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Abstract

It is common practice in econometrics to correct for heteroskedasticity. This
paper corrects instrumental variables estimators with many instruments for het-
eroskedasticity. We give heteroskedasticity robust versions of the limited infor-
mation maximum likelihood (LIML) and Fuller (1977, FULL) estimators; as well
as heteroskedasticity consistent standard errors thereof. The estimators are based
on removing the own observation terms in the numerator of the LIML variance
ratio. We derive asymptotic properties of the estimators under many and many
weak instruments setups. Based on a series of Monte Carlo experiments, we find
that the estimators perform as well as LIML or FULL under homoskedasticity, and
have much lower bias and dispersion under heteroskedasticity, in nearly all cases
considered.
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1 Introduction

It is common practice in econometrics to correct standard errors for heteroskedasticity.
A leading example of such correction is least squares with heteroskedasticity consistent
standard errors, which is ubiquitous. Additionally, two-stage least squares (2SLS) with
heteroskedasticity consistent standard errors is often used, in exactly identified models.
However, such corrections seem not to be available for the Fuller (1977, FULL) and lim-
ited information maximum likelihood (LIML) estimators, in overidentified models. This
perhaps surprising, given that FULL and LIML have better properties than 2SLS (see
e.g. Hahn and Inoue (2002), Hahn and Hausman (2002), and Hansen, Hausman, and
Newey, (2007)). The purpose of this paper is to correct these methods for heteroskedas-
ticity under many instruments, and we shall see that it is necessary to correct both the
estimators and the standard errors.

LIML and FULL are inconsistent with many instruments and heteroskedasticity, as
pointed out for the case of dummy instruments and LIML by Bekker and van der Ploeg
(2005), and more generally by Chao and Swanson (2004).! Here we give a general charac-
terization of this inconsistency. More importantly, we propose heteroskedasticity robust
versions of FULL and LIML, namely HFUL and HLIM, respectively. HLIM is a jackknife
version of LIML that deletes own observation terms in the numerator of the variance ra-
tio; and like LIML, HLIM is invariant to normalization. Also, HLIM can be interpreted
as a linear combination of forward and reverse jackknife instrumental variable (JIV)
estimators, analogous to Hahn and Hausman’s (2002) interpretation of LIML as a lin-
ear combination of forward and reverse Nagar estimators. For each estimator we also
give heteroskedasticity consistent standard errors that adjust for the presence of many
instruments.

We show that HLIM and HFUL are as efficient as FULL and LIML under homoskedas-
ticity and the many weak instruments sequence of Chao and Swanson (2005) and Stock

and Yogo (2005). Under the many instruments sequence of Kunitomo (1980) and Bekker

See also Ackerberg and Devereux (2003).



(1994) we show that HLIM may be more or less efficient than LIML. We argue that these
efficiency differences will tend to be small in most applications, where the number of
instrumental variables is small relative to the sample size.

The HFUL and HLIM estimators and their associated standard errors are quite simple
to compute. However, similarly to least squares not being efficient under heteroskedas-
ticity, HFUL and HLIM are also not efficient under heteroskedasticity and many instru-
ments. Recent results of Newey and Windmeijer (2007) suggest that the continuous
updating estimator (CUE) of Hansen, Heaton, and Yaron (1996) and other generalized
empirical likelihood estimators (see e.g. Smith (1997)) are efficient. These estimators
are quite difficult to compute, though. To address this problem, we give a linearized,
jackknife version of the continuous updating estimator that is easier to compute, and for
which HLIM provides simple starting values. In Monte Carlo work we do not find much
advantage to using the CUE, and no advantage to using its linearized version, relative
to HFUL and HLIM.

One important precedent to the research discussed in this paper is Hahn and Hausman
(2002), who considered combining forward and reverse IV estimators. JIV estimators
were proposed by Phillips and Hale (1977), Blomquist and Dahlberg (1999), Angrist and
Imbens and Krueger (1999), and Ackerberg and Deveraux (2003). Chao and Swanson
(2004) have previously given heteroskedasticity consistent standard errors and shown
asymptotic normality for JIV, under many weak instruments. Newey and Windmeijer
(2007) considered efficiency of IV estimators with heteroskedasticity and many weak
instruments.

In a series of Monte Carlo experiments, we show that the HFUL and HLIM are
approximately as efficient as LIML under homoskedasticity, unlike the JIV estimator,
that was shown to perform poorly relative to LIML by Davidson and MacKinnon (2006).
Also, HFUL has less bias and dispersion than FULL in most of the cases that we consider,
under heteroskedasticity. These results suggest that the new estimators are promising
heteroskedasticity robust and efficient alternatives to FULL, LIML, and other estimators,

under many instruments.



The rest of the paper is organized as follows. In the next section, the model is
outlined, and previous estimators are summarized. In Section 3, heteroskedasticity robust
LIML and FULL estimators are presented; while Section 4 discusses efficiency of these
estimators. Section 5 outlines how to use the same jackknifing approach used in the
construction of HLIM and HFUL in order to construct a robust CUE. Asymptotic theory
is gathered in Section 6, and Monte Carlo findings are presented in Section 7. All proofs

are gathered in Section 8.

2 The Model and Previous Estimators

The model we consider is given by

ngl - n§GG5£1+n§17
X = T4U,

where n is the number of observations, GG is the number of right-hand side variables, T
is a matrix of observations on the reduced form, and U is the matrix of reduced form
disturbances. For our asymptotic approximations, the elements of T will be implicitly
allowed to depend on n, although we suppress dependence of T on n for notational
convenience. Estimation of dy will be based on an n x K matrix, Z, of instrumental
variable observations with rank(Z) = K. We will assume that Z is nonrandom and that
observations (¢;,U;) are independent across ¢ and have mean zero.

This model allows for T to be a linear combination of Z, i.e. T = Zr for some K x G
matrix 7. Furthermore, some columns of X may be exogenous, with the correspond-
ing column of U being zero. The model also allows for Z to approximate the reduced
form. For example, let X/, T}, and Z! denote the i'® row (observation) of X, T, and
Z respectively. We could define T; = fo(w;) to be a vector of unknown functions of a
vector w; of underlying instruments, and Z; = (p1x(w;), ..., P (w;))’ for approximating
functions pyx(w), such as power series or splines. In this case, linear combinations of Z;

may approximate the unknown reduced form (e.g. as in Donald and Newey (2001)).
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To describe estimators in the extant literature, let P = Z(Z'Z)~'Z'. The LIML
estimator, 0%, is given by

e (y - X6) Py — X0)
o —argméan (0),Q*(0) = (y— X0)(y — X0)

FULL is obtained as
0* = (X'PX — &*X'X) Y (X'Py — &* X'y),

for &* = [a* — (1 — &*)C/T/[1 — (1 — &*)C/T), & = Q*(0*), and C' > 0. FULL has
moments of all orders, is approximately mean unbiased for C' = 1, and is second order
admissible for C' > 4, under homoskedasticity and standard large sample asymptotics.

Both LIML and FULL are members of a class of estimators of the form
0" = (X'PX — &*X'X) (X' Py — &* X'y).

For example, LIML has this form for &* = a*, FULL for &* = &*, and 2SLS for &* = 0.

We can use the objective functions that these estimators minimize in order to char-
acterize the problem with heteroskedasticity and many instruments. If the limit of the
objective function is not minimized at the true parameter, then the estimator will not
be consistent. For expository purposes, first consider 2SLS, which has the following
objective function
Qas15(6) = (y— X0) P(y—X08)/n="> (v — X[6) Py (y; — X;0)/n+ Y _ Pulyi— X[0)*/n.

i3] i=1
This objective function is a quadratic form that, like a sample average, will be close to
its expectation in large samples. Its expectation is
B |Qas1s(0)] = (0= 00) S TPy Y50 = do)/n+ 3 Pukll(ys = X[6)%)/m
i#j i=1

Asymptotically, the first term following the above equality will be minimized at dy, under
certain regularity conditions. The second term is an expected squared residual that will

not be minimized at d; due to endogeneity. With many instruments
Pii - 07

[4]



so that the second term does not vanish asymptotically. Hence, with many instruments,
2SLS is not consistent, even under homoskedasticity, as pointed out by Bekker (1994).
For LIML, we can (asymptotically) replace the objective function, Q*(5), with a

corresponding ratio of expectations giving

Blly - X0 Py~ X3)] (6= o) S PyTTS6— ) S0 Publ(ys — X[6)7)
El(y — X6) (y — X0)] >oiy El(yi — X[6)?] S By — X[6)3

Here, we again see that the first term following the equality will be minimized at g

asymptotically. Under heteroskedasticity, the second term may not have a critical value

at &, and so the objective function will not be minimized at dy. To see this let 02 = F[e?],

7 = E[Xie]/o?, and 7 = Y0, E[Xie]/ Y0, 02 = Y, 7102/ Yo, 0. Then

0 > iy PiEl(yi — Xid)?] - - - 5

=5 = == PiE[Xei| = )  Pioi7y

96 >y El(y — Xi0)?] 5=50 > i 07 ; Zz:;

=23 Pilyi =)o} — 5
Zz:l - (72 7) —2001)02( “’,%)
> ie1 0

where COU;(E, ~;) is the covariance between Pj; and +;, for the distribution with prob-

ability weight o2/ > "

o for the i"" observation. When

—

lim COU02 (Pua ,YZ) 7£ Oa

n——aoo

the objective function will not have zero derivative at dy asymptotically so that it is not
minimized at dg. When this covariance does have a zero limit then it can be shown that
the ratio of expectations will be minimized at dy as long as for Q; = E[U,;U]] the matrix
(1— izl i n o )ZTT’/nJrZPMQ/n— S Rl oiP ZQ/n
7, 1 z 7, 1 ’L i=1

has a positive definite limit. For the homoskedastic case it is known that LIML is
consistent under many or many weak instruments (see e.g. Bekker (1994) and Chao
and Swanson (2005)).

Note that Cov,2(Py,7;) = 0, when either «; or P;; does not depend on i. Thus, it
is variation in v; = F[X;e;]/0?, the coefficients from the projection of X; on ¢;, that

leads to inconsistency of LIML, and not just any heteroskedasticity. Also, the case where

5]



P;; is constant occurs with dummy instruments and equal group sizes. It was pointed
out by Bekker and van der Ploeg (2005) that LIML is consistent in this case, under
heteroskedasticity.

LIML is inconsistent when P;; = Z!(Z'Z)~'Z; (roughly speaking this is the size of the
i" instrument observation) is correlated with ;. This can easily happen when (say) there
is more heteroskedasticity in 02 than F[X;e;]. Bekker and van der Ploeg (2005) and Chao
and Swanson (2004) pointed out that LIML can be inconsistent with heteroskedasticity;
but this appears to be the first statement of the critical condition that COUUT(E, vi) =0
for consistency of LIML.

The lack of consistency of these estimators under many instruments and heteroskedas-
ticity can be attributed to the presence of the i = j terms in their objective functions.
The estimators can be made robust to heteroskedasticity by dropping these terms. Doing

this for 2SLS gives
0 = arg min > (v — X[0)Py(y; — X}6)/n

Solving for § gives X
5= (Z XiBjX§> > XiPyy;.
i#] i#]

This is the JIV2 estimator of Angrist, Imbens, and Krueger (1994). Because the nor-
mal equations remove the ¢ = j terms, this estimator is consistent. It was pointed out
by Ackerberg and Devereux (2003) and Chao and Swanson (2004) that this estimator
is consistent under many weak instruments and heteroskedasticity. However, under ho-
moskedasticity and many weak instruments, this estimator is not efficient; and Davidson
and MacKinnon (2006) argued that it additionally has inferior small sample properties
under homoskedasticity, when compared with LIML. The estimators that we give over-

come these problems.



3 Heteroskedasticity Robust LIML and FULL

The heteroskedasticity robust LIML estimator (HLIM) is obtained by dropping the i = j

terms from the numerator of the LIML objective function, so that

) o (W — Xi0) Py (y; — X50
0 = argmin Q(4), Q(9) = Z#Jéz — X(S)’)(y —(yX5) )

Like the jackknife IV estimator, § will be consistent under heteroskedasticity because the
¢ = j terms have been removed from the numerator. In the sequel, we will show that
this estimator is consistent and asymptotically normal and give a consistent asymptotic
variance estimator.

As is the case for LIML, this estimator is invariant to normalization. Let X = [y, X].
Then d = (1, —¢")’ solves

A (S KR X)d
ddimt dX'Xd

Another normalization, such as imposing that another d is equal to 1 would produce the

same estimator, up to the normalization.

Also, computation of this estimator is straightforward. Similarly to LIML, & = Q(g)
is the smallest eigenvalue of (X'X)™* > 4 X;P,; X}. Also, first order conditions for 0 are
0= P (w5 = Xj5) —a ) Xy — X).

i#j i

Solving these conditions gives

-1
5 = (Z X, P X} - &X’X) (Z XiPyjy; — @X@) :

i# i#
This estimator has a similar form to LIML except that the i = j terms have been deleted
from the double sums.

It is interesting to note that LIML and HLIM coincide when P;; is constant. In that

case,

A Zz P“(yl - Xz{6>2

Q') = QU) + =g sy = Q) + P

[7]



so that the LIML objective function equals the HLIM objective function plus a constant.
This explains why constant P; will lead to LIML being consistent under heteroskedas-
ticity.

HLIM is a member of a class of jackknife estimators having the form

-1
5 = (Z X;P; X} — ax’x) (Z XiPijy; — @X@) :

i#£] i#j

The JIV estimator is obtained by setting & = 0. A heteroskedasticity consistent version
of FULL, namely HFUL, is obtained by replacing & with & = [@ — (1 —&)C/T]/[1 — (1 —
&)C/T] for some C' > 0. The small sample properties of this estimator are unknown,
but we expect its performance relative to HLIM to be similar to that of FULL relative
to LIML. As pointed out by Hahn, Hausman, and Kuersteiner (2004), FULL has much
smaller dispersion than LIML with weak instruments, so we expect the same for HFUL.
Monte Carlo results given below confirm these properties.

An asymptotic variance estimator is useful for constructing large sample confidence

intervals and tests. To describe it, let &; = y; — X{g, 5= X'ég/é¢, X =X—-2¥,
H=Y XiPX;-aX'X, %= Y XiPuéiPyX)+ Y PiXi&é;X].
i#j 4.3=1 k¢{ij} i#]

The variance estimator is

We can interpret the HLIM estimator, 5, as a combination of forward and reverse
JIV estimators. For simplicity, we give this interpretation in the scalar ¢ case. Let

Ei=y — X0 and 7 = 3, X;&;/ 3., &2 First-order conditions for ¢ are
0=~ 290 S 2210 (e Pyl — X08) = (14 36) X — Gyl Py — XI5
_—WZ%/ _Z< i — V&) Piyy; — X )—Z[( +70) X — Fyil Py (y; — X 0).
: 7 i#]
The forward JIV estimator ¢ is

-1

i#] i#]
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The reverse JIV is obtained as follows. Dividing the structural equation by d, gives

Xi = yz/éo — €i/(50.

Applying JIV to this equation in order to estimate 1/dy, and then inverting, gives the
reverse JIV estimator .
= (Z yiPinj> Zyipijyj-
i#] i#]
Then, collecting terms in the first-order conditions for HLIM gives

i#£j i#£]j
= (1+50) ) XiPyX;(0=0) =7 Y _u:PyX;(0" = 0).
i#] i#]

Dividing through by >, X;P;; X; gives
0= (1+50)(0—0)— 750" —d).

Finally, solving for o gives

1+5(6 —9)
As usual, the asymptotic variance of a linear combination of coefficients is unaffected by

how the coefficients are estimated, so that a feasible version of this estimator is
0" = (1+70)0 — (76) 8", 7 = ZX - Xi0)/ ) (v
i=1

Because HLIM and HFUL perform so well in our Monte Carlo experiments, we do not
pursue this particular estimator, however.

The above result is analogous to that of Hahn and Hausman (2002), in the sense that
under homoskedasticity, LIML is an optimal combination of forward and reverse bias
corrected two stage least squares estimators. Here we find a similar result, that HLIM is
asymptotically equivalent to a linear combination of forward and reverse heteroskedas-

ticity robust JIV estimators.



4 Optimal Estimation with Heteroskedasticity

HLIM is not asymptotically efficient under heteroskedasticity and many weak instru-
ments. In GMM terminology, it uses a nonoptimal weighting matrix, one that is not
heteroskedasticity consistent for the inverse of the variance of the moments. In addition,
it does not use a heteroskedasticity consistent projection of the endogenous variables on
the disturbance, which leads to inefficiency in the many instruments correction term.
Efficiency can be obtained by modifying the estimator so that the weight matrix and the

projection are heteroskedasticity consistent. Let

ZZZ'@ 2/n, By (8 (Zzz’sz lk/n> Q(8)~!

and

A

D) = ZiXax = By(6)Zigi(8), Di(6) = [ Da(8), -, Dics(9)]
Also, let § be a preliminary estimator (such as HLIM). An IV estimator that is efficient
under heteroskedasticity of unknown form and many weak instruments is

0= (ZD )17, X’) > Di(8) Q) Zy;.

1#] i#]

—1 and where

This is a jackknife IV estimator with an optimal weighting matrix, Q(g)
D;(0) replaces X;Z!. The use of D;(§) makes the estimator as efficient as the CUE under
many weak instruments.
The asymptotic variance can be estimated by
U=H'SH ' H=Y X;Z/Q0)"Z;X],% = ZD D;(6).

1#] i,j=1

~—

This estimator has a sandwich form similar to that given in Newey and Windmeijer

(2007).

5 The Robust, Restricted CUE

As discussed above, HLIM has been made robust to heteroskedasticity by jackknifing,

where own observation terms are removed. In general this same approach can be used to

[10]



make the continuous updating estimator robust to restrictions on the weighting matrix,
such as homoskedasticity. For example, LIML is a CUE, where homoskedasticity is
imposed on the weighting matrix; and HLIM is its robust version.

For expository purposes, consider a general GMM setup where ¢ denotes a G x 1
parameter vector and g¢;(0) is a K x 1 vector of functions of the data and parameters
satisfying E[g;(do)] = 0. For example, in the linear IV environment, g;() = Z;(y; — X/9).
Let €(8) denote an estimator of Q(8) = S27, E[gi(6)gi(6)']/n, where an n subscript on

2(0) is suppressed for notational convenience. A CUE is given by

6 = arg min 388 9(5).

When Q(8) = 327", g:(6)gi(6)/n this estimator is the CUE given by Hansen, Heaton,
and Yaron (1996), that places no restrictions on the estimator of the second moment
matrices. In general, restrictions may be imposed on the second moment matrix. For
example, in the IV setting where g;(6) = Zi(y; — X!6), we may specify Q(8) to be only

consistent under homoskedasticity,

Q) = (y — X0) (y — X0) Z' Z/n?.

In this case the CUE objective function is

(y — X6)' Py — X9)
(y—X6) (y—X6) ’

3(8)(8) "' 9(8) =

which is the LIML objective function, as is well known (see Hansen, Heaton, and Yaron,
(1996)).

A CUE will tend to have low bias when the restrictions imposed on Q(6) are satis-
fied, but may be more biased otherwise. A simple calculation can be used to explain
this bias. Consider a CUE where Q(6) is replaced by its expectation, Q(6) = E[Q(6)].
This replacement is justified under many weak instrument asymptotics; see Newey and

Windmeijer (2007) . The expectation of the CUE objective function is then
E[g(6)'Q(0)"'9(0)] = (1 = n™")g(8)u(6)~'g(6) + tr(2(8) 7' () /n,

[11]



where g(§) = E[g;()] and Q(0) = E|[g:(9)g;(0)’]. The first term in the above expression
is minimized at &, where §(dy) = 0. When Q(§) = Q (), then

tr(Q(6)1Q(0))/n = K/n,

so that the second term does not depend on ¢§. In this case the expected value of the CUE
objective function is minimized at ;. When Q(8) # Q(6), the second term will depend
on 9, and so the expected value of the CUE objective function will not be minimized at
dp. This effect will lead to bias in the CUE, because the estimator will be minimizing
an objective function with expectation that is not minimized at the truth. It is also
interesting to note that this bias effect will tend to increase with K. This bias was noted
by Han and Phillips (2005) for two-stage GMM, who referred to the bias term as a “noise”
term, and to the other term as a “signal” term.

We robustify the CUE by jackknifing (i.e. by deleting the own observation terms in
the CUE quadratic form). Note that

E[Y g:i(0)Q8) " g;(0)/n’] = (1 — n~")g(6)'Q(8)"'5(0),
i#]

which is always minimized at dy, no matter what Q(d) is. A corresponding estimator is
obtained by replacing Q(6) by Q(5) and minimizing. Namely,
§ = argmin 3" g,(5)/25) " (6) .
i#]
This is a robust CUE (RCUE), that should have small bias by virtue of the jackknife

form of the objective function. The HLIM estimator is precisely of this form, for Q(8) =
(y— X6) (y — X0)Z'Z/n?.

6 Asymptotic Theory

Theoretical justification for the estimators proposed here is provided by asymptotic the-
ory where the number of instruments grows with the sample size. Some regularity con-

ditions are important for the results. Let Z/,e;, U/, and T’ denote the i" row of Z,¢,U,

2

[12]



and T respectively. Here, we will consider the case where Z is constant, which can be
viewed as conditioning on Z (see e.g. Chao, Swanson, Hausman, Newey, and Woutersen

(2007)).

Assumption 1: Z includes among its columns a vector of ones, rank(Z) = K, and

there is a constant C' such that P; < C < 1, (i =1,...,n), K — oo.

The restriction that rank(Z) = K is a normalization that requires excluding redun-
dant columns from Z. It can be verified in particular cases. For instance, when w; is a
continuously distributed scalar, Z; = p®(w;), and ppx(w) = w*~1, it can be shown that
Z'7 is nonsingular with probability one for K < n.2 The condition P; < C' < 1 implies
that K/n < C, because K/n =73 , P;/n < C.

Assumption 2: There is a G x G matrix, S, = S, diag (H1ny - fhan), and z; such
that Y; = S,.z://n, S'n is bounded and the smallest eigenvalue of S’nS';L is bounded away
from zero, for each j either p;, = /n or wjn/v/n — 0, p, = 11<ni<nGMjn — 00, and

7S

VE /2 — 0. Also, 37 |lz|/* /n* — 0, and 37, z2}/n is bounded and uniformly

nonsingular.

Setting yj, = +/n leads to asymptotic theory like that in Kunitomo (1980), Morimune
(1983), and Bekker (1994), where the number of instruments K can grow as fast as the
sample size. In that case, the condition v K /12 — 0 would be automatically satisfied.
Allowing for K to grow, and for p, to grow more slowly than /n, allows for many in-
struments without strong identification. This condition then allows for some components
of the reduced form to give only weak identification (corresponding to f;,/v/n — 0),
and other components (corresponding to p;, = /n) to give strong identification. In

particular, this condition allows for fixed constant coefficients in the reduced form.

Assumption 3: (¢1,U), ..., (¢, U,) are independent with Ele;] = 0, E[U;] = 0, E[e?]

2The observations ws, ..., w, are distinct with probability one and therefore, by K < n, cannot all
be roots of a K" degree polynomial. It follows that for any nonzero a there must be some i with
a'Z; = a'pX(w;) # 0, implying that a’Z’ Za > 0.

[13]



and E[||U;||*] are bounded in 4, Var((e;, U})) = diag(2},0), and >, QF /n is uniformly

nonsingular.

This condition includes moment existence assumptions. It also requires the average
variance of the nonzero reduced form disturbances to be nonsingular, and is useful for

the proof of consistency contained in the appendix.
. . n 2
Assumption 4: There is a 7, such that > " | ||z; — 70 Z;||” /n — 0.

This condition allows for an unknown reduced form that is approximated by a linear
combination of the instrumental variables. It is possible to replace this assumption with
the condition that >, 2;F;;2}/n is uniformly nonsingular.

We can easily interpret all of these conditions for the important example of a linear

model with exogenous covariates and a possibly unknown reduced form. This example

o (TR () g (B

where Zj; is a Go x 1 vector of included exogenous variables, fo(w) is a G — Go di-

is given by

mensional vector function of a fixed dimensional vector of exogenous variables, w, and

def
K (w) =

w) = (pix(w), ..., px—g,.kx(w))'. The variables in X; other than Z;; are endogenous
with reduced form 711 Z1; + pn fo(w;)/+/n. The function fo(w) may be a linear combina-
tion of a subvector of p®(w), in which case z; = T, Z;, for some 7, in Assumption 4;
or it may be an unknown function that can be approximated by a linear combination of
p™(w). For u, = +/n, this example is like the model in Donald and Newey (2001), where
Z; includes approximating functions for the optimal (asymptotic variance minimizing)
instruments T;, but the number of instruments can grow as fast as the sample size. When

p2/n — 0, it is a modified version where the model is more weakly identified.

To see precise conditions under which the assumptions are satisfied, let

_( Jolw) & g - (T m
Z¢—< 7. , Sy = Spdiag (pn, s fin, V12 ., /0) , and Sy, = o 1)

[14]



By construction we have that Y; = S, z;/y/n. Assumption 2 imposes the requirements

that
n
St > — o,
=1

and that Y, z;z//n is bounded and uniformly nonsingular. The other requirements of
Assumption 2 are satisfied by construction. Turning to Assumption 3, we require that
>, Var(e;, Ul)/nis uniformly nonsingular. For Assumption 4, let 7, = [T, [La,,0]']".

Then Assumption 4 will be satisfied if, for each n, there exists a 7, with

Sl = wnZilP = 3 fo(w) = 7, ZilP n — 0.
i=1 i=1

THEOREM 1: If Assumptions 1-4 are satisfied and & = o,(u2/n) or & is HLIM or
HFUL then pu;*5. (5 — 80) =2 0 and 6 2 6.

This result gives convergence rates for linear combinations of 5. For instance, in the
above example, it implies that &, is consistent and that 711151 + 0y = 0p(pin/\/10).
The asymptotic variance of the estimator will depend on the growth rate of K relative

to p2. The following condition allows for two cases.

Assumption 5: Either I) K/u? is bounded and /K S;* — Sy or; IT) K/u2 — 0o
and ,unS;l — Sp.

To state a limiting distribution result it is helpful to also assume that certain objects
converge. Let 02 = E[¢2], v, = S, E[Uics]/ 31, 02, U = U — &9, having i’ row U;

and let ; = E[U,U7].

Assumption 6: Hp = lim Z?:l(l — Pi)zizl/n, ¥, = lim >0 (1= Py)*zizlo? /n

n— n—-ao0o
and U = lim, o0, P, ( 2E[U 0] + E[U; a]E[ejﬁg]) /K.
This convergence condition can be replaced by an assumption that certain matrices
are uniformly positive definite without affecting the limiting distribution result for t-

ratios given in Theorem 3 below (see Chao, Swanson, Hausman, Newey, and Woutersen

(2007)).

[15]



We can now state the asymptotic normality results. In Case I we have that
S (6 — 6) —% N(0,Ap), (6.1)

where

Ar=Hp'SpHp' + Hp' SoU S H '

In Case II, we have that
(1 /VE) S, (5 = 80) = N(0, Apy), (6.2)

where

A= Hp'SoUSyHp' .

The asymptotic variance expressions allow for the many instrument sequence of Kunitomo
(1980), Morimune (1983), and Bekker (1994) and the many weak instrument sequence of
Chao and Swanson (2004, 2005). In Case I, the first term in the asymptotic variance, Ay,
corresponds to the usual asymptotic variance, and the second is an adjustment for the
presence of many instruments. In Case II, the asymptotic variance, A;;, only contains
the adjustment for many instruments. This is because K is growing faster than ;2. Also,

Ayr will be singular when included exogenous variables are present.

We can now state an asymptotic normality result.

THEOREM 2: If Assumptions 1-6 are satisfied, & = & + O,(1/T) or & is HLIM or
HFUL, then in Case I, equation (6.1) is satisfied, and in Case II, equation (6.2) is
satisfied.

It is interesting to compare the asymptotic variance of the HLIM estimator with that
of LIML when the disturbances are homoskedastic. Under homoskedasticity the variance
of Var((g;,U})) will not depend on i (e.g. so that o? = ¢?). Then, v, = E[X;&;]/0? =~
and E[U;e;] = E[Use;] — v = 0, so that

p=0°H, Hp = lim Y (1 - P;)°z2/n, ¥ = E[U;U]](1 - lim Y PI/K).

n—-s00 4 n—-s00 4
=1 =1
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Focusing on Case I, letting I' = 025 E[U;U/] S}, the asymptotic variance of HLIM is then

V =0 Hp'HpHp' + lim (1-Y P}/K)H,'THp'".

i=1
For the variance of LIML, assume that third and fourth moments obey the same restric-
tions that they do under normality. Then from Hansen, Hausman, and Newey (2007),
for H = lim, oo > | zizi/n and 7 = lim,,o, K/n, the asymptotic variance of LIML
is

V*=o’H '+ (1 -7)'H'TH .

With many weak instruments, where 7 = 0 and max;<, P;;, — 0, we will have
Hp = Hp = H and lim,,__., >, P2/K — 0, so that the asymptotic variances of HLIM
and LIML are the same and equal to 02H '+ H'['H~!. This case is most important in
practical applications, where K is usually very small relative to n. In such cases we would
expect from the asymptotic approximation to find that the variance of LIML and HLIM
are very similar. Also, the JIV estimators will be inefficient relative to LIML and HLIM.
As shown in Chao and Swanson (2004), under many weak instruments the asymptotic

variance of JIV is
Virv =0H ™'+ H'So(6*E[U;U]] + E[Use| Ele;Uj]) SoH ™,

which is larger than the asymptotic variance of HLIM because E[U;U!] > E[U,U].

In the many instruments case, where K and p? grow as fast as n, it turns out that
we cannot rank the asymptotic variances of LIML and HLIM. To show this, consider
an example where p = 1, z; alternates between —Z and Z for z # 0, S, = /n (so
that T; = 2), and 2 is included among the elements of Z;. Then, for Q = E[U?] and
k=lim, e Y iy P2/K we find that

2

o7 Th — T2 —Q
V=V _22(1—7)2( )<1 z2>'

Since 7k — 72 is the limit of the sample variance of P;;, which we assume to be positive,

V > V* if and only if 22 > Q. Here, 22 is the limit of the sample variance of z;. Thus,

[17]



the asymptotic variance ranking can go either way depending on whether the sample
variance of z; is bigger than the variance of U;. In applications where the sample size is
large relative to the number of instruments, these efficiency differences will tend to be
quite small, because Pj; is small.

For homoskedastic, non-Gaussian disturbances, it is also interesting to note that the
asymptotic variance of HLIM does not depend on third and fourth moments of the
disturbances, while that of LIML does (see Bekker and van der Ploeg (2005) and van
Hasselt (2000)). This makes estimation of the asymptotic variance simpler for HLIM
than for LIML.

It remains to establish the consistency of the asymptotic variance estimator, and to
show that confidence intervals can be formed for linear combinations of the coefficients
in the usual way. The following theorem accomplishes this, under additional conditions

on zj.

THEOREM 3: If Assumptions 1-6 are satisfied, and & = & + O,(1/T) or & is HLIM
or HFUL, there ezists a C with ||z < C for all i, and there exists a m,, such that
max;<, ||zi — 7. Z;|| — 0, then in Case I, S;L\A/Sn L5 A; and in Case II, 112 S;ZVSn/K SEAN

n

Agr.. Also, if ShArSoc # 0 in Case I or ¢ SyA11Soc # 0 in Case II, then

(6 —6) a

— — N(0,1).
vVe

This result allows us to form confidence intervals and test statistics for a single linear

combination of parameters in the usual way.

7 Monte Carlo Results

In this Monte Carlo simulation, we provide evidence concerning the finite sample behavior

of HLIM and HFUL. The model that we consider is

Y = 010 + 02072 + €, 22 = 21 + Us

[18]



where z;; ~ N(0,1) and Uy; ~ N(0,1). The i" instrument observation is
/ 2 3 4
Z; = (17 245 2145 P15 2145 21Dty <o ZliDi,K75);

where D € {0,1}, Pr(Dy, = 1) =1/2, and z;; ~ N(0,1). Thus, the instruments consist
of powers of a standard normal up to the fourth power plus interactions with dummy
variables. Only z; affects the reduced form, so that adding the other instruments does
not improve asymptotic efficiency of the LIML or FULL estimators, though the powers
of z;; do help with asymptotic efficiency of the CUE.

The structural disturbance, ¢, is allowed to be heteroskedastic, being given by

1—p?

1 {0.86)8 @01 T 0-8602), v ~ N(0, ), vz ~ N(0, (0.86)%)

€=pUQ+

where v;; and v;s are independent of Us,. This is a design that will lead to LIML being
inconsistent with many instruments. Here, E[X,e;] is constant and af is quadratic in z;,
so that ; = (C) + Cazyy + Cs23) LA, for a constant vector, A, and constants C1, Cy, Cs.
In this case, P; will be correlated with v; = F[Xe;]/02.

We report properties of estimators and t-ratios for ;. We set n = 800 and p = 0.3
throughout and choose K = 2,10, 30. We choose 7 so that the concentration parameter
is nm? = p? = 8,16, 32. We also choose ¢ so that the R-squared for the regression of &2
on the instruments is 0, 0.1, or 0.2.

Below, we report results on median bias and the range between the .05 and .95
quantiles for LIML, HLIM, the jackknife CUE, JIV, HFUL (C' = 1), HFUL1/k (C =
1/K), CUE, and FULL. Interquartile range results were similar. We find that under
homoskedasticity, LIML and HF UL have quite similar properties, though LIML is slightly
less biased. Under heteroskedasticity, HFUL is much less biased and also much less
dispersed than LIML. Thus, we find that heteroskedasticity can bias LIML. We also find
that the dispersion of LIML is substantially larger than HFUL. Thus we find a lower bias
for HFUL under heteroskedasticity and many instruments, as predicted by the theory,
as well as substantially lower dispersion, which though not predicted by the theory may

turn out to be important in practice. In additional tables following the references, we
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also find that coverage probabilities using the heteroskedasticity and many instrument

consistent standard errors are quite accurate.
Median Bias R{?Q‘Zz =0.00
1

> K LIML HLIM FULLl HFUL HFUL% JIVE CUE JCUE

8§ 0 0.005 0.005 0.042 0.043 0.025 —0.034 0.005 0.005
8 8 0.024 0.023 0.057 0.057 0.027 0.053 0.025 0.032
8§ 28  0.065 0.065 0.086 0.091 0.067 0.164 0.071 0.092
32 0 0.002 0.002 0.011 0.011 0.007 —0.018 0.002 0.002
32 8 0.002 0.001 0.011 0.011 0.002 —0.019 0.002 0.002
32 28  0.003 0.002 0.013 0.013 0.003 —0.014 0.006 0.006

***Results based on 20,000 simulations.

Nine Decile Range: .05 to .95 R?

e2[22
W K LIML HLIM FULLlL HFUL HFUL% JIVE CUE JCUFE
8§ 0 1.470 1.466 1.072 1.073 1.202  3.114 1.470 1.487
8§ 8 2852 2.934 1.657 1.644 2.579  5.098 3.101 3.511
8 28 5.036 5.179 2.421 2.364 4.793  6.787 6.336 6.240
32 0 0.616 0.616 0.590 0.589 0.602  0.679 0.616 0.616
32 8 0.715 0.716 0.679 0.680 0.713  0.816 0.770 0.767
32 28  0.961 0.985 0.901 0.913 0.983 1.200 1.156 1.133

***Results based on 20,000 simulations.

=0.00

Median Bias R{?Q‘Zz =0.20

p? K LIML HLIM FULLl HFUL HFUL% JIVE CUE JCUE
8§ 0 -0.001 0.050 0.041 0.078 0.065 —0.031 —0.001 0.012
8§ 8 —0.623 0.094 —0.349 0.113 0.096 0.039 0.003 —0.005
8§ 28 -—1.871 0.134 —0.937 0.146 0.134 0.148 —0.034 0.076

32 0 -0.001 0.011 0.008 0.020 0.016 —-0.021 -0.001 —0.003

32 8 —0.220 0.015 —0.192 0.024 0.016 —0.021 0.000 —0.019
32 28 —1.038 0.016 —0.846 0.027 0.017 —-0.016 -0.017 —-0.021

***Results based on 20,000 simulations.
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Nine Decile Range: .05 to .95 R§2|Z§ =0.20

p? K LIML HLIM FULLl HFUL HFUL% JIVE CUE JCUE

8§ 0 2219 1.868 1.675 1.494 1.653  4.381 2.219 2.582
8 8 26.169 5.611 4.776 2.664 4.738  7.781 16.218 8.586
8 28 60.512 8.191 7.145 3.332 7510 9.975 1.5E4012 12.281

32 0 0941 0.901 0.903 0.868 0.884  1.029 0.941 0.946
32 8 3.365 1.226 2.429 1.134 1.217  1.206 1.011 1.086
32 28 18.357 1.815 5.424 1.571 1.808 1.678 3.563 1.873

***Results based on 20,000 simulations.

8 Appendix: Proofs of Consistency and Asymptotic
Normality

Throughout, let C' denote a generic positive constant that may be different in different
uses and let M, CS, and T denote the conditional Markov inequality, the Cauchy-Schwartz
inequality, and the Triangle inequality respectively. The first Lemma is proved in Hansen,

Hausman, and Newey (2006).
2) p
—

We next give a result from Chao et al. (2007) that is used in the proof of consistency.

LEMMA AO: If Assumption 2 is satisfied and )S;L((§ — 60)/ tin,

2/<1+H5

~50.

0 then ’

LEMMA Al (LEMMA A1l oF CHAO ET AL., 2007): If (W;,Y:),(i =1,...,n) are in-
dependent, W; andY; are scalars, and P is symmetric, idempotent of rank K then forw =

E[(Wy, ... W), 5 = E[(Y1, ..., Y2)'], Gwn = max<, Var(W;)V?, 6y,, = max;<, Var(Y;)"/?,

ST P WY; =3 Py + Op( K Pawndyn + owa /57 + GvaVi').
i#j i#]

For the next result let S, = diag(tn,S,), X = [e,X]S;V, and H, = 37, (1 —

i=1

[21]



LEMMA A2: If Assumptions 1-4 are satisfied and \/E//ﬁl — 0 then

Zf(iPijf(J’- = diag(0, H,) + 0,(1).
i#]

Since ||S; Y| < Cu,,* we have Var(f(z-k) < Cp;2 for any element Xy, of X;. Then applying

Proof: Note that

Lemma Al to each element of 3, ,; X P;X } gives
ZXZPUXJI = diag(0 ZZ% ij ]/n )+ 0O <K1/2//’Ln+/’bn Z”Z%H /n)l/Q)
i#j i#j

= diag(0 ZZZ i25/m) + op(1).
i#j

Also, note that

H, Zzszzg = Zzizz’-/n—ZPiiziz;/n—Z izs/n =2 (1 — P)z/n

1#£] i i i#£]
= (2= Zn,) (I = P) (2 = Z7h,) In < (2 = Z7k,) (2 = Zm,) [n

< IGZ l|zi — 7TKnZz'H2 /n — 0,

where the third equality follows by PZ = Z, the first inequality by I — P idempotent,
and the last inequality by A < tr(A)I for any positive semi-definite (p.s.d.) matrix A.
Since this equation shows that H, — ). oy 2 Pz 2L /n is p.s.d. and is less than or equal to
another p.s.d. matrix that converges to zero it follows that ), z;P;;25/n = H, + 0y(1).
The conclusion follows by 7. Q.E.D.

In what follows it is useful to prove directly that the HLIM estimator 5 satisfies
5405 = 80) 2 0.

LEMMA A3: If Assumptions 1-4 are satisfied then S/, (0 — &)/ ttn —— 0.
Proof: Let T =[0,7], U = [¢,U], X = [y, X], so that X = (Y + U)D for

1 0
b1 0]

[22]



Let B = X'X/n. Note that ||S,/v/7n| < C and by standard calculations 2/U/n —£= 0.
Then

|T'U /n|| = ||(Sn/v/n) 2U/n|| < C|1Z'U/n|| )
Let Q, = Y0 | E[U;U!]/n = diag(>"1—, Qf/n,0) > Cdiag(Ig—g,+1,0) by Assumption 3.
By M we have U'U/n — Q, - 0, so it follows that w.p.a.1.

B=OU+YU+UT+TT)/n=Q,+TT/n+o0,(1) > Cdiag(Ig_g,:1,0).
Since Q,, + Y'Y /n is bounded, it follows that w.p.a.1,
C < (1,=0)B(1,=8) = (y = X8)(y — X)/n < C||(1, =8| = C(1 + [|6]*).

Next, as defined preceding Lemma A2 let S, = diag(j,S,) and X = [e, X]S V.
Note that by P; < C < 1 and uniform nonsingularity of Z?:l ziz./n we have H, >
(1-C)>", zizl/n > Clg. Then by Lemma A2, w.p.a.l.

AENT XX > Cdiag(0, 1),
7]
Note that S’ D(1, —6") = (ytn, (5o — 6)'S,)" and X; = D'S,, X;. Then w.p.a.1 for all §

w2 Py —Xi5) = (ZP XX) ="

1#] i#]
= 1, *(1,=0)D'S,AS, D(1, =&") = C[|S},(5 = Go) /-

Let Q(8) = (n/43) 2,4 (vi— X[0) Py (y; — X;0)/(y— X6)'(y— X3). Then by the upper

left element of the conclusion of Lemma A2, y> > £ eiPije; -, 0. Then w.p.a.l

Mn 251335]/252/71

i#]

_>0

-

Since 6 = argming Q(6), we have Q(8) < Q(d).Therefore w.p.a.1, by (y — X0)(y —
X3)/n < C(1+ ||6]]%), it follows that

sé-oml|
L < 0G) < Q) 20

oc]

1+ 10

23]



16— 50) /| /

12
(1 + H(SH ) . 0. Lemma AO gives the conclusion. Q.E.D.

LEMMA A4: If Assumptions 1-4 are satisfied, & = o,(u2 /n), and S!,(6 — o)/ ftn —= 0
then for H, =Y " (1 — Py)zz}/n,

2 (Z XiPy X}~ @X'X> Sp = Hy+0,(1), 8, (3 XiPyé; = aX'8) - 0.
i#j i#]

Proof: By M and standard arguments X'X = O,(n) and X'é = O,(n). Therefore, by
151 = O ),

@S, XX SV = 0,y /n)Op(n] 7)) = 0,68, X'E/ iy, = 0,17, /m)Op(n/ i5) = 0.

Lemma A2 (lower right hand block) and T then give the first conclusion. By Lemma A2
(off diagonal) we have S, ', ., XiPije;/pin %50, so that

SN XiPig /i = o0p(1 ( Y X P XS ) S (6 = 60)/ptn = 0.Q.E.D.

i#] i#]
LEMMA A5: If Assumptions 1 - 4 are satisfied and S’ (6—8;)/ jtn —— 0 then, > izj il /E'e =
o4 /).
Proof: Let 8 = S'(0 — 6)/pn and & = > i €ibijej/e'e = op(pi/n). Note that
62 = é'¢/n satisfies 1/62 = O,(1) by M. By Lemma A4 with & = & we have H, =
St (Y XiPi X — aX'X)S Y = O,p(1) and W, = S, 1 (X Pe — aX'€) /pt, — 0, s0

Zi;&jgiPijgj o

— - = E EiP€; — g &P, (€'¢ —£'e)
/
ee

i#j i#j

2

Eal (57 4 _op
= B (ﬁ’ e 26’Wn) = 0,(1a3/n).
so the conclusion follows by T. Q.E.D.

Proof of Theorem 1: First, note that if S’ (6—8g)/ftn —— 0 then by Amin (5,5 /p2) >
mln (S Sl) > C we have

538 = 60)/bin

> Mun(S1S1 /1) 2|

8—50H zc”é—ao ,
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implying 6 —— 8. Therefore, it suffices to show that S’ (6 —8)/ptn —— 0. For HLIM this
follows from Lemma A3. For HFUL, note that & = Q(0) = > is; EiPijE €€ = oy(pi2 /)
by Lemma A5, so by the formula for HFUL, & = & + O,(1/n) = 0,(u2/n). Thus, the
result for HFUL will follow from the most general result for any & with & = o,(u2/n).

For any such &, by Lemma A4 we have

S0 =00) /= S,(Y_XiPyXj —aX' X))y (XiPye; — X'e) [

i#] i#]
= [S,' O XiPy X — aX'X)S VTS Y T (XiPyey — aX'e) /o
i#] i#]

= (H, +0,(1))0,(1) 2 0.Q.E.D.

Now we move on to asymptotic normality results. The next result is a central limit

theorem that is proven in Chao et. al. (2007).

LEMMA A6 (LEMMA A2 OF CHAO ET AL., 2007): Ifi) P is a symmetric, idempotent
matriz with rank(P) = K, P; < C < 1; i) (Wi, U, €1), .., (Wan, Un, €,) are indepen-
dent and D, = > | E[W;,W} ] is bounded; i) E [W],| =0, E[U;] =0, Ele;] = 0 and
there exists a constant C such that E[|Ui||"] < C, Ele}] < C; iv) S0, E[||Win|*] —

v) K — oo; then for ¥, o > is P2 (E[UUJE[e3] + E[Use;)Ele;U)]) /K and for any
sequence of bounded nonzero vectors cy,, and co, such that =, = CllnDncln+C,2nSn62n > (),

it follows that

E chnmn +C2nZUPU€J/\/_) - N(O 1)

i#]j
Laaﬁzz%q@ﬂ@@k@ﬂﬁwd
= ) ci(8)Pye; (6)/2:(6)e(9) /05 = 3 XiPyje;(6) — (8) X' (6).

i#j i#]
A couple of other intermediate results are also useful.
LEMMA AT7: If Assumptions 1 - 4 are satisfied and S’ (5 — 0o)/ i —— 0 then
—SH0D(0)/98)SY = H, + 0,(1).
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Proof: Let € = ¢(d) =y — X6, 7 = X'/&'z, and & = &(9). Then differentiating gives

oD -
55 0) = Y XiPyX)—aX'X =5 &P X; - > XiPyey +2(68)ayy
7 i#j i#]
= D XiPyXj—aX'X +7D() + D),
i2]

where the second equality follows by D(6) = 3, 4 XiPijg; — (€€)a7y. By Lemma A5 we
have a = 0,(2/n). By standard arguments, ¥ = O,(1) so that S,y = O,(1/u,). Then
by Lemma A4 and D(0) = Y, X;Py&; — aX'e

St (Z X;P X} — aX'X> SV = H, +0,(1), S, ' D(6)7'S; " 25 0,
i

The conclusion then follows by T. Q.E.D.

LEMMA A8: If Assumptions 1-4 are satisfied then for v, =, E|Uiei]/ >, Ele?] and
ffi = Ui — Tn&i

S, Do) =D (1= Pa)zei/v/n+ S;' Y UiPye; + op(1).

i=1 i
Proof: Note that for W = 2/(P — I)e/y/n by I — P idempotent and Elee’] < C1,, we

have

EWW'l < CZ(I—-P)z/n=C(z—Zryg,) I — P)(z— Zny,)/n

< Clg Y |z — mxnZil* fn — 0,

i=1
so 2/(P —I)e/v/n = 0,(1). Also, by M

X'e/n = Z E[X&]/n+ 0,(1/y/n),'e/n = Z o?/n+ 0,(1/v/n).

Also, by Assumption 3 "', 0?/n > C' > 0. The delta method then gives ¥ = X'e/e’e =

i=1"1

Yu40,(1/y/n). Therefore, it follows by Lemma A1 and D(dy) = > izj XiPjej—e'ed(do)y
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S, D(60) = D zPyei/Vn+ 5,1y UiPyei — S, (3 — ym)e'e@(do)
i#£j i#j
_ / -1 7 2
= 2'Pe/v/n— Z Piziei/\/n+ S, Z UiPye; + Op(1/v/npin )0y (s, /1)

i)

n

i=1 i#j

Proof of Theorem 2: Consider first the case where 6 is HLIM. Then by Theorem
1, 6 =% 8. The first-order conditions for LIML are D(8) = 0. Expanding gives

0= D(50) + 5 (5) (5 — do),

where 4 lies on the line joining & and & and hence § = ;15" (5 — dy) —— 0. Then by
Lemma A7, H, = S;'[0D(5)/0)S;" = Hp 4 0,(1). Then 9D(5)/d5 is nonsingular

w.p.a.1l and solving gives
SL(5 — 6) = —SL[0D(5) /06 D(3o) = —Hy 'S D().
Next, apply Lemma A6 with U; = U; and
Win = (1 - Pii)zz‘gi/\/ﬁa
By ¢; having bounded fourth moment, and P; <1,
S E[IWal] <3l /e — 0
i=1 i=1

By Assumption 6, we have > | E[W;, W/

m

A = ( Z?:l IZVin > .
" Zi;éj UiPijgj/\/?

| — ¥p. Let T' = diag (Xp, ¥) and

Consider ¢ such that ¢'I'c > 0. Then by the conclusion of Lemma A6 we have ¢’ A, 4,

N(0,¢T¢). Also, if ¢Tc = 0 then it is straightforward to show that ¢/A,, -~ 0. Then it
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follows by the Cramer-Wold device that

S W ) ) |
A, = &= ~, N(0,T),T = diag (Sp, U).
(ZZ#U%/ﬁ (0.1) 8 (Sp, )

Next, we consider the two cases. CaseI) has K/p2 bounded. In this case v KS; ! — Sp,
so that
F, 9 [IVES; "] — Fy =1, 5], RTF) = Sp + SoUS).

Then by Lemma AS,

SAD(B) = FoA, +0,(1) =5 N(0,Sp + SoUS)),
Sp(6—=00) = —H,'S;'D(d) < N(0,A,).

In case IT we have K/u? — oco. Here
([Ln/\/E)Fn — Fg = [0, go], F()FF(; = SO\IJS’(,)
and (tt,/v'K)o,(1) = 0,(1). Then by Lemma AS,

(1n/VE)S; ' D(80) = <un/ﬁ>FnAn+op<1>i>N<o S Sy),
(1/ VE)SL(6 = 80) = —H; (p1/VE)S, D(60) = N(0,A1r).Q.E.D.

The next two results are useful for the proof of consistency of the variance estimator
are taken from Chao et. al. (2007). Let fiy,, = max;<,, |E[W;]| and iy, = max;<,, |E[Yi]|.

LEMMA A9 (LEMMA A3 oF CHAO ET AL., 2007): If (W.,Y;),(i = 1,...,n) are

independent, W; and Y; are scalars then

> PIWY; = EDY | PIWiY 4 Op(VE (Gwnbyn + Gwnilyn + iwnOyn))-
i#] i#]

LEMMA A10 (LEMMA A4 oF CHAO ET AL., 2007): If W, Y, n;, are indepen-
dent across i with E[W;] = a;/\/n, E[Y:] = b;/\/n, |la;)| < C, |bi] < C, E[n?] < C,
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Var(W;) < Cu, %, Var(Y;) < Cu,?, there exists w, such that max;<, |a; — Z/m,| — 0,
and VK /2 — 0 then

A = E[ Y WiPaniPyjY;] = O(1), Y WiPynPy;Y; — Ay == 0.
i#j#k i#j#k

~

Next, recall that &, =Y, — X/6,4 = X'é/é'¢, v, = ., E[Xiei]/ >, 07 and let

Xi = S;MXi—A8), Xi = S, (Xi — i),

n

Sio= Y KR PuX) S = 3P (KK 4 X X))

i#j#k 7
£, = S XiPuelPyX 5, =Y P2 (XX’gf + XisierJ’) :
i#j#k 7

Note that for A = S (§ — dy) we have

€ —¢g = _Xz/(g - 50) = _Xz{Sr:l/A7
R “ 2
gt = —amX((6-0) + X6 -]
Xi — Xl = —S,Zlﬁ)/(éi — &) — Srjlﬁ/ — Vn)Eiy

= SilﬁXz"SEllA - 5771,“%('3/ = Vn)(€i/ bn),
Xigi — Xier = Xi&i — 48} — Xigi + voel,
- a&Xﬂg—%)—&{%kﬂﬂg—%)+L@@—ﬁ@ﬂ}

_('AY - ’Yn)gzz'
o o .12 . o .
H&x—&ﬂ SH&—& +W&H&—&

LEMMA A11: If the hypotheses of Theorem 3 are satisfied then 35 — So = 0,(K/p2).
Proof: Note first that S, /4/n is bounded so by the Cauchy-Schwartz inequality,
T3]l = |Snzi/v/nl| < C. Let d; = C+ |e;| +||Us|| . Note that 4 —+, -2 0 by standard ar-
guments. Then for A = (14 |5]])(L+ HaH) — 0,(1), and B = |5 — 7| + Ha - 50H N

[29]



we have

IXill < CH Uil < diy |&i] < 1X](60 = ) + ] < CdiA,

%] = D8t = e H<Oun1dz, = 180t = 42| < CupdiA,
|- xx| < () + &) [ X CAAIAN N = sl + 17 = all e
< Oud?AB,
< (les| + &) |8 — e < Cd2AB,
< Cuyt (1] 1Es = &l +13111EF = €1+ [2] 17— all)
< Cu'd>(B+ A’B+ B) < Cd?A%B,
HXﬁ% < Ow,'di A%, ‘Xigi < Cpy,'d}.

Also note that

E Y Pididip, ] <Cp,2> Pr=Cp” Y Pi=Cp K.
i,j i

i#]
so that >, Prdid3u,? = O,(K/u;) by the Markov inequality. Then it follows that
S (kg - x| < 3o (ja - xix )
i#] iF
< Cp,> Y P (A'B+ AB) = o, (K/p) .
i#j
We also have
1#£] i#£]j
< P2d20l2 1+ A%)A%B = K
— Z ¥ et j + ) =0p E :

i#£]
The conclusion then follows by the triangle inequality. Q.E.D.

LEMMA A12: If the hypotheses of Theorem 3 are satisfied then S — ¥ = 0p(K/u2).
Proof: Note first that

~

g —ei=—X/(0— ) = —X[S;VSL(0 — bo) = — (z://n+ S, 'U;) A = —DIA,
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where D; = z/y/n + S;'U; and A = 8/,(5 — &). Also
“ N 2
- = X -6+ [X[E-d)] .
Xi—Xi = —Aéi+me = S, ADIA = S i (3 = ) €/ pin-

We now have 33, — 3, = Z::l T, where

o . 9 9 o N/ . - ) 5 N
Tl = Z (Xl_XZ) P7,k (6k_6k) ij <X]—X]> ,TQZ Z szzk (gk_gk) ij (X]_XJ)
i#i#k i#i#k
o . o -\ o . .
Ty = Z (XZ - Xl) P“fgipkj (Xj - Xj) Iy =T,,Ts = Z (Xz - Xz) Pz'k;Esz;ij{,
ik ik
Ts = > XiPy (& —ep) PyX), Tr = T3
i#j#k

From the above expression for 2 — &2 we see that Tg is a sum of terms of the form
B Z##k XiPikaij]’- where B -2 0 and n; is either a component of —2¢; X; or of X, X/.
By Lemma A10 we have )
Ty -2~ 0. Also, note that

Ltk XiR-kaijj’. = O,(1), so by the triangle inequality

T5 = SEI&A, Z Dsz'kf?ZijX} + Sgllin (¥ =) Z (ei/pin) P kngkJX
ik ik

Note that S;4A" 25 0, E[D;] = z/vn, Var(D;) = O(1i;2), E[X;] = z//n, and
Var(X) = O(u;?). Then by Lemma A10 it follows that D itk DZ-Bka%ijX; = 0,(1)
so that the S, lﬁA’ > itk DiPiksiijX f ., 0. A similar argument applied to the second
term and the triangle inequality then give Ts —— 0. Also Ty = T; 20.

Next, analogous arguments apply to 75 and T3, except that there are four terms in
each of them rather than two, and also to T} except there are eight terms in 7). For

brevity we omit details. Q.E.D.

LEMMA A13: If the hypotheses of Theorem 3 are satisfied then

=S Pladod/n+ S0 P2 ( 1102 + E[Uei] Ele U’-]> STV 4 0, (K/42).
i#] i#j
Proof: Note that Var(e?) < C and p2 < Cn, so that for uy; = €,,5, U,
E[(XuXi)?] < CE[XG +Xj] < C{zp/n® + Blug] + 2i/n* + E[ui] } < Cp*,

E[(‘Xlk‘g’b)z] < CE[( zkgz/n + ukl z)] < Cn + C/Ln < C:un .

[31]



Also, we have, for Q; = E[U;U]],
Next let W; be e}XiX{ek for some j and k, so that

EW;] = €S EUU]S, e, + zijzu/n, |[EW;]| < Cuy .
Var(W;) = Var {(e;-S,;lUi + zw/\/ﬁ) (e%S;lUi + zlk/\/ﬁ)}
< Ot +Cfnpiy, < Cf iy

Also let Y; = €2. Then VK (Gwnoyn + Gwafivn + fwndyn) < CKY?/u2, so applying
Lemma A9 for this W; and Y; gives
SO PXiX(e =37 P (mal/n+ 5,108, ) oF + O(VE /i),
1#£] i#]
It follows similarly from Lemma A9 with W, and Y; equal to elements of X;e; that
ZP%Xieier' S Z EUie)) E[e;U)S " + Op(VK /112).
i#] i#]
Also, by K — oo we have O,(VK/u2) = 0,(K/u2). The conclusion then follows by T.
Q.E.D.

LEMMA A14: If the hypotheses of Theorem & are satisfied then

i#jh

Proof: Apply Lemma A10 with W; equal to an element of X;, Y; equal to an element of
X;, and 7, = 7. Q.E.D.
Proof of Theorem 3: Note that
SV S, = (S, HS, M) (51 + 5)(S, HS, )™
By Lemma A4 we have S;'HS;" -2 Hp. Also, note that for z; = >, Pijzi = e Pz,
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Z zl-Pika,%ijz;/n = ZZ Z zl-]%ka,%ijz;/n

i#j#k i g7 k¢{ig}

— ZZ (Z ziﬂkazpka; — z;Pyo; PUZ] Plja]zP”z]> /n

1 jFi

2 /
= g zkakzk E szzzak g ZZPMU —i-g 2iPiio; Piz;
i
2p 2
_Z’ZJ 05 Pj;2j +ZZJPJJG]PJJZJ

= Z U Z’L szz P’LZZZZ + PQZ@ /n - Z P%’leéo-?/n
i#]

Also, it follows similarly to the proof of Lemma A8 that 3. |z — Z|° /n < 2/(I —

P)z/n — 0. Then by ¢? and P; bounded we have

Z o (ziz, — zi2l) /n
i

< Y ai@llaillllz =zl + Iz = zl*)/n
< O lall® /)2 i = zl* /) 2+ C Yl = &l /o — 0,

ZOBZ& ziz;) [n

It follows that

IN

ZU4P2 |Zi”2/n)l/2(z 2 — Zz‘HQ/n)l/2 — 0.

2P0t Pz /n = 02(1 — Py)*zizl/n 4 o(1) P2zz
37

i#it i#]

= Yp— ZP%zizia?/n + o(1).

i#]

It then follows by Lemmas and the triangle inequality that

il + iz = Z ziPika,szjz}/n + Z PZZZZ;O'?/TL
i#j#k i#j
+5, 3 P2 (BI0:01)0? + Bl Ele;0))) S + 0,(1) + 0p(K /1)
i#j

= Sp+ KSTN (W4 0(1)SY + 0,(1) + 0,(K/1i2)

= Yp+ KS,'US, Y +0,(1) + 0, (K/p).
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Then in case I) we have 0,(K/u2) = 0,(1) so that
SIVS,=H"(Sp+ KS, WS, V) H +0,(1) = Ar + 0,(1).
In case IT) we have (12/K) o0,(1) -2 0, so that
(12/K) SV S = H ™ (12 /K) Sp + .S, WS, ) H™' + 0,(1) = Agp + 0,(1),

Next, consider case I) and note that S/,(5 — &) LY ~ N(0,A;), S'V S, 25 A,
dVES;Y — ¢S, and ¢SyA1Soc # 0. Then by the continuous mapping and Slutzky

theorems,
A6 —08)  IS;VSL(6—-6)  IVEKS;VSH(d— )
Veve VeSS VS, S te (VRS 1S,V 8,8, W Ee
d C’S[/)Y

~ N(0,1).

4, TP

/' SHArSoc

For case II), (,un/\/E> S! (6—00) LY~ N(0,App), (2 /K) S\ VS, =5 App, & pin SV —

S}, and /' S{A1Soc # 0. Then
cGogy) S (1 VE) S - o)
Ve VS 12/ K) S,V S, e
SV (Mn/\/ﬁ> S (5 — &) J ¢Sy
4, P00
VSV G2/ K) SV S, S eV SehrSoe

~ N(0,1).Q.E.D.
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