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Abstract

It is common practice in econometrics to correct for heteroskedasticity. This
paper corrects instrumental variables estimators with many instruments for het-
eroskedasticity. We give heteroskedasticity robust versions of the limited infor-
mation maximum likelihood (LIML) and Fuller (1977, FULL) estimators; as well
as heteroskedasticity consistent standard errors thereof. The estimators are based
on removing the own observation terms in the numerator of the LIML variance
ratio. We derive asymptotic properties of the estimators under many and many
weak instruments setups. Based on a series of Monte Carlo experiments, we find
that the estimators perform as well as LIML or FULL under homoskedasticity, and
have much lower bias and dispersion under heteroskedasticity, in nearly all cases
considered.
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1 Introduction

It is common practice in econometrics to correct standard errors for heteroskedasticity.

A leading example of such correction is least squares with heteroskedasticity consistent

standard errors, which is ubiquitous. Additionally, two-stage least squares (2SLS) with

heteroskedasticity consistent standard errors is often used, in exactly identified models.

However, such corrections seem not to be available for the Fuller (1977, FULL) and lim-

ited information maximum likelihood (LIML) estimators, in overidentified models. This

perhaps surprising, given that FULL and LIML have better properties than 2SLS (see

e.g. Hahn and Inoue (2002), Hahn and Hausman (2002), and Hansen, Hausman, and

Newey, (2007)). The purpose of this paper is to correct these methods for heteroskedas-

ticity under many instruments, and we shall see that it is necessary to correct both the

estimators and the standard errors.

LIML and FULL are inconsistent with many instruments and heteroskedasticity, as

pointed out for the case of dummy instruments and LIML by Bekker and van der Ploeg

(2005), and more generally by Chao and Swanson (2004).1 Here we give a general charac-

terization of this inconsistency. More importantly, we propose heteroskedasticity robust

versions of FULL and LIML, namely HFUL and HLIM, respectively. HLIM is a jackknife

version of LIML that deletes own observation terms in the numerator of the variance ra-

tio; and like LIML, HLIM is invariant to normalization. Also, HLIM can be interpreted

as a linear combination of forward and reverse jackknife instrumental variable (JIV)

estimators, analogous to Hahn and Hausman’s (2002) interpretation of LIML as a lin-

ear combination of forward and reverse Nagar estimators. For each estimator we also

give heteroskedasticity consistent standard errors that adjust for the presence of many

instruments.

We show that HLIM and HFUL are as efficient as FULL and LIML under homoskedas-

ticity and the many weak instruments sequence of Chao and Swanson (2005) and Stock

and Yogo (2005). Under the many instruments sequence of Kunitomo (1980) and Bekker

1See also Ackerberg and Devereux (2003).

[1]



(1994) we show that HLIM may be more or less efficient than LIML. We argue that these

efficiency differences will tend to be small in most applications, where the number of

instrumental variables is small relative to the sample size.

The HFUL and HLIM estimators and their associated standard errors are quite simple

to compute. However, similarly to least squares not being efficient under heteroskedas-

ticity, HFUL and HLIM are also not efficient under heteroskedasticity and many instru-

ments. Recent results of Newey and Windmeijer (2007) suggest that the continuous

updating estimator (CUE) of Hansen, Heaton, and Yaron (1996) and other generalized

empirical likelihood estimators (see e.g. Smith (1997)) are efficient. These estimators

are quite difficult to compute, though. To address this problem, we give a linearized,

jackknife version of the continuous updating estimator that is easier to compute, and for

which HLIM provides simple starting values. In Monte Carlo work we do not find much

advantage to using the CUE, and no advantage to using its linearized version, relative

to HFUL and HLIM.

One important precedent to the research discussed in this paper is Hahn and Hausman

(2002), who considered combining forward and reverse IV estimators. JIV estimators

were proposed by Phillips and Hale (1977), Blomquist and Dahlberg (1999), Angrist and

Imbens and Krueger (1999), and Ackerberg and Deveraux (2003). Chao and Swanson

(2004) have previously given heteroskedasticity consistent standard errors and shown

asymptotic normality for JIV, under many weak instruments. Newey and Windmeijer

(2007) considered efficiency of IV estimators with heteroskedasticity and many weak

instruments.

In a series of Monte Carlo experiments, we show that the HFUL and HLIM are

approximately as efficient as LIML under homoskedasticity, unlike the JIV estimator,

that was shown to perform poorly relative to LIML by Davidson and MacKinnon (2006).

Also, HFUL has less bias and dispersion than FULL in most of the cases that we consider,

under heteroskedasticity. These results suggest that the new estimators are promising

heteroskedasticity robust and efficient alternatives to FULL, LIML, and other estimators,

under many instruments.

[2]



The rest of the paper is organized as follows. In the next section, the model is

outlined, and previous estimators are summarized. In Section 3, heteroskedasticity robust

LIML and FULL estimators are presented; while Section 4 discusses efficiency of these

estimators. Section 5 outlines how to use the same jackknifing approach used in the

construction of HLIM and HFUL in order to construct a robust CUE. Asymptotic theory

is gathered in Section 6, and Monte Carlo findings are presented in Section 7. All proofs

are gathered in Section 8.

2 The Model and Previous Estimators

The model we consider is given by

y
n×1

= X
n×G

δ0
G×1

+ ε
n×1

,

X = Υ+ U,

where n is the number of observations, G is the number of right-hand side variables, Υ

is a matrix of observations on the reduced form, and U is the matrix of reduced form

disturbances. For our asymptotic approximations, the elements of Υ will be implicitly

allowed to depend on n, although we suppress dependence of Υ on n for notational

convenience. Estimation of δ0 will be based on an n × K matrix, Z, of instrumental

variable observations with rank(Z) = K. We will assume that Z is nonrandom and that

observations (εi, Ui) are independent across i and have mean zero.

This model allows for Υ to be a linear combination of Z, i.e. Υ = Zπ for some K×G

matrix π. Furthermore, some columns of X may be exogenous, with the correspond-

ing column of U being zero. The model also allows for Z to approximate the reduced

form. For example, let X 0
i, Υ

0
i, and Z 0i denote the i

th row (observation) of X, Υ, and

Z respectively. We could define Υi = f0(wi) to be a vector of unknown functions of a

vector wi of underlying instruments, and Zi = (p1K(wi), ..., pKK(wi))
0 for approximating

functions pkK(w), such as power series or splines. In this case, linear combinations of Zi

may approximate the unknown reduced form (e.g. as in Donald and Newey (2001)).

[3]



To describe estimators in the extant literature, let P = Z(Z 0Z)−1Z 0. The LIML

estimator, δ̃∗, is given by

δ̃∗ = argmin
δ

Q̂∗(δ), Q̂∗(δ) =
(y −Xδ)0P (y −Xδ)

(y −Xδ)0(y −Xδ)
.

FULL is obtained as

δ̆∗ = (X 0PX − ᾰ∗X 0X)−1(X 0Py − ᾰ∗X 0y),

for ᾰ∗ = [α̃∗ − (1 − α̃∗)C/T ]/[1 − (1 − α̃∗)C/T ], α̃∗ = Q̂∗(δ̃∗), and C > 0. FULL has

moments of all orders, is approximately mean unbiased for C = 1, and is second order

admissible for C ≥ 4, under homoskedasticity and standard large sample asymptotics.

Both LIML and FULL are members of a class of estimators of the form

δ̂∗ = (X 0PX − α̂∗X 0X)−1(X 0Py − α̂∗X 0y).

For example, LIML has this form for α̂∗ = α̃∗, FULL for α̂∗ = ᾰ∗, and 2SLS for α̂∗ = 0.

We can use the objective functions that these estimators minimize in order to char-

acterize the problem with heteroskedasticity and many instruments. If the limit of the

objective function is not minimized at the true parameter, then the estimator will not

be consistent. For expository purposes, first consider 2SLS, which has the following

objective function

Q̂2SLS(δ) = (y−Xδ)0P (y−Xδ)/n =
X
i6=j
(yi−X 0

iδ)Pij(yj−X 0
jδ)/n+

nX
i=1

Pii(yi−X 0
iδ)

2/n.

This objective function is a quadratic form that, like a sample average, will be close to

its expectation in large samples. Its expectation is

E
h
Q̂2SLS(δ)

i
= (δ − δ0)

0
X
i6=j

ΥiPijΥ
0
j(δ − δ0)/n+

nX
i=1

PiiE[(yi −X 0
iδ)

2]/n

Asymptotically, the first term following the above equality will be minimized at δ0, under

certain regularity conditions. The second term is an expected squared residual that will

not be minimized at δ0 due to endogeneity. With many instruments

Pii 9 0,
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so that the second term does not vanish asymptotically. Hence, with many instruments,

2SLS is not consistent, even under homoskedasticity, as pointed out by Bekker (1994).

For LIML, we can (asymptotically) replace the objective function, Q̂∗(δ), with a

corresponding ratio of expectations giving

E[(y −Xδ)0 P (y −Xδ)]

E[(y −Xδ)0 (y −Xδ)]
=
(δ − δ0)

0Pn
i6=j PijΥiΥ

0
j(δ − δ0)Pn

i=1E[(yi −X 0
iδ)

2]
+

Pn
i=1 PiiE[(yi −X 0

iδ)
2]Pn

i=1E[(yi −X 0
iδ)

2]
.

Here, we again see that the first term following the equality will be minimized at δ0

asymptotically. Under heteroskedasticity, the second term may not have a critical value

at δ0, and so the objective function will not be minimized at δ0. To see this let σ
2
i = E[ε2i ],

γi = E[Xiεi]/σ
2
i , and γ̄ =

Pn
i=1E[Xiεi]/

Pn
i=1 σ

2
i =

P
i γiσ

2
i /
P

i σ
2
i . Then

∂

∂δ

Pn
i=1 PiiE[(yi −Xiδ)

2]Pn
i=1E[(yi −Xiδ)2]

¯̄̄̄
δ=δ0

=
−2Pn
i=1 σ

2
i

"
nX
i=1

PiiE[Xiεi]−
nX
i=1

Piiσ
2
i γ̄

#

=
−2
Pn

i=1 Pii(γi − γ̄)σ2iPn
i=1 σ

2
i

= −2 \Covσ2(Pii, γi),

where \Covσ2(Pii, γi) is the covariance between Pii and γi, for the distribution with prob-

ability weight σ2i /
Pn

i=1 σ
2
i for the i

th observation. When

lim
n−→∞

\Covσ2(Pii, γi) 6= 0,

the objective function will not have zero derivative at δ0 asymptotically so that it is not

minimized at δ0. When this covariance does have a zero limit then it can be shown that

the ratio of expectations will be minimized at δ0 as long as for Ωi = E[UiU
0
i ] the matrixµ

1−
Pn

i=1 σ
2
iPiiPn

i=1 σ
2
i

¶X
ΥiΥ

0
i/n+

X
i

PiiΩi/n−
Pn

i=1 σ
2
iPiiPn

i=1 σ
2
i

nX
i=1

Ωi/n

has a positive definite limit. For the homoskedastic case it is known that LIML is

consistent under many or many weak instruments (see e.g. Bekker (1994) and Chao

and Swanson (2005)).

Note that \Covσ2(Pii, γi) = 0, when either γi or Pii does not depend on i. Thus, it

is variation in γi = E[Xiεi]/σ
2
i , the coefficients from the projection of Xi on εi, that

leads to inconsistency of LIML, and not just any heteroskedasticity. Also, the case where

[5]



Pii is constant occurs with dummy instruments and equal group sizes. It was pointed

out by Bekker and van der Ploeg (2005) that LIML is consistent in this case, under

heteroskedasticity.

LIML is inconsistent when Pii = Z 0i(Z
0Z)−1Zi (roughly speaking this is the size of the

ith instrument observation) is correlated with γi. This can easily happen when (say) there

is more heteroskedasticity in σ2i than E[Xiεi]. Bekker and van der Ploeg (2005) and Chao

and Swanson (2004) pointed out that LIML can be inconsistent with heteroskedasticity;

but this appears to be the first statement of the critical condition that \Covσ2(Pii, γi) = 0

for consistency of LIML.

The lack of consistency of these estimators under many instruments and heteroskedas-

ticity can be attributed to the presence of the i = j terms in their objective functions.

The estimators can be made robust to heteroskedasticity by dropping these terms. Doing

this for 2SLS gives

δ̄ = argmin
δ

X
i6=j
(yi −X 0

iδ)Pij(yj −X 0
jδ)/n

Solving for δ̄ gives

δ̄ =

ÃX
i6=j

XiPijX
0
j

!−1X
i6=j

XiPijyj.

This is the JIV2 estimator of Angrist, Imbens, and Krueger (1994). Because the nor-

mal equations remove the i = j terms, this estimator is consistent. It was pointed out

by Ackerberg and Devereux (2003) and Chao and Swanson (2004) that this estimator

is consistent under many weak instruments and heteroskedasticity. However, under ho-

moskedasticity and many weak instruments, this estimator is not efficient; and Davidson

and MacKinnon (2006) argued that it additionally has inferior small sample properties

under homoskedasticity, when compared with LIML. The estimators that we give over-

come these problems.
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3 Heteroskedasticity Robust LIML and FULL

The heteroskedasticity robust LIML estimator (HLIM) is obtained by dropping the i = j

terms from the numerator of the LIML objective function, so that

δ̃ = argmin
δ

Q̂(δ), Q̂(δ) =

P
i6=j(yi −X 0

iδ)Pij(yj −X 0
jδ)

(y −Xδ)0(y −Xδ)
.

Like the jackknife IV estimator, δ̃ will be consistent under heteroskedasticity because the

i = j terms have been removed from the numerator. In the sequel, we will show that

this estimator is consistent and asymptotically normal and give a consistent asymptotic

variance estimator.

As is the case for LIML, this estimator is invariant to normalization. Let X̄ = [y,X].

Then d̃ = (1,−δ̃0)0 solves

min
d:d1=1

d0
³P

i6=j X̄iPijX̄
0
j

´
d

d0X̄ 0X̄d
.

Another normalization, such as imposing that another d is equal to 1 would produce the

same estimator, up to the normalization.

Also, computation of this estimator is straightforward. Similarly to LIML, α̃ = Q̂(δ̃)

is the smallest eigenvalue of (X̄ 0X̄)−1
P

i6=j X̄iPijX̄
0
j. Also, first order conditions for δ̃ are

0 =
X
i 6=j

XiPij

³
yj −X 0

j δ̃
´
− α̃

X
i

Xi(yi −X 0
i δ̃).

Solving these conditions gives

δ̃ =

ÃX
i6=j

XiPijX
0
j − α̃X 0X

!−1ÃX
i6=j

XiPijyj − α̃X 0y

!
.

This estimator has a similar form to LIML except that the i = j terms have been deleted

from the double sums.

It is interesting to note that LIML and HLIM coincide when Pii is constant. In that

case,

Q̂∗(δ) = Q̂(δ) +

P
i Pii(yi −X 0

iδ)
2

(y −Xδ)0(y −Xδ)
= Q̂(δ) + P11,

[7]



so that the LIML objective function equals the HLIM objective function plus a constant.

This explains why constant Pii will lead to LIML being consistent under heteroskedas-

ticity.

HLIM is a member of a class of jackknife estimators having the form

δ̂ =

ÃX
i6=j

XiPijX
0
j − α̂X 0X

!−1ÃX
i6=j

XiPijyj − α̂X 0y

!
.

The JIV estimator is obtained by setting α̂ = 0. A heteroskedasticity consistent version

of FULL, namely HFUL, is obtained by replacing α̃ with α̂ = [α̃− (1− α̃)C/T ]/[1− (1−

α̃)C/T ] for some C > 0. The small sample properties of this estimator are unknown,

but we expect its performance relative to HLIM to be similar to that of FULL relative

to LIML. As pointed out by Hahn, Hausman, and Kuersteiner (2004), FULL has much

smaller dispersion than LIML with weak instruments, so we expect the same for HFUL.

Monte Carlo results given below confirm these properties.

An asymptotic variance estimator is useful for constructing large sample confidence

intervals and tests. To describe it, let ε̂i = yi −X 0
i δ̂, γ̂ = X 0ε̂/ε̂0ε̂, X̂ = X − ε̂γ̂0,

Ĥ =
X
i6=j

XiPijX
0
j − α̂X 0X, Σ̂ =

nX
i,j=1

X
k/∈{i,j}

X̂iPikε̂
2
kPkjX̂

0
j +

X
i6=j

P 2
ijX̂iε̂iε̂jX̂

0
j.

The variance estimator is

V̂ = Ĥ−1Σ̂Ĥ−1.

We can interpret the HLIM estimator, δ̃, as a combination of forward and reverse

JIV estimators. For simplicity, we give this interpretation in the scalar δ case. Let

ε̃i = yi −X 0
i δ̃ and γ̃ =

P
iXiε̃i/

P
i ε̃
2
i . First-order conditions for δ̃ are

0 = −∂Q̂(δ̃)
∂δ

X
i

ε̃2i /2 =
X
i6=j
(Xi− γ̃ε̃i)Pij(yj −X 0

j δ̃) =
X
i 6=j
[(1+ γ̃δ̃)Xi− γ̃yi]Pij(yj −X 0

j δ̃).

The forward JIV estimator δ̄ is

δ̄ =

ÃX
i6=j

XiPijXj

!−1X
i6=j

XiPijyj.

[8]



The reverse JIV is obtained as follows. Dividing the structural equation by δ0 gives

Xi = yi/δ0 − εi/δ0.

Applying JIV to this equation in order to estimate 1/δ0, and then inverting, gives the

reverse JIV estimator

δ̄r =

ÃX
i6=j

yiPijXj

!−1X
i6=j

yiPijyj.

Then, collecting terms in the first-order conditions for HLIM gives

0 = (1 + γ̃δ̃)
X
i6=j

XiPij(yj −X 0
j δ̃)− γ̃

X
i 6=j

yiPij(yj −X 0
j δ̃)

= (1 + γ̃δ̃)
X
i6=j

XiPijXj(δ̄ − δ̃)− γ̃
X
i6=j

yiPijXj(δ̄
r − δ̃).

Dividing through by
P

i6=j XiPijXj gives

0 = (1 + γ̃δ̃)(δ̄ − δ̃)− γ̃δ̄(δ̄r − δ̃).

Finally, solving for δ̃ gives

δ̃ =
(1 + γ̃δ̃)δ̄ −

¡
γ̃δ̄
¢
δ̄r

1 + γ̃(δ̃ − δ̄)
.

As usual, the asymptotic variance of a linear combination of coefficients is unaffected by

how the coefficients are estimated, so that a feasible version of this estimator is

δ̄∗ = (1 + γ̄δ̄)δ̄ −
¡
γ̄δ̄
¢
δ̄r, γ̄ =

nX
i=1

Xi(yi −X 0
i δ̄)/

nX
i=1

(yi −X 0
i δ̄)

2.

Because HLIM and HFUL perform so well in our Monte Carlo experiments, we do not

pursue this particular estimator, however.

The above result is analogous to that of Hahn and Hausman (2002), in the sense that

under homoskedasticity, LIML is an optimal combination of forward and reverse bias

corrected two stage least squares estimators. Here we find a similar result, that HLIM is

asymptotically equivalent to a linear combination of forward and reverse heteroskedas-

ticity robust JIV estimators.

[9]



4 Optimal Estimation with Heteroskedasticity

HLIM is not asymptotically efficient under heteroskedasticity and many weak instru-

ments. In GMM terminology, it uses a nonoptimal weighting matrix, one that is not

heteroskedasticity consistent for the inverse of the variance of the moments. In addition,

it does not use a heteroskedasticity consistent projection of the endogenous variables on

the disturbance, which leads to inefficiency in the many instruments correction term.

Efficiency can be obtained by modifying the estimator so that the weight matrix and the

projection are heteroskedasticity consistent. Let

Ω̂(δ) =
nX
i=1

ZiZ
0
iεi(δ)

2/n, B̂k(δ) =

ÃX
i

ZiZ
0
iεi(δ)Xik/n

!
Ω̂(δ)−1

and

D̂ik(δ) = ZiXik − B̂k(δ)Ziεi(δ), D̂i(δ) =
h
D̂i1(δ), ..., D̂iG(δ)

i
.

Also, let δ̄ be a preliminary estimator (such as HLIM). An IV estimator that is efficient

under heteroskedasticity of unknown form and many weak instruments is

δ̂ =

ÃX
i6=j

D̂i(δ̄)
0Ω̂(δ̄)−1ZjX

0
j

!−1X
i6=j

D̂i(δ̄)
0Ω̂(δ̄)−1Zjyj.

This is a jackknife IV estimator with an optimal weighting matrix, Ω̂(δ̄)−1, and where

D̂i(δ̄) replaces XiZ
0
i. The use of D̂i(δ̄) makes the estimator as efficient as the CUE under

many weak instruments.

The asymptotic variance can be estimated by

U = Ĥ−1Σ̂Ĥ−1, Ĥ =
X
i6=j

XiZ
0
iΩ̂(δ̄)

−1ZjX
0
j, Σ̂ =

nX
i,j=1

D̂i(δ̄)
0Ω̂(δ̄)−1D̂j(δ̄).

This estimator has a sandwich form similar to that given in Newey and Windmeijer

(2007).

5 The Robust, Restricted CUE

As discussed above, HLIM has been made robust to heteroskedasticity by jackknifing,

where own observation terms are removed. In general this same approach can be used to

[10]



make the continuous updating estimator robust to restrictions on the weighting matrix,

such as homoskedasticity. For example, LIML is a CUE, where homoskedasticity is

imposed on the weighting matrix; and HLIM is its robust version.

For expository purposes, consider a general GMM setup where δ denotes a G × 1

parameter vector and gi(δ) is a K × 1 vector of functions of the data and parameters

satisfying E[gi(δ0)] = 0. For example, in the linear IV environment, gi(δ) = Zi(yi−X 0
iδ).

Let Ω̃(δ) denote an estimator of Ω(δ) =
Pn

i=1E[gi(δ)gi(δ)
0]/n, where an n subscript on

Ω(δ) is suppressed for notational convenience. A CUE is given by

δ̂ = argmin
δ

ĝ(δ)0Ω̃(δ)−1ĝ(δ).

When Ω̃(δ) =
Pn

i=1 gi(δ)gi(δ)
0/n this estimator is the CUE given by Hansen, Heaton,

and Yaron (1996), that places no restrictions on the estimator of the second moment

matrices. In general, restrictions may be imposed on the second moment matrix. For

example, in the IV setting where gi(δ) = Zi(yi −X 0
iδ), we may specify Ω̃ (δ) to be only

consistent under homoskedasticity,

Ω̃(δ) = (y −Xδ)0 (y −Xδ)Z 0Z/n2.

In this case the CUE objective function is

ĝ(δ)0Ω̃(δ)−1ĝ(δ) =
(y −Xδ)0 P (y −Xδ)

(y −Xδ)0 (y −Xδ)
,

which is the LIML objective function, as is well known (see Hansen, Heaton, and Yaron,

(1996)).

A CUE will tend to have low bias when the restrictions imposed on Ω̃(δ) are satis-

fied, but may be more biased otherwise. A simple calculation can be used to explain

this bias. Consider a CUE where Ω̃(δ) is replaced by its expectation, Ω̄(δ) = E[Ω̃(δ)].

This replacement is justified under many weak instrument asymptotics; see Newey and

Windmeijer (2007) . The expectation of the CUE objective function is then

E[ĝ(δ)0Ω̄(δ)−1ĝ(δ)] = (1− n−1)ḡ(δ)0Ω̄(δ)−1ḡ(δ) + tr(Ω̄(δ)−1Ω(δ))/n,

[11]



where ḡ(δ) = E[gi(δ)] and Ω(δ) = E[gi(δ)gi(δ)
0]. The first term in the above expression

is minimized at δ0, where ḡ(δ0) = 0. When Ω̄(δ) = Ω (δ) , then

tr(Ω̄(δ)−1Ω(δ))/n = K/n,

so that the second term does not depend on δ. In this case the expected value of the CUE

objective function is minimized at δ0. When Ω̄(δ) 6= Ω(δ), the second term will depend

on δ, and so the expected value of the CUE objective function will not be minimized at

δ0. This effect will lead to bias in the CUE, because the estimator will be minimizing

an objective function with expectation that is not minimized at the truth. It is also

interesting to note that this bias effect will tend to increase with K. This bias was noted

by Han and Phillips (2005) for two-stage GMM, who referred to the bias term as a “noise”

term, and to the other term as a “signal” term.

We robustify the CUE by jackknifing (i.e. by deleting the own observation terms in

the CUE quadratic form). Note that

E[
X
i6=j

gi(δ)
0Ω̄(δ)−1gj(δ)/n

2] = (1− n−1)ḡ(δ)0Ω̄(δ)−1ḡ(δ),

which is always minimized at δ0, no matter what Ω̄(δ) is. A corresponding estimator is

obtained by replacing Ω̄(δ) by Ω̃(δ) and minimizing. Namely,

δ̂ = argmin
δ

X
i6=j

gi(δ)
0Ω̃(δ)−1gj(δ)/n

2.

This is a robust CUE (RCUE), that should have small bias by virtue of the jackknife

form of the objective function. The HLIM estimator is precisely of this form, for Ω̃(δ) =

(y −Xδ)0 (y −Xδ)Z 0Z/n2.

6 Asymptotic Theory

Theoretical justification for the estimators proposed here is provided by asymptotic the-

ory where the number of instruments grows with the sample size. Some regularity con-

ditions are important for the results. Let Z 0i, εi, U
0
i , and Υ0

i denote the i
th row of Z, ε, U,
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and Υ respectively. Here, we will consider the case where Z is constant, which can be

viewed as conditioning on Z (see e.g. Chao, Swanson, Hausman, Newey, and Woutersen

(2007)).

Assumption 1: Z includes among its columns a vector of ones, rank(Z) = K, and

there is a constant C such that Pii ≤ C < 1, (i = 1, ..., n), K −→∞.

The restriction that rank(Z) = K is a normalization that requires excluding redun-

dant columns from Z. It can be verified in particular cases. For instance, when wi is a

continuously distributed scalar, Zi = pK(wi), and pkK(w) = wk−1, it can be shown that

Z 0Z is nonsingular with probability one for K < n.2 The condition Pii ≤ C < 1 implies

that K/n ≤ C, because K/n =
Pn

i=1 Pii/n ≤ C.

Assumption 2: There is a G × G matrix, Sn = S̃n diag (μ1n, ..., μGn), and zi such

that Υi = Snzi/
√
n, S̃n is bounded and the smallest eigenvalue of S̃nS̃

0
n is bounded away

from zero, for each j either μjn =
√
n or μjn/

√
n −→ 0, μn = min

1≤j≤G
μjn −→ ∞, and

√
K/μ2n −→ 0. Also,

Pn
i=1 kzik

4 /n2 −→ 0, and
Pn

i=1 ziz
0
i/n is bounded and uniformly

nonsingular.

Setting μjn =
√
n leads to asymptotic theory like that in Kunitomo (1980), Morimune

(1983), and Bekker (1994), where the number of instruments K can grow as fast as the

sample size. In that case, the condition
√
K/μ2n −→ 0 would be automatically satisfied.

Allowing for K to grow, and for μn to grow more slowly than
√
n, allows for many in-

struments without strong identification. This condition then allows for some components

of the reduced form to give only weak identification (corresponding to μjn/
√
n −→ 0),

and other components (corresponding to μjn =
√
n) to give strong identification. In

particular, this condition allows for fixed constant coefficients in the reduced form.

Assumption 3: (ε1, U1), ..., (εn, Un) are independent with E[εi] = 0, E[Ui] = 0, E[ε
4
i ]

2The observations w1, ..., wn are distinct with probability one and therefore, by K < n, cannot all
be roots of a Kth degree polynomial. It follows that for any nonzero a there must be some i with
a0Zi = a0pK(wi) 6= 0, implying that a0Z0Za > 0.

[13]



and E[kUik4] are bounded in i, V ar((εi, U 0
i)
0) = diag(Ω∗i , 0), and

Pn
i=1Ω

∗
i /n is uniformly

nonsingular.

This condition includes moment existence assumptions. It also requires the average

variance of the nonzero reduced form disturbances to be nonsingular, and is useful for

the proof of consistency contained in the appendix.

Assumption 4: There is a πKn such that
Pn

i=1 kzi − πKnZik2 /n −→ 0.

This condition allows for an unknown reduced form that is approximated by a linear

combination of the instrumental variables. It is possible to replace this assumption with

the condition that
P

i6=j ziPijz
0
j/n is uniformly nonsingular.

We can easily interpret all of these conditions for the important example of a linear

model with exogenous covariates and a possibly unknown reduced form. This example

is given by

Xi =

µ
π11Z1i + μnf0(wi)/

√
n

Z1i

¶
+

µ
vi
0

¶
, Zi =

µ
Z1i

pK(wi)

¶
,

where Z1i is a G2 × 1 vector of included exogenous variables, f0(w) is a G − G2 di-

mensional vector function of a fixed dimensional vector of exogenous variables, w, and

pK(w)
def
= (p1K(w), ..., pK−G2,K(w))

0. The variables in Xi other than Z1i are endogenous

with reduced form π11Z1i + μnf0(wi)/
√
n. The function f0(w) may be a linear combina-

tion of a subvector of pK(w), in which case zi = πKnZi, for some πKn in Assumption 4;

or it may be an unknown function that can be approximated by a linear combination of

pK(w). For μn =
√
n, this example is like the model in Donald and Newey (2001), where

Zi includes approximating functions for the optimal (asymptotic variance minimizing)

instruments Υi, but the number of instruments can grow as fast as the sample size. When

μ2n/n −→ 0, it is a modified version where the model is more weakly identified.

To see precise conditions under which the assumptions are satisfied, let

zi =

µ
f0(wi)
Z1i

¶
, Sn = S̃ndiag

¡
μn, ..., μn,

√
n, ...,

√
n
¢
, and S̃n =

µ
I π11
0 I

¶
.
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By construction we have that Υi = Snzi/
√
n. Assumption 2 imposes the requirements

that
nX
i=1

kzik4 /n2 −→ 0,

and that
Pn

i=1 ziz
0
i/n is bounded and uniformly nonsingular. The other requirements of

Assumption 2 are satisfied by construction. Turning to Assumption 3, we require thatPn
i=1 V ar(εi, U

0
i)/n is uniformly nonsingular. For Assumption 4, let πKn = [π̃

0
Kn, [IG2 , 0]

0]0.

Then Assumption 4 will be satisfied if, for each n, there exists a π̃Kn with

nX
i=1

kzi − π0KnZik2/n =
nX
i=1

kf0(wi)− π̃0KnZik2/n −→ 0.

Theorem 1: If Assumptions 1-4 are satisfied and α̂ = op(μ
2
n/n) or δ̂ is HLIM or

HFUL then μ−1n S0n(δ̂ − δ0)
p−→ 0 and δ̂

p−→ δ0.

This result gives convergence rates for linear combinations of δ̂. For instance, in the

above example, it implies that δ̂1 is consistent and that π
0
11δ̂1 + δ̂2 = op(μn/

√
n).

The asymptotic variance of the estimator will depend on the growth rate ofK relative

to μ2n. The following condition allows for two cases.

Assumption 5: Either I) K/μ2n is bounded and
√
KS−1n −→ S0 or; II) K/μ2n −→∞

and μnS
−1
n −→ S̄0.

To state a limiting distribution result it is helpful to also assume that certain objects

converge. Let σ2i = E[ε2i ], γn =
Pn

i=1E[Uiεi]/
Pn

i=1 σ
2
i , Ũ = U − εγ0n, having i

th row Ũ 0
i ;

and let Ω̃i = E[ŨiŨ
0
i ].

Assumption 6: HP = lim
n−→∞

Pn
i=1(1−Pii)ziz

0
i/n, Σp = lim

n−→∞

Pn
i=1(1−Pii)

2ziz
0
iσ
2
i /n

and Ψ = limn−→∞
P

i6=j P
2
ij

³
σ2iE[ŨjŨ

0
j] +E[Ũiεi]E[εjŨ

0
j]
´
/K.

This convergence condition can be replaced by an assumption that certain matrices

are uniformly positive definite without affecting the limiting distribution result for t-

ratios given in Theorem 3 below (see Chao, Swanson, Hausman, Newey, and Woutersen

(2007)).

[15]



We can now state the asymptotic normality results. In Case I we have that

S0n(δ̂ − δ0)
d−→ N(0,ΛI), (6.1)

where

ΛI = H−1
P ΣPH

−1
P +H−1

P S0ΨS
0
0H

−1
P .

In Case II, we have that

(μn/
√
K)S0n(δ̂ − δ0)

d−→ N(0,ΛII), (6.2)

where

ΛII = H−1
P S̄0ΨS̄

0
0H

−1
P .

The asymptotic variance expressions allow for the many instrument sequence of Kunitomo

(1980), Morimune (1983), and Bekker (1994) and the many weak instrument sequence of

Chao and Swanson (2004, 2005). In Case I, the first term in the asymptotic variance, ΛI ,

corresponds to the usual asymptotic variance, and the second is an adjustment for the

presence of many instruments. In Case II, the asymptotic variance, ΛII , only contains

the adjustment for many instruments. This is because K is growing faster than μ2n. Also,

ΛII will be singular when included exogenous variables are present.

We can now state an asymptotic normality result.

Theorem 2: If Assumptions 1-6 are satisfied, α̂ = α̃ + Op(1/T ) or δ̂ is HLIM or

HFUL, then in Case I, equation (6.1) is satisfied, and in Case II, equation (6.2) is

satisfied.

It is interesting to compare the asymptotic variance of the HLIM estimator with that

of LIML when the disturbances are homoskedastic. Under homoskedasticity the variance

of V ar((εi, U
0
i)) will not depend on i (e.g. so that σ2i = σ2). Then, γn = E[Xiεi]/σ

2 = γ

and E[Ũiεi] = E[Uiεi]− γσ2 = 0, so that

Σp = σ2H̃p, H̃P = lim
n−→∞

nX
i=1

(1− Pii)
2ziz

0
i/n,Ψ = σ2E[ŨjŨ

0
j](1− lim

n−→∞

nX
i=1

P 2
ii/K).
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Focusing on Case I, letting Γ = σ2S0E[ŨiŨ
0
i ]S

0
0, the asymptotic variance of HLIM is then

V = σ2H−1
P H̃PH

−1
P + lim

n−→∞
(1−

nX
i=1

P 2
ii/K)H

−1
p ΓH−1

P .

For the variance of LIML, assume that third and fourth moments obey the same restric-

tions that they do under normality. Then from Hansen, Hausman, and Newey (2007),

for H = limn−→∞
Pn

i=1 ziz
0
i/n and τ = limn−→∞K/n, the asymptotic variance of LIML

is

V ∗ = σ2H−1 + (1− τ)−1H−1ΓH−1.

With many weak instruments, where τ = 0 and maxi≤n Pii −→ 0, we will have

HP = H̃P = H and limn−→∞
P

i P
2
ii/K −→ 0, so that the asymptotic variances of HLIM

and LIML are the same and equal to σ2H−1+H−1ΓH−1. This case is most important in

practical applications, where K is usually very small relative to n. In such cases we would

expect from the asymptotic approximation to find that the variance of LIML and HLIM

are very similar. Also, the JIV estimators will be inefficient relative to LIML and HLIM.

As shown in Chao and Swanson (2004), under many weak instruments the asymptotic

variance of JIV is

VJIV = σ2H−1 +H−1S0(σ
2E[UiU

0
i ] +E[Uiεi]E[εiU

0
i ])S

0
0H

−1,

which is larger than the asymptotic variance of HLIM because E[UiU
0
i ] ≥ E[ŨiŨ

0
i ].

In the many instruments case, where K and μ2n grow as fast as n, it turns out that

we cannot rank the asymptotic variances of LIML and HLIM. To show this, consider

an example where p = 1, zi alternates between −z̄ and z̄ for z̄ 6= 0, Sn =
√
n (so

that Υi = zi), and zi is included among the elements of Zi. Then, for Ω̃ = E[Ũ2
i ] and

κ = limn−→∞
Pn

i=1 P
2
ii/K we find that

V − V ∗ =
σ2

z̄2(1− τ)2
(τκ− τ 2)

Ã
1− Ω̃

z̄2

!
.

Since τκ− τ 2 is the limit of the sample variance of Pii, which we assume to be positive,

V ≥ V ∗ if and only if z̄2 ≥ Ω̃. Here, z̄2 is the limit of the sample variance of zi. Thus,
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the asymptotic variance ranking can go either way depending on whether the sample

variance of zi is bigger than the variance of Ũi. In applications where the sample size is

large relative to the number of instruments, these efficiency differences will tend to be

quite small, because Pii is small.

For homoskedastic, non-Gaussian disturbances, it is also interesting to note that the

asymptotic variance of HLIM does not depend on third and fourth moments of the

disturbances, while that of LIML does (see Bekker and van der Ploeg (2005) and van

Hasselt (2000)). This makes estimation of the asymptotic variance simpler for HLIM

than for LIML.

It remains to establish the consistency of the asymptotic variance estimator, and to

show that confidence intervals can be formed for linear combinations of the coefficients

in the usual way. The following theorem accomplishes this, under additional conditions

on zi.

Theorem 3: If Assumptions 1-6 are satisfied, and α̂ = α̃ + Op(1/T ) or δ̂ is HLIM

or HFUL, there exists a C with kzik ≤ C for all i, and there exists a πn, such that

maxi≤n kzi − πnZik −→ 0, then in Case I, S0nV̂ Sn
p−→ ΛI and in Case II, μ

2
nS

0
nV̂ Sn/K

p−→

ΛII.. Also, if c
0S00ΛIS0c 6= 0 in Case I or c0S̄00ΛII S̄0c 6= 0 in Case II, then

c0(δ̂ − δ0)p
c0V̂ c

d−→ N(0, 1).

This result allows us to form confidence intervals and test statistics for a single linear

combination of parameters in the usual way.

7 Monte Carlo Results

In this Monte Carlo simulation, we provide evidence concerning the finite sample behavior

of HLIM and HFUL. The model that we consider is

y = δ10 + δ20x2 + ε, x2 = πz1 + U2

[18]



where zi1 ∼ N(0, 1) and U2i ∼ N(0, 1). The ith instrument observation is

Z 0i = (1, z1i, z
2
1i, z

3
1i, z

4
1i, z1iDi1, ..., z1iDi,K−5),

where Dik ∈ {0, 1}, Pr(Dik = 1) = 1/2, and zi1 ∼ N(0, 1). Thus, the instruments consist

of powers of a standard normal up to the fourth power plus interactions with dummy

variables. Only z1 affects the reduced form, so that adding the other instruments does

not improve asymptotic efficiency of the LIML or FULL estimators, though the powers

of zi1 do help with asymptotic efficiency of the CUE.

The structural disturbance, ε, is allowed to be heteroskedastic, being given by

ε = ρU2 +

s
1− ρ2

φ2 + (0.86)4
(φv1 + 0.86v2), v1 ∼ N(0, z21), v2 ∼ N(0, (0.86)2),

where vi1 and vi2 are independent of U2. This is a design that will lead to LIML being

inconsistent with many instruments. Here, E[Xiεi] is constant and σ
2
i is quadratic in zi1,

so that γi = (C1 +C2zi1 +C3z
2
i1)
−1A, for a constant vector, A, and constants C1, C2, C3.

In this case, Pii will be correlated with γi = E[Xiεi]/σ
2
i .

We report properties of estimators and t-ratios for δ2. We set n = 800 and ρ = 0.3

throughout and choose K = 2, 10, 30. We choose π so that the concentration parameter

is nπ2 = μ2 = 8, 16, 32. We also choose φ so that the R-squared for the regression of ε2

on the instruments is 0, 0.1, or 0.2.

Below, we report results on median bias and the range between the .05 and .95

quantiles for LIML, HLIM, the jackknife CUE, JIV, HFUL (C = 1), HFUL1/k (C =

1/K), CUE, and FULL. Interquartile range results were similar. We find that under

homoskedasticity, LIML and HFUL have quite similar properties, though LIML is slightly

less biased. Under heteroskedasticity, HFUL is much less biased and also much less

dispersed than LIML. Thus, we find that heteroskedasticity can bias LIML. We also find

that the dispersion of LIML is substantially larger than HFUL. Thus we find a lower bias

for HFUL under heteroskedasticity and many instruments, as predicted by the theory,

as well as substantially lower dispersion, which though not predicted by the theory may

turn out to be important in practice. In additional tables following the references, we
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also find that coverage probabilities using the heteroskedasticity and many instrument

consistent standard errors are quite accurate.

Median Bias R2
ε2|z21

= 0.00

μ2 K LIML HLIM FULL1 HFUL HFUL 1k JIV E CUE JCUE

8 0 0.005 0.005 0.042 0.043 0.025 −0.034 0.005 0.005
8 8 0.024 0.023 0.057 0.057 0.027 0.053 0.025 0.032
8 28 0.065 0.065 0.086 0.091 0.067 0.164 0.071 0.092

32 0 0.002 0.002 0.011 0.011 0.007 −0.018 0.002 0.002
32 8 0.002 0.001 0.011 0.011 0.002 −0.019 0.002 0.002
32 28 0.003 0.002 0.013 0.013 0.003 −0.014 0.006 0.006

***Results based on 20,000 simulations.

Nine Decile Range: .05 to .95 R2
ε2|z21

= 0.00

μ2 K LIML HLIM FULL1 HFUL HFUL 1k JIV E CUE JCUE

8 0 1.470 1.466 1.072 1.073 1.202 3.114 1.470 1.487
8 8 2.852 2.934 1.657 1.644 2.579 5.098 3.101 3.511
8 28 5.036 5.179 2.421 2.364 4.793 6.787 6.336 6.240

32 0 0.616 0.616 0.590 0.589 0.602 0.679 0.616 0.616
32 8 0.715 0.716 0.679 0.680 0.713 0.816 0.770 0.767
32 28 0.961 0.985 0.901 0.913 0.983 1.200 1.156 1.133

***Results based on 20,000 simulations.

Median Bias R2
ε2|z21

= 0.20

μ2 K LIML HLIM FULL1 HFUL HFUL 1k JIV E CUE JCUE

8 0 −0.001 0.050 0.041 0.078 0.065 −0.031 −0.001 0.012
8 8 −0.623 0.094 −0.349 0.113 0.096 0.039 0.003 −0.005
8 28 −1.871 0.134 −0.937 0.146 0.134 0.148 −0.034 0.076

32 0 −0.001 0.011 0.008 0.020 0.016 −0.021 −0.001 −0.003
32 8 −0.220 0.015 −0.192 0.024 0.016 −0.021 0.000 −0.019
32 28 −1.038 0.016 −0.846 0.027 0.017 −0.016 −0.017 −0.021
***Results based on 20,000 simulations.
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Nine Decile Range: .05 to .95 R2
ε2|z21

= 0.20

μ2 K LIML HLIM FULL1 HFUL HFUL 1k JIV E CUE JCUE

8 0 2.219 1.868 1.675 1.494 1.653 4.381 2.219 2.582
8 8 26.169 5.611 4.776 2.664 4.738 7.781 16.218 8.586
8 28 60.512 8.191 7.145 3.332 7.510 9.975 1.5E+012 12.281

32 0 0.941 0.901 0.903 0.868 0.884 1.029 0.941 0.946
32 8 3.365 1.226 2.429 1.134 1.217 1.206 1.011 1.086
32 28 18.357 1.815 5.424 1.571 1.808 1.678 3.563 1.873

***Results based on 20,000 simulations.

8 Appendix: Proofs of Consistency and Asymptotic

Normality

Throughout, let C denote a generic positive constant that may be different in different

uses and let M, CS, and T denote the conditional Markov inequality, the Cauchy-Schwartz

inequality, and the Triangle inequality respectively. The first Lemma is proved in Hansen,

Hausman, and Newey (2006).

Lemma A0: If Assumption 2 is satisfied and
°°°S0n(δ̂ − δ0)/μn

°°°2 /µ1 + °°°δ̂°°°2¶ p−→

0 then
°°°S0n(δ̂ − δ0)/μn

°°° p−→ 0.

We next give a result from Chao et al. (2007) that is used in the proof of consistency.

Lemma A1 (Lemma A1 of Chao et al., 2007): If (Wi, Yi), (i = 1, ..., n) are in-

dependent, Wi and Yi are scalars, and P is symmetric, idempotent of rank K then for w̄ =

E[(W1, ...,Wn)
0], ȳ = E[(Y1, ..., Yn)

0], σ̄Wn = maxi≤n V ar(Wi)
1/2, σ̄Y n = maxi≤n V ar(Yi)

1/2,X
i6=j

PijWiYj =
X
i6=j

Pijw̄iȳj +Op(K
1/2σ̄Wnσ̄Y n + σ̄Wn

p
ȳ0ȳ + σ̄Y n

√
w̄0w̄).

For the next result let S̄n = diag(μn, Sn), X̃ = [ε,X]S̄−10n , and Hn =
Pn

i=1(1 −

Pii)ziz
0
i/n.
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Lemma A2: If Assumptions 1-4 are satisfied and
√
K/μ2n −→ 0 thenX

i6=j
X̃iPijX̃

0
j = diag(0,Hn) + op(1).

Proof: Note that

X̃i =

µ
μ−1n εi
S−1n Xi

¶
=

µ
0

zi/
√
n

¶
+

µ
μ−1n εi
S−1n Ui

¶
.

Since kS−1n k ≤ Cμ−1n we have V ar(X̃ik) ≤ Cμ−2n for any element X̃ik of X̃i. Then applying

Lemma A1 to each element of
P

i6=j X̃iPijX̃
0
j givesX

i6=j
X̃iPijX̃

0
j = diag(0,

X
i6=j

ziPijz
0
j/n) +Op(K

1/2/μ2n + μ−1n (
X
i

kzik2 /n)1/2)

= diag(0,
X
i6=j

ziPijz
0
j/n) + op(1).

Also, note that

Hn −
X
i6=j

ziPijz
0
j/n =

X
i

ziz
0
i/n−

X
i

Piiziz
0
i/n−

X
i6=j

ziPijz
0
j/n = z0(I − P )z/n

= (z − Zπ0Kn)
0
(I − P ) (z − Zπ0Kn) /n ≤ (z − Zπ0Kn)

0
(z − Zπ0Kn) /n

≤ IG
X
i

kzi − πKnZik2 /n −→ 0,

where the third equality follows by PZ = Z, the first inequality by I − P idempotent,

and the last inequality by A ≤ tr(A)I for any positive semi-definite (p.s.d.) matrix A.

Since this equation shows that Hn −
P

i6=j ziPijz
0
j/n is p.s.d. and is less than or equal to

another p.s.d. matrix that converges to zero it follows that
P

i6=j ziPijz
0
j/n = Hn+ op(1).

The conclusion follows by T . Q.E.D.

In what follows it is useful to prove directly that the HLIM estimator δ̃ satisfies

S0n(δ̃ − δ0)/μn
p−→ 0.

Lemma A3: If Assumptions 1-4 are satisfied then S0n(δ̃ − δ0)/μn
p−→ 0.

Proof: Let Ῡ = [0,Υ], Ū = [ε, U ], X̄ = [y,X], so that X̄ = (Ῡ+ Ū)D for

D =

∙
1 0
δ0 I

¸
.
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Let B̂ = X̄ 0X̄/n. Note that kSn/
√
nk ≤ C and by standard calculations z0U/n

p−→ 0.

Then °°Ῡ0Ū/n
°° = °°¡Sn/√n¢ z0U/n°° ≤ C kz0U/nk p−→ 0.

Let Ω̄n =
Pn

i=1E[ŪiŪ
0
i ]/n = diag(

Pn
i=1Ω

∗
i /n, 0) ≥ Cdiag(IG−G2+1, 0) by Assumption 3.

By M we have Ū 0Ū/n− Ω̄n
p−→ 0, so it follows that w.p.a.1.

B̂ = (Ū 0Ū + Ῡ0Ū + Ū 0Ῡ+ Ῡ0Ῡ)/n = Ω̄n + Ῡ0Ῡ/n+ op(1) ≥ Cdiag(IG−G2+1, 0).

Since Ω̄n + Ῡ0Ῡ/n is bounded, it follows that w.p.a.1,

C ≤ (1,−δ0)B̂(1,−δ0)0 = (y −Xδ)0(y −Xδ)/n ≤ C k(1,−δ0)k2 = C(1 + kδk2).

Next, as defined preceding Lemma A2 let S̄n = diag(μn, Sn) and X̃ = [ε,X]S̄−10n .

Note that by Pii ≤ C < 1 and uniform nonsingularity of
Pn

i=1 ziz
0
i/n we have Hn ≥

(1− C)
Pn

i=1 ziz
0
i/n ≥ CIG. Then by Lemma A2, w.p.a.1.

Â
def
=
X
i6=j

PijX̃iX̃
0
j ≥ Cdiag(0, IG),

Note that S̄0nD(1,−δ0)0 = (μn, (δ0 − δ)0Sn)
0 and X̄i = D0S̄nX̃i. Then w.p.a.1 for all δ

μ−2n
X
i6=j

Pij(yi −X 0
iδ)(yj −X 0

jδ) = μ−2n (1,−δ0)
ÃX

i6=j
PijX̄iX̄

0
j

!
(1,−δ0)0

= μ−2n (1,−δ0)D0S̄nÂS̄
0
nD(1,−δ0)0 ≥ C kS0n(δ − δ0)/μnk2 .

Let Q̂(δ) = (n/μ2n)
P

i6=j(yi−X 0
iδ)Pij(yj−X 0

jδ)/(y−Xδ)0(y−Xδ). Then by the upper

left element of the conclusion of Lemma A2, μ−2n
P

i6=j εiPijεj
p−→ 0. Then w.p.a.1

¯̄̄
Q̂(δ0)

¯̄̄
=

¯̄̄̄
¯μ−2n X

i6=j
εiPijεj/

nX
i=1

ε2i /n

¯̄̄̄
¯ p−→ 0.

Since δ̂ = argminδ Q̂(δ), we have Q̂(δ̂) ≤ Q̂(δ0).Therefore w.p.a.1, by (y − Xδ)0(y −

Xδ)/n ≤ C(1 + kδk2), it follows that

0 ≤

°°°S0n(δ̂ − δ0)/μn

°°°2
1 +

°°°δ̂°°°2 ≤ CQ̂(δ̂) ≤ CQ̂(δ0)
p−→ 0,
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implying
°°°S0n(δ̂ − δ0)/μn

°°°2 /µ1 + °°°δ̂°°°2¶ p−→ 0. Lemma A0 gives the conclusion. Q.E.D.

Lemma A4: If Assumptions 1-4 are satisfied, α̂ = op(μ
2
n/n), and S

0
n(δ̂−δ0)/μn

p−→ 0

then for Hn =
Pn

i=1(1− Pii)ziz
0
i/n,

S−1n

ÃX
i6=j

XiPijX
0
j − α̂X 0X

!
S−10n = Hn + op(1), S

−1
n (
X
i6=j

XiPij ε̂j − α̂X 0ε̂)/μn
p−→ 0.

Proof: By M and standard arguments X 0X = Op(n) and X 0ε̂ = Op(n). Therefore, by

kS−1n k = O(μ−1n ),

α̂S−1n X 0XS−10n = op(μ
2
n/n)Op(n/μ

2
n)

p−→ 0, α̂S−1n X 0ε̂/μn = op(μ
2
n/n)Op(n/μ

2
n)

p−→ 0.

Lemma A2 (lower right hand block) and T then give the first conclusion. By Lemma A2

(off diagonal) we have S−1n
P

i6=j XiPijεj/μn
p−→ 0, so that

S−1n
X
i6=j

XiPij ε̂j/μn = op(1)−
Ã
S−1n

X
i6=j

XiPijX
0
jS
−10
n

!
S0n(δ̂ − δ0)/μn

p−→ 0.Q.E.D.

Lemma A5: If Assumptions 1 - 4 are satisfied and S0n(δ̂−δ0)/μn
p−→ 0 then

P
i6=j ε̂iPij ε̂j/ε̂

0ε̂ =

op(μ
2
n/n).

Proof: Let β̂ = S0n(δ̂ − δ0)/μn and ᾰ =
P

i6=j εiPijεj/ε
0ε = op(μ

2
n/n). Note that

σ̂2ε = ε̂0ε̂/n satisfies 1/σ̂2ε = Op(1) by M. By Lemma A4 with α̂ = ᾰ we have H̃n =

S−1n (
P

i6=j XiPijX
0
j − ᾰX 0X)S−10n = Op(1) and Wn = S−1n (X

0Pε− ᾰX 0ε)/μn
p−→ 0, soP

i6=j ε̂iPij ε̂j

ε̂0ε̂
− ᾰ =

1

ε̂0ε̂

ÃX
i6=j

ε̂iPij ε̂j −
X
i6=j

εiPijεj − ᾰ (ε̂0ε̂− ε0ε)

!

=
μ2n
n

1

σ̂2ε

³
β̂0H̃nβ̂ − 2β̂0Wn

´
= op(μ

2
n/n),

so the conclusion follows by T. Q.E.D.

Proof of Theorem 1: First, note that if S0n(δ̂−δ0)/μn
p−→ 0 then by λmin (SnS

0
n/μ

2
n) ≥

λmin
³
S̃nS̃

0
n

´
≥ C we have°°°S0n(δ̂ − δ0)/μn

°°° ≥ λmin(SnS
0
n/μ

2
n)
1/2
°°°δ̂ − δ0

°°° ≥ C
°°°δ̂ − δ0

°°° ,
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implying δ̂
p−→ δ0. Therefore, it suffices to show that S

0
n(δ̂−δ0)/μn

p−→ 0. For HLIM this

follows from Lemma A3. For HFUL, note that α̃ = Q̂(δ̃) =
P

i6=j ε̃iPij ε̃j/ε̃
0ε̃ = op(μ

2
n/n)

by Lemma A5, so by the formula for HFUL, α̂ = α̃ + Op(1/n) = op(μ
2
n/n). Thus, the

result for HFUL will follow from the most general result for any α̂ with α̂ = op(μ
2
n/n).

For any such α̂, by Lemma A4 we have

S0n(δ̂ − δ0)/μn = S0n(
X
i6=j

XiPijX
0
j − α̂X 0X)−1

X
i6=j
(XiPijεj − α̂X 0ε) /μn

= [S−1n (
X
i6=j

XiPijX
0
j − α̂X 0X)S−10n ]−1S−1n

X
i6=j
(XiPijεj − α̂X 0ε) /μn

= (Hn + op(1))
−1op(1)

p−→ 0.Q.E.D.

Now we move on to asymptotic normality results. The next result is a central limit

theorem that is proven in Chao et. al. (2007).

Lemma A6 (Lemma A2 of Chao et al., 2007): If i) P is a symmetric, idempotent

matrix with rank(P ) = K, Pii ≤ C < 1; ii) (W1n, U1, ε1), ..., (Wnn, Un, εn) are indepen-

dent and Dn =
Pn

i=1E[WinW
0
in] is bounded; iii) E [W

0
in] = 0, E[Ui] = 0, E[εi] = 0 and

there exists a constant C such that E[kUik4] ≤ C, E[ε4i ] ≤ C; iv)
Pn

i=1E[kWink4] −→ 0;

v) K −→ ∞; then for Σ̄n
def
=
P

i6=j P
2
ij

¡
E[UiU

0
i ]E[ε

2
j ] +E[Uiεi]E[εjU

0
j]
¢
/K and for any

sequence of bounded nonzero vectors c1n and c2n such that Ξn = c01nDnc1n+c
0
2nΣ̄nc2n > C,

it follows that

Yn = Ξ−1/2n (
nX
i=1

c01nWin + c02n
X
i6=j

UiPijεj/
√
K)

d−→ N (0, 1) .

Let α̃(δ) =
P

i6=j εi(δ)Pijεj(δ)/ε(δ)
0ε(δ) and

D̂(δ) = ∂[
X
i6=j

εi(δ)Pijεj(δ)/2ε(δ)
0ε(δ)]/∂δ =

X
i6=j

XiPijεj(δ)− α̃(δ)X 0ε(δ).

A couple of other intermediate results are also useful.

Lemma A7: If Assumptions 1 - 4 are satisfied and S0n(δ̄ − δ0)/μn
p−→ 0 then

−S−1n [∂D̂(δ̄)/∂δ]S
−10
n = Hn + op(1).

[25]



Proof: Let ε̄ = ε(δ̄) = y −Xδ̄, γ̄ = X 0ε̄/ε̄0ε̄, and ᾱ = α̃(δ̄). Then differentiating gives

−∂D̂
∂δ
(δ̄) =

X
i6=j

XiPijX
0
j − ᾱX 0X − γ̄

X
i6=j

ε̄iPijX
0
j −

X
i6=j

XiPij ε̄j γ̄
0 + 2(ε̄0ε̄)ᾱγ̄γ̄0

=
X
i6=j

XiPijX
0
j − ᾱX 0X + γ̄D̂(δ̄)0 + D̂(δ̄)γ̄0,

where the second equality follows by D̂(δ̄) =
P

i6=j XiPij ε̄j − (ε̄0ε̄)ᾱγ̄. By Lemma A5 we

have ᾱ = op(μ
2
n/n). By standard arguments, γ̄ = Op(1) so that S

−1
n γ̄ = Op(1/μn). Then

by Lemma A4 and D̂(δ̄) =
P

i6=j XiPij ε̄j − ᾱX 0ε̄

S−1n

ÃX
i6=j

XiPijX
0
j − ᾱX 0X

!
S−10n = Hn + op(1), S

−1
n D̂(δ̄)γ̄0S−10n

p−→ 0,

The conclusion then follows by T. Q.E.D.

Lemma A8: If Assumptions 1-4 are satisfied then for γn =
P

iE[Uiεi]/
P

iE[ε
2
i ] and

Ũi = Ui − γnεi

S−1n D̂(δ0) =
nX
i=1

(1− Pii)ziεi/
√
n+ S−1n

X
i6=j

ŨiPijεj + op(1).

Proof: Note that for W = z0(P − I)ε/
√
n by I − P idempotent and E[εε0] ≤ CIn we

have

E[WW 0] ≤ Cz0(I − P )z/n = C(z − Zπ0Kn)
0(I − P )(z − Zπ0Kn)/n

≤ CIG

nX
i=1

kzi − πKnZik2 /n −→ 0,

so z0(P − I)ε/
√
n = op(1). Also, by M

X 0ε/n =
nX
i=1

E[Xiεi]/n+Op(1/
√
n), ε0ε/n =

nX
i=1

σ2i /n+Op(1/
√
n).

Also, by Assumption 3
Pn

i=1 σ
2
i /n ≥ C > 0. The delta method then gives γ̃ = X 0ε/ε0ε =

γn+Op(1/
√
n). Therefore, it follows by Lemma A1 and D̂(δ0) =

P
i6=j XiPijεj−ε0εα̃(δ0)γ̃

[26]



that

S−1n D̂(δ0) =
X
i6=j

ziPijεj/
√
n+ S−1n

X
i6=j

ŨiPijεi − S−1n (γ̃ − γn)ε
0εα̃(δ0)

= z0Pε/
√
n−

X
i

Piiziεi/
√
n+ S−1n

X
i6=j

ŨiPijεj +Op(1/
√
nμn)op(μ

2
n/n)

=
nX
i=1

(1− Pii)ziεi/
√
n+ S−1n

X
i6=j

ŨiPijεj + op(1).Q.E.D.

Proof of Theorem 2: Consider first the case where δ̂ is HLIM. Then by Theorem

1, δ̂
p−→ δ0. The first-order conditions for LIML are D̂(δ̂) = 0. Expanding gives

0 = D̂(δ0) +
∂D̂

∂δ

¡
δ̄
¢
(δ̂ − δ0),

where δ̄ lies on the line joining δ̂ and δ0 and hence β̄ = μ−1n S0n(δ̄ − δ0)
p−→ 0. Then by

Lemma A7, H̄n = S−1n [∂D̂(δ̄)/∂δ]S
−10
n = HP + op(1). Then ∂D̂(δ̄)/∂δ is nonsingular

w.p.a.1 and solving gives

S0n(δ̂ − δ) = −S0n[∂D̂(δ̄)/∂δ]−1D̂(δ0) = −H̄−1
n S−1n D̂(δ0).

Next, apply Lemma A6 with Ui = Ui and

Win = (1− Pii)ziεi/
√
n,

By εi having bounded fourth moment, and Pii ≤ 1,
nX
i=1

E
£
kWink4

¤
≤ C

nX
i=1

kzik4 /n2 −→ 0.

By Assumption 6, we have
Pn

i=1E[WinW
0
in] −→ ΣP . Let Γ = diag (ΣP ,Ψ) and

An =

µ Pn
i=1WinP
i6=j ŨiPijεj/

√
K

¶
.

Consider c such that c0Γc > 0. Then by the conclusion of Lemma A6 we have c0An
d−→

N(0, c0Γc). Also, if c0Γc = 0 then it is straightforward to show that c0An
p−→ 0. Then it

[27]



follows by the Cramer-Wold device that

An =

µ Pn
i=1WinP
i6=j ŨiPijεj/

√
K

¶
d−→ N(0,Γ),Γ = diag (ΣP ,Ψ) .

Next, we consider the two cases. Case I) hasK/μ2n bounded. In this case
√
KS−1n −→ S0,

so that

Fn
def
= [I,

√
KS−1n ] −→ F0 = [I, S0], F0ΓF

0
0 = ΣP + S0ΨS

0
0.

Then by Lemma A8,

S−1n D̂(δ0) = FnAn + op(1)
d−→ N(0,ΣP + S0ΨS

0
0),

S0n(δ̂ − δ0) = −H̄−1
n S−1n D̂(δ0)

d−→ N(0,ΛI).

In case II we have K/μ2n −→∞. Here

(μn/
√
K)Fn −→ F̄0 = [0, S̄0], F̄0ΓF̄

0
0 = S̄0ΨS̄

0
0

and (μn/
√
K)op(1) = op(1). Then by Lemma A8,

(μn/
√
K)S−1n D̂(δ0) = (μn/

√
K)FnAn + op(1)

d−→ N(0, S̄0ΨS̄
0
0),

(μn/
√
K)S0n(δ̂ − δ0) = −H̄−1

n (μn/
√
K)S−1n D̂(δ0)

d−→ N(0,ΛII).Q.E.D.

The next two results are useful for the proof of consistency of the variance estimator

are taken from Chao et. al. (2007). Let μ̄Wn = maxi≤n |E[Wi]| and μ̄Y n = maxi≤n |E[Yi]|.

Lemma A9 (Lemma A3 of Chao et al., 2007): If (Wi, Yi), (i = 1, ..., n) are

independent, Wi and Yi are scalars thenX
i6=j

P 2
ijWiYj = E[

X
i6=j

P 2
ijWiYj] +Op(

√
K(σ̄Wnσ̄Y n + σ̄Wnμ̄Y n + μ̄Wnσ̄Y n)).

Lemma A10 (Lemma A4 of Chao et al., 2007): If Wi, Yi, ηi, are indepen-

dent across i with E[Wi] = ai/
√
n, E[Yi] = bi/

√
n, |ai| ≤ C, |bi| ≤ C, E[η2i ] ≤ C,

[28]



V ar(Wi) ≤ Cμ−2n , V ar(Yi) ≤ Cμ−2n , there exists πn such that maxi≤n |ai − Z 0iπn| −→ 0,

and
√
K/μ2n −→ 0 then

An = E[
X
i6=j 6=k

WiPikηkPkjYj] = O(1),
X
i6=j 6=k

WiPikηkPkjYj −An
p−→ 0.

Next, recall that ε̂i = Yi −X 0
i δ̂, γ̂ = X 0ε̂/ε̂0ε̂, γn =

P
iE[Xiεi]/

P
i σ

2
i and let

X̆i = S−1n (Xi − γ̂ε̂i), Ẋi = S−1n (Xi − γnεi),

Σ̆1 =
X
i6=j 6=k

X̆iPikε̂
2
kPkjX̆

0
j, Σ̆2 =

X
i6=j

P 2
ij

³
X̆iX̆

0
iε̂
2
j + X̆iε̂iε̂jX̆

0
j

´
,

Σ̇1 =
X
i6=j 6=k

ẊiPikε
2
kPkjẊ

0
j, Σ̇2 =

X
i6=j

P 2
ij

³
ẊiẊ

0
iε
2
j + ẊiεiεjẊ

0
j

´
.

Note that for ∆̂ = S0n(δ̂ − δ0) we have

ε̂i − εi = −X 0
i(δ̂ − δ0) = −X 0

iS
−10
n ∆̂,

ε̂2i − ε2i = −2εiX 0
i(δ̂ − δ0) +

h
X 0

i(δ̂ − δ0)
i2
,

X̆i − Ẋi = −S−1n γ̂(ε̂i − εi)− S−1n (γ̂ − γn)εi,

= S−1n γ̂X 0
iS
−10
n ∆̂− S−1n μn(γ̂ − γn)(εi/μn),

X̆iε̂i − Ẋiεi = Xiε̂i − γ̂ε̂2i −Xiεi + γnε
2
i ,

= −XiX
0
i(δ̂ − δ0)− γ̂

n
−2εiX 0

i(δ̂ − δ0) +
h
X 0

i(δ̂ − δ0)
2
io

−(γ̂ − γn)ε
2
i .°°°X̆iX̆

0
i − ẊiẊ

0
i

°°° ≤ °°°X̆i − Ẋi

°°°2 + 2°°°Ẋi

°°°°°°X̆i − Ẋi

°°°
Lemma A11: If the hypotheses of Theorem 3 are satisfied then Σ̆2− Σ̇2 = op(K/μ2n).

Proof: Note first that Sn/
√
n is bounded so by the Cauchy-Schwartz inequality,

kΥik = kSnzi/
√
nk ≤ C. Let di = C+ |εi|+kUik . Note that γ̂−γn

p−→ 0 by standard ar-

guments. Then for Â = (1+kγ̂k)(1+
°°°δ̂°°°) = Op(1), and B̂ = kγ̂ − γnk+

°°°δ̂ − δ0

°°° p−→ 0,

[29]



we have

kXik ≤ C + kUik ≤ di, |ε̂i| ≤ |X 0
i(δ0 − δ̂) + εi| ≤ CdiÂ,°°°Ẋi

°°° =
°°S−1n (Xi − γnεi)

°° ≤ Cμ−1n di,
°°°X̆i

°°° = °°S−1n (Xi − γ̂ε̂i)
°° ≤ Cμ−1n diÂ,°°°X̆iX̆

0
i − ẊiẊ

0
i

°°° ≤ ³°°°X̆i

°°°+ °°°Ẋi

°°°´°°°X̆i − Ẋi

°°° ≤ Cμ−2n diÂ kγ̂k kε̂i − εik+ kγ̂ − γnk |εi|

≤ Cμ−2n d2i Â
2B̂,¯̄

ε̂2i − ε2i
¯̄
≤ (|εi|+ |ε̂i|) |ε̂i − εi| ≤ Cd2i ÂB̂,°°°X̆iε̂i − Ẋiεi

°°° =
°°S−1n ¡

Xiε̂i − γ̂ε̂2i −Xiεi + γnε
2
i

¢°°
≤ Cμ−1n

¡
kXik |ε̂i − εi|+ kγ̂k |ε̂2i − ε2i |+

¯̄
ε2i
¯̄
kγ̂ − γnk

¢
≤ Cμ−1n d2i (B̂ + Â2B̂ + B̂) ≤ Cd2i Â

2B̂,°°°X̆iε̂i

°°° ≤ Cμ−1n d2i Â
2,
°°°Ẋiεi

°°° ≤ Cμ−1n d2i .

Also note that

E

"X
i6=j

P 2
ijd

2
id
2
jμ
−2
n

#
≤ Cμ−2n

X
i,j

P 2
ij = Cμ−2n

X
i

Pii = Cμ−2n K.

so that
P

i6=j P
2
ijd

2
id
2
jμ
−2
n = Op(K/μ2n) by the Markov inequality. Then it follows that°°°°°X

i6=j
P 2
ij

³
X̆iX̆

0
iε̂
2
j − ẊiẊ

0
iε
2
j

´°°°°° ≤ X
i6=j

P 2
ij

µ¯̄
ε̂2j
¯̄ °°°X̆iX̆

0
i − ẊiẊ

0
i

°°°+ °°°Ẋi

°°°2 ¯̄ε̂2j − ε2j
¯̄¶

≤ Cμ−2n
X
i6=j

P 2
ijd

2
id
2
j(Â

4B̂ + ÂB̂) = op
¡
K/μ2n

¢
.

We also have°°°°°X
i6=j

P 2
ij

³
X̆iε̂iε̂jX̆

0
j − ẊiεiεjẊj

´°°°°° ≤ X
i6=j

P 2ij

³°°°X̆iε̂i

°°°°°°X̆j ε̂j − Ẋjεj

°°°+ °°°Ẋjεj

°°°°°°X̆iε̂i − Ẋiεi

°°°´
≤ Cμ−2n

X
i6=j

P 2ijd
2
id
2
j(1 + Â2)Â2B̂ = op

µ
K

μ2n

¶
.

The conclusion then follows by the triangle inequality. Q.E.D.

Lemma A12: If the hypotheses of Theorem 3 are satisfied then Σ̆1− Σ̇1 = op(K/μ2n).

Proof: Note first that

ε̂i − εi = −X 0
i(δ̂ − δ0) = −X 0

iS
−10
n S0n(δ̂ − δ0) = −

¡
zi/
√
n+ S−1n Ui

¢0
∆̂ = −D0

i∆̂,
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where Di = zi/
√
n+ S−1n Ui and ∆̂ = S0n(δ̂ − δ0). Also

ε̂2i − ε2i = −2εiX 0
i(δ̂ − δ0) +

h
X 0

i(δ̂ − δ0)
i2
,

X̆i − Ẋi = −γ̂ε̂i + γnεi = S−1n γ̂D0
i∆̂− S−1n μn (γ̂ − γn) εi/μn.

We now have Σ̆1 − Σ̇1 =
P7

r=1 Tr where

T1 =
X
i6=j 6=k

³
X̆i − Ẋi

´
Pik

¡
ε̂2k − ε2k

¢
Pkj

³
X̆j − Ẋj

´0
, T2 =

X
i6=j 6=k

ẊiPik

¡
ε̂2k − ε2k

¢
Pkj

³
X̆j − Ẋj

´0
T3 =

X
i6=j 6=k

³
X̆i − Ẋi

´
Pikε

2
kPkj

³
X̆j − Ẋj

´0
, T4 = T 02, T5 =

X
i6=j 6=k

³
X̆i − Ẋi

´
Pikε

2
kPkjẊ

0
j,

T6 =
X
i6=j 6=k

ẊiPik

¡
ε̂2k − ε2k

¢
PkjẊ

0
j, T7 = T 05.

From the above expression for ε̂2i − ε2i we see that T6 is a sum of terms of the form

B̂
P

i6=j 6=k ẊiPikηiPkjẊ
0
j where B̂

p−→ 0 and ηi is either a component of−2εiXi or ofXiX
0
i.

By Lemma A10 we have
P

i6=j 6=k ẊiPikηiPkjẊ
0
j = Op(1), so by the triangle inequality

T6
p−→ 0. Also, note that

T5 = S−1n γ̂∆̂0
X
i6=j 6=k

DiPikε
2
kPkjẊ

0
j + S−1n μn (γ̂ − γn)

X
i6=j 6=k

(εi/μn)Pikε
2
kPkjẊ

0
j.

Note that S−1n γ̂∆̂0 p−→ 0, E [Di] = zi/
√
n, V ar(Di) = O(μ−2n ), E[Ẋi] = zi/

√
n, and

V ar(Ẋ) = O(μ−2n ). Then by Lemma A10 it follows that
P

i6=j 6=kDiPikε
2
kPkjẊ

0
j = Op(1)

so that the S−1n γ̂∆̂0P
i6=j 6=kDiPikε

2
kPkjẊ

0
j

p−→ 0. A similar argument applied to the second

term and the triangle inequality then give T5
p−→ 0. Also T7 = T 05

p−→ 0.

Next, analogous arguments apply to T2 and T3, except that there are four terms in

each of them rather than two, and also to T1 except there are eight terms in T1. For

brevity we omit details. Q.E.D.

Lemma A13: If the hypotheses of Theorem 3 are satisfied then

Σ̇2 =
X
i6=j

P 2
ijziz

0
iσ
2
j/n+ S−1n

X
i6=j

P 2
ij

³
E[ŨiŨ

0
i ]σ

2
j +E[Ũiεi]E[εjŨ

0
j]
´
S−10n + op(K/μ2n).

Proof: Note that V ar(ε2i ) ≤ C and μ2n ≤ Cn, so that for uki = e0kS
−1
n Ui,

E[(ẊikẊi )
2] ≤ CE[Ẋ4

ik + Ẋ4
i ] ≤ C

©
z4ik/n

2 +E[u4k] + z4i /n
2 +E[u4]

ª
≤ Cμ−4n ,

E[(Ẋikεi)
2] ≤ CE[(z2ikε

2
i /n+ u2kiε

2
i )] ≤ Cn−1 + Cμ−2n ≤ Cμ−2n .
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Also, we have, for Ω̃i = E[ŨiŨ
0
i ],

E[ẊiẊ
0
i] = ziz

0
i/n+ S−1n Ω̃iS

−10
n , E[Ẋiεi] = S−1n E[Ũiεi].

Next let Wi be e
0
jẊiẊ

0
iek for some j and k, so that

E[Wi] = e0jS
−1
n E[ŨiŨ

0
i ]S

−10
n ek + zijzik/n, |E[Wi]| ≤ Cμ−2n .

V ar(Wi) = V ar
©¡
e0jS

−1
n Ui + zij/

√
n
¢ ¡

e0kS
−1
n Ui + zik/

√
n
¢ª

≤ C/μ4n + C/nμ2n ≤ C/μ4n.

Also let Yi = ε2i . Then
√
K(σ̄Wnσ̄Y n + σ̄Wnμ̄Y n + μ̄Wnσ̄Y n) ≤ CK1/2/μ2n, so applying

Lemma A9 for this Wi and Yi givesX
i 6=j
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ijẊiẊ

0
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2
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X
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³
ziz

0
i/n+ S−1n Ω̃iS

−10
n

´
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√
K/μ2n).

It follows similarly from Lemma A9 with Wi and Yi equal to elements of Ẋiεi thatX
i6=j

P 2
ijẊiεiεjẊ

0
j = S−1n

X
i6=j

P 2
ijE[Ũiεi]E[εjŨ

0
j]S

−10
n +Op(

√
K/μ2n).

Also, by K −→∞ we have Op(
√
K/μ2n) = op(K/μ2n). The conclusion then follows by T.

Q.E.D.

Lemma A14: If the hypotheses of Theorem 3 are satisfied then

Σ̇1 =
X
i6=j 6=k

ziPikσ
2
kPkjz

0
j/n+ op(1).

Proof: Apply Lemma A10 with Wi equal to an element of Ẋi, Yj equal to an element of

Ẋj, and ηk = ε2k. Q.E.D.

Proof of Theorem 3: Note that

S0nV̂ Sn = (S
−1
n ĤS−10n )−1(Σ̆1 + Σ̆2)(S

−1
n ĤS−10n )−1.

By Lemma A4 we have S−1n ĤS−10n

p−→ HP . Also, note that for z̄i =
P

j Pijzi = e0iPz,

[32]



X
i6=j 6=k

ziPikσ
2
kPkjz

0
j/n =

X
i

X
j 6=i

X
k/∈{i,j}

ziPikσ
2
kPkjz

0
j/n

=
X
i

X
j 6=i

ÃX
k

ziPikσ
2
kPkjz

0
j − ziPiiσ

2
iPijz

0
j − ziPijσ

2
jPjjz

0
j

!
/n

= (
X
k

z̄kσ
2
kz̄
0
k −

X
i,k

P 2
ikziz

0
iσ
2
k −

X
i

ziPiiσ
2
i z̄
0
i +
X
i

ziPiiσ
2
iPiiz

0
i

−
X
j

z̄jσ
2
jPjjz

0
j +

X
i

zjPjjσ
2
jPjjz

0
j)/n

=
X
i

σ2i
¡
z̄iz̄

0
i − Piiziz̄

0
i − Piiz̄iz

0
i + P 2

iiziz
0
i

¢
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0
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2
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Also, it follows similarly to the proof of Lemma A8 that
P

i kzi − z̄ik2 /n ≤ z0(I −

P )z/n −→ 0. Then by σ2i and Pii bounded we have°°°°°X
i

σ2i (z̄iz̄
0
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0
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i
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It follows thatX
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It then follows by Lemmas and the triangle inequality that

Σ̆1 + Σ̆2 =
X
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Then in case I) we have op(K/μ2n) = op(1) so that

S0nV̂ Sn = H−1 ¡ΣP +KS−1n ΨS−10n

¢
H−1 + op(1) = ΛI + op(1).

In case II) we have (μ2n/K) op(1)
p−→ 0, so that

¡
μ2n/K

¢
S0nV̂ Sn = H−1 ¡¡μ2n/K¢ΣP + μ2nS

−1
n ΨS−10n

¢
H−1 + op(1) = ΛII + op(1).

Next, consider case I) and note that S0n(δ̂ − δ0)
d−→ Y ∼ N(0,ΛI), S

0
nV̂ Sn

p−→ ΛI ,

c0
√
KS−10n → c0S00, and c0S00ΛIS0c 6= 0. Then by the continuous mapping and Slutzky

theorems,

c0(δ̂ − δ0)p
c0V̂ c

=
c0S−10n S0n(δ̂ − δ0)q
c0S−10n S0nV̂ SnS
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n c

=
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KS−10n S0n(δ̂ − δ0)q
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K
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S0n(δ̂−δ0)

d−→ Ȳ ∼ N(0,ΛII), (μ
2
n/K)S

0
nV̂ Sn

p−→ ΛII , c
0μnS

−10
n −→

c0S̄00, and c0S̄00ΛII S̄0c 6= 0. Then

c0(δ̂ − δ0)p
c0V̂ c

=
c0S−10n

³
μn/
√
K
´
S0n(δ̂ − δ0)q
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0
nV̂ SnS
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³
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0
nV̂ SnS
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∼ N(0, 1).Q.E.D.
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