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Abstract

Hedonic pricing with quasilinear preferences is shown to be equivalent to stable
matching with transferable utilities and a participation constraint, and to an
optimal transportation (Monge-Kantorovich) linear programming problem. Op-
timal assignments in the latter correspond to stable matchings, and to hedonic
equilibria. These assignments are shown to exist in great generality; their mar-
ginal indirect payo¤s with respect to agent type are shown to be unique whenever
direct payo¤s vary smoothly with type. Under a generalized Spence-Mirrlees
condition the assignments are shown to be unique and to be pure, meaning
the matching is one-to-one outside a negligible set. For smooth problems set
on compact, connected type spaces such as the circle, there is a topological ob-
struction to purity, but we give a weaker condition still guaranteeing uniqueness
of the stable match. An appendix resolves an old problem (# 111) of Birkho¤
in probability and statistics [5], by giving a necessary and su¢ cient condition
on the support of a joint probability to guarantee extremality among all joint
measures with the same marginals.



1 Introduction

The goal of this note is to establish and exploit a general, structural equivalence
result between three families of models, two of which are familiar to economists
while the third belongs in mathematics and operational research. Speci�cally, we
consider a general framework for studying hedonic price problems with quasi-
linear preferences, and show that it is equivalent to a matching model with
transferable utilities. From a mathematical perspective, both problems can
in turn be rephrased under the form of a linear program, in fact an optimal
transportation problem of Monge-Kantorovich type. Secondly, we argue that,
due to the wide body of knowledge about linear programming in general, and
optimal transportation in particular (see for example [2] and [39]), the reduction
of the model to this form seems not only conceptually clearer, but better adapted
to bringing powerful methods of theoretical and computational analysis to bear
on the question.
As an illustration, we �rst provide a general existence result for the models

under consideration. The result is valid for matching as well as hedonic pricing
models. It applies to multi-dimensional problems, and does not require single
crossing conditions à la Spence-Mirrlees.1 In the smooth setting, we establish
uniqueness of the marginal payo¤with respect to type, even though the optimal
matching can be non-unique.
We also clarify the role of the well known Spence-Mirrlees condition. In the

one-dimensional setting usually considered by economists, the condition guar-
antees some form of assortative matching � which, in turn, implies that the
equilibrium is both unique and pure, (purity meaning the matching is one-to-one
for almost all agents). As we discuss below, the notions of purity and unique-
ness generalize naturally to multi-dimensions, whereas the notion of assortative
matching does not.

We �rst describe a generalization of the Spence-Mirrlees condition that is
valid in general type spaces, does not require di¤erentiability of the surplus
function, allows for non-participation, and is not dependent on the coordinates
(i.e. the parametrization) of the problem. We then show that this condition,
while su¢ cient, is not necessary for uniqueness of the stable match. In par-
ticular, we provide an example in which the stable match is unique although
the Spence-Mirrlees condition is violated. In such a case, however, the solution
fails to be pure. That is, when Spence-Mirrlees does not hold, it may be the
case that identical agents on one side of the market are matched with di¤erent
counterparts, a situation that might be interpreted in terms of mixed strategies.
Lastly, we provide a new and weaker condition that guarantees uniqueness of
the stable match in the matching model (or of the equilibrium in the hedonic
model) even in the absence of pure matching.
In both hedonic models and matching (or assignment) models, much of the

intuition economists have developed is restricted to models in which either there

1Our approach can be viewed as a simpli�cation of the more complex (but ultimately
equivalent) formulation of the problem as a convex nonlinear program due to Ekeland [12],
[13], and subsequently developed in his joint work with Carlier [9].
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is a �nite number of types or in which the agents in the model can be described
by a one dimensional characteristic under a single-crossing property. Much of the
discussion in the theoretical and empirical literature focuses on whether there
is positive assortative matching. The optimal transportation approach, initially
introduced by Shapley and Shubik [35] and extended to a continuous setting by
Gretsky, Ostroy and Zame [18], opens up the study of hedonic and matching
models with multidimensional characteristics, general surplus functions, and
general distributions of types. This paper reviews the relevant results from this
literature showing how they can be applied in these economic settings. Further,
it highlights some signi�cant issues related to the geometry and topology of the
type spaces which have not previously been explored, neither in the economics
nor the mathematics literature. For example, when agent types are located on
a circle, a sphere, or products thereof (such as a periodic square), no smooth
generalization of the Spence-Mirrlees condition can hold, and stable matchings
(or assignments) are not generally pure. The subtwist criterion we introduce
resolves assignment uniqueness in some of these settings, but leaves others as
open challenges. An interesting question that we do not discuss relates to the
continuity or smoothness of the dependence of the buyer�s characteristics on
those of the seller with whom he chooses to match. Signi�cant recent progress
on this question is surveyed by Villani in [41].
Finally, in an appendix we resolve a long-standing question in probability

and statistics which can be traced back to Birkho¤ [5]: we give a necessary and
su¢ cient condition on the support of a joint probability measure to guarantee
its extremality among measures which share its marginals. We then exploit this
criterion to establish our unique assignment results.
Our work builds upon and extends several existing contributions in eco-

nomics and in mathematics. Gretsky, Ostroy and Zame [18], [19] also study the
matching of buyers and sellers in an economy with potentially a continuum of
agents. In their economy, buyers and sellers who match are not free to trade
any contract. Rather each seller is endowed with a single contract that they
can sell or not. Their economy is thus a hedonic endowment economy, while
ours can be seen as hedonic production one. Gretsky, Ostroy and Zame [18]
shows that equilibrium in the endowment economy is equivalent to an opti-
mal transportation problem and to a matching problem. They also prove that
equilibrium exists. Gretsky, Ostroy and Zame [19] analyze the equilibrium in
the endowment economy and focus on its links with perfect competition. They
prove that in the continuum economy, perfect competition (the inability of indi-
viduals to in�uence price) obtains when the social gains function (i.e. the value
of the primal program) is di¤erentiable, or equivalently when the solution to
the dual is unique. However, they do not give conditions on the exogenous data
which guarantee this uniqueness; nor do they analyze uniqueness of the optimal
assignment or purity of the solution.
Ekeland [12], [13] also studies the hedonic model presented here. He shows

that the model can be reformulated as a convex nonlinear program. He proves
existence of equilibrium under conditions very similar to ours and uniqueness
and purity under an analogous version of the multidimensional Spence-Mirrlees
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condition. He concludes that computation of the equilibrium in the general case
is di¢ cult and remains and unsolved problem.
On the mathematical side, multi-dimensional generalizations of the Spence-

Mirrlees condition developed through work of many authors, including Brenier,
Ca¤arelli, Gangbo, McCann, Carlier, Ambrosio, Rigot, Ma, Trudinger, Wang,
Bernard, Bu¤oni, Bertrand, Agrachev and Lee, as surveyed by Villani [39] [41].
Special cases of costs satisfying the subtwist condition were investigated by
Uckelmann [37], McCann [29], Gangbo and McCann [17], Plakhov [32], and
Ahmad [1]. Relevant contributions to Birkho¤�s problem were made by Douglas
[10], Lindenstrauss [26], Bene� and St¼epán [3] and Hestir and Williams [21],
among others.

2 The basic framework

2.1 The competitive hedonic model

Consider a competitive spot market in which sellers produce and buyers acquire
objects or contracts z which come in a wide range of qualities z 2 Z0. What
is peculiar to many competitive hedonic markets, including those for housing,
workers, vegetables, automobiles, pensions, insurance contracts, and many oth-
ers, is that in the spot market for these contracts, a large number of buyers and
sellers trade �xed quantities, often small, of contracts whose value (to buyers
and/or sellers) depend on quanti�able qualities, or characteristics.2 These �he-
donic�characteristics are known to the buyers and/or sellers at the time of the
transaction and as a result are re�ected in the equilibrium market price.
Assuming buyer and seller preferences have been speci�ed, the problem

posed by such a market is to decide how supply equilibrates with demand to
determine the set of contracts actually exchanged on the market (or the set of
commodities actually produced and consumed), and the price P (z) at which
each type of contract is traded. Note that such an equilibrium implicitly de�nes
a pairing or matching of buyers with sellers who choose to enter into this market
by agreeing to contract or exchange with each other.
Standing hypotheses: The sets X0; Y0; Z0, of buyer, seller, and contract

types, may be modeled Borel subsets of complete separable metric spaces, pos-
sibly multidimensional. To allow for the possibility that some agents choose not
to participate, we augment the spaces X := X0 [ f;Xg, Y := Y0 [ f;Y g and
Z = Z0 [ f;Zg by including an isolated point in each: a partner ;X for any
unmatched sellers, a partner ;Y for any unmatched buyers, and the null con-
tract ;Z . Preferences are encoded into functions representing the utility u(x; z)
of product z 2 Z to buyer x 2 X, and the utility (disutility or cost) v(y; z) of
product z 2 Z to seller y 2 Y . These utility functions u : X�Z �! R[f�1g
and v : Y �Z �! [f+1g are speci�ed a priori, along with non-negative Borel
measures �0 on X0 and �0 on Y0 of �nite total mass representing the distribu-

2These models also apply to markets where prices are nonlinear in quantities because
di¤erent quantities are not perfect substitutes and cannot be freely traded.
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tion of buyer and seller types throughout the population. The utility functions
are constrained so that neither the dummy buyer type ;X nor the dummy seller
type ;Y can participate in any exchange save the null contract:

u(;X ; z) =
�

0 if z = ;Z ;
�1 else;

v(;Y ; z) =
�

0 if z = ;Z ;
+1 else;

(1)

while the measures �0 and �0 are extended to X and Y by assigning mass
�0(Y0) + 1 and �0(X0) + 1 to the points ;X and ;Y respectively:

� := �0 + (�0(Y0) + 1)�;X � := �0 + (�0(X0) + 1)�;Y : (2)

The augmented measures balance �[X] = �[Y ] <1, so we can renormalize them
to be probability measures (i.e. have unit mass) without loss of generality.3

To guarantee the convergence of various integrals, and attainment of var-
ious suprema and in�ma, we assume throughout (and tacitly hereafter) that
u(x; z) > �1 extends upper semicontinuously to the completion of X � Z and
v(y; z) <1 lower semicontinuously to the completion of Y � Z. We normalize
the utility of the null-contract to be zero

u(x; ;Z) = 0 = v(y; ;Z); (3)

which can be achieved without loss of generality if the reserve utilities u(x; ;Z) 2
L1(X; d�) and v(y; ;Z) 2 L1(Y; d�) are continuous and integrable, by subtract-
ing them from u and v.
De�ne the pairwise surplus function

s (x; y) = sup
z2Z

u (x; z)� v (y; z) : (4)

We assume that for each pair the supremum is attained. Further, in case u or
v is discontinuous or Z fails to be compact [22], we assume the set of contracts

Z(x; y) = argmax
z2Z

u(x; z)� v(y; z) (5)

that maximize the surplus (4) is non-empty, compact, and depends upper hemi-
continuously on (x; y) 2 X � Y . It is well-known [22] that there exists a mea-
surable selection, i.e., a Borel function z0 : X � Y ! Z such that z0 (x; y) is
contained in Z (x; y) for all (x; y).
In case u or �v fails to be bounded, we assume there exist lower semicon-

tinuous real-valued functions �q 2 L1(X; d�) and �r 2 L1(Y; d�) such that

sup
x2X

u(x; z)� �q(x) � inf
y2Y

v(y; z) + �r(y) (6)

for all z 2 Z. This is roughly equivalent to the existence of prices on Z which
make the indirect utilities integrable. Given any Borel map f : Dom f �! Z

3The excessive mass on �;X and �;Y ensures that at least some null types match with
each other and obtain a pairwise surplus of zero.
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on a subset Dom f � X, we de�ne a measure on Z, called the push-forward of
� through f , by the formula (f#)�(B) = �(f�1(B)) for Borel B � Z.
Suppose P : Z �! R[f�1g denotes the competitive market price of quality

z 2 Z. To allow non-participation, it is subject to the constraint P (;Z) = 0.
We assume that buyer utility is linear in price so that in such a market, the
indirect utility available to buyer type x 2 X is de�ned by the quasi-linear
utility maximization

U (x) = sup
z2Z

fu (x; z)� P (z)g : (7)

Here U(x) � 0 is non-negative since ;Z 2 Z; each buyer x retains the right
not to consume. Similarly, we assume seller utility is linear in price so that the
indirect utility available to seller type y 2 Y is given by the utility maximization

V (y) = sup
z2Z

fP (z)� v(y; z)g ; (8)

with V (y) � 0 and vanishing in the case of non-participation. We make the
conventions (�1)� (�1) = �1 and 1�1 = �1 to resolve ambiguities in
(7)�(8).
Let � be a non-negative measure on X � Y � Z: The support of � refers

to the smallest closed set Spt (�) � X � Y � Z of full mass. The measure �
represents an assignment of buyers and sellers to each other and to products.
We use the push-forward notation to denote its marginal projections �X#� and
�Y#� under mappings such as �

X(x; y; z) = x and �Y (x; y; z) = y on X�Y �Z.
The pair (�; P ) is an hedonic equilibrium if these projections coincide with

the initial measures on each set:

�X#� = � (9)

�Y#� = �

and if, for �-almost all points (x; y; z) 2 Spt�, we have that

U (x) = u (x; z)� P (z) (10)

V (y) = P (z)� v (y; z) :

In such an equilibrium, each triple (x; y; z) 2 Spt� represents a mutually
agreeable exchange of contract z between seller y and buyer x, where z is a
contract most favored by both seller y and buyer x independently, given market
prices P . The prices are market clearing, in the sense that the assignment � is
consistent with the utility maximization of both buyers and sellers (10) while
simultaneously balancing supply with demand (9). Since the prices of untraded
commodities potentially a¤ect the indirect utilities U(x) and V (y), prices for
these commodities are subject to upper and lower bounds in a market at equi-
librium. We use the term market clearing pair synonymously with equilibrium
pair. This notion of equilibrium allows for the possibility that some agents are
indi¤erent between multiple qualities in Z: Indeed, when � assigns a buyer x
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to multiple sellers or contracts, we may interpret the conditional distribution
implied by � as a mixed strategy for buyer x. In such an equilibrium, the assign-
ment � must still ensure that the number of buyers and sellers of each contract
type are compatible in the sense of (9).

2.2 The associated matching problem

Similarly, models of one-to-one matching with transferable utility are used to an-
alyze marriage markets, labour markets and the matching of students to schools
to understand who matches with whom in an equilibrium stable matching. In
these models the partners on each side of the matching have characteristics that
a¤ect the surplus that may be attained by any matched pair. The characteris-
tics of the agents matched are re�ected in the equilibrium matching and in the
utility payo¤s that each agent obtains.
As stated in introduction, there is a natural, one-to-one correspondence be-

tween hedonic models and matching problems. We �rst characterize the pairwise
matching problem derived from the hedonic price model just described.

Characterization: The basic idea is very simple. For each pair (x; y) 2
X�Y , recall the pairwise surplus function s de�ned in (4) : In words, whenever
a buyer x is matched with a seller y, they generate together the total surplus
s(x; y), de�ned as a maximum over the set of possible commodities. Then
s : X � Y �! [0;1[ is upper semicontinuous by our assumptions (3), and the
set Z (x; y) where the supremum is attained (5) is non-empty, compact-valued,
and upper hemicontinuous. Our normalizations (1)�(3) permit either buyer or
seller to go unmatched (to match with a null type) and force the utility of the
unmatched state to be zero:

s (x; ;Y ) = u (x; ;Z) = 0
s (;X ; y) = �v (;Z ; y) = 0:

One can then de�ne a pairwise matching problem by the set of buyers (X;�);
the set of sellers (Y; �); and the pairwise surplus de�ned by the surplus function
s. An assignment (or a matching) is de�ned as a measure 
 on X � Y , the
marginals of which coincide with � and �. Using the same notations as above,
we thus write that

�X#
 = � (11)

�Y#
 = �

where the projection mappings �X(x; y) = x and �Y (x; y) = y this time are
de�ned on X � Y . If (x; y) 2 (X0 � Y0) \ Spt (
) ; we say that x and y are
matched. A buyer may be matched to multiple sellers and vice versa. If x 2 X0
and there is no y 2 Y0 such that (x; y) 2 Spt (
) ; we say that x is unmatched
(and similarly for y).
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A payo¤ corresponding to 
 is a pair of functions �U : X ! R and �V : Y ! R
with the normalization �U (;X) = 0 such that for any (x; y) 2 Spt (
),

�U (x) + �V (y) � s (x; y) : (12)

Finally, an outcome is de�ned as a triple
�

; �U; �V

�
where

�
�U; �V

�
is a payo¤

corresponding to 
.
We have thus showed how one can associate, to any hedonic problem, a

matching model. Note that the converse is also true: for every matching problem
de�ned by the upper semicontinuous surplus function s(x; y); one can trivially
construct a hedonic problem from a suitable choice of utility functions. For ex-
ample Z = Y , u = s, with v(y; y) = 0 and v(x; z) = +1 for all z 6= y. Smoother
examples are more involved to articulate but also possible; in fact, every upper
semicontinuous surplus function s(x; y) � 0 and continuous assignment z(x; y)
can be shown to arise from a hedonic model.

Stability Following the literature4 , we de�ne stability by:

De�nition 2.1 An outcome
�

; �U; �V

�
is stable if for any (x; y) 2 X � Y ,

�U (x) + �V (y) � s (x; y) : (13)

Note, that this de�nition implies that a stable outcome satis�es

�U (x) � s (x; ;Y ) = 0
�V (y) � s (;X ; y) = 0

for all x 2 X and for all y 2 Y: In words: a match is stable if two conditions are
ful�lled:

1. No matched agent would be better o¤ unmatched.

2. No two agents x and y, who are not matched together, would both prefer
being matched together than their current situation.

To see the link between the formal and informal de�nitions, consider an
outcome

�

; �U; �V

�
that satis�es (13). The functions �U (x) and �V (y) can be

interpreted as the utilities derived by x and y at the outcome at stake. As
noted above, restriction (13) immediately implies condition one. In addition,
restriction (13) along with the de�nition of a payo¤ implies that �U (x)+ �V (y) =
s (x; y) for all (x; y) 2 Spt (
). Finally, restriction (13) guarantees that any two
agents (x; y) =2 Spt (
) who are not matched with each other, cannot generate a
surplus larger than �U (x) + �V (y) : Indeed, if x and y were such that s (x; y) >
�U (x) + �V (y), then it would be the case that (i) they are not matched together
in the outcome under consideration, and (ii) they can both improve their utility
by leaving their current situation and rematching together. But such a situation
would violate the de�nition of stability.

4See for instance Roth and Sotomayor [34].
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Finally, a matching 
 is stable if there exists a payo¤
�
�U; �V

�
such that the

outcome
�

; �U; �V

�
is stable.

A well known result, in our transferable utility context, is that a matching
is stable if and only if it maximizes total surplus.5 De�ne for each matching 

the total surplus


 [s] =

Z
X�Y

s (x; y) d
 (x; y) :

Then

Proposition 2.2 (Gretsky, Ostroy, and Zame [18]) A matching 
 of (X;�)
with (Y; �) is stable if and only if there exists no other matching 
0 such that


0 [s] > 
 [s] :

It follows that the matching problem is itself equivalent to a linear program-
ming problem of the optimal transportation type, as we next discuss.

2.3 The transportation problem

We claim that in fact both hedonic pricing and stable matching lead to the
problem of pairing buyers (X;�) with sellers (Y; �) so as to optimize the average
(or total) of the surplus function s(x; y). This problem can be expressed as a
linear program:
Program (MK) (Monge-Kantorovich) Given an upper semi-continuous

function s : X � Y �! [0;1] on two probability spaces (X;�) and (Y; �),
solve

max

2�(�;�)


 [s] (14)

over the set of measures

�(�; �) = f0 � 
 on X � Y j �X#
 = �; �Y#
 = �g: (15)

with prescribed marginals. Here the � are the projections: �X(x; y) = x and
�Y (x; y) = y.

Dual program (MK0) This surplus maximization can be interpreted as an
optimal transportation problem of Monge-Kantorovich form [30] [23] [33] [39].
The dual linear program, found by Kantorovich and his collaborators, is posed
as follows. De�ne

� [q] =

Z
X

q (x) d� (x)

and

� [r] =

Z
Y

r (y) d� (y) :

5Shapley and Shubik [35] prove this result in the matching problem with a �nite number
of types. Gretsky, Ostroy, and Zame [18] extend the Shapley Shubik result to the economy
with a continuum of types.
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Then the Kantorovich dual program is:

min
(q;r)2Lips(�;�)

f� [q] + � [r]g (16)

where Lips(�; �) consists of all pairs of functions q 2 L1(X; d�) with q(;X) = 0
and r 2 L1(Y; d�) which satisfy the constraint6

q (x) + r (y) � s (x; y) 8 (x; y) 2 X � Y: (17)

Interestingly, the dual constraints (17) exactly reproduce the stability con-
ditions (13) of the matching problem. Indeed, for any stable match, the dual
variables q (x) and r (y) can be interpreted as a payo¤.
A key property of the primal-dual pair is that for all 
 that are feasible for

(MK) and for all pairs (q; r) feasible for (MK0)


 [s] � � [q] + � [r] : (18)

Moreover, a feasible triple (
; q; r) produces equality in (18) (if and) only if 

maximizes (MK) and the pair (q; r) minimize (MK0). The only if statement is
obvious and plays a crucial role hereafter; the if statement is the basic duality
result from linear programming (see e.g., Anderson and Nash [2], Gretsky, Os-
troy and Zame [18] or Villani [39]); it can also be recovered as a special instance
of the existence of a Nash equilibrium in an in�nite-dimensional, two-player,
zero-sum, bilinear, mixed-strategy game [42].

3 Stable matching and hedonic pricing via opti-
mal transportation

3.1 The matching problem: an existence result

A �rst outcome of the previous arguments is a general, existence result for the
optimal transportation problem, therefore for the matching problem. Speci�-
cally, the upper semi-continuity of s(x; y) � 0 guarantees the maximum (14) is
attained. It has a �nite value if the dual problem is feasible in which case the
minimum (16) is also attained [24]. To summarize, we quote Theorem 5.9 of
[41], which obviously extends from complete separable metric spaces to Borel
subsets X and Y thereof, whose closures will be denoted clX and clY :

Theorem 3.1 (Existence and duality) Let X and Y be Borel subsets of
complete, separable metric spaces equipped with Borel probability measures �
and �. If s : cl(X � Y ) �! [0;1[ is upper semicontinuous then the maximum
(14) is attained by some 
 2 �(�; �). Moreover, if some pair of real-valued

6The choice q(;X) = 0 costs no generality. Theorem 3.1 then implies r(;Y ) = 0 for any
pair (q; r) achieving the in�mum (16), in view of our normalization (2).
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lower semicontinuous functions (�q; �r) 2 Lips(�; �) is feasible for the dual prob-
lem, then the minimum (16) is also attained. In this case 
[s] = �[q]+�[r] <1,
and 
 assigns zero outer measure to the complement of the zero set

S := f(x; y) 2 X � Y j q(x) + r(y)� s(x; y) = 0g: (19)

Notice our assumptions (3)�(6) on the utilities u(x; z) and v(y; z) imply the
surplus s(x; y) de�ned by (4) satis�es all hypotheses of this theorem.

Remark 3.2 (s-convex payo¤ functions) It is important to note that any
feasible pair (q; r) in the minimization (16) can be replaced by (rs; q~s) without
increase in cost, where

rs(x) = sup
y2Y

s(x; y)� r(y) (20)

q~s(y) = sup
x2X

s(x; y)� q(x): (21)

Since rs~ss = ((rs)~s)s = rs, it costs no generality to take (q; r) = (rs; q~s), mean-
ing q = q~ss and r = rs~s, in which case we say q is s-convex and r is ~s-convex
[33] [39]. Then in the existence theorem above, the minimum (16) is attained
by a pair of functions satisfying (q; r) = (rs; q~s). This fact plays a key role in
the proof that the minimum is attained, in the developments to come, and in
computational strategies to approximate a solution to the minimization.

The geometry of S; the set de�ned in (19) takes center stage in the analysis
which follows, since this set determines which buyers can match with which
sellers at equilibrium. For example, it is well known that in the one dimensional
matching model with D2

xys (x; y) > 0; there is a unique optimal assignment that
involves positive assortative matching. In this case, the set S is the graph of a
strictly increasing function y = f (x) :
Economically, the solutions (q; r) of the dual problem are also important

because they represent the utility payo¤s obtained by each type. Even for
x 62 Spt�, the range of allowed values for q(x) has economic relevance, since it
bounds the payo¤ available when a few new buyers of type x choose to enter the
established market; similarly, at y 62 Spt � the range of values for r(y) bounds
the payo¤ available when a few sellers of type y enter the established market.

3.2 Existence of an hedonic equilibrium

It remains to show that the existence result obtained in the matching problem
implies the existence of an hedonic equilibrium. Given the structure of the
relationship between the two problems, it is clear that if buyer x and seller y
are matched in the matching problem, they will trade some common quality z
in an hedonic equilibrium. What has to be constructed is a price schedule P (z)
that supports those trades.
Recall the de�nition of Z(x; y) given in (5) and let z0 (x; y) 2 Z (x; y) be a

measurable selection. The main result is the following:
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Proposition 3.3 (Equilibrium prices) Let 
 solve the primal program (14)
and (q; r) solve the dual program (16). Then there exists a Borel price function
P : Z �! R [ f�1g satisfying

Pmax(z) := inf
y2Y

fv (y; z) + r (y)g � P (z) � sup
x2X

fu (x; z)� q (x)g =: Pmin(z):

(22)
With � � (idX � idY � z0)# 
, any such P forms an equilibrium pair (�; P ).

Proof. Combining (17) with the de�nition of the surplus s:

q(x) + r(y) � s (x; y) � u (x; z)� v (y; z) on X � Y � Z;

hence
v (y; z) + r (y) � u (x; z)� q(x) on X � Y � Z

and
inf
y
fv (y; z) + r (y)g � sup

x
fu (x; z)� q (x)g on Z:

Choose any Borel function P (z) satisfying (22); the in�mum or supremum them-
selves would su¢ ce.The basic duality result from linear programming asserts

[s] = �[q] + �[r] = 
[q + r], since 
 � 0 has � and � for marginals. Thus
equality holds for 
-a.e. (x; y) in the inequality (17); i.e. whenever 
 matches
buyer x with seller y. Consider �x who is matched with �y, in the sense that they
belong to the Borel set S de�ned in (19). This is the set of full 
 measure where
equality holds in the dual inequality constraints. Since the pair (�x; �y) agree on
their preferred contracts �z 2 Z(�x; �y) attaining (4),

q (�x) + r (�y) = s (�x; �y) = u (�x; �z)� v (�y; �z) ;

and we have
v (�y; �z) + r (�y) = P (�z) = u (�x; �z)� q (�x)

on the set T := f(�x; �y; �z) 2 X � Y � Z j �z 2 Z(�x; �y))g. Upper hemicontinuity
of Z(�x; �y) implies T is closed, while z0(�x; �y) 2 Z(�x; �y) implies Spt� � T . Our
choice (22) of price now yields

u (�x; z)� P (z) � q (�x) = u (�x; �z)� P (�z) 8 z 2 Z

and
P (z)� v (y; z) � r (�y) = P (�z)� v (�y; �z) 8 z 2 Z

so that �z maximizes both u (�x; z)�P (z) and P (z)�v (�y; z). Since the equalities
hold for (�x; �y; �z) in a set (S�Z)\ Spt� of full measure for �, we conclude that
(�; P ) is a market-clearing hedonic equilibrium pair.
The left side of (22) ; Pmax (z) ; is the minimum equilibrium willingness to

accept of all sellers in the market. No sellers will trade z unless P (z) � Pmax (z) :
The right side of (22) ; Pmin (z) ; is the maximum equilibrium willingness to pay
of all buyers. No buyers will trade z unless P (z) � Pmin (z) : When Pmax (z) >
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Pmin (z) no trade takes place. When Pmax (z) = Pmin (z) ; an exchange may be
made by the set of buyers and sellers who attain the in�mum and supremum.
The result implies that to any stable match corresponds an hedonic equi-

librium. Therefore, the existence result derived in the previous section has the
immediate, following consequence:

Corollary 3.4 The hedonic model described in Section 1 has an equilibrium.

It is important to note that existence obtains in a general context. No re-
striction is imposed on the dimension of the spaces at stake nor on the measures
describing the distributions of types. Both discrete and continuous distributions
are allowed. Moreover, no speci�c assumptions are made on u and v beyond the
standard ones. In particular, we do not assume any Spence-Mirrlees condition.
Our result thus establishes the existence of hedonic equilibria in a fully general
context.7

Finally, it is interesting to note that the converse is also true: to any hedonic
equilibrium, one can associate a stable match, as asserted by the following result:

Lemma 3.5 Let (�; P ) be a hedonic equilibrium pair. Then the indirect utilities
U (x) and V (y) from (7)�(8) minimize Kantorovich�s dual problem (16), while

 =

�
�X � �Y

�
#
� maximizes the primal problem (14). Here �X(x; y; z) = x

and �Y (x; y; z) = y.

Proof. First observe that equilibrium condition (9) states that 
 has � and
� for marginals, hence is a feasible competitor in the Monge-Kantorovich primal
program (14). The de�nitions (7) and (8) of U (x) and V (y) imply

U (x) + V (y) � u (x; z)� v (y; z) (23)

for all z 2 Z: Taking the supremum over z 2 Z implies that (U; V ) is a feasible
pair for the Kantorovich dual program (16). Moreover, equilibrium condition
(10) forces equality in (23) for �-a.e. (x; y; z) 2 Spt (�) ; hence

U(x) + V (y) = s(x; y):

The lower bounds U; V � 0 permit this to be integrated against �, yieldingZ
U (x) d� (x) +

Z
V (y) d� (y) =

Z
s (x; y) d
 (x; y) :

Hence 
 maximizes the primal program whilst the pair (U; V ) minimizes the
dual program.
In other words, the hedonic pricing problem with quasilinear utility, the sta-

ble matching problem with transferable utility and the optimal transportation

7Ekeland [12], [13] presents an alternative proof based on convex programming instead of
linear programming. Gretsky, Ostroy, and Zame [18] prove existence in a version of the model
in which sellers are endowed with z: That is, v(y; z) = +1 unless y = z, so seller utility is
simply v (z) :
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problem are equivalent; none is more nor less general than the others. Moreover,
approximate solutions can be computed using linear programming techniques.
This opens up the study of these problems in empirical settings in which the
type spaces are high dimensional, have both discrete and continuous elements,
and have di¤erent dimensions on the buyer and seller side of the market. More
work needs to be done to study these problems in these applied settings.
In theoretical settings, one obtains necessary and su¢ cient conditions for the

optimal assignment or the stable matching, now shown to exist, via the Kuhn-
Tucker conditions from linear programming. The form of these conditions in the
optimal transportation context is well-understood [33] [41]. In a suitably weak
topology, one could also show that the solution depends continuously on the
data in the sense that the limit of a sequence of solutions to di¤erent problems
is a solution of the limiting problem. However, to make concrete statements
about uniqueness of the solution or the form of the optimal measure 
; requires
additional structure on the problem. This is the topic of the next section.

4 Uniqueness and purity

4.1 Pure solutions

We consider two properties of the equilibrium, namely uniqueness and purity.
Gretsky, Ostroy and Zame [18] study whether the dual has unique solutions; i.e.
whether the equilibrium payo¤s to agents are unique, and derive a condition
equivalent to this in terms of di¤erentiability of the social gains function, the
value of the primal program. This gains function is endogenous. In the smooth
setting, we complement their result by giving su¢ cient conditions for uniqueness
of marginal payo¤s in terms of exogenous parameters of the hedonic model. We
then focus our attention on whether the measure describing the matching of
buyers to sellers is unique. Purity of the equilibrium is concerned with whether
the equilibrium strategies of buyers and sellers are pure or mixed. Intuitively, an
equilibrium is pure if (almost) all agents have a pure strategy at equilibrium - i.e.,
for each agent there exists one trading partner that she chooses with probability
one. In the opposite case of a non-pure equilibrium, a non-null set of agents
are either indi¤erent between several partners, or indi¤erent between action and
inaction; then equilibrium may require randomization or mixed strategies.
A couple of well-known examples illustrate these ideas. We start with a

standard situation in which the Spence-Mirrlees condition guarantees a unique,
pure equilibrium.

Example 4.1 (Positive assortative matching) Consider a hedonic economy
in which X0 = Y0 = Z0 � R: If s (x; y) is di¤erentiable and D2

xys (x; y) > 0;
then there is a unique equilibrium, it involves positive assortative matching, and
all but countably many agents have a pure strategy optimum. The same facts
are true if s (x; y) is supermodular. Both D2

xys (x; y) > 0 and supermodularity
of s (x; y) are versions of a Spence-Mirrlees or single-crossing condition.
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At the opposite end of the spectrum, we may have models in which a con-
tinuum of (pure and non-pure) equilibria exist:

Example 4.2 (Orthogonal surplus) Consider a plane, and let X0 be the in-
terval [0; 1] on the horizontal axis, and Y0 be the interval

�
� 1
2 ;

1
2

�
on the vertical

axis; both sets are equipped with the uniform distribution. Finally, consider the
surplus s (x; y) = 2� x2 � y2; i.e., any match generates a surplus of two, from
which a transportation cost equal to the distance between the two points is with-
drawn. Then the maximum aggregate surplus, equal to 5=12, is obtained by un-
countably many measures 
, including pure solutions (e.g., the uniform distribu-
tion over the graph of functions like f (x) = 1=2�x or f (x) = x�1=2) and non-
pure solutions (e.g. the uniform distribution over the square [0; 1]�

�
� 1
2 ;

1
2

�
).

These examples suggest interesting conclusions. First, additional restrictions
are clearly needed to guarantee either uniqueness or purity. In the �rst example,
a standard Spence-Mirrlees condition produces assortative matching, which in
turn guarantees uniqueness and purity. Note, however, that in this example (as
in the second one) the sets X0 and Y0 are one-dimensional.
When we move away from the one dimensional matching model, the concept

of assortative matching is not well-de�ned. In such economies, in which X0 and
Y0 are not subsets of the real line and the surplus s need not be di¤erentiable,
a condition more general than the Spence-Mirrlees conditions above is required.
In this section we recall such a condition. The generalized Spence-Mirrlees con-
dition (or �twist condition�, as it is known in the mathematics literature) is
su¢ cient for both uniqueness and purity. We develop a version of this con-
dition that is valid in general type spaces, does not require di¤erentiability of
the surplus function, allows for non-participation, and is not dependent on the
coordinates (i.e. the parametrization) of the problem. This condition also need
only apply to either the buyers or the sellers.
Finally, we emphasize that uniqueness and purity are di¤erent concepts.

For instance, a unique equilibrium may fail to be pure, as we illustrate in an
example. Therefore, we introduce a condition (called subtwist below) weaker
than generalized Spence-Mirrlees, and we show that this condition is su¢ cient
for uniqueness but not purity. Let us de�ne the concept of pure matchings
formally.

De�nition 4.3 (Pure) Let X = X0[f;Xg and Y = Y0[f;Y g be Borel subsets
of complete, separable metric spaces augmented with isolated points ;X , ;Y , and
equipped with Borel probability measures � and �. A feasible (but not necessarily
optimal) solution 
 2 �(�; �) to (MK) program (14) is pure if there exists a
function f : X0 �! Y such that 
 is concentrated on the graph of f , in the
sense that 
 assigns zero outer measure to the set f(x; y) 2 X0�Y j y 6= f(x)g.

In words, if the solution is pure, then there exists a well-de�ned function f
such that any x 2 X0 is matched with probability one to y = f(x). The set
of buyers who remain indi¤erent between action or inaction, or between two
or more preferred sellers, forms a set of measure zero; almost every buyer has
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a pure (as opposed to mixed) preference for whether he wishes to buy, and if
so from whom. Such a pure solution will entail a pure matching of buyers and
sellers to products if Z(x; f(x)) := argmax

z2Z
fu (x; z)� v (f (x) ; z)g is a singleton.

Note that most empirical studies consider only solutions which are pure, and
for which Z(x; f(x)) consists of a single contract (for � almost all x 2 X0).

4.2 A generalized Spence-Mirrlees (twist) condition

A standard tool in economic approaches of matching or hedonic problems is the
Spence-Mirrlees condition � also known as the twist condition in the mathe-
matics literature [41]. Though the Spence-Mirrlees conditions has been gener-
alized to multidimensional type spaces � see Gangbo [14], Carlier [8], or Ma,
Trudinger, and Wang [27] � one may notice that the vast majority of economic
studies still adopt a one-dimensional version of the condition.
Let us �rst specialize to the Lipschitz-buyer setting, meaning the space of

buyers X0 is an n-dimensional manifold (smooth without loss of generality), and
the surplus function s(x; y) and distribution d�0(x) of buyers enjoy a su¢ ciently
smooth dependence on x 2 X0, as we now make precise. We describe this set-
ting as Lipschitz-buyer to emphasize that Y0 and Z0 may or may not be smooth
manifolds, and could even be �nite spaces as when a continuum of buyers match
with �nitely many sellers. In this and subsequent de�nitions (of the twist and
subtwist conditions, and of numbered limb systems), we go to some trouble to
de�ne notions which are independent of local choices of coordinates on the man-
ifold X0. The reason for this is the following. Imagine a model which matches
workers with varying skill levels x 2 X0 with �rms which employ di¤erent tech-
nologies y 2 Y0. Obviously the skill level of the workers can be assessed (or
parameterized) in many di¤erent ways. However, the question of whether the
surplus function s(x; y) is Lipschitz, semiconvex, twisted or subtwisted should be
independent of the methodology used to assess the worker�s skill levels, at least
among methodologies which provide equivalent information. This principle of
parametrization independence also plays a striking role in the regularity theory
[25]. The reader may prefer to skip the formal de�nitions, consulting instead
the examples of relevance immediately thereafter.

De�nition 4.4 (Lipschitz and semiconvex functions) Let X0 be a smooth
n-dimensional manifold and X = X0 [ f;Xg. Then s : X � Y �! R is said
to be Lipschitz on X0 uniformly in Y if for each (nonmaximal) coordinate ball
BR � X0 n @X0, there is a constant CB depending on the coordinates and the
ball, but independent of y, such that all x; �x 2 BR satisfy

js(x; y)� s(�x; y)j � CBkx� �xk; (24)

where kx � �xk denotes the distance in coordinates. Similarly, s(x; y) is semi-
convex on X0 uniformly in Y if for each (nonmaximal) coordinate ball BR �
X0 n @X0, there is a constant CB depending on the coordinates and the ball, but
independent of y 2 Y , such that

x 2 BR �! s(x; y) + CBkxk2=2 (25)
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is a convex function in these coordinates. A function q : X �! R is said to be
Lipschitz on X0, or semiconvex on X0, if s(x; y) = q(x) independent of y 2 Y
satis�es the corresponding de�nitions above.

It might be appropriate to add the adjective local to the de�nitions of Lip-
schitz and semiconvex given above, but since di¤erentiable manifolds are de�ned
by local charts, there is no good de�nition for what it might mean for a func-
tion thereon to be globally Lipschitz, so we omit the adjective local for brevity
whenever we feel confusion cannot arise. For this purpose, we overlook the fact
that X0 was assumed to be a metric space at the outset.

De�nition 4.5 (Lipschitz-buyer and semiconvex-buyer settings) Let X0
be a smooth n-dimensional manifold and � a Borel probability measure on X :=
X0[f;Xg. The setting is Lipschitz-buyer if � concentrates no mass on subsets of
X0 which have zero volume, and if moreover the surplus function s 2 C(X�Y )
is locally Lipschitz on X0 uniformly in Y . Similarly, the setting is semiconvex-
buyer if � concentrates no mass on (C2-recti�able) hypersurfaces in X0, and if
the surplus function s 2 C(X �Y ) is locally semiconvex on X0 uniformly in Y .

As the next examples show, our model falls into the semiconvex-buyer setting
whenever the buyer�s utility u(x; z) or the surplus function s(x; z) is su¢ ciently
smooth. Although its description appears more technical, the semi-convex buyer
setting has the advantage that the measure �may be more concentrated than the
Lipschitz-buyer setting allows. In particular, a measure �0 on the interval X0 =
[0; 1] satis�es the semiconvex-buyer hypothesis as long as it assigns zero mass
�0(fxg) = 0 to each type x 2 [0; 1]; it need not be absolutely continuous with
respect to Lebesgue measure, as the Lipschitz-buyer hypothesis would require.
This improvement goes back to Gangbo and McCann [28] [16], though we also
exploit Veselý and Zajíµcek�s implicit function theorem for convex di¤erences
[38] to deduce that a semiconvex function q : X0 �! R must be di¤erentiable
everywhere outside of a C2-recti�able hypersurface in X0.

Example 4.6 (Lipschitz-buyer) If X0 is a smooth manifold and Y is com-
pact, any surplus function s(x; y) locally Lipschitz on X0�Y also satis�es (24).
Similarly if X0 is a smooth manifold, Z is compact, and v : Y � Z �! R
is arbitrary, any utility function u(x; z) locally Lipschitz on X0 � Z induces a
surplus (4) satisfying the Lipschitz-buyer hypothesis (24).

Example 4.7 (Semiconvex-buyer) If X0 is a smooth manifold and Y is
compact, any surplus function s 2 C2(X0 � Y ) also satis�es (25). If X0 is
a smooth manifold, Z is compact, and v : Y � Z �! R is arbitrary, any utility
function u 2 C2(X0 � Z) induces a surplus (4) satisfying the semiconvex-buyer
hypotheses, despite the fact that s(x; y) will not generally be di¤erentiable.

Although the surplus function (4) may fail to be di¤erentiable, the Lipschitz-
buyer setting guarantees the surplus s(x; y) is locally Lipschitz8 with respect to

8See Theorem 10.26 of [41]. The same technique validates the claims made in Examples
4.6�4.7.
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x 2 X0, with Lipschitz constant independent of y 2 Y . This in turn guaran-
tees any s-convex function q = q~ss will be locally Lipschitz on X0, hence (by
Rademacher�s theorem) di¤erentiable on a set DomDq � X0 of full measure.
The derivative Dq(x) is a vector in the cotangent space T �xX0 to X0 at the
point x 2 DomDq. Given q : X0 �! R locally Lipschitz, we de�ne its superdif-
ferential @q(x0) at x0 2 X0 to consist of the set of covectors w 2 T �x0X0 such
that

q(x) � q(x0) + hw; x� x0i+ o(jx� x0j) as x! x0: (26)

For �xed y 2 Y , we de�ne the superdi¤erential @xs(x0; y) � T �x0X of s(x; y)
with respect to x analogously.
Before proceeding, let us state a uniqueness proposition which does not

require further assumptions. This proposition asserts �-a.e. uniqueness of the
marginal payo¤Dq with respect to buyer type, which may or may not determine
the payo¤ q(x) uniquely depending on the connectivity properties of Spt�0 �
X0, and whether the participation constraint is active. Still, this proposition
yields a point of contact between our work and that of Gretsky, Ostroy and
Zame [19], by giving su¢ cient conditions on the measures and surplus function
to enforce their uniqueness hypothesis. Note however, in the absence of further
assumptions such as the twist condition from De�nition 4.9, our proof of this
proposition may not extend to the Lipschitz-buyer setting. Our proposition is
inspired by a pressure uniqueness result of Brenier concerning �uid mechanics
[6].

Proposition 4.8 (A semiconvex buyer�s marginal payo¤s are unique)
Let s : X � Y �! [0;1[ be de�ned on probability spaces (X;�) and (Y; �) in
the semiconvex-buyer setting. If both (q; r) and (~q; ~r) 2 Lips(�; �) minimize
(16), and both q and ~q are (locally) semiconvex, then Dq = D~q holds �-almost
everywhere on X n f;Xg.

Proof. Suppose (q; r) 2 Lips(�; �)minimizes (16). Then (21) implies q~s � r
hence (q; q~s) 2 Lips(�; �) also minimizes (16), and it costs no generality to
assume r = q~s as in Remark 3.2. Moreover, r is lower semicontinuous in (21)
by the continuity assumption s 2 C(X � Y ). Let

S := f(x; y) 2 X � Y j q(x) + r(y)� s(x; y) = 0g: (27)

denote the closed set where the lower semicontinuous non-negative function
q(x)+r(y)�s(x; y) vanishes. Since � concentrates no mass on the (C2 recti�able)
hypersurfaces where di¤erentiability of q fails, all joint measures 
 2 �(�; �)
assign full mass to R = DomDq�Y in the semiconvex-buyer setting, noting the
convention ;X 2 DomDq. Moreover, at least one optimizer 
 2 �(�; �) exists,
and its support is contained in the closed set S, according to Theorem 3.1.
IfX and Y are complete separable metric spaces, letK denote the �-compact

carrying the full mass of 
 provided e.g., by p. 255 of [11] or Theorem I-55 of
[40], so that � vanishes outside the �-compact projection of K \ Spt 
 through
�X . Now suppose x0 2 �X(K \ Spt 
) \ DomDq n f;Xg. Then there exists
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(x0; y0) 2 Spt 
 � S, whence the �rst-order condition for vanishing in (27)
implies superdi¤erentiability of s(x; y0) at x0 with Dq(x0) 2 @xs(x0; y0). On the
other hand, semiconvexity implies subdi¤erentiability and hence di¤erentiability
of x 2 X0 �! s(x; y0) at x0, and its super- and subdi¤erentials must both then
coincide with fDxs(x0; y0)g, as in [16]. Thus Dq(x0) = Dxs(x0; y0). Notice the
right hand side depends only on (x0; y0) 2 Spt 
 such that x0 2 �X(K\Spt 
)\
DomDq n f;Xg, and is otherwise independent of q. If a second semiconvex
function ~q minimized (16), we would similarly have D~q(x0) = Dxs(x0; y0) =
Dq(x0) on the set �X(K \ Spt 
) \ DomDq \ DomD~q of full �0 measure, to
establish the proposition.
If X and Y are merely Borel subsets of complete separable metric spaces,

we use their completions ~X and ~Y to �nd a �-compact set ~K � ~X \ ~Y carrying
the full mass of 
, and establish the result on the intersection of the �-compact
set � ~X( ~K \ SptS) with DomDq � X, which still carries the full mass of �.
We now state a generalization of the Spence-Mirrlees condition appropriate

to the Lipschitz-buyer setting.

De�nition 4.9 (Twisted-buyer condition) In the Lipschitz-buyer setting, a
surplus function s : X � Y �! [0;1[ is said to be twisted-buyer if there is a
set XL � X0 of zero volume such that @xs(x0; y1) is disjoint from @xs(x0; y2)
for all x0 2 X0 nXL and y1 6= y2 in Y .

Example 4.10 A surplus di¤erentiable with respect to x is twisted-buyer if and
only if there is a negligible set XL � X0 of buyers such that: for each distinct
pair of sellers, any critical points of the function x 2 X0 �! s(x; y1)� s(x; y2)
lie in XL.

For instance, the surplus function s(x; y) = 2 � jx � yj2 on disjoint open
sets X0; Y0 � Rn is both twisted-buyer and twisted-seller. We must insist on
disjointness of X0 and Y0 since for y 2 X0 the function x 2 X0 �! s(x; y) �
s(x; ;Y ) = 2�jx�yj2 has x = y as a critical point. This fact has been exploited
in matching problems with optional participation, as in Ca¤arelli & McCann
[7]. On the other hand, with the surplus function of Example 4.2, neither
the twisted-buyer nor the twisted-seller condition is satis�ed, since s(x; y1) �
s(x; y2) = (y2)

2 � (y1)2 does not depend on x.
The twisted-buyer condition has two consequences which are well-known

(see [8], [14], or [27]) provided that at equilibrium, participation is complete. It
guarantees the Monge-Kantorovich maximization (14) is attained by a unique
assignment 
 of buyers with sellers. Moreover, it also implies this unique max-
imizer is pure, meaning there is a mapping f : X ! Y de�ned �-almost every-
where such that 
 = (idX � f)#�. The following theorem con�rms that the
twisted-buyer condition formulated above guarantees uniqueness and purity of
the mixed solution even when the situation is complicated by the presence of
the isolated point ;X in X = X0 [ f;Xg representing the null buyer. The proof
makes use of Theorem A.3 from the Appendix which allows us to establish a
unique representation of the equilibrium measure simply by showing that almost
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all sellers have pure preferences at equilibrium. We recall the full proof not only
for the sake of completeness but to illustrate the e¢ cacy of Theorem A.3.

Theorem 4.11 (Twisted-buyers induce pure and unique assignments)
Let s : X � Y �! [0;1[ be a twisted-buyer surplus function, de�ned on proba-
bility spaces (X;�) and (Y; �) in either the Lipschitz-buyer or semiconvex-buyer
setting. Then the maximizer 
 of (14) on �(�; �) is unique. Moreover, there is a
�0 measurable map f : X0 �! Y such that 
 = 
0+
1 where 
1 = (idX0

�f)#�0
and 
0 = (;X � idY )#(� � �Y#
1).

Proof. Theorem 3.1 and Remark 3.2 provide a non-negative s-convex min-
imizing pair (q; r) = (rs; q~s) to the dual problem (16). Recall that q is then
locally Lipschitz on X0, by e.g. Theorem 10.26 [41], and r = q~s is Borel in (21)
by the continuity assumption s 2 C(X � Y ). The same theorem shows q to be
locally semiconvex in the semiconvex-buyer setting. Let

S := f(x; y) 2 X � Y j q(x) + r(y)� s(x; y) = 0g:

denote the Borel set where the non-negative function q(x) + r(y) � s(x; y)
vanishes. Since � concentrates no mass on subsets of zero volume and X0 n
DomDq has zero volume, all joint measures 
 2 �(�; �) assign full mass to
R = (DomDq n XL) � Y in the Lipschitz-buyer setting, with the convention
;X 2 DomDq. The same conclusion is true in the semiconvex-buyer setting,
since � is then assumed to vanish on the (C2-recti�able) hypersurface where
di¤erentiability of q fails. Moreover, all optimizers 
 2 �(�; �) vanish outside S,
according to Theorem 3.1. The remainder of the proof will be devoted to show-
ing that S \R is contained in a numbered limb system as de�ned in De�nition
A.2. Once this is established, Theorem A.3 asserts there is only one measure in
�(�; �) that vanishes outside S \R, hence the optimizer is unique.
Set I3 = X0, I2 = Y and I1 = f;Xg and I0 = ; = Dom f1. Set f2(y) = ;X

for all y 2 Dom f2 = Y . It remains only to show that �X(x; y) = x gives an
injective map from S3 := (S \ R) \ (X0 � Y ) to Dom f3 := �X(S3). Once this
injectivity has been shown, f3 can be de�ned to make idX � f3 : Dom f3 �!
S3 invert �X jS3 , and a comparison with De�nition A.2 then reveals that S is
contained in a numbered limb system. The �0-measurability of f3 : Dom f3 �!
Y and special form 
 = 
3 + 
2 with 
3 = (idX0 � f)#�0 and 
2 = (;X �
idY )#(� � �Y#
3) both follow from Theorem A.3.
To prove the required injectivity, suppose (x0; y1) and (x0; y2) both belong

to S3 � S \ R. The function q(x) + r(y)� s(x; y) � 0 vanishes at all points in
S, hence enjoys 0 as a subgradient there. If this function is di¤erentiable with
respect to x at x0 2 DomDq nXL, we have Dxs(x0; y1) = Dq(x) = Dxs(x0; y2);
otherwise Dq(x0) 2 @xs(x0; y1) \ @xs(x0; y2). In either case, the twisted-buyer
condition yields y1 = y2, whence �X is injective on S3 and the proof is complete.

As anticipated, the set (19) takes center stage in the foregoing analysis.
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4.3 Examples of twisted-buyer costs

Since the surplus depends on the utility functions, it is useful to have criteria
on u(x; z) and v(y; z) which guarantee s(x; y) is twisted. One such criterion is
given by the following example.

Example 4.12 Consider the Tinbergen (1956) model. Here, X = Y = Z = Rn

with u(x; z) = 1
2 (x� z)

0
A (x� z) and v(y; z) = 1

2 (y � z)
0
B (y � z) with A and

B symmetric and with A�B < 0. Then

s (x; y) =
1

2
(x0Ax� y0By)� 1

2
(Ax�By)0 (A�B)�1 (Ax�By)

and
Dx (s (x; y1)� s (x; y2)) = �

1

2
(A�B)�1B ((y1 � y2))A0:

This only equals zero when y1 = y2 so s (x; y) satis�es the both buyer and seller
twist condition.

In this model, the hedonic equilibrium is unique. Buyers�willingness to pay
is

WTP =
1

2
(x� z)0A (x� z)� q (x) :

If A < 0 and B > 0; buyers with smaller values of jx� zj are willing to pay
more for z and sellers with smaller values of jy � zj are willing to accept more.
The willingness to pay curves of di¤erent buyers never cross. The exact balance
of buyers and sellers across locations depends on the distributions of buyer and
seller types in the economy.
As a more general example in which the twist condition is satis�ed, consider

the following lemma.

Lemma 4.13 (Utilities yielding a twisted surplus) Let X0; Y0; Z0 � Rn

be open domains with X0 and Y0 convex. Take u 2 C2(X0 � Z0) and v 2
C2(Y0 � Z0) with Dxu(x; z) 6= 0 on X0 � Z0. For �0 � �0 a.e. (x; y); assume
Z(x; y) = argmaxz2Zfu(x; z)� v(y; z)g = fz0(x; y)g is a singleton, and for all
(x; y) 2 X0 � Y0 assume M +M t > 0, where

M = D2
xzu(x; z0)(D

2
zzu(x; z0)�D2

zzv(y; z0))
�1D2

zyv(y; z0)

and z0 = z0(x; y). Then s(x; y) satis�es the twisted-buyer condition.

Proof. Ignoring ;Z , the surplus function is given by

s(x; y) = max
z2Z0

fu(x; z)� v(y; z)g:

Since z0(x; y) is unique and on the interior of Z0 by assumption, and since u
and v are di¤erentiable, z0(x; y) satis�es

Dzu(x; z0)�Dzv(y; z0) = 0: (28)
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The envelope theorem then implies di¤erentiability of s at (x; y), and

Dxs(x; y) = Dxu(x; z0(x; y)): (29)

If for each x 2 X0; y 2 Y �! Dxs(x; y) is injective, then s(x; y) satis�es
the twist condition. Since Y is convex, a su¢ cient condition for this is the
positive (or negative) de�niteness of the quadratic form D2

xys(x; y). Since z0 =
z0(x; y) maximize surplus, D2

zzu(x; z0) � D2
zzv(y; z) � 0, and the inequality is

strict by hypothesis. The implicit function theorem then implies continuous
di¤erentiability of z0(x; y) in (28). Di¤erentiating (29) with respect to y yields

D2
xys(x; y) = D

2
xzu(x; z0(x; y))Dyz0(x; y); (30)

while di¤erentiating (28) with respect to y yields

(D2
zzu(x; z0)�D2

zzv(y; z0))Dyz0(x; y)�D2
zyv(y; z0) = 0: (31)

These combine to give

Dyz0(x; y) = (D
2
zzu(x; z0)�D2

zzv(y; z0))
�1D2

zyv(y; z0) (32)

which, substituted into (30) yields

D2
xys(x; y) = D

2
xzu(x; z0(x; y))(D

2
zzu(x; z0)�D2

zzv(y; z0))
�1D2

zyv(y; z0): (33)

By hypothesis, this matrix is positive de�nite as required.
When n > 1; this lemma gives the setting whose empirical properties are

studied in Heckman, Matzkin, and Nesheim [20]. When n = 1, this reduces to
the usual Spence-Mirrlees conditions D2

xzu 6= 0 6= D2
yzv on u and v separately

plus strict concavity with respect to z of the di¤erence u(x; z)� v(y; z).

4.4 The subtwist: a weaker condition for uniqueness

A priori, there does not seem to be any economic reason why the twist condition
should be expected to hold.9 Whether or not twisting is necessary to guarantee
purity of assignments for general measures �0 and �0 in the Lipschitz-buyer
setting is an open question. The good news, however, is that it is certainly not
necessary to guarantee uniqueness of the assignment 
. Though it is frequently
assumed to be satis�ed in applications where the spaces of buyers X0 and sellers
Y0 are subsets of Rn, this is not always the case. There are also important
settings where twisting cannot be satis�ed. Taking XL = ; for simplicity, no
di¤erentiable surplus function satis�es the twist condition on a compact space
X0 such as the circle or sphere Sn := fkxk2 = 1 j x 2 Rn+1g � or the
periodic cube Tn = Rn=Zn � since x 2 X0 �! s(x; y1) � s(x; y2) obviously
has critical points where its maximum and minimum are attained. If the buyers

9For many common economic models, the twist condition cannot actually hold. For in-
stance, it is typically violated in models of horizontal di¤erentiation on a circle (see Example
4.20 for an illustration).
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and sellers were distributed continuously over the surface of the planet or around
locations on an expressway encircling a city, there would be no hope of twisting.
This situation is not much improved by assuming XL non-empty: no surplus
s(Rx;Ry) = s(x; y) 2 C1(Sn�Sn) invariant under all rotations R of the sphere
X0 = Sn = Y0 can be twisted, since no negligible set XL 6= ; is rotationally
invariant. Similarly, no surplus s(x+k; y+k) = s(x; y) 2 C1(Tn�Tn) invariant
under all translations k 2 Rn can be twisted in the periodic setting. Clearly
there are topological obstructions to twisting. It is a fundamental open question
to understand when uniqueness of equilibria can be expected to persist in such
settings. We give a su¢ cient condition which resolves this question in settings
such as the circle and sphere � where x 2 X0 �! s(x; y1) � s(x; y2) has only
two critical points. This would not be the case in the periodic setting T2, and
we do not know a single example of a smooth surplus function for which the
(MK) solution to program (14) with �0 � vol can be expected to be unique in
this geometry.
The following theorem guarantees uniqueness of the optimal assignment 
.

Even when all buyers elect to participate, there are many examples where the
unique assignment will not be pure, meaning a positive fraction of buyers remain
indi¤erent between two or more preferred sellers at equilibrium.

De�nition 4.14 (Subtwist condition) In the Lipschitz-buyer setting, a sur-
plus function s : X � Y �! [0;1[ is said to be subtwisted if there is a set
XL � X0 of zero volume such that whenever @xs(x0; y1) intersects @xs(x0; y2)
for some x0 2 X0nXL and y1 6= y2 2 Y , then x0 is either the unique global max-
imum or the unique global minimum of s(x; y1) � s(x; y2) on X = X0 [ f;Xg.
The same de�nition applies in the semiconvex-buyer setting, except that XL
must then lie in a �-negligible set, such as a (C2-recti�able) hypersurface.

Example 4.15 A surplus di¤erentiable with respect to x is subtwisted if and
only if there is a negligible set XL � X0 of buyers such that: for each distinct
pair of sellers, x 2 X0 nXL �! s(x; y1)� s(x; y2) has no critical points except
for at most one global maximum and at most one global minimum.

Theorem 4.16 (Unique equilibria with mixed assignments) Let probabil-
ity spaces (X;�) and (Y; �) and a surplus function s(x; y) satisfy the subtwist
condition in the Lipschitz-buyer or semiconvex-buyer setting. Then the maxi-
mizer 
 of (14) is unique. Moreover, 
 is supported on a numbered limb system
with three limbs, as in De�nition A.2.

Proof. Theorem 3.1 and Remark 3.2 provide a non-negative s-convex min-
imizing pair (q; r) = (rs; q~s) to the dual problem (16). Recalling that �0 � vol
by hypothesis and that q is locally Lipschitz [41], let DomDq � f;Xg denote
the Borel subset of X with full �-measure where q is di¤erentiable. Even in the
semiconvex-buyer setting DomDq has full �-measure, because q is locally semi-
convex, hence di¤erentiable except on a C2 recti�able hypersurface, to which �0
assigns zero mass; (see footnote (1) of [16] and Theorem 10.26 of [41]). Taking
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XL � X0 as in the subtwist condition, let

S := f(x; y) 2 (DomDq \X nXL)� Y j q(x) + r(y)� s(x; y) = 0g

denote the set where the non-negative function q(x) + r(y) � s(x; y) vanishes.
Before embarking on the proof, recall any two equilibrium assignments (x; y)
and (x0; y0) in S satisfy

s(x; y0) + s(x0; y) � s(x; y) + s(x0; y0): (34)

This intuitive claim of Smith and Knott [36] dates partly back to Monge [30],
and can be deduced by summing the inequalities

0 � q(x0) + r(y)� s(x0; y) = q(x0) + s(x; y)� q(x)� s(x; y0)
0 � q(x) + r(y0)� s(x; y0) = q(x) + s(x0; y0)� q(x0)� s(x; y0):

All measures 
 with left marginal � assign full mass to (X\DomDqnXL)�Y ,
since XL is �-negligible as a consequence of the subtwist hypotheses. Theorem
3.1 asserts that all optimizers 
 2 �(�; �) vanish outside S, and by upper semi-
continuity of s(x; y) that at least one optimal measure 
 exists. The proof will
be complete if there exist maps f3 : Dom f3 �! X0 and f1 : Dom f1 �! f;Xg
on disjoint subsets of Y = (Dom f1) [ (Dom f3) and f2 : X0 �! Dom f1 such
that S � Antigraph(f1) [ Graph(f2) [ Antigraph(f3). Once this assertion is
established, the results follow immediately from Theorem A.3 after identifying
Ik = Dom(fk) for k = 0; 1; 2; 3, Dom f2 = X0 and Dom f0 = f;Xg.
A point (x1; y1) 2 S is said to be marked if x1 2 X0 and

s(x; y1)� s(x; y2) � s(x1; y1)� s(x1; y2) (35)

for all x 2 X and (x1; y2) 2 S. Let S1 � S denote the marked points in S,
and S2 = (X0 � Y ) \ S n S1 the unmarked points. We claim (x1; y1) 2 S2
and (x2; y1) 2 S forces x1 = x2; in other words, the part of S which projects
to Dom f3 := �Y (S2) lies in an antigraph of unmarked points. The proof of
this claim is inspired by the sole-supplier lemma [17]. Fix (x1; y1) 2 S2. Then
x1 2 X0 \DomDq nXL and q(x) + r(y)� s(x; y) � 0 is minimized at (x1; y1),
so the �rst order condition for a minimum implies Dq(x1) = Dxs(x1; y1) if the
latter exists, and Dq(x1) 2 @xs(x1; y1) in any case. Since (x1; y1) is unmarked,
there exist some (x1; y2) 2 S and x 2 X which violate (35). Obviously, Dq(x1) 2
@xs(x1; y2) so the superdi¤erentials of s intersect. The subtwist condition now
guarantees x1 is the unique maximizer of s(�; y1) � s(�; y2); it cannot be the
minimizer due to the presumed violation of (35). Any (x2; y1) 2 S therefore
satis�es s(x2; y1)� s(x2; y2) < s(x1; y1)� s(x1; y2), or else x2 = x1. The strict
inequality violates (34), establishing the claim x1 = x2.
On Dom f3 := �Y (S2) de�ne f3(y) := x for each (x; y) 2 S2. The preceding

claim shows the part of S which projects to Dom f3 coincides precisely with
Antigraph(f3) = S2. We next show that both (x1; y1) and (x1; y0) in S1 implies
y0 = y1, so S1 � Graph(f2), where f2 : X0 �! Y is de�ned by

f2(x1) =

�
y1 if (x1; y1) 2 S1;
;Y if no (x1; y1) 2 S1 exists:

(36)
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Before addressing this claim, note our de�nition of S2 � X0�Y ensures Ran f3 �
Dom f2 = X0. Also, as argued above, (x1; y1) 2 S n S2 precludes (x2; y1) 2 S2,
so (36) guarantees Ran f2 � Dom f1 := Y n Dom f3 after (;X ; ;Y ) 2 S n S2
is recalled. Finally, de�ning f1(y) := ;X ensures Ran f1 � Dom f0, where
Dom f0 := XnX0 = f;Xg. Also (x1; y1) 2 Sn(S1[S2) implies x1 = ;X = f1(y1)
while precluding (x2; y1) 2 S2, so y1 62 Dom f3 and Sn(S1[S2) � Antigraph(f1).
Since S2 = Antigraph(f3) and S1 � Graph(f2) we have veri�ed all the hy-

potheses for the unique representation of Theorem A.3 to apply. It remains
only to show f2(x1) is well-de�ned by (36). To reach a contradiction, sup-
pose (x1; y1) 6= (x1; y0) both belong to S1. According to (35), this means that
s(x; y1) � s(x; y0) and its negative s(x; y0) � s(x; y1) are both minimized at
x = x1. But then s(x; y1) � s(x; y0) = const independent of x, which violates
the subtwist condition since then @xs(x; y0) = f0g = @xs(x; y1) for all x 2 X.
We conclude f2(x1) is well-de�ned by (36) and the theorem established.

4.5 Circular assignment: example of a subtwisted cost

The preceding theorem generalizes results of Gangbo & McCann [17] and Ah-
mad [1]. A special case of these earlier results yields the following illustrative
example.

Example 4.17 (School districts on a ringroad) Consider a simple model
of spatial matching in which a continuum of students and a continuum of schools
are located at points on a circular expressway around a city. The pairwise surplus
from matching a student to a school is a decreasing function of distance due to
commuting costs; in particular, each student x would prefer to be matched to a
school with the same location as hers to minimize transportation expenses.
Formally, thus, let X0 = Y0 = S1 and s(x; y) = 1 + cos (2� (x� y)) where

each x represents a student and each y represents a school. The rate at which
the surplus decreases is increasing for jx � yj � 1

4 . However, it is decreasing
for 1

4 � jx � yj � 1
2 . Note that s (x; y) � 0; so that participation is complete.

Also, the model does not satisfy the twist condition. Indeed, the surplus s is
di¤erentiable, but for any (y1; y2) the function s (x; y1) � s (x; y2) admits x =
y1+y2
2 � 1

4 as critical points.
Now, assume �rst that � = �, meaning students and schools have the same

distribution on the circle. Then the unique solution of the primal surplus max-
imization problem would have support on the graph y = x: Every student would
travel a maximum distance of zero. Any pair (q; r) of non-negative constants
q(x) = q0 and r(y) = r0 such that q0 + r0 = 2 would solve the dual problem.
This is a case in which the assignment is unique and pure, despite the fact that
the twist condition does not apply. Note however, that the equilibrium price
(22) is not uniquely determined until a choice of utility transferred q0 2 [0; 2]
is made. This ambiguity in price would be resolved in scenarios where some
students or schools choose not to participate, either because of a net imbalance
between supply and demand, or due to a uniform increase in the commuting
costs.
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However, the model becomes much more interesting when the densities as-
sociated with � and � are di¤erent. Assume, in particular, that they are as
those given in Figure 1. Speci�cally, the distribution of students is concentrated
around x = 1

4 while the distribution of schools is concentrated around y =
3
4 :

That is, most of the students live on the north side of the city while most of the
schools are located on the south side. In this case, the optimal matching is still
unique; but it is very di¤erent from the previous case. Indeed, it is impossible
to match all students to a school near to their residence. The support of the
unique optimal measure is shown in Figure 2. All students x 2

�
0; 18

�
[
�
3
8 ; 1
�
;

are matched to a single school near to their home. For example, x = 0:1 is
matched to y = 0:867: All students x 2

�
1
8 ;

3
8

�
are matched to two schools; one

at a distance less than or equal to 1
4 and one at a distance greater than

1
4 . In the

equilibrium these students are indi¤erent between the two locations.10 In each
location, they obtain a surplus equal to q (x) : The surplus of the students and
schools are displayed in Figure 3. The students and schools that are in scarce
supply, x = 3

4 and y =
1
4 ; obtain the highest surplus. Those who are abundant,

x = 1
4 and y =

3
4 ; obtain the lowest. The optimal measure assigns a fraction of

each of the abundant students and schools to each of two locations, one less than
a distance of 1

4 , one greater than this distance. Because there is such a large
number of students near x = 1

4 and schools near y =
3
4 ; there is a social bene�t

from having some students travel a great distance. Technically, the measure 

on each branch is calculated as follows. Figure 2 depicts two limbs of a numbered
limb system:

y = f2 (x) for x 2 [0; 1] and y 2
�
5
8 ;

7
8

�
x = f3 (y) for y 2

�
0; 58

�
[
�
7
8 ; 1
�
:

The third limb f1 (y) :
�
5
8 ;

7
8

�
! f;Xg is not displayed. These limbs de�ne the

support of the optimal measure. The optimal measure is given by


3 = (f3 � idY )# �
���
Dom f3


2 = (idX � f2)#
�
�� �X#
3

����
Dom f2


1 = (f1 � idY )#
�
� � �Y#
2

����
Dom f1

= 0:

In the example, we see the matches (x; y) 2 X�Y0 between 
-a.e. participat-
ing pair can be found in the graph of one of two mappings g : Dom g � Y0 �! X
or f : Dom f � X0 �! Y0, with range of f disjoint from Dom g. This should
be contrasted with the Spence-Mirrlees (twisted) case, where the matches lie on
the graph of a single map f : X0 �! Y , à la Monge. It can also be compared
with the necessary and su¢ cient condition given in Corollary A.4 for a doubly
stochastic measure 
 2 �(�; �) on the square X0 = Y0 = [0; 1] to be extremal,
10The apparent indi¤erence of certain students to three or more schools is due to the limited

resolution of our computation in Figure 2. Otherwise, the solution would violate a theorem
of [17].
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which asserts that the support of 
 must lie in a numbered limb system, with
at most countably many limbs, much as in Hestir and Williams [21]. In our
theorem the system consists of two limbs, while in the twisted-buyer case it
consists of a single limb. We do not know of any convenient condition on the
surplus function which could lead to unique matches 
 concentrated on a sys-
tem with three or more numbered limbs. However, developments so far suggest
the maximal number of limbs must generally be linked to the complexity of the
(Morse) critical point structure of the function x 2 X0 �! s(x; y1)� s(x; y2).
Alternately, taking student assignments to schools to be �xed, Example 4.20

can parlayed into an example set on the periodic square T2 instead of the
circle, by allowing students without cars to contract with students who drive
to school to achieve desirable carpooling arrangements. There are then two
kinds of students, and the type space of each is two-dimensional, consisting of a
residential and a school location. In this case, topology forces even the subtwist
condition to fail, leaving uniqueness an unresolved issue for all surplus functions!

5 Multiple-agent contracts

The hedonic pricing and matching problems we have discussed admit a natural
generalization to the setting in which each contract z requires the participation
of k agents chosen from di¤erent type spaces (X1; �1), . . . , (Xk; �k) [9]. The
case k = 2 has been discussed above, but for k > 2 we assume the utility of
contract z 2 Z to agent x 2 Xi is given by an upper semicontinuous function
ui : Xi � Z �! R [ f�1g plus any compensation Pi(z) he receives. Thus the
indirect utility available to him is

Ui(x) = sup
z2Z

fui(x; z) + Pi(z)g;

with the usual convention �1+1 = �1. The payments Pi(z) are Borel and

assumed to satisfy a frictionless trading condition 0 =
kX
i=1

Pi(z) on Z which

prevents arbitrage and neglects friction. Payments corresponding to the null
contract must vanish Pi(;Z) = 0. As before, each type space Xi = X0

i [ f;ig
includes an isolated dummy agent type of mass

�i(;i) = 1 +
X
j 6=i

�j(X
0
j );

and satis�es

ui(x; z) =

�
0 if z = ;Z and x 2 Xi;
�1 if z 2 Z n f;Zg and x = ;i:

(37)

A joint measure � on X1 � � � � � Xk � Z together with frictionless payment
schedules Pi : Z �! R[f�1g represent a market clearing equilibrium if it has
marginals �Xi

# � = �i for each i = 1; : : : ; k, and

Ui(xi) = ui(xi; z) + Pi(z)
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holds for each i = 1; : : : ; k and �-a.e. (x1; : : : ; xk; z) 2 Spt�.
De�ne the non-negative surplus function

s(x1; : : : ; xk) = max
z2Z

kX
i=1

ui(xi; z):

The same arguments presented above show equivalence of this hedonic pricing
problem to the linear program

max



[s];

where the maximum is taken over all joint measures 
 � 0 on X1 � � � � � Xk
having prescribed marginals �i = �

Xi

# 
. The dual in�mum

min
qi:Xi�![0;1]

kX
i=1

�i[qi] (38)

is taken over functions qi satisfying s(x1; : : : ; xk) �
Pk

i=1 qi(xi) onX1�� � ��Xk,
normalized so q1(;1) = 0. Duality still holds 
[s] �

P
�i[qi], with equality if and

only if 
 is a maximizer and (q1; : : : ; qk) minimizes. As before, it follows from
q1(;1) = 0 that qi(;i) = 0 for each i � k. The existence and characterization of
maximizers, minimizers, and equilibria is identical, but the literature exploring
conditions on the surplus which guarantee uniqueness of the maximizing assign-
ment or assortative matching is much more limited in the multiple marginal
case; see [33] [15] for references. Let us only observe that the uniqueness of
marginal payo¤s proved in Proposition 4.8 extends immediately to the multiple
agent problem. Thus if �1 vanishes on all (C

2-recti�able) hypersurfaces of a
smooth manifold X0

1 := X1 n f;1g, and the surplus function s 2 C(X1� : : : Xk)
is semiconvex on X0

1 , uniformly in the other k � 1 variables, and (q1; : : : ; qk)
minimizes (38) with q1 semiconvex, then Dq1 is uniquely determined �1 almost
everywhere on X0

1 .

A Supports of extremal doubly stochastic mea-
sures

A characterization of extremal doubly stochastic measures in terms of their sup-
ports has been sought [5, Problem 111] since Birkho¤ and von-Neumann solved
the analogous �nite dimensional problem by characterizing extremal doubly
stochastic matrices as permutations [4] [42]. Signi�cant progress was made by
Bene� and St¼epán, who gave a condition on the support of a doubly stochas-
tic measure necessary for the measure to be extremal [3]. Hestir and Williams
re�ned this condition, showing that it becomes su¢ cient under an additional
Borel measurability hypothesis which unfortunately, is not always satis�ed [21].
In this appendix we complete this line of research by closing the gap between
the preceding results, showing just enough measurability is built into the prob-
lem to derive a simultaneously necessary and su¢ cient condition on the support
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of a doubly stochastic measure to guarantee extremality. Our improvement is
achieved using Villani�s argument from Theorem 5.28 [41].
An important property of pure solutions is that the equilibrium is uniquely

determined by the pro�le of buyers and their strategies. Speci�cally, the fol-
lowing technical result improves Lemma 2.4 of [17], allowing us to establish a
unique representation of the equilibrium measure simply by showing that al-
most all sellers have pure preferences at equilibrium. The same lemma will
also be used to remove the measurability hypothesis which distinguishes Hestir
and Williams�necessary condition from their su¢ cient condition for a doubly
stochastic measure on the square to be extremal [21]. Indeed, from their work
it follows that although pure measures are extremal in �(�; �), the converse is
far from being true; this peculiarity is an inevitable feature of continuous type
spaces X.

Lemma A.1 (Pure measures are push-forwards) Let X0 and Y0 be Borel
subsets of complete separable metric spaces, and 
 � 0 a �-�nite Borel measure
on the product space X0�Y0. Denote the left marginal of 
 by �0 := �X0

# 
. If 

is concentrated on the graph of f : X0 �! Y0, meaning f(x; y) 2 X0 � Y0 j y 6=
f(x)g has zero outer measure, then f is �0-measurable and 
 = (idX0

� f)#�0.

Proof. Since outer-measure is subadditive, it costs no generality to assume
the Borel subsets X0 and Y0 are in fact complete and separable. Any �-�nite
Borel measure 
 is regular and �-compact on a complete separable metric space;
e.g. p. 255 of [11] or Theorem I-55 of [40]. Since 
 vanishes outside Graph(f) :=
f(x; f(x)) j x 2 X0g, there is an increasing sequence of compact sets Ki �
Ki+1 � Graph(f) whose union K1 = limi!1Ki contains the full mass of

. Compactness of Ki � graph(f) implies continuity of f on the compact
projection Xi := �X(Ki). Thus the restriction f1 of f to X1 := �X(K1) is
a Borel map whose graph K1 = Graph(f1) is a �-compact set of full measure
for 
. We now verify that 
 and (idX1 � f1)#�0 assign the same mass to each
Borel rectangle U�V � X0�Y0. Since (U�V )\Graph(f1) = ((U\f�11 (V ))�
Y0) \Graph(f1) we �nd


(U � V ) = 
((U \ f�11 (V ))� Y0)
= �0(U \ f�11 (V ));

proving 
 = (idX1 � f1)#�0. Taking U = X0 n X1 and V = Y0 shows
X0 nX1 is �0-negligible. Since idX0 � f di¤ers from the Borel map idX1 � f1
only on the �0-negligible complement of the �-compact set X1, we conclude f
is �0-measurable and 
 = (idX0

� f)#�0 as desired.
The preceding lemma shows that any measure is concentrated on a graph

is uniquely determined by its marginals. This would be the case for optimal
measures in the twisted-buyer setting. Uniqueness, however, does not require
the twist condition to be satis�ed; as the next result demonstrates, the su¢ cient
condition given by Theorem 4.11 is far from necessary for uniqueness of the
equilibrium.

28



Given a map f : D �! Y on D � X, we denote its graph, domain, range,
and the graph of its (multivalued) inverse by

Graph(f) := f(x; f(x)) j x 2 Dg;
Dom f := �X(Graph(f)) = D;

Ran f := �Y (Graph(f));

Antigraph(f) := f(f(x); x) j x 2 Dom fg � Y �X:

More typically, we will be interested in the Antigraph(g) � X � Y of a map
g : D � Y �! X. Following Hestir and Williams [21] we de�ne:

De�nition A.2 (Numbered limb system) Let X0 and Y0 be Borel subsets
of complete separable metric spaces. A relation S � X0�Y0 is a numbered limb
system if there is a countable disjoint decomposition of X0 = [1i=0I2i+1 and of
Y0 = [1i=0I2i with a sequence of maps f2i : Dom(f2i) � X0 �! Y0 and f2i+1 :
Dom(f2i+1) � Y0 �! X0 such that S = [1i=1Graph(f2i) [ Antigraph(f2i�1),
with Dom(fk) [ Ran(fk+1) � Ik for each k � 0. The system has (at most) N
limbs if Dom(fk) = ; for all k > N .

Notice the map f0 is irrelevant to this de�nition; we may always takeDom(f0) =
;, but require Ran(f1) � I0. The point is the following theorem and its corol-
lary, which improves the results proved by Hestir and Williams for Lebesgue
measure �0 = �0 = � on the interval X0 = Y0 = [0; 1], as well as extending
them to other spaces.

Theorem A.3 (Numbered limb systems support unique equilibria) Let
X0 and Y0 be Borel subsets of complete separable metric spaces, and 
 � 0 a
�-�nite Borel measure on the product space X0 � Y0. Denote the marginal pro-
jections of 
 by � := �X0

# 
 and � := �Y0# 
. Suppose there is a numbered limb
system S = [1i=1Graph(f2i) [ Antigraph(f2i�1) whose complement has zero
outer measure for 
. If the system has �nitely many limbs or 
[X0 � Y0] <1,
then 
 is uniquely determined by S, � and �. In fact, 
 =

P1
k=1 
k where


2i = (idX0
� f2i)#�2i; 
2i�1 = (f2i�1 � idY0)#�2i�1; (39)

�2i =
�
�� �X0

# 
2i+1

����
Dom f2i

; �2i�1 =
�
� � �Y0# 
2i

����
Dom f2i�1

: (40)

Here fk is measurable with respect to the �k completion of the Borel �-algebra.
If the system has N < 1 limbs, 
k = 0 for k > N , and �k and 
k can be
computed recursively from the formulae above starting from k = N .

Proof. Let S = [1i=1Graph(f2i)[Antigraph(f2i�1) be a limb numbered tree
system whose complement has zero outer measure for 
. This means that Ik =
Dom fk gives a disjoint decomposition of X0 = [1i=0I2i and of Y0 = [1i=0I2i+1,
and that Ran(fk) � Dom(fk�1) for each k � 1. The graphs Graph(f2i) are dis-
joint since their domains I2i are disjoint, and the antigraphs Antigraph(f2i�1)
are disjoint since their domains I2i�1 are. Moreover, Graph(f2i) is disjoint from
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Antigraph(f2j�1) for all i; j � 1: Ran(f2i) � Dom(f2i�1) prevents Graph(f2i)
from intersecting Antigraph(f2j�1) unless j = i since the domains I2j�1 are
disjoint, and Graph(f2i) cannot intersect Antigraph(f2i�1) since Dom(f2i) is
disjoint from Ran(f2i�1) � Dom(f2i�2). As in the preceding lemma, the Borel
regularity of 
 implies the existence of compact sets Kj

k � (Anti)Graph(fk) such
that the outer measure 
((Anti)Graph(fk)nKj

k) < 2
�k�j . Here (Anti)Graph(fk)

denotes a graph if k is even and an antigraph if k is odd. Setting K1
k = [1j=1K

j
k

yields a collection of �-compact sets whose union K1 = [1k=1K1
k exhausts the

measure of 
. Letting 
k = 
jK1
k
, denote the restriction of 
 toK1

k , disjointness
of K1

k � (Anti)Graph(fk) yields 
 =
P1

k=1 
k. De�ning the marginal projec-
tions �k = �

X0

# 
k, �k = �
Y0
# 
k, �2i = �2i and �2i�1 = �2i�1, we recover (39) and

the �k-measurability of fk immediately from Lemma A.1. Since �2i vanishes
outside Dom f2i, we see �2i = (� �

P
k 6=2i �k)jDom f2i . For k even, �k vanishes

outside Dom(fk), while for k odd, �k vanishes outside Ran fk � Dom(fk�1),
which is disjoint from Dom f2i unless k = 2i+1. Thus �2i = (���2i+1)jDom f2i .
The formula (40) for �2i�1 follows from similar considerations.
It remains to show the representation (39)�(40) speci�es (
k; �k) uniquely for

all k � 1, and hence determines 
 =
P

k uniquely. If the system has N < 1

limbs, Ik = ; for k > N and hence 
k = 0. We can compute �k and 
k starting
with k = N , and then recursively from the formulae above for k = N � 1; N �
2; : : : ; 1, so the formulae represent 
 uniquely. If instead S has countably many
limbs, suppose there are two �nite Borel measures 
 and �
 concentrated on S
with the same marginals � and �. Expand the compact sets Kj

k if necessary,
to ensures the union K1

k exhausts both 
 and �
 on (Anti)Graph(fk). Given
� > 0, take N large enough so that both 
 and �
 assign mass less than � to
[1k=NK1

k . Setting 
k = 
jKk
and �
k = �
jKk

, we �nd both 
� :=
PN

k=1 
k
and �
� :=

PN
k=1 �
k are concentrated on the same numbered limb system; it has

�nitely many limbs, and the di¤erences ��� = �X0

# (�
� � 
�) and ��� = ��� � ��
between their marginals have total variation at most 2�. Since the restrictions
���2i = ���jDom f2i are disjoint, as are ��

�
2i�1 = ���jDom f2i�1 , we �nd the sum

of the total variations of

���k :=

�
���k � ��k k even;
���k � ��k k odd;

is bounded:
PN

k=1 k��kkTV (Dom fk) < 4�. Using (39) to derive

k�
�k � 
�kkTV (X0�Y0) =

�
k(idX0

� fk)#��kkTV (X0�Y0) k even;
k(fk � idY0)#��kkTV (X0�Y0) k odd;

= k��kkTV (Dom fk)

and summing on k yields k�
� � 
�kTV (X0�Y0) < 4�. Since 

� ! 
 and �
� ! �


as �! 0, we conclude �
 = 
 to complete the uniqueness proof.

Corollary A.4 (Characterizing extremal doubly stochastic measures)
Fix X0 = Y0 = [0; 1] and a Borel probability measure 
 � 0 on the square
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[0; 1]
2 whose marginal projections both coincide with Lebesgue measure �X0

# 
 =

� = �Y0# 
: Then 
 is extremal in the convex set � (�; �) of probability mea-
sures with the same marginals, if and only if there is a numbered limb system
S = [1i=1Graph (f2i) [ Antigraph (f2i�1) � [0; 1]

2 whose complement has zero
outer measure for 
:

Proof. First suppose 
 2 �(�; �) is an extreme point, meaning it cannot
be expressed as a convex combination 
 = (1� t)
0 + t
1 of measures 
0; 
1 2
�(�; �) with 0 < t < 1 unless 
0 = 
1. In this case Hestir and Williams
[21] deduced the existence of a numbered limb system S � X0 � Y0 whose
complement has zero outer measure for 
 from the work of Douglas [10] and
Lindenstrauss [26].
To prove the converse, we shall suppose such a numbered limb system exists

and deduce the extremality of 
. Let 
 = (1� t)
0 + t
1 with 
0; 
1 2 �(�; �)
and 0 < t < 1. Then 
 � 
0 and 
 � 
1, so 
0 and 
1 both assign zero outer
measure to S. According to Theorem A.3, they are uniquely determined by S
and their marginals, hence 
0 = 
1 and the corollary is proved.
Standard measure-space isomorphism results extend the support characteri-

zation of extremality, given by this corollary, to probability measures with �xed
marginals � and � on Borel subsets of complete separable metric spaces.

B Computation

We use Example 4.17 to illustrate our computational algorithm for approximat-
ing solutions to the optimal transportation problem. In this example the surplus
function is

s (x; y) = 1 + cos (2� jx� yj)

and the densities of x and y are depicted in Figure 1. The densities of x and y
are periodic, bounded away from zero and symmetric with modes at 1

4 and
3
4

respectively.
To discretize the problem, we search for solutions to the dual in a space of

periodic cubic spline functions.11 De�ne

Sn3 =

8<:f (x)
������f (x) =

n+2X
j=1

ajSj (x) for a 2 A :

9=;
where Sj (x) is the j�th B-spline of degree three and

A =

8<:a 2 Rn

������
f (0; a) = f (1; a)

Df (0; a) = Df (1; a)
D2f (0; a) = D2f (1; a)

9=; :
11We also used Fourier series. In this example, the spline basis functions produced more

stable and more accurate approximations for a given number of terms in the approximation.
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Then Sn � C2 [0; 1] is the space of periodic cubic spline functions with n knots
in [0; 1] : The set A is a linear subspace of Rn and Sn is a linear subspace of the
standard spline space de�ned on [0; 1] :12

Rather than solve the linear program directly, we solve the following:

min
q;r2Sn

Z
q (x; a) d�+

Z
r (y; b) d�

subject to

q (x; a) � max
y2Y

s (x; y)� r (y; b) for x 2 fx1; :::; xng

r (y; a) � max
x2X

s (x; y)� q (x; a) for y 2 fy1; :::; yng :

This method has several bene�ts. First, the resulting solutions are nearly s-
convex and ~s-convex. Second, the discretization has 2n nonlinear constraints
rather than the n2 linear constraints that would result from a pointwise dis-
cretization of the dual linear program constraints. Moreover, the algorithm
concentrates computational e¤ort on regions of X� Y where the constraints
are binding, that is near the zero set

S = f(x; y) jq (x; a) + r (y; b) = s (x; y)g :

Finally, the algorithm produces an estimate of the support of the measure 

that maximizes the primal problem. For each x; this set valued map is

y = m (x) = argmax
�y2Y

s (x; �y)� r (�y; b) :

The approximate solutions depicted in Figures 3 and 2 were computed n = 7
equally spaced knots on the interval [0; 1] :
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Figure 1: Densities of students and schools on the circle in Example 4.17
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Figure 2: Numerical support of optimal assignment in Example 4.17
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Figure 3: Indirect utilities of students and schools computed numerically
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