dz2

×
[
C(t1, t2, z1, z2)An(t1, t2, z1, z2)−D(t1, t2, z1, z2)Bn(t1, t2, z1, z2) + R(λ)

n (t1, t2, z1, z2)
]
,

where the remainder term R
(λ)
n (t1, t2, z1, z2) satisfies

R(λ)
n (t1, t2, z1, z2) = O

[
(An −A)(Bn −B) + (Bn −B)2

]
.

It follows from Lemmas A.1 and A.2 and Assumption 3.9 (a) that

An(t1, t2, z1, z2) = A(1)
n (t1, t2, z1, z2) + op

[
(nhn1)−1/2

]
,

Bn(t1, t2, z1, z2) = B(1)
n (t1, t2, z1, z2) + op

[
(nhn1)−1/2

]
,

|An(t1, t2, z1, z2)−A(t1, t2, z1, z2)| = op

[
(nhn1)−1/4

]
,

and

|Bn(t1, t2, z1, z2)−B(t1, t2, z1, z2)| = op

[
(nhn1)−1/4

]

uniformly over (t1, t2, z1, z2) ∈ [0, τ ]× ST × SZ × SZ . Thus, it follows that

λn0(t)− λ0(t) =
∫

ST

dt2

∫

SZ

dz1

∫

SZ

dz2 C(t1, t2, z1, z2)A(1)
n (t1, t2, z1, z2)

−
∫

ST

dt2

∫

SZ

dz1

∫

SZ

dz2 D(t1, t2, z1, z2)B(1)
n (t1, t2, z1, z2) + op

[
(nhn1)−1/2

]

≡ In1(t) + In2(t) + op

[
(nhn1)−1/2

]
(31)

uniformly over t ∈ [0, τ ].

It now remains to evaluate the integrals in (31). Observe that by a change of variables and a

Taylor series expansion,

In1(t) =
1

nhn1h2
nz

n∑

i=1

∫

ST

dt2

∫

SZ

dz1

∫

SZ

dz2 C(t, t2, z1, z2)1(Ti2 > t2)

×KT

(
t− Ti1

hn1

)
KZ

(
z1 − Zi1

hnz

)
KZ

(
z2 − Zi2

hnz

)

=
1

nhn1

n∑

i=1

[∫

ST

C(t, t2, Zi1, Zi2)1(Ti2 > t2) dt2

]
KT

(
t− Ti1

hn1

)
+ O(hr

nz)

≡ ζ(A1)
n (t) + O(hr

nz)
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uniformly over t ∈ [0, τ ]. Similarly,

In2(t) = − 1
nhn2h2

nz

n∑

i=1

∫

ST

dt2

∫

SZ

dz1

∫

SZ

dz2 D(t, t2, z1, z2)1(Ti1 > t)

×KT

(
t2 − Ti2

hn2

)
KZ

(
z1 − Zi1

hnz

)
KZ

(
z2 − Zi2

hnz

)

= − 1
n

n∑

i=1

D(t, Ti2, Zi1, Zi2)1(Ti1 > t) + Op(h
q
n2) + O(hr

nz)

≡ ζ(B1)
n (t) + O(hq

n2) + O(hr
nz)

uniformly over t ∈ [0, τ ].

Combining these results with the condition that (nhn1)1/2hr
nz → 0 and (nhn1)1/2hq

n2 → 0 gives

λn0(t)− λ0(t) = ζ(A1)
n (t) + ζ(B1)

n (t) + op

[
(nhn1)−1/2

]
(32)

uniformly over t ∈ [0, τ ]. It is straightforward to show that E[ζ(B1)
n (t)] = −λ0(t). Furthermore, it is

not difficult to show that by Theorem 2.37 of Pollard (1984),

ζ(B1)
n (t)− E[ζ(B1)

n (t)] = o
(
log n/n1/2

)

uniformly over t ∈ [0, τ ]. Therefore, (32) can be rewritten as

λn0(t)− λ0(t) = ζ(A1)
n (t)− λ0(t) + op

[
(nhn1)−1/2

]
(33)

uniformly over t ∈ [0, τ ]. Using integration by parts and a change of variables, it is not difficult to

show that

E[ζ(A1)
n (t)− λ0(t)] = Bλ(t) + o(hq

n1). (34)

Part (a) now follows by combining (33)-(34).

Part (b): As in the proof of part (a), using Lemmas A.1 and A.2, it can be shown that

An(t1, t2, z1, z2)
Bn(t1, t2, z1, z2)

− A(t1, t2, z1, z2)
B(t1, t2, z1, z2)

= C(t1, t2, z1, z2)A(1)
n (t1, t2, z1, z2)−D(t1, t2, z1, z2)B(1)

n (t1, t2, z1, z2)

+
[
C(t1, t2, z1, z2)A(2)(t1, t2, z1, z2)−D(t1, t2, z1, z2)B(2)(t1, t2, z1, z2)

]′
SΩ + op

(
n−1/2

)
(35)

uniformly over (t1, t2, z1, z2) ∈ [0, τ ]× ST × SZ × SZ . Observe that Assumption 3.9 (b) is necessary

to ensure that the remainder term is of order op(n−1/2).
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It now remains to integrate the leading terms in (35) over (t1, t2, z1, z2). It follows from the

proof of part (a) that
∫ t

0

dt1

∫

ST

dt2

∫

SZ

dz1

∫

SZ

dz2 C(t1, t2, z1, z2)A(1)
n (t1, t2, z1, z2)

=
1

nhn1

n∑

i=1

∫ t

0

[∫

ST

C(t1, t2, Zi1, Zi2)1(Ti2 > t2) dt2

]
KT

(
t1 − Ti1

hn1

)
dt1 + O(hr

nz)

≡ Q(A)
n (t) + O(hr

nz)

uniformly over t ∈ [0, τ ].

Define R̃
(A)
n (t) = Q

(A)
n (t)− Q̃

(A)
n (t), where

Q̃(A)
n (t) =

1
n

n∑

i=1

[∫

ST

C(Ti1, t2, Zi1, Zi2)1(Ti2 > t2) dt2

]
1(0 ≤ Ti1 ≤ t).

By integration by parts, it is easy to show that EQ̃
(A)
n (t) = Λ0(t). Combining (34) with Fubini’s

theorem yields EQ
(A)
n (t) = Λ0(t) + Op(h

q
n1) uniformly over t ∈ [0, τ ]. Thus, ER̃

(A)
n (t) = Op(h

q
n1)

uniformly over t ∈ [0, τ ]. Furthermore, we can show that the summand in R̃
(A)
n (t) is Euclidean.

Therefore, by Theorem 2.37 of Pollard (1984),

sup
t

∣∣∣R̃(A)
n (t)− ER̃(A)

n (t)
∣∣∣ = o

[
h

1/2
n1 (log n)/n1/2

]

almost surely. Therefore, Q
(A)
n (t) = Q̃

(A)
n (t) + op(n−1/2) uniformly over t ∈ [0, τ ].

Now consider the second term in (35). Again, by the result of the proof of part (a),
∫ t

0

dt1

∫

ST

dt2

∫

SZ

dz1

∫

SZ

dz2 D(t1, t2, z1, z2)B(1)
n (t1, t2, z1, z2)

=
1
n

n∑

i=1

∫ t

0

D(t1, Ti2, Zi1, Zi2)1(Ti1 > t1) dt1 + O(hq
n2) + O(hr

nz)

uniformly over t ∈ [0, τ ].

Finally, consider the remaining terms in (35). Use integration by parts and (2) to obtain
∫ t

0

dt1

∫

ST

dt2

∫

SZ

dz1

∫

SZ

dz2 CA(2) −DB(2)

= EX1

∫ t

0

dt1

∫

ST

dt2

∫

SZ

dz1

∫

SZ

dz2
∂

∂z1
ϕ(t2, z1, z2)

A(t1, t2|z1, z2)
B(t1, t2|z1, z2)

+ EX2

∫ t

0

dt1

∫

ST

dt2

∫

SZ

dz1

∫

SZ

dz2
∂

∂z2
ϕ(t2, z1, z2)

A(t1, t2|z1, z2)
B(t1, t2|z1, z2)

= −Λ0(t)E[X1 −X2]
∫

SZ

dz1

∫

SZ

dz2
wz(z1)wz(z2)

pz(z1, z2)
.

Part (b) follows by combining these results.
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Proof of Corollary 3.2. Part (a) follows from Theorem 3.1 (a) and an application of a triangular-

array central limit theorem. It is not difficult to show that the summand in Γn(t) is Euclidean. Then

part (b) can be easily proved by combining Theorem 3.1 (b) with the empirical process method

described in Pollard (1984) and Pakes and Pollard (1989).

A.2 Estimation of Vλ(t) and E[χλ(t)χλ(t
′)]

The asymptotic variance Vλ(t) and the covariance function E[χλ(t)χλ(t′)] can be estimated consis-

tently by replacing unknown quantities with sample analogs. Define

ϕn(t2, z1, z2) = pnz(z1, z2)−1w(t2, z1, z2) exp(z2 − z1),

Cn(t1, t2, z1, z2) = Bn(t1, t2|z1, z2)−1ϕn(t2, z1, z2),

and

Dn(t1, t2, z1, z2) = Bn(t1, t2|z1, z2)−2An(t1, t2|z1, z2)ϕn(t2, z1, z2),

where pnz, An, and Bn are defined in Section 2.1. Let Xj be the sample means of Xj and let Ωn be

a consistent estimator of Ω. It is easy to obtain the formula for calculating Ωn corresponding to the

partial likelihood estimator of β. Define

γnt(Ti1, Ti2, Xi1, Xi2) =
[∫

ST

Cn(t, t2, Zni1, Zni2)1(Ti2 > t2) dt2

]2 1
hn1

KT

(
t− Ti1

hn1

)
,

and

Γnt(Ti1, Ti2, Xi1, Xi2) =
[∫

ST

Cn(Ti1, t2, Zni1, Zni2)1(Ti2 > t2) dt2

]
1(0 ≤ Ti1 ≤ t)

−
∫ t

0

Dn(t1, Ti2, Zni1, Zni2)1(Ti1 > t1) dt1

− Λn0(t)
[∫

SZ

dz1

∫

SZ

dz2
wz(z1)wz(z2)
pnz(z1, z2)

]
[X1 −X2]′Ωn(Ti1, Ti2, Xi1, Xi2).

Using the fact that pnz, An, Bn, and Λn0 converge in probability uniformly, It is straightforward to

show that under the assumptions of Theorem 3.1, Vλ(t) is estimated consistently by

n−1
n∑

i=1

γnt(Ti1, Ti2, Xi1, Xi2)
∫ 1

−1

K2
T (u)du

and that E[χλ(t)χλ(t′)] is estimated consistently by

n−1
n∑

i=1

Γnt(Ti1, Ti2, Xi1, Xi2)Γnt′(Ti1, Ti2, Xi1, Xi2).
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B Appendix: Censored Case

B.1 The Asymptotic Distribution of n1/2(βn − β)

This section of Appendix B presents conditions under which n1/2(βn−β) is asymptotically normally

distributed. In this section, let q and r be integers such that q ≥ 2 and r > dq/(q− 1). We maintain

Assumptions 3.2-3.4 and make the following additional assumptions:

Assumption 3.1′ (Random Sampling). {(Yi1, Yi2, Xi1, Xi2, ∆i1, ∆i2, Ci) : i = 1, . . . , n} is a

random sample of (Y1, Y2, X1, X2,∆1, ∆2, C).

Assumption 3.5′ (Smoothness). The distribution of (Y1, Y2, X1, X2, ∆1,∆2) is absolutely contin-

uous with respect to the product of Lebesgue measure on R2(1+d) and counting measure on {0, 1}2.
Furthermore, there are an interval of the real line, IT , and an open rectangle of Rd, IX , such that

(a) IT = [0, τT ), where τT ≤ ∞,

(b) f(t1, t2|x1, x2) and px(x1, x2) are bounded on IT × IT × IX × IX ,

(c) f(t1, t2|x1, x2) and px(x1, x2) are positive for all (t1, t2, x1, x2) ∈ int(IT × IT × IX × IX), and

(d) f(t1, t2|x1, x2) and px(x1, x2) have bounded partial derivatives up to order q with respect to tj,

and up to order r with respect to xj for j = 1, 2.

The conditions in Assumption 3.5 ′ are parallel to those in Section 3.

Assumption 3.6′ (Weight Functions). (a) The weight function wβ(·) is a bounded, non-negative

function with compact support Sβ ⊂ IT such that
∫

Sβ
wβ(t)dt = 1 and wβ is q times continuously

differentiable on Sβ.

(a) The weight function wx(·) is a bounded, non-negative function with compact support SX ⊂ IX

such that wx is continuously differentiable on SX .

Assumption 3.8′ (Kernels). (a) KT has support [−1, 1], is bounded and symmetrical about 0, has

bounded variation, and satisfies

∫ 1

−1

ujKT (u)du =





1 if j = 0,
0 if j = 1 ≤ j ≤ q − 1,
CT if j = q,

where CT is a positive constant.

(b) KX has support [−1, 1]d, is bounded and symmetrical about 0, has bounded variation, and satisfies

∫

[−1,1]d
ujKX(u)du =





1 if j = 0,
0 if j = 1 ≤ j ≤ r − 1,
CX if j = r,

where CX is a positive constant.
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Assumption 3.9′ (Bandwidths). nh2q
n1 → 0, nh2q

n2 → 0, nh4r
nx → 0, nh4d

nx →∞, log n/(nh2
n1h

4d
nx)1/4 →

0, and log n/(nh2
n2h

4d
nx)1/4 → 0.

Assumptions 3.8 ′ and 3.9 ′ are satisfied, for example, if KT is a fourth-order kernel, KX is a

r-th-order kernel, hn1 = hn2 ∝ n−1/7, and hnx ∝ n−κx , where 1/(4r) < κx < 5/(28d).

Assumption B.1 (Censoring). The censoring threshold C is independent of T1 and T2 given X1

and X2. The conditional distribution of C given X1 = x1 and X2 = x2 is absolutely continuous

with respect to Lesbesgue measure for all x1 and x2. Furthermore, G(c|x1, x2) is positive for every

(c, x1, x2), and G(c|x1, x2) is continuously differentiable with respect to x1 and x2 for each c.

Assumption B.2 (Full Rank Condition). The matrix Φβ ≡ E[wx(X1)wx(X2)∆X∆X ′] is non-

singular.

Define

Ω̃(Yi1, Yi2, Xi1, Xi2, ∆i1, ∆i2)

= Φ−1
β

∆i1∆i2 wxi∆Xi

exp(∆X ′
iβ)G(Yi1 + Yi2|Xi2, Xi2)

[
wβ(Yi1)1(Yi2 > Yi1)

Bβ(Yi1|Xi1, Xi2)
− wβ(Yi2) exp(∆X ′

iβ)1(Yi1 > Yi2)
Bβ(Yi2|Xi1, Xi2)

]
.

The following proposition provides the main result of this section.

Proposition B.1. Let Assumptions 3.1 ′, 3.2-3.4, 3.5 ′, 3.6 ′, 3.8 ′, 3.9 ′, and B.1-B.2 hold. As

n →∞,

βn − β =
1
n

n∑

i=1

Ω̃(Yi1, Yi2, Xi1, Xi2,∆i1, ∆i2) + op(n−1/2).

In particular, n1/2(βn − β) is asymptotically normal with mean zero and covariance matrix Vβ ≡
E[Ω̃(Y1, Y2, X1, X2, ∆1, ∆2)Ω̃(Y1, Y2, X1, X2, ∆1,∆2)′].

The covariance matrix Vβ can be estimated consistently by a sample analog estimator:

Vnβ = n−1
n∑

i=1

Ω̃n(Yi1, Yi2, Xi1, Xi2,∆i1, ∆i2)Ω̃n(Yi1, Yi2, Xi1, Xi2,∆i1, ∆i2)′,

where Φnβ = n−1
∑n

i=1 wx(Xi1)wx(Xi2)∆Xi∆X ′
i and

Ω̃n(Yi1, Yi2, Xi1, Xi2, ∆i1,∆i2)

= Φ−1
nβ

∆i1∆i2 wxi∆Xi

exp(∆X ′
iβn)Gn(Yi1 + Yi2|Xi2, Xi2)

[
wβ(Yi1)1(Yi2 > Yi1)
Bnβ(Yi1|Xi1, Xi2)

− wβ(Yi2) exp(∆X ′
iβn)1(Yi1 > Yi2)

Bnβ(Yi2|Xi1, Xi2)

]
.
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Proof of Proposition B.1. Define Ãβ(t, x1, x2) = Ãβ(t|x1, x2)px(x1, x2), B̃β(t, x1, x2) = B̃β(t|x1, x2)

×px(x1, x2), Ãnβ(t, x1, x2) = Ãnβ(t|x1, x2)pnx(x1, x2), and B̃nβ(t, x1, x2) = B̃nβ(t|x1, x2)pnx(x1, x2).

Equation (14) can be rewritten as

R̃nβ(t|x1, x2) = Ãnβ(t, x1, x2)/B̃nβ(t, x1, x2). (36)

As in the uncensored case, it is more convenient to use (36) than (14). We will split the proof into

several steps.

Step 1. We first establish asymptotic linear approximations of Ãnβ(t, x1, x2) and B̃nβ(t, x1, x2).

Write

Ãnβ(t, x1, x2) = Ã
(1)
nβ (t, x1, x2) + Ã

(2)
nβ (t, x1, x2)

and

B̃nβ(t, x1, x2) = B̃
(1)
nβ (t, x1, x2) + B̃

(2)
nβ (t, x1, x2),

where

Ã
(1)
nβ (t, x1, x2) =

1
nhn1h2d

nx

n∑

i=1

∆i1∆i21(Yi2 > t)
G(Yi1 + Yi2|Xi1, Xi2)

KT

(
t− Yi1

hn1

)
KX

(
x1 −Xi1

hnx

)
KX

(
x2 −Xi2

hnx

)

Ã
(2)
nβ (t, x1, x2) = − 1

nhn1h2d
nx

n∑

i=1

∆i1∆i21(Yi2 > t)
G(Yi1 + Yi2|Xi1, Xi2)

KT

(
t− Yi1

hn1

)
KX

(
x1 −Xi1

hnx

)
KX

(
x2 −Xi2

hnx

)

×G−1
n (Yi1 + Yi2|Xi1, Xi2)[Gn(Yi1 + Yi2|Xi1, Xi2)−G(Yi2 + Yi2|Xi1, Xi2)],

B̃
(1)
nβ (t, x1, x2) =

1
nhn2h2d

nx

n∑

i=1

∆i1∆i21(Yi1 > t)
G(Yi1 + Yi2|Xi1, Xi2)

KT

(
t− Yi2

hn2

)
KX

(
x1 −Xi1

hnx

)
KX

(
x2 −Xi2

hnx

)
,

and

B̃
(2)
nβ (t, x1, x2) = − 1

nhn2h2d
nx

n∑

i=1

∆i1∆i21(Yi1 > t)
G2(Yi1 + Yi2|Xi1, Xi2)

KT

(
t− Yi2

hn2

)
KX

(
x1 −Xi1

hnx

)
KX

(
x2 −Xi2

hnx

)

×G−1
n (Yi1 + Yi2|Xi1, Xi2)[Gn(Yi1 + Yi2|Xi1, Xi2)−G(Yi2 + Yi2|Xi1, Xi2)].

Observe that G(Yi1 + Yi2|Xi1, Xi2) is bounded away from zero as long as ∆i1 = ∆i2 = 1. Thus,

G−1
n (Yi1 + Yi2|Xi1, Xi2) = Op(1) uniformly in {i : ∆i1 = ∆i2 = 1}. Combining this with uniform

consistency of Gn to G on a compact set gives

Ã
(2)
nβ (t, x1, x2) = Ã

(1)
nβ (t, x1, x2)[1 + op(1)]
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and

B̃
(2)
nβ (t, x1, x2) = B̃

(1)
nβ (t, x1, x2)[1 + op(1)]

uniformly over (t, x1, x2) ∈ ST ×SX ×SX . In addition, arguments similar to those used in the proof

of Lemma A.1, it can be shown that

Ã
(1)
nβ (t, x1, x2) = Ãβ(t, x1, x2) + O(hq

n1) + O(hr
nx) + o

[
log n/

(
nhn1h

2d
nx

)1/2
]

a.s.

and

B̃
(1)
nβ (t, x1, x2) = B̃β(t, x1, x2) + O(hq

n2) + O(hr
nx) + o

[
log n/

(
nhn2h

2d
nx

)1/2
]

a.s.

uniformly over (t, x1, x2) ∈ ST × SX × SX .

Step 2. Using the fact that log Vi = ∆X ′
iβ, write

βn − β =

(
n−1

n∑

i=1

wxi∆Xi∆X ′
i

)−1 (
n−1

n∑

i=1

wxi∆Xi [log Vni − log Vi]

)
. (37)

By a Taylor series expansion,

log Vni − log Vi = V −1
i (Vni − Vi) + Op

[
(Vni − Vi)2

]
. (38)

Observe that by a Taylor series expansion, the result of Step 1, and Assumption 3.9 ′,

Vni − Vi =
∫

Sβ

wβ(t) [Rnβ(t,Xi1, Xi2)−Rβ(t,Xi1, Xi2)] dt

=
∫

Sβ

wβ(t)
Bβ(t,Xi1, Xi2)

[
A

(1)
nβ (t, Xi1, Xi2)− exp(∆X ′

iβ)B(1)
nβ (t,Xi1, Xi2)

]
dt[1 + op(1)] + op

(
n−1/2

)

≡ Inβi[1 + op(1)] + op

(
n−1/2

)

uniformly over (Xi1, Xi2) ∈ SX × SX . By a change of variables and a Taylor series expansion,

Inβi =
1

nh2d
nx

n∑

j=1

∆j1∆j2

G(Yj1 + Yj2|Xj1, Xj2)
KX

(
Xi1 −Xj1

hnx

)
KX

(
Xi2 −Xj2

hnx

)

×
[
wβ(Yj1)1(Yj2 > Yj1)

Bβ(Yj1, Xi1, Xi2)
− wβ(Yj2) exp(∆X ′

iβ)1(Yj1 > Yj2)
Bβ(Yj2, Xi1, Xi2)

]
+ O(hq

n1) + O(hq
n2)

≡ Ĩnβi + O(hq
n1) + O(hq

n2)

uniformly over (Xi1, Xi2) ∈ SX × SX . Therefore, we have

Vni − Vi = Ĩnβi[1 + op(1)] + op

(
n−1/2

)
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uniformly over (Xi1, Xi2) ∈ SX × SX .

Step 3. Combining the result of Step 2 with (38) gives

n−1
n∑

i=1

wxi∆Xi[log Vni − log Vi]

=
1
n

n∑

i=1

wxi∆Xi

exp(∆X ′
iβ)

Ĩnβi[1 + op(1)] + op

(
n−1/2

)

=
1

n2h2d
nx

n∑

i=1

n∑

j=1

wxi∆Xi

exp(∆X ′
iβ)

∆j1∆j2

G(Yj1 + Yj2|Xj1, Xj2)
KX

(
Xi1 −Xj1

hnx

)
KX

(
Xi2 −Xj2

hnx

)

×
[
wβ(Yj1)1(Yj2 > Yj1)

Bβ(Yj1, Xi1, Xi2)
− wβ(Yj2) exp(∆X ′

iβ)1(Yj1 > Yj2)
Bβ(Yj2, Xi1, Xi2)

]
[1 + op(1)] + op

(
n−1/2

)

≡ 1
n2h2d

nx

n∑

i=1

n∑

j=1

ξij [1 + op(1)] + op

(
n−1/2

)
.

Write further the leading term as

1
n2h2d

nx

n∑

i=1

n∑

j=1

ξij =
1

n2h2d
nx

n∑

j=1

n∑

i=1,i6=j

ξij +
1

n2h2d
nx

n∑

i=1

ξii

≡ Inβ1 + Inβ2.

The order of Inβ2 is at most of order Op[1/(nh2d
nx)], so that using Assumption 3.9 ′, Inβ2 = op(n−1/2).

In particular, we require here that nh4d
nx →∞. To deal with Inβ1, observe

Inβ1 =
1
n

n∑

j=1

∆j1∆j2

G(Yj1 + Yj2|Xj1, Xj2)

× 1
nh2d

nx

n∑

i=1,i6=j

wxi∆Xi

exp(∆X ′
iβ)

KX

(
Xi1 −Xj1

hnx

)
KX

(
Xi2 −Xj2

hnx

)

×
[
wβ(Yj1)1(Yj2 > Yj1)

Bβ(Yj1, Xi1, Xi2)
− wβ(Yj2) exp(∆X ′

iβ)1(Yj1 > Yj2)
Bβ(Yj2, Xi1, Xi2)

]

=
1
n

n∑

j=1

∆j1∆j2

G(Yj1 + Yj2|Xj1, Xj2)
wxj∆Xj

exp(∆X ′
jβ)

px(Xj1, Xj2)

×
[
wβ(Yj1)1(Yj2 > Yj1)
Bβ(Yj1, Xj1, Xj2)

− wβ(Yj2) exp(∆X ′
jβ)1(Yj1 > Yj2)

Bβ(Yj2, Xj1, Xj2)

]
[1 + op(1)]

by using arguments similar to those used to prove the uniform consistency of the kernel density

estimator. The proposition follows easily by combining the result of this step with (37).

B.2 Asymptotic Properties of λn0 and Λn0

This section of Appendix B presents conditions under which the estimators of λ0 and Λ0 in Section

2.2 are uniformly consistent and asymptotically normally distributed. We maintain Assumptions

3.1 ′, 3.2-3.4, 3.6, and 3.8-3.9 and make the following additional assumptions:
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Assumption 3.5′′ (Smoothness). The distribution of (Y1, Y2, Z1, Z2, ∆1,∆2) is absolutely con-

tinuous with respect to the product of Lebesgue measure on R4 and counting measure on {0, 1}2.
Furthermore, there are intervals of the real line, IT and IZ , such that

(a) IT = [0, τT ), where τT ≤ ∞, and IZ is open,

(b) f(t1, t2|z1, z2) and pz(z1, z2) are bounded on IT × IT × IZ × IZ ,

(c) f(t1, t2|z1, z2) and pz(z1, z2) are positive for all (t1, t2, z1, z2) ∈ int(IT × IT × IZ × IZ), and

(d) f(t1, t2|z1, z2) and pz(z1, z2) have bounded partial derivatives up to order q with respect to tj and

up to order r with respect to zj for j = 1, 2.

Assumption 3.7′ (Estimator of β). There is a d×1-vector-valued function Ω̃(y1, y2, x1, x2, δ1, δ2)

such that

(a) EΩ̃(Y1, Y2, X1, X2,∆1, ∆2) = 0,

(b) the components of E[Ω̃(Y1, Y2, X1, X2, ∆1,∆2)Ω̃(Y1, Y2, X1, X2, ∆1,∆2)′] are finite, and

(c) as n →∞,

βn − β = n−1
n∑

i=1

Ω̃(Yi1, Yi2, Xi1, Xi2,∆i1, ∆i2) + op(n−1/2).

This assumption is satisfied by βn, as was shown in Proposition B.1.

Assumption B.1′ (Censoring). The censoring threshold C is independent of (T1, T2, X1, X2).

The distribution of C is absolutely continuous with respect to Lesbesgue measure. Furthermore, G(c)

is positive for every c.

Define

C̃(t1, t2, z1, z2) = B̃(t1, t2|z1, z2)−1ϕ(t2, z1, z2)

and

D̃(t1, t2, z1, z2) = B̃(t1, t2|z1, z2)−2Ã(t1, t2|z1, z2)ϕ(t2, z1, z2).

Define

Γ̃t(Yi1, Yi2, Xi1, Xi2,∆i1, ∆i2)

=
∆i1∆i2

G(Yi1 + Yi2)

{[∫

ST

C̃(Yi1, t2, Zi1, Zi2)1(Yi2 > t2) dt2

]
1(0 ≤ Yi1 ≤ t)

−
∫ t

0

D̃(t1, Yi2, Zi1, Zi2)1(Yi1 > t1) dt1

}

− Λ0(t)
[∫

SZ

dz1

∫

SZ

dz2
wz(z1)wz(z2)

pz(z1, z2)

]
E[X1 −X2]′Ω̃(Yi1, Yi2, Xi1, Xi2,∆i1,∆i2).

37



In addition, define

B̃λ(t) =
∫

ST

dt2

∫

SZ

dz1

∫

SZ

dz2

[∫

ST

C̃(t, s2, z1, z2)1(t2 > s2) ds2

]
∂q

∂tq1

f(t1, t2, z1, z2)
G(t1 + t2)

∣∣∣∣
t1=t

× 1
q!

∫ 1

−1

uqKT (u)du

and

Ṽλ(t) =
∫

ST

dt2

∫

SZ

dz1

∫

SZ

dz2

[∫

ST

C̃(t, s2, z1, z2)1(t2 > s2) ds2

/
G(t + t2)

]2

f(t, t2, z1, z2)

×
∫ 1

−1

K2
T (u)du.

The following proposition gives the main result of this section.

Proposition B.2. Let Assumptions 3.1 ′, 3.2-3.4, 3.5 ′′, 3.6, 3.7 ′, 3.8-3.9, and B.1 ′ hold.

(a) Assume hn1 ∝ n−1/(2q+1). For t ∈ [0, τ ],

nq/(2q+1)[λn0(t)− λ0(t)] →d N
(
B̃λ(t), Ṽλ(t)

)
.

(b) On [0, τ ],

n1/2[Λn0(t)− Λ0(t)] ⇒ χ̃Λ(t),

where χ̃Λ(t) is a tight Gaussian process with mean 0 and covariance function E[χ̃Λ(t)χ̃Λ(t′)] =

E[Γ̃t(T1, T2, X1, X2)Γ̃t′(T1, T2, X1, X2)].

As in the uncensored case, the asymptotic variance Ṽλ of λn0 and the covariance function of χ̃Λ

can be estimated consistently by replacing unknown quantities with sample analogs.

Proof of Proposition B.2. The proof of Proposition B.2 is similar to those of Theorem 3.1 and Propo-

sition B.1. We will only indicate the differences. Define Ã(t1, t2, z1, z2) = Ã(t1, t2|z1, z2)pz(z1, z2),

B̃(t1, t2, z1, z2) = B̃(t1, t2|z1, z2)pz(z1, z2), Ãn(t1, t2, z1, z2) = Ãn(t1, t2|z1, z2)pnz(z1, z2), and

B̃n(t1, t2, z1, z2) = B̃n(t1, t2|z1, z2)pnz(z1, z2). Equation (17) can be rewritten as

R̃n(t1, t2|z1, z2) = Ãn(t1, t2, z1, z2)/B̃n(t1, t2, z1, z2). (39)

As before, it is more convenient to use (39) than (17).

Part (a): By the definition and a Taylor series expansion,

λn0(t)− λ0(t) =
∫

ST

dt2

∫

SZ

dz1

∫

SZ

dz2 w(t2, z1, z2) exp(z2 − z1)

[
Ãn(t1, t2, z1, z2)
B̃n(t1, t2, z1, z2)

− Ã(t1, t2, z1, z2)
B̃(t1, t2, z1, z2)

]

=
∫

ST

dt2

∫

SZ

dz1

∫

SZ

dz2

×
[
C̃(t1, t2, z1, z2)Ãn(t1, t2, z1, z2)− D̃(t1, t2, z1, z2)B̃n(t1, t2, z1, z2) + R̃(λ)

n (t1, t2, z1, z2)
]
,
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where R̃
(λ)
n (t1, t2, z1, z2) is a remainder term.

Define

Ã(1)
n (t1, t2, z1, z2) =

1
nhn1h2

nz

n∑

i=1

∆i1∆i21(Yi2 > t2)
G(Yi1 + Yi2)

KT

(
t1 − Yi1

hn1

)
KZ

(
z1 − Zi1

hnz

)
KZ

(
z2 − Zi2

hnz

)

and

B̃(1)
n (t1, t2, z1, z2) =

1
nhn2h2

nz

n∑

i=1

∆i1∆i21(Yi1 > t1)
G(Yi1 + Yi2)

KT

(
t2 − Yi2

hn2

)
KZ

(
z1 − Zi1

hnz

)
KZ

(
z2 − Zi2

hnz

)
.

By arguments similar to those used in the proofs of Lemmas A.1-A.2 and Proposition B.1, it can be

shown that

λn0(t)− λ0(t) =
∫

ST

dt2

∫

SZ

dz1

∫

SZ

dz2 C̃(t1, t2, z1, z2)Ã(1)
n (t1, t2, z1, z2)

−
∫

ST

dt2

∫

SZ

dz1

∫

SZ

dz2 D̃(t1, t2, z1, z2)B̃(1)
n (t1, t2, z1, z2) + op

[
(nhn1)−1/2

]

uniformly over t ∈ [0, τ ].

Repeating the same arguments given in the proof of Theorem 3.1 (a) gives

λn0(t)− λ0(t) =
1

nhn1

n∑

i=1

∆i1∆i2

G(Yi1 + Yi2)

[∫

ST

C̃(t, t2, Zi1, Zi2)1(Yi2 > t2) dt2

]
KT

(
t− Yi1

hn1

)
− λ0(t)

+ op

[
(nhn1)

−1/2
]
.

Then part (a) follows easily.

Part (b): This can be proved by repeating arguments similar to those used to prove part (b)

of Theorem 3.1.

B.3 Alternative Estimator of Rβ(t|x1, x2)

This part of Appendix B provides an alternative estimator of Rβ(t|x1, x2). There may be several

methods for estimating Rβ(t|x1, x2) under dependent right censoring, but we present here an alter-

native estimator of Rβ(t|x1, x2) based on Visser (1996) and Wang and Wells (1998). See Lin, Sun,

and Ying (1999) and Wang and Wells (1998) for more possible methods. The same idea as those

described here can be applied to estimate R(t1, t2|z1, z2) in Section 2.2.2.

To describe an alternative estimator of Rβ(t|x1, x2), it is useful to introduce some notation. De-

fine the conditional distribution functions F1(t1|x1) = Pr(T1 ≤ t1|X1 = x1) and F2(t2|t1, x2) =
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Pr(T2 ≤ t2|T1 = t1, X2 = x2). Also, define f1(t1|x1) = ∂F1(t1|x1)/∂t1 and f2(t2|t1, x2) =

∂F2(t2|t1, x2)/∂t2. Using the fact that

S(t1, t2|z1, z2) =
∫ ∞

t1

[1− F2(t2|s1, x2)]dF1(s1|x1),

write

Rβ(t|x1, z2) =
[1− F2(t|t, x2)]f1(t|x1)∫∞
t

f2(t|s1, x2)dF1(s1|x1)
. (40)

An alternative estimator of Rβ(t|x1, x2) can be obtained by replacing f1, f2, F1, and F2 in (40)

with their sample analogs. F1 can be estimated by using the conditional Kaplan-Meier estimator.

Although C2 is dependent on T2, the conditional Kaplan-Meier estimator can also be used to estimate

F2. This is because C2 is conditionally independent of T2 given T1 and X2. It is worthwhile to

observe that Kaplan-Meier-type estimators are step functions, thereby implying that f1 and f2

cannot be estimated by dFn1(t1|x1)/dt1 and dFn2(t2|t1, x2)/dt2. However, it is not difficult to

develop consistent estimators of f1 and f2 based on the kernel method. See Dabrowska (1987, 1989)

for the details of the conditional Kaplan-Meier estimator.

There are advantages and disadvantages to using this alternative estimator as opposed to the

estimator of Rβ(t|x1, x2) in Section 2.2.1. The advantages are that (1) the alternative estimator

uses more data than the proposed estimator in Section 2.2.1, and (2) the censoring variable C

does not have to be random; however, the disadvantages are that (1) the alternative estimator is

computationally burdensome, (2) it is more complicated to derive asymptotic properties, and (3) it

is difficult to extend to the case of longer panels. We chose to use the estimator in Section 2.2.1

mainly because of its attractive simple form.
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Linton, O.B., and W. Härdle, 1996, Estimating additive regression models with known links,

Biometrika, 83, 529-540.

Müller, H.-G., 1984, Smooth optimal kernel estimators of densities, regression curves and modes,

Annals of Statistics, 12, 766-774.

Pakes, A., and D. Pollard, 1989, Simulation and the asymptotics of optimization estimators, Econo-

metrica, 57, 1027-1057.

Pollard, D., 1984, Convergence of stochastic processes (Springer-Verlag, New York).

Powell, J.L., J.H. Stock, and T.M. Stoker, 1989, Semiparametric estimation of index coefficients,

Econometrica, 57, 474-523.
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Table 1. Weight functions and means of data-driven bandwidths used in estimation of λ0

and Λ0. [Uncensored Case]

n = 100 n = 500
λn0 Λn0 λn0 Λn0

Weibull Model
hn1 4.20 2.83 2.65 1.56
hn2 3.79 2.83 2.31 1.56
hnz 6.69 7.34 4.57 5.19

wt(u) 1(0.5 ≤ u ≤ 3.5)/3
wz(u) Equation (22)

U-shaped Hazard Model
hn1 3.16 2.13 2.29 1.34
hn2 2.85 2.13 1.99 1.34
hnz 4.98 5.47 3.93 4.45

wt(u) 1(0.2 ≤ u ≤ 5)/4.8
wz(u) Equation (22)
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Table 2. Weight functions and bandwidths used in estimation of β, λ0, and Λ0.
[Censored Case]

Estimation of λ0 and Λ0 Estimation of β
n = 100 n = 500 n = 100 n = 500

λn0 Λn0 λn0 Λn0 βn βn

Weibull Model

hn1 3.5 3.0 2.5 2.0 hn1 4.5 3.5
hn2 3.5 3.0 2.5 2.0 hn2 4.5 3.5
hnz 5.0 7.0 4.0 5.0 hnx 1.0 0.7
wt(u) 1(0.5 ≤ u ≤ 3.5)/3 wβ(u) 1(0.5 ≤ u ≤ 3.5)/3
wz(u) Equation (22) wx(u) 1(|u| ≤ 1)

U-shaped Hazard Model

hn1 3.0 2.5 2.0 1.5 hn1 5.0 4.0
hn2 3.0 2.5 2.0 1.5 hn2 5.0 4.0
hnz 6.0 7.0 4.0 5.0 hnx 1.2 0.9
wt(u) 1(0.2 ≤ u ≤ 5)/4.8 wβ(u) 1(0.2 ≤ u ≤ 5)/4.8
wz(u) Equation (22) wx(u) 1(|u| ≤ 1)
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Table 3. Monte Carlo results for the estimator of β (Censored Case).

Mean Bias Median Bias Std. Dev. RMSE MAE

Weibull Model
Second-Order Kernel

n = 100 -0.209 -0.225 0.294 0.360 0.274
n = 500 -0.166 -0.155 0.150 0.216 0.174
Fourth-Order Kernel

n = 100 -0.024 -0.073 0.381 0.381 0.230
n = 500 -0.015 -0.045 0.205 0.206 0.142

U-shaped Hazard Model
Second-Order Kernel

n = 100 -0.200 -0.198 0.308 0.367 0.230
n = 500 -0.120 -0.128 0.162 0.207 0.137
Fourth-Order Kernel

n = 100 -0.089 -0.095 0.414 0.424 0.271
n = 500 -0.036 -0.058 0.291 0.293 0.188

Note: Table 3 presents the mean bias, median bias, standard deviation, root mean squared
error (RMSE), and median absolute error (MAE) of the estimator.
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Figure 1. Monte Carlo results for the Weibull model (Uncensored Case).
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Figure 2. Monte Carlo results for the U-shaped model (Uncensored Case).
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Figure 3. Monte Carlo results for the linearly combined estimator (Uncensored Case).
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Figure 4. Monte Carlo results for the Weibull model (Censored Case).
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Figure 5. Monte Carlo results for the U-shaped model (Censored Case).
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