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Abstract

In the last decade a growing body of research has studied inference on partially identified
parameters (e.g., Manski, 1990, 2003). In many cases where the parameter of interest is real-
valued, the identification region is an interval whose lower and upper bounds may be estimated
from sample data. Confidence intervals may be constructed to take account of the sampling
variation in estimates of these bounds. Horowitz and Manski (1998, 2000) proposed and applied
interval estimates that asymptotically cover the entire identification region with fixed probabil-

ity. Here we introduce conceptually different interval estimates that asymptotically cover each
element in the identification region with fixed probability (but not necessarily every element
simultaneously). We show that these two types of interval estimate are different in practice,
the latter in general being shorter. The difference in length (in excess of the length of the iden-
tification set itself) can be substantial, and in large samples is comparable to the difference of
one — and two—sided confidence intervals. A complication arises from the fact that the simplest
version of the proposed interval is discontinuous in the limit case of point identification, leading
to coverage rates that are not uniform in important subsets of the parameter space. We develop
a modification depending on the width of the identification region that restores uniformity. We
show that under some conditions, using the estimated width of the identification region instead

of the true width maintains uniformity.
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1 Introduction

In the last decade a growing body of research has studied inference in settings where parameters

of interest are partially identified (e.g., Manski, 1990, 2003). Such methods have been applied and

extended to a wide variety of settings, including the analysis of labor market programs (Blundell, et

al., 2002), interval measurement (Manski and Tamer, 2002), auctions (Haile and Tamer, 2003), the

effect of teenage pregnancies on labor market outcomes (Hotz, Mullins and Sanders. 1997, Mullins,

2003), measurement error (Horowitz and Manski, 1995; Bollinger, 1996, Molinari, 2002, Dominitz

and Sherman, 2003), and selection problems (Manski, 1990; Lee, 2002). In many cases where the

parameter is real-valued, the identification region is an interval whose lower and upper bounds may

be estimated from sample data. Confidence intervals (CIs) may be constructed to take account

of the sampling variation in estimates of these bounds. Early on, Manski, Sandefur, McLanahan

and Powers (1992) computed separate confidence intervals for the lower and upper bounds of

the identification regions of such parameters. Subsequently, Horowitz and Manski (1998, 2000)

proposed and applied intervals that asymptotically cover the entire identification region with fixed

probability. Chernozhukov, Hong, and Tamer (2003) extend this approach of constructing CIs that

cover the entire identification region to problems with vector valued parameters and identification

regions defined through minimization problems. They also develop a new implementation of such

intervals through subsampling bootstrap methods.

Here, we introduce a conceptually different type of confidence interval. Rather than cover the

entire identification region with fixed probability, we propose CIs that asymptotically cover the true

value of the parameter with fixed probability. We show that, in general, coverage of a parameter is

a less demanding objective than is coverage of the entire identification region. We prove that any

specified confidence interval has a weakly larger coverage probability for the parameter than for its

identification region. It follows that if a given interval achieves a specified coverage probability

for the identification region, there exists a subset of this interval that achieves the same coverage

probability for the parameter.

To illustrate the basic nature of our CIs for partially identified parameters, and to address

some subtleties, we study in depth the construction of CIs for the mean of a bounded random

variable when some data are missing and the distribution of missing data is unrestricted (beyond

the bounds on their values). Initially we assume that the propensity score (i.e., the probability of

observing an outcome) is known. We prove that, for any specified asymptotic coverage probability,

CIs for the parameter are proper subsets of ones for the identification region, with the difference

in width related to the difference in critical values for one— and two—sided tests. However, we find

that the exact coverage probabilities of the simplest version of our new CIs do not converge to

their nominal values uniformly across different values for the width of the identification region.

Specifically, uniformity fails when the width of the region shrinks to zero; that is, as the parameter

becomes point-identified. An unattractive consequence is that confidence intervals can be wider

when the parameter is point—identified than when it is set-identified. To avoid this anomaly, we
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modify the proposed CI to ensure that its exact coverage probabilities do converge uniformly to

their nominal values. We motivate the modified CI by showing that its exact and nominal coverage

probabilities coincide when outcomes are normally distributed.

We then discuss implementation of the new CIs at a more general level, and provide conditions

under which CIs with uniform asymptotic coverage can be constructed by substituting estimates for

unknown nuisance parameters, including the width of the identification region. Finally we provide

a brief empirical illustration.

2 Confidence Intervals for Parameters and for Their Identification
Regions

Many problems of partial identification have the following abstract structure. Let (Ω,A, P ) be
a specified probability space, and let P be a space of probability distributions on (Ω,A). The
distribution P is not known, but a random sample of size N is available, with empirical distribution

PN . Let λ be a quantity which is known only to belong to a specified set Λ. Let f(·, ·) : P ×Λ→ R
be a specified real-valued function. The object of interest is the real parameter θ = f(P, λ).

Then the identification region for f(P, λ) is the set {f(P, λ0), λ0 ∈ Λ}. A natural estimate for the
identification region is its sample analog {f(PN , λ0), λ0 ∈ Λ}.

Suppose that λl(P ) = argminλ0∈Λf(P, λ
0) and λu(P ) = argmaxλ0∈Λf(P, λ

0) exist for all P ∈ P.
Then the identification region necessarily is a subset of the closed interval [f(P, λl(P )), f(P, λu(P ))].

We focus on the class of problems in which the identification region is this closed interval. Manski

(2003) describes various problems in this class, including ones that arise when data are missing

or contaminated. A particularly simple and important leading case will be examined in detail in

Sections 3 and 4.

It is natural to estimate the identification region [f(P, λl(P )), f(P, λu(P ))] by its sample analog

[f(PN , λl(PN )), f(PN , λu(PN))], which is consistent under standard regularity conditions. It is also

natural to construct confidence intervals for [f(P, λl(P )), f(P, λu(P ))] of the form [f(PN , λl(PN ))−
CN0, f(PN , λu(PN))+CN1], where (CN0, CN1) are specified non-negative numbers that may depend

on the sample data. In their study of nonparametric regression analysis with missing outcome or

covariate data, Horowitz and Manski (2000) proposed CIs of this form and showed how (CN0, CN1)

may be chosen to achieve a specified asymptotic probability of coverage of the identification region.

Chernozhukov, Hong and Tamer (2003) study confidence sets with the same property in more gen-

eral settings with vector valued parameters and identification regions defined through minimization

of general objective functions.

In this paper, we study the use of intervals of the form [f(PN , λl(PN ))−CN0, f(PN , λu(PN ))+

CN1] as CIs for the partially identified parameter f(P, λ). Our most basic finding is Lemma 2.1:

Lemma 2.1 Let CN0 ≥ 0, CN1 ≥ 0, λ ∈ Λ, and P ∈ P. The probability that the interval

[f(PN , λl(PN )) − CN0, f(PN , λu(PN)) + CN1] covers the parameter f(P, λ) is at least as large as
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the probability that it covers the entire identification region [f(P, λl(P )), f(P, λu(P ))].

Proof: The coverage probability for the parameter f(P, λ) is

αN(P, λ) = Pr (f(P, λ) ∈ [f(PN , λl(PN))− CN0, f(PN , λu(PN )) +CN1]) (2.1)

= Pr (f(PN , λl(PN)) ≤ f(P, λ) + CN0 ∩ f(PN , λu(PN)) ≥ f(P, λ)− CN1) .

The coverage probability for the identification region [f(P, λl(P )), f(P, λu(P ))] is

aN (P ) = Pr ([f(P, λl(P )), f(P, λu(P ))] ⊂ [f(PN , λl(PN ))− CN0, f(PN , λu(PN )) + CN1]) (2.2)

= Pr (f(PN , λl(PN)) ≤ f(P, λl(P )) +CN0 ∩ f(PN , λu(PN )) ≥ f(P, λu(P ))− CN1) .

Then αN(P, λ) ≥ aN(P ) because

f(PN , λl(PN )) ≤ f(P, λl(P )) + CN0 ∩ f(PN , λu(PN)) ≥ f(P, λu(P ))−CN1 (2.3)

=⇒ f(PN , λl(PN )) ≤ f(P, λ) +CN1 ∩ f(PN , λu(PN )) ≥ f(P, λ)−CN1.

¤
Lemma 2.1 implies that the coverage probability for the parameter is at least as large as that

for the identification region. The coverage probabilities αN(P, λ) and aN (P ) are functions of the

unknown quantities (P, λ). The uniform coverage probabilities are

αN = inf
(P,λ)∈(P×Λ)

αN(P, λ)

aN = inf
P∈P

aN(P )

The lemma implies that αN ≥ aN .

It is common in the construction of CIs to choose an interval that achieves at least a specified

coverage probability, say α. Suppose that (CN0, CN1) is chosen to achieve at least coverage prob-

ability α for the identification region. Lemma 2.1 implies that there exists a subset of the interval

[f(PN , λl)−CN0, f(PN , λu)+CN1] that achieves at least coverage probability α for the parameter.

Finally, note that the inequalities proved in Lemma 2.1 are weak, not strict. They cannot be

strict in general: if the parameter of interest is point-identified the two will be identical. Sections 3

and 4 shows that in settings where the parameter of interest is not point-identified the inequalities

are strict given some conditions.

Given the potential differences between the two types of CIs, the researcher faces a substantive

choice whether to consider intervals that cover the entire identification region or the true parameter

value with some fixed probability. Although generally both intervals converge to the identification

region as N → ∞, their differences may be substantial in finite samples and the question cannot

be avoided. In general, the answer depends on the application and the focus of the researcher.
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3 Means with Missing Data and Known Propensity Score

In this section we construct CIs for the mean of a bounded random variable when some data

are missing and the distribution of missing data is unrestricted. Let (Y,W ) be a pair of random

variables, where Y has compact support Y and W is binary with support {0, 1}; without loss of
generality, let the smallest and largest elements of Y be 0 and 1 respectively. The parameter of
interest is θ = E[Y ]. The researcher has a random sample of (Wi, Yi ·Wi), i = 1, . . . , N , so Wi is

always observed and Yi is only observed if Wi = 1. Let µ = E[Y |W = 1] and λ = E[Y |W = 0] be

the conditional means of Y in the two subpopulations, let σ2 = V(Y |W = 1) be the conditional

variance in the subpopulation with W = 1 and let p = E[W ], with 0 < p ≤ 1, be the propensity
score. In this section we assume, for purposes of exposition, that p is known. Later we will allow

for unknown p, but assume that it is bounded away from zero by a positive number p0.

Let F (y) be the conditional distribution function of Y given W = 1. The distribution function

F (·) is in the set of distribution functions F with variance σ2 ≤ σ2 ≤ σ2 where σ2 and σ2 are known

positive lower and upper bounds on the conditional variance of Y given W = 1. The conditional

distribution of Y given W = 0 is unknown other than that λ = E[Y |W = 0] is in the interval

Λ = [0, 1]. Given these definitions, the parameter of interest can be written as θ = µ ·p+λ · (1−p).
The identification region for θ is the closed interval

[θl, θu] = [µ · p, µ · p+ 1− p] .

With the probability p of observing Y known, the only unknown component of the interval

boundaries is the conditional mean µ. This parameter can be estimated by its sample analog

µ̂ =

PN
i=1Wi · YiPN
i=1Wi

.

Given this estimator for µ, the identification region [θl, θu] can be estimated as

[θ̂l, θ̂u] = [µ̂ · p, µ̂ · p+ 1− p] .

This estimator is consistent for the identification region [θl, θu].

3.1 Symmetric Confidence Intervals for the Parameter and its Identification
Region

The first step towards constructing CIs is to consider inference for µ. Using standard large sample

results we have
√
N(µ̂− µ)

d−→ N (0, σ2/p).
A consistent estimator for σ2 is

σ̂2 =
1

N1 − 1
NX
i=1

Wi · (Yi − µ̂)2,
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where N1 =
PN

i=1Wi. Hence the standard 100 · α% confidence interval for µ is

CIµα =

·
µ̂− z(α+1)/2 ·

σ̂√
p ·N , µ̂+ z(α+1)/2 ·

σ̂√
p ·N

¸
, (3.4)

where zτ is the τ quantile of the standard normal distribution, so that Φ(zτ ) =
R zτ
−∞

1√
2π e

−y2/2dy =
τ .

Now consider symmetric CIs for the identification region [θl, θu] and for the parameter θ. In each

case, let the desired asymptotic coverage probability be α. Lemma 3.1 shows that the symmetric

interval

CI [θl,θu]α =

·µ
µ̂− z(α+1)/2 ·

σ̂√
p ·N

¶
· p,
µ
µ̂+ z(α+1)/2 ·

σ̂√
p ·N

¶
· p+ 1− p

¸
(3.5)

asymptotically covers [θl, θu] with probability α, and Lemma 3.2 shows that the interval

CIθα =

·µ
µ̂− zα · σ̂√

p ·N
¶
· p,
µ
µ̂+ zα · σ̂√

p ·N
¶
· p+ 1− p

¸
(3.6)

asymptotically covers θ with at least probability α. Thus, Lemma 3.1 shows that the entire interval

[θl, θu] will, in large samples, be in the confidence interval CI
[θl,θu]
α with probability α, and Lemma

3.2 shows that, whatever the value of the unidentified parameter λmay be, the parameter of interest

θ = p · µ+ (1− p) · λ will be in the confidence interval CIθα with at least probability α, as long as
p < 1. The second interval differs from the first only in that its cutoff points are based on zα rather

than z(α+1)/2, making the second interval strictly shorter than the first.

Lemma 3.1 (Coverage properties of CI
[θl,θu]
α )

inf
F∈F ,p0≤p≤1

lim
N→∞

Pr
³
[θl, θu] ⊂ CI [θl,θu]α

´
= α. (3.7)

Proof: See Appendix.

Lemma 3.2 (Coverage properties of CIθα)

inf
F∈F ,λ∈Λ,p0≤p<1

lim
N→∞

Pr
³
θ ∈ CIθα

´
≥ α, with equality when α ≥ 0.5. (3.8)

Proof: See Appendix.
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3.2 A Uniform Confidence Interval for the Parameter

Although the confidence interval CIθα has in large samples the appropriate confidence level for all

values of p in the open interval (0, 1), it has an unattractive feature. In this subsection we first

describe in details this feature, and then propose a modification to eliminate it. The issue is that

for any N one can find a value of p such that the coverage is arbitrarily close to 100 · (2α − 1)%,
rather than the nominal 100 · α%. To see this, let us look at an example with Y |W = 1 normal

with mean µ and known variance σ2. For ease of exposition we consider a slight modification of

CIθα with the estimated variance σ̂
2 replaced by the true variance σ2:

CI
θ
α =

·µ
µ̂− zα · σ√

p ·N
¶
· p,
µ
µ̂+ zα · σ√

p ·N
¶
· p+ 1− p

¸
. (3.9)

The coverage probability of CI
θ
α for θ = µ · p+ λ · (1− p) at λ = 0 (so θ = µ · p) is

Pr
³
θ ∈ CI

θ
α

´
= Pr

µµ
µ̂− zα · σ√

pN

¶
p ≤ µp ≤

µ
µ̂+ zα · σ√

pN

¶
p+ 1− p

¶

= 1− Pr
µµ

µ̂− zα · σ√
pN

¶
p > µp

¶
− Pr

µµ
µ̂+ zα · σ√

pN

¶
p+ 1− p < µp

¶

= 1− Pr
µ
µ̂− µ

σ

p
pN > zα

¶
− Pr

Ã
µ̂− µ

σ

p
pN < −zα − (1− p)

√
N

σ
√
p

!

= 1− Φ (−zα)− Φ
Ã
−zα − (1− p)

√
N

σ
√
p

!
= Φ

Ã
zα +

(1− p)
√
N

σ
√
p

!
− Φ (−zα) .

For any fixed p ∈ (0, 1), this coverage probability approaches α as N →∞. However, for any fixed
N <∞, the coverage probability approaches 2α− 1 as p→ 1. The finite-sample coverage of CIθα
is less than its asymptotic coverage because the asymptotic calculation sets to zero the probability

that the lower bound of the identification region exceeds the estimate of the upper bound. This

probability is generically positive in finite samples, and its magnitude increases as p→ 1.

This example shows that the asymptotic coverage result in Lemma 3.2 is very delicate. The

statement of the lemma supposes that p < 1. At p = 1 the parameter of interest θ = µp+λ(1−p) = µ

is point-identified, and the standard 100α% confidence interval for θ is CIµα , given in (3.4). Interval

CIµα , which has width 2z(α+1)/2 · σ̂/
√·N , is not the limit of interval CIθα as p → 1. The width

of interval CIθα is 2zα · σ̂√p/
√
N + 1 − p. For any fixed value of N , the width of CIθα converges

to 2zα · σ̂/
√
N as p → 1. Since zα < z(α+1)/2, this is strictly less than the width of the standard

interval for p = 1. Thus, there is a discontinuity in the width of the confidence interval at p = 1.

The discontinuity at p = 1 is unsettling, especially its direction. It is counterintuitive that the

CI for θ should be shorter when the parameter is partially identified than when it is point-identified.

The anomaly arises because the coverage of CIθα is not uniform in (F, λ, p), and in particular not

uniform in p. Formally, Lemma 3.2 shows only that the coverage of interval CIθα converges to
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100α% as N →∞, for every value of (F, λ, p). It does not show that the lowest coverage rate will
converge to 100α%. In other words, it may be true that

lim
N→∞

inf
F∈F ,λ∈Λ,p0≤p<1

Pr
³
θ ∈ CIθα

´
< α.

Uniformity of confidence intervals is not always feasible. For example, in instrumental variables

settings uniformity of confidence intervals over parameter values where the structural parameters

are not identified implies that the expected length of the intervals must be infinite (Gleser and

Hwang, 1987; Dufour, 1997). In that case it has been argued that the parameter space should be

restricted to regions where the structural parameters are identified, and uniformity should only be

required to hold over the restricted parameter space. Here the issue is arguably different. The

point-identified case with p = 1 is of great interest, and any reasonable parameter space would

include it. We therefore think it desirable to construct confidence intervals that are uniform in p,

at least for p ∈ [p0, 1], for some p0 > 0.
We propose here a modification of CIθα whose coverage probability does converge uniformly in p;

indeed it converges uniformly in (F, λ, p). To motivate the modification, it is helpful to first consider

the case where Y |W = 1 is normally distributed with unknown mean µ and known variance σ2. In

this case, we will be able to derive the exact (finite sample) coverage rate of confidence intervals.

A pair of sufficient statistics for θ is (µ̂, p̂), where p̂ =
P

iWi/N is also ancillary. Note that

µ̂|p̂ ∼ N (µ, σ2/(Np̂)). Again we consider symmetric intervals of the formh
θ̂l −D, θ̂u +D

i
.

The conditional coverage probability for such an interval, for a specific value of θ, is

Pr
³
θ̂l −D ≤ θ ≤ θ̂u +D

¯̄̄
p̂
´
= Pr

³
µ̂ · p−D ≤ µ · p+ λ · (1− p) ≤ µ̂ · p+ 1− p+D

¯̄̄
p̂
´

= Pr
³
−D − λ · (1− p) ≤ (µ− µ̂) · p ≤ (1− λ) · (1− p) +D

¯̄̄
p̂
´

= Pr

µ
−
p
Np̂ · D + λ · (1− p)

σp
≤
p
Np̂ · µ− µ̂

σ
≤
p
Np̂ · D + (1− λ) · (1− p)

σp

¯̄̄
p̂

¶
= Φ

µp
Np̂ · D + (1− λ) · (1− p)

σp

¶
− Φ

µ
−
p
Np̂ · D + λ · (1− p)

σp

¶
.

This probability has local minima at the end points λ = 0, 1, with the probabilities identical at

both end points, which are therefore the global minimum.1 Thus, to get the coverage rate to be at

least α for all values of λ, one needs to choose D to solve:

Φ

µp
Np̂ · D + (1− p)

σp

¶
− Φ

µ
−
p
Np̂ · D

σp

¶
= α.

1That the probabilities are identical at the endpoints is immediate. The endpoints give the local minima because
the second derivative of the probability with respect to λ is negative for all values of λ. The first derivative with
respect to λ isp

Np̂ · 1− p

σp
·
µ
φ

µ
−
p
Np̂ · D + λ · (1− p)

σp

¶
− φ

µp
Np̂ · D + (1− λ) · (1− p)

σp

¶¶
.
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This yields an exact CI conditional on p̂. To facilitate the comparison with the previous interval

let CN = D
√
Np̂/(pσ). Then CN is chosen to solve

Φ

µ
CN +

p
Np̂ · 1− p

σp

¶
− Φ (−CN ) = α,

with the corresponding confidence interval·
µ̂ · p− CN

pσ√
Np̂

, µ̂ · p+ (1− p) + CN
pσ√
Np̂

¸
.

For any fixed 0 < p < 1, limN→∞CN = zα, which would give us the interval CIθα back. With p

very close to one, however, there will be a substantial modification for finite N . With p = 1 the

interval estimate is now identical to the standard one. For 0 < p < 1 the confidence interval is

strictly wider than the interval for p = 1.

For the general case with unknown distribution for Y |W = 1 we construct a confidence interval

by replacing σ by σ̂ and p̂ by p as these modifications do not affect the asymptotic unconditional

coverage rate:

fCIθα = h³µ̂− CN · σ̂/
p
p ·N

´
· p,
³
µ̂+CN · σ̂/

p
p ·N

´
· p+ 1− p

i
, (3.10)

where CN satisfies

Φ

µ
CN +

√
N · 1− p

σ̂
√
p

¶
− Φ (−CN) = α. (3.11)

Lemma 3.3 shows that the new interval has a coverage rate that converges uniformly in (F, λ, p):

Lemma 3.3 (Coverage properties of fCIθα)
lim

N→∞
inf

F∈F ,λ∈Λ,p0≤p≤1
Pr
³
θ ∈ fCIα´ ≥ α.

Proof: see Appendix.
It is useful to compare the three intervals, CI [θl,θu]α , CIθα, and fCIθα, in terms of the constants

that multiply σ̂/
√
p ·N , the standard error of µ̂. Since the form of the intervals is the same for

all three cases, and since the width of the intervals is strictly increasing in this constant we can

compare the width by directly comparing these constants. For the first CI, CI [θl,θu]α , the constant

is z(α+1)/2, which solves

Φ (C)− Φ (−C) = α. (3.12)

The second derivative isµp
Np̂ · 1− p

σp

¶2
·
·
−φ

µ
−
p
Np̂ · D + λ · (1− p)

σp

¶
·
µp

Np̂ · D + λ · (1− p)

σp

¶

−φ
µp

Np̂ · D + (1− λ) · (1− p)

σp

¶
·
µp

Np̂ · D + (1− λ) · (1− p)

σp

¶¸
≤ 0.
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For the second interval CIθα, the constant is zα, which solves

Φ (∞)− Φ (−C) = 1− Φ (−C) = α, (3.13)

and which is strictly smaller. For the third interval fCIθα, the constant solves
Φ

µ
C +
√
N · 1− p

σ̂
√
p

¶
−Φ (−C) = α. (3.14)

This is strictly between the first two constants, leading to the general result that zα < CN < z(α+1)/2

and

CIθα ⊂ fCIθα ⊂ CI [θl,θu]α .

Thus, the uniform confidence interval for the parameter is strictly narrower than the confidence

interval for the identification region.

4 The General Case

In this section we develop a confidence interval that converges uniformly in more general settings,

including ones in which the width of the identification region is a nuisance parameter that must be

estimated. We then apply this to the case of missing data with unknown propensity score.

4.1 Confidence Intervals With Uniform Coverage Probabilities

We use the same structure as in Section 2. Let (Ω,A, P ) be a specified probability space, and
let P be a space of probability distributions on (Ω,A). The distribution P is not known, but

a random sample of size N is available, with empirical distribution PN . Let λ be a quantity

which is known only to belong to a specified set Λ. Let f(·, ·) : P × Λ → R be a specified real-
valued function. The object of interest is the real-valued parameter θ = f(P, λ). Suppose that

λl(P ) = argminλ0∈Λf(P, λ
0) and λu(P ) = argmaxλ0∈Λf(P, λ

0) exist. The first assumption requires
that these functions do not depend on the probability distribution:

Assumption 4.1 (Invariance of Lower and Upper Bound)
λl(P ) = λl and λu(P ) = λu for all P ∈ P.

Define θl = f(P, λl), θu = f(P, λu), with corresponding estimators θ̂l and θ̂u. In many

cases, although this is not necessary for the following argument, these estimators will be ob-

tained as the sample-analogs, θ̂l = f(PN , λl) and θ̂u = f(PN , λu) Then the identification region

[f(P, λl), f(P, λu)] = [θl, θu] is naturally estimated by its sample analog [θ̂l, θ̂u].

The next assumption ensures that well behaved estimators for the lower and upper bound exist:
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Assumption 4.2 (Uniform Estimation of Bounds)
There are estimators for the lower and upper bound θ̂l and θ̂u that satisfy:

√
N(θ̂l − θl)

d−→ N (0, σ2l ),
√
N(θ̂u − θu)

d−→ N (0, σ2u),
uniformly in P ∈ P, and there are estimators for σ2l and σ2u that converge to the true values

uniformly in P ∈ P.

Third, we impose some conditions on the set of probability distributions:

Assumption 4.3 (Set of Probability Distributions)
For all P ∈ P,
(i) σ2 ≤ σ2l , σ

2
u ≤ σ2 for some positive and finite σ2 and σ2,

(ii) θu − θl ≤ ∆ <∞.

The fourth assumption ensures that the implied estimator for the width of the interval is well

behaved. Specifically, when the true interval width ∆ = θu− θl is close to zero (and the parameter

is close to being point-identified), the estimated width ∆̂ = θ̂u − θ̂l cannot be allowed to be very

large. This assumption is key to ensuring that the estimated width of the identification region can

be used instead of the true width in the construction of the confidence interval. It allows one to

avoid assuming a lower bound on the width of the identification region, which would rule out the

point-identified case.

Assumption 4.4 (Convergence of Interval Width)
For all > 0 there are ν > 0, C, and N0 such that for N ≥ N0

Pr
³√

N |∆̂−∆| > C ·∆ν
´
< ,

uniformly in P ∈ P.

Given these assumptions we construct the confidence interval as:

CI
θ
α =

h
θ̂l − CN · σ̂l/

√
N, θ̂u +CN · σ̂u/

√
N
i
, (4.15)

where CN satisfies

Φ

Ã
CN +

√
N · ∆̂

max(σ̂l, σ̂u)

!
− Φ ¡−CN

¢
= α. (4.16)

The following Lemma gives the general uniform coverage result.

Lemma 4.1 (Coverage properties of CI
θ
α)

Suppose Assumptions 4.1-4.4 hold. Then

lim
N→∞

inf
P∈P,λ∈Λ

Pr
³
θ ∈ CI

θ
α

´
≥ α.

Proof: see Appendix.
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4.2 The Missing Data Problem With Unknown Propensity Score

Here we return to the missing data problem of Section 3. We allow for an unknown propensity

score (assuming p is bounded away from zero) and show that this problem fits the four assumptions

sufficient for the application of Lemma 4.1. We continue to assume that the conditional variance

of Y given W = 1 is bounded and bounded away from zero, guaranteeing that Assumption 4.3 is

satisfied.

In this case Λ = [0, 1], θ = µ · p + λ · (1 − p), so that λl(P ) = 0 and λu(P ) = 1 for all P , and

Assumption 4.1 is satisfied.

The lower bound can be estimated by

θ̂l =
1

N

NX
i=1

Wi · Yi.

The upper bound can be estimated by

θ̂u =
1

N

NX
i=1

(Wi · Yi + 1−Wi) .

Both estimators are asymptotically normal, with
√
N(θ̂l − θl)

d−→ N ¡
0, σ2l

¢
, and

√
N(θ̂u − θu)

d−→ N ¡
0, σ2u

¢
,

where σ2l = σ2 · p+ µ2 · p · (1− p) and σ2u = σ2 · p+ µ2 · p · (1− p) + p · (1− p)− 2 · µ · p · (1− p).

Since the convergence is also uniform in P , Assumption 4.2 is satisfied.

Finally, consider Assumption 4.4. Let ν = 1/2, and N0 = 1. In the missing data case ∆̂ = 1− p̂.
The variance of ∆̂ is ∆(1−∆)/N . Hence, E[N · (∆̂−∆)2] ≤ ∆. Now apply Chebyshev’s inequality,
with C = 1/

√
, so that Pr

³√
N |∆̂−∆| > C ·∆ν

´
= Pr

³
N(∆̂−∆)2 > C2 ·∆2ν

´
< E[N · (∆̂ −

∆)2]/(C2∆2ν) ≤ ∆/(C2∆2ν) = 1/C2 = . Hence Assumption 4.4 is satisfied, and Lemma 4.1 can

be used to construct a CI by substituting p̂ for p in fCIθα given in 3.10.
5 An Empirical Illustration

In this section we use real data to illustrate the confidence intervals proposed in this paper. The

data were originally analyzed by Meyer, Viscusi, and Dubin (1995), who wanted to learn how an

increase in the level of disability benefits affects the number of weeks a worker spent on disability;

this variable is measured in whole weeks, and its distribution is highly skewed. The increase in

benefits applies only to high-earning workers, not to low-earning ones. Meyer, Viscusi and Dubin

estimated difference-in-difference models of the form

Yi = β0 + β1 · Ti + β2 ·Gi + β3 · Ti ·Gi + i,

where Yi is the outcome, the binary variable Ti indicates the post-change period, and the binary

variable Gi indicates the high-earning group (the group affected by the change in benefits). The

[11]



coefficient on the interaction, β3, is the parameter of interest, expressing the effect of the change

in benefits on disability durations. Meyer, Viscusi and Dubin reported results when the outcome

is measured in weeks and in log-weeks.

Athey and Imbens (2002) suggest a generalization of the difference-in-difference model that

they label the changes-in-changes model. Letting Yi denote the observed outcome for individual i,

and Y N
i the outcome in the absence of the change in the benefits (equal to Yi and observed unless

Ti = Gi = 1), their model assumes that Y N
i satisfies

Y N
i = h(Ti, i),

with i ⊥ Ti|Gi. Group differences are expressed by differences in the conditional distribution of

i|Gi = g by g. Athey and Imbens take the parameter of interest to be

τ = E[Y |T = 1, G = 1]− E[Y N |T = 1, G = 1],

the difference between the expected outcome for the high earners in the second period, E[Y |T =
1, G = 1], and the expected outcome for the high earners in the second period in the absence of the

change in benefits, E[Y N |T = 1, G = 1]. A key assumption is that h(t, ) is weakly monotone in

. Athey and Imbens show that with discrete data the parameter of interest is not point-identified

and that sharp bounds can be constructed. These have the form

τ ∈
·
E
h
Y
¯̄̄
T = 1,G = 1

i
− E

·
F−1Y,01(FY,00(Y ))

¯̄̄̄
T = 0, G = 1

¸
,

E
h
Y
¯̄̄
T = 1,G = 1

i
− E

·
F−1Y,01(FY,00(Y ))

¯̄̄̄
T = 0, G = 1

¸¸
,

where FY,gt(y) = Pr(Y ≤ y|T = t,G = g), F Y,gt(y) = Pr(Y < y|T = t,G = g), and F−1Y,gt(q) =

inf{y|FY,gt(y) ≥ q}.
We estimate these bounds by substituting maximum likelihood estimates (with the outcome

discrete this is straightforward). We then use the results in Athey and Imbens on asymptotic

normality of these estimators and estimate the standard errors. These are used in Table 1 to

construct three confidence intervals. First, we calculate the CI for the entire identification region,

CI
[θl,θu]
0.95 . Second, we calculate the CI for the parameter of interest, CIθ0.95. Third, we calculate the

CI for the parameter adjusted to ensure uniform convergence, CI
θ
0.95, using the estimated width of

the identification region. We calculate this both for the outcome in levels and in logarithms.

We find that modifying the CI to have the appropriate coverage only for the parameter of

interest, rather than for the entire identification region, makes a considerable difference. For the

analysis in levels, ensuring that the convergence is uniform leads to an additional substantial change.
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Table 1: Confidence Intervals for Effect of Benefit Change on Injury Durations in

Discrete Changes-In-Changes Model (Meyer-Viscusi-Dubin Data)

Estimand θ̂l θ̂u CN CI
[θl,θu]
0.95 CIθ0.95 CI

θ
0.95

(s.e.) (s.e.)

Average Effect on Treated (levels) 0.15 1.14 1.753 [-3.17,4.42] [-2.63,3.89] [-2.82,4.08]

(1.69) (1.67)

Average Effect on Treated (logs) 0.14 0.58 1.655 [-0.12,0.91] [-0.08,0.86] [-0.08,0.86]

(0.13) (0.17)

Three 95% CIs (in square brackets) are reported for both parameters of interest. The first CI is based on the estimator
of the lower bound minus 1.96, and the estimator of the upper bound plus 1.96 times their standard errors. The
second CI is equal to the estimator of the lower bound minus 1.645, and the estimator of the upper bound plus 1.645
times their standard errors. The third CI is the adjusted interval for the parameter, given in (4.15)

6 Conclusion

In the last decade a growing body of research has studied inference in settings where parameters of

interest are partially identified. Less attention has been focused on the construction of confidence

intervals in such settings. When confidence intervals have been estimated, they have typically been

constructed to provide coverage for the entire identification region with fixed probability. In this

paper we introduce a conceptually different type of confidence interval that asymptotically covers

the true value of the parameter with fixed probability. We show that, in general, coverage of a

parameter is a less demanding objective than is coverage of the entire identification region. We show

in a simple setting with missing data that CIs for the parameter are proper subsets of ones for the

identification region, with the difference in width related to the difference in critical values for one—

and two—sided tests. However, we find that the exact coverage probabilities of the simplest version

of our new CIs do not converge to their nominal values uniformly across different values for the

width of the identification region. Specifically, uniformity fails when the width of the region shrinks

to zero; that is, as the parameter becomes point-identified. To avoid this anomaly, we modify the

proposed CI to ensure that its exact coverage probabilities do converge uniformly to their nominal

values. We motivate the modified CI by showing that its exact and nominal coverage probabilities
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coincide when outcomes are normally distributed. We also provide more general results on the

implementation of the new CIs, and provide conditions under which CIs with uniform asymptotic

coverage can be constructed by substituting estimates for unknown nuisance parameters, including

the width of the identification region. Finally, in a brief empirical illustration we show that these

results can lead to substantially different confidence intervals.
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7 Appendix

Proof of Lemma 3.1: Fix F and p. Then

Pr
³
[θl, θu] ⊂ CI [θl,θu]α

´
= Pr

µ
θl ≥

µ
µ̂− z(α+1)/2 · σ̂√

p ·N
¶
· p and θu ≤

µ
µ̂+ z(α+1)/2 · σ̂√

p ·N
¶
· p+ 1− p

¶
= 1− Pr

µ
θl <

µ
µ̂− z(α+1)/2 · σ̂√

p ·N
¶
· p or θu >

µ
µ̂+ z(α+1)/2 · σ̂√

p ·N
¶
· p+ 1− p

¶
= 1− Pr

µ
θl <

µ
µ̂− z(α+1)/2 · σ̂√

p ·N
¶
· p
¶
− Pr

µ
θu >

µ
µ̂+ z(α+1)/2 · σ̂√

p ·N
¶
· p+ 1− p

¶
= 1− Pr

µ
µ · p <

µ
µ̂− z(α+1)/2 · σ̂√

p ·N
¶
· p
¶

−Pr
µ
µ · p+ 1− p >

µ
µ̂+ z(α+1)/2 · σ̂√

p ·N
¶
· p+ 1− p

¶
= 1− Pr

µ
µ < µ̂− z(α+1)/2 · σ̂√

p ·N
¶
− Pr

µ
µ > µ̂+ z(α+1)/2 · σ̂√

p ·N
¶

−→ 1− (1− α) /2− (1− α) /2 = α

Note that the second step in the above derivation is an equality, rather than a weak inequality, because the

two events whose union is taken are mutually exclusive. ¤
Proof of Lemma 3.2: Consider the three possibilities for λ: λ = 0, λ = 1, and 0 < λ < 1. In the first
case, with λ = 0, we have θ = µ · p. Hence the coverage probability of CIθα is

Pr(θ ∈ CIθα) = Pr

µµ
µ̂− zα · σ̂√

p ·N
¶
· p ≤ µ · p ≤

µ
µ̂+ zα · σ̂√

p ·N
¶
· p+ 1− p

¶

≥ 1− Pr
µµ

µ̂− zα · σ̂√
p ·N

¶
· p > µ · p

¶
− Pr

µ
µ · p >

µ
µ̂+ zα · σ̂√

p ·N
¶
· p+ 1− p

¶
.

When α ≥ 0.5, which is the usual case of interest, the above weak inequality is an equality because zα ≥ 0,
which implies that the two events whose union is taken are mutually exclusive. Consider the two probabilities
on the righthand side. The second probability equals

Pr

µ
µ · p >

µ
µ̂+ zα · σ̂√

p ·N
¶
· p+ 1− p

¶
= Pr

µ
−zα −

√
N · 1− p

σ̂
√
p
>
√
N · µ̂− µ

σ̂/
√
p

¶
,

which goes to zero as N goes to infinity since
√
N(µ̂−µ)

√
p/σ̂ converges to a standard normal distribution.

The first probability satisfies

Pr

µµ
µ̂− zα · σ̂√

p ·N
¶
· p > µ · p

¶
= Pr

µ√
N · µ̂− µ

σ̂/
√
p
> zα

¶
−→ 1− α.

Hence for this value of λ the coverage of the interval converges to α. The same argument works for λ = 1.
Now consider intermediate values for λ. In that case we have

Pr(θ ∈ CIθα) = Pr

µµ
µ̂− zα · σ̂√

p ·N
¶
· p ≤ µ · p+ λ · (1− p) ≤

µ
µ̂+ zα · σ̂√

p ·N · p+ 1− p

¶
.
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≥ 1− Pr
µµ

µ̂− zα · σ̂√
p ·N

¶
· p > µ · p+ λ · (1− p)

¶
−Pr

µ
µ · p+ λ · (1− p) >

µ
µ̂+ zα · σ̂√

p ·N
¶
· p+ 1− p

¶
For the first probability on the righthand side we have:

Pr

µ
µ · p+ λ · (1− p) < µ̂ · p− zα · p · σ̂√

p ·N
¶
= Pr

µ√
N · µ̂− µ

σ̂/
√
p
> zα +

√
N · λ · 1− p

σ̂
√
p

¶
,

which goes to zero as N goes to infinity, as long as λ > 0. Similarly, the second probability goes to zero

with N . Hence for all intermediate values of λ the asymptotic coverage is 100%, irrespective of the nominal

coverage rate. Thus, the lowest asymptotic coverage across all values of λ is 100α% when α ≥ 0.5 and is at
least 100α% when α < 0.5. ¤

Before presenting a proof of Lemma 3.3 we present a number of preliminary results. First we state a

result for uniform convergence to a central limit theorem.

Lemma 7.1 (Uniform Central Limit Theorem, Berry-Esseen) Suppose X1,X2, . . . are independent
and identically distributed random variables with distribution function F ∈ F . Let µ(F ) = EF [X], σ2(F ) =
EF [(X − µ)2], and let 0 < σ2 ≤ σ2(F ) ≤ σ̄2 <∞, and EF [X3] <∞ for all F ∈ F. Then

sup
−∞<a<∞,F∈F

¯̄̄̄
Pr

µ√
N

µ
X̄N − µ

σ

¶
< a

¶
− Φ (a)

¯̄̄̄
−→ 0,

where X̄N =
PN

i=1Xi/N .

For a formal proof see, for example, Shorack andWellner (1986). Next, we show that uniform convergence

still holds if we use an estimated variance.

Lemma 7.2 (Uniform Central Limit Theorem with Estimated Variance)

sup
−∞<a<∞,F∈F

¯̄̄̄
Pr

µ√
N

µ
X̄N − µ

σ̂

¶
< a

¶
− Φ (a)

¯̄̄̄
−→ 0

Proof of Lemma 7.2: By the triangle inequality

sup
−∞<a<∞,F∈F

¯̄̄̄
Pr

µ√
N

µ
X̄N − µ

σ̂

¶
< a

¶
− Φ (a)

¯̄̄̄

≤ sup
−∞<a<∞,F∈F

¯̄̄̄
Pr

µ√
N

µ
X̄N − µ

σ

¶
< a

¶
− Φ (a)

¯̄̄̄
+ sup
−∞<a<∞,F∈F

¯̄̄̄
Pr

µ√
N

µ
X̄N − µ

σ̂

¶
< a

¶
− Pr

µ√
N

µ
X̄N − µ

σ

¶
< a

¶¯̄̄̄
By lemma 7.1, the first term on the righthand side converges to zero, and all we need to prove is that

sup
−∞<a<∞,F∈F

¯̄̄̄
Pr

µ√
N

µ
X̄N − µ

σ̂

¶
< a

¶
− Pr

µ√
N

µ
X̄N − µ

σ

¶
< a

¶¯̄̄̄
−→ 0

First, note that σ̂ converges to σ uniformly in F because of the moment conditions on X. Since σ is bounded
away from zero, this implies that (σ̂ − σ)/σ converges to zero, also uniformly in F . So for any > 0 and

[16]



η > 0, there is an N0 such that, for N > N0 and for all F , Pr((σ̂ − σ)/σ > ) < η. By the Berry-Esseen
theorem there is also for all δ > 0 an N1 such that for N ≥ N1¯̄̄̄

Pr

µ√
N

µ
X̄N − µ

σ

¶
< a

¶
− Φ (a)

¯̄̄̄
< δ,

uniformly in a. For N ≥ max(N0, N1) we have

sup
−∞<a<∞,F∈F

¯̄̄̄
Pr

µ√
N

µ
X̄N − µ

σ̂

¶
< a

¶
− Pr

µ√
N

µ
X̄N − µ

σ

¶
< a

¶¯̄̄̄

= sup
−∞<a<∞,F∈F

¯̄̄̄
Pr

µ√
N

µ
X̄N − µ

σ

¶
<

σ̂

σ
· a
¶
− Pr

µ√
N

µ
X̄N − µ

σ

¶
< a

¶¯̄̄̄
≤ sup
−∞<a<∞,F∈F

Pr

µ¯̄̄̄√
N

µ
X̄N − µ

σ

¶
− a

¯̄̄̄
< |a| ·

¶
+ η

≤ sup
−∞<a<∞,F∈F

Φ (a+ |a| · )− Φ (a− |a| · ) + η + 2δ

≤ sup
−∞<a<∞,F∈F,ω∈[0,1]

2 · φ (a+ ω · |a| · ) · |a| · + η + 2δ,

For < 1/2 there is a bound on φ (a+ ω · |a| · ) · |a| that does not depend on , so that by choosing , η and

δ small enough we can make the entire expression arbitrarily small. ¤

The previous two results, Lemmas 7.1-7.2, can be used to show that coverage for the standard confidence

interval for the sample mean is uniform with respect to the underlying distribution.

Lemma 7.3 (Uniform Coverage for Confidence Interval for the Sample Mean)

inf
F∈F

Pr

µ
X̄N − z(α+1)/2 · σ̂√

N
≤ µ ≤ X̄N + z(α+1)/2 · σ̂√

N

¶
−→ α

Proof of Lemma 7.3:

inf
F∈F

Pr

µ
X̄N − z(α+1)/2 · σ̂√

N
≤ µ ≤ X̄N + z(α+1)/2 · σ̂√

N

¶

= inf
F∈F

Pr

µ
−z(α+1)/2 ≤

√
N · X̄N − µ

σ̂
≤ z(α+1)/2

¶
which goes to α. ¤ Proof of Lemma 3.3: For fixed λ the coverage probability is

Pr
³³

µ̂− CN · σ̂/
p
p ·N

´
· p ≤ µ · p+ λ · (1− p) ≤

³
µ̂+ CN · σ̂/

p
p ·N

´
· p+ 1− p

´
= Pr

µ
−CN

σ̂

σ
−
√
N · λ · (1− p)

σ ·√p ≤
√
N · µ− µ̂

σ/
√
p
≤ CN

σ̂

σ
+
√
N · (1− λ) · (1− p)

σ ·√p
¶

For any > 0 there almost surely exists an N0 such that for N > N0, |(σ̂ − σ)/σ| < , so that > 1− σ̂/σ.
Therefore for N ≥ N0,

Pr

µ
−CN

σ̂

σ
−
√
N · λ · (1− p)

σ ·√p ≤
√
N · µ− µ̂

σ/
√
p
≤ CN

σ̂

σ
+
√
N · (1− λ) · (1− p)

σ ·√p
¶

≥ Pr
µ
−CN (1− )−

√
N · λ · (1− p)

σ ·√p ≤
√
N · µ− µ̂

σ/
√
p
≤ CN (1− ) +

√
N · (1− λ) · (1− p)

σ ·√p
¶
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For N large enough this can be made arbitrarily close to

Φ

µ
CN (1− ) +

√
N · (1− λ) · (1− p)

σ ·√p
¶
− Φ

µ
−CN (1− )−

√
N · λ · (1− p)

σ ·√p
¶

= Φ

µ
CN +

√
N · (1− λ) · (1− p)

σ ·√p
¶
− Φ

µ
−CN −

√
N · λ · (1− p)

σ ·√p
¶
+ 2 CNφ(ω),

for some ω. Because CN ≤ z(α+1)/2 (see the definition of CN ), and since φ(·) is bounded, the last term
can be made arbitrarily small by choosing small. The sum of the first two terms has a negative second
derivative with respect to λ, and so it is minimized at λ = 0 or λ = 1. By the definition of CN it follows
that at those values for λ the value of the sum is α. Hence for any ν > 0, for N large enough we have

Pr
³³

µ̂− CN · σ̂/
p
p ·N

´
· p ≤ µ · p+ λ · (1− p) ≤

³
µ̂+ CN · σ̂/

p
p ·N

´
· p+ 1− p

´
≥ α− ν.

¤
Before proving Lemma 4.1 we establish a couple of preliminary results. Define C̆N and C̈N by:

Φ

µ
C̆N +

√
N · ∆

max(σl, σu)

¶
− Φ

³
−C̆N

´
= α,

Φ

Ã
C̈N +

√
N · ∆̂

max(σl, σu)

!
− Φ

³
−C̈N

´
= α.

Note that CN and C̈N are stochastic (as they depend on ∆̂), while C̆N is a sequence of constants.

Lemma 7.4 (Difference Between CN and C̈N)
Suppose Assumptions 4.1-4.4 hold. Then¯̄̄

CN − C̈N

¯̄̄
−→ 0,

uniformly in P ∈ P.

Proof of Lemma 7.4:

By Assumption 4.2 σ̂l and σ̂u converge to their probability limits uniformly in P ∈ P. Since both σl and

σu are bounded away from zero on P, this implies that 1/max(σ̂u, σ̂l) converges to its probability limit
uniformly. Define λ = ∆̂/max(σl, σu) and λ̂ = ∆̂/max(σ̂l, σ̂u). Then λ̂/λ converges to one uniformly.

By the definition of CN and C̈N ,

Φ
³
C̈N +

√
N · λ

´
− Φ

³
−C̈N

´
= Φ

³
CN +

√
N · λ̂

´
− Φ ¡−CN

¢
= α.

Hence ¯̄̄̄
Φ
³
C̈N +

√
N · λ

´
− Φ

³
−C̈N

´
−
µ
Φ

µ
CN · λ

λ̂
+
√
N · λ

¶
− Φ

µ
−CN · λ

λ̂

¶¶¯̄̄̄
(7.17)

≤
¯̄̄̄
Φ
³
CN +

√
N · λ̂

´
− Φ ¡−CN

¢−µΦµCN · λ
λ̂
+
√
N · λ

¶
− Φ

µ
−CN · λ

λ̂

¶¶¯̄̄̄
≤
¯̄̄̄
Φ
³
CN +

√
N · λ̂

´
− Φ

µ
CN · λ

λ̂
+
√
N · λ

¶¯̄̄̄
+

¯̄̄̄
Φ
¡−CN

¢− Φµ−CN · λ
λ̂

¶¯̄̄̄
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=

¯̄̄̄
¯Φ
Ã
λ̂

λ
·
µ
CN · λ

λ̂
+
√
N · λ

¶!
− Φ

µ
CN · λ

λ̂
+
√
N · λ

¶¯̄̄̄
¯+
¯̄̄̄
¯Φ
Ã
− λ̂
λ
· CN · λ

λ̂

!
− Φ

µ
−CN · λ

λ̂

¶¯̄̄̄
¯

(7.18)

By the mean value theorem, there exists a γ ∈ [0, 1] such that Φ(a ·b)−Φ(a) = φ(a ·(1+γ ·(b−1)) ·a ·(b−1).
Hence, with |λ̂/λ− 1| < , the first term of (7.18) can be bounded by¯̄̄̄

φ

µ
(1 + ˜) ·

µ
CN · λ

λ̂
+
√
N · λ

¶¶
· ·

µ
CN · λ

λ̂
+
√
N · λ

¶¯̄̄̄
,

for some |̃ | ≤ , and the second term by¯̄̄̄
φ

µ
(1 + ¯) · CN · λ

λ̂

¶
· · CN · λ

λ̂

¯̄̄̄
,

for some |̄ | ≤ . These expressions can be made arbitrarily small by choosing small enough, implying that
(7.17) can be made arbitrarily small. Using a mean value theorem, equation (7.17) can be written, for some
γ ∈ [0, 1], as¯̄̄̄

φ

µ
C̈N + γ ·

µ
CN · λ

λ̂
− C̈N

¶
+
√
N · λ

¶
·
µ
C̈N − CN · λ

λ̂

¶

+φ

µ
C̈N + γ ·

µ
CN · λ

λ̂
− C̈N

¶¶
·
µ
C̈N − CN · λ

λ̂

¶¯̄̄̄
=

¯̄̄̄
φ

µ
C̈N + γ ·

µ
CN · λ

λ̂
− C̈N

¶
+
√
N · λ

¶
+ φ

µ
C̈N + γ ·

µ
CN · λ

λ̂
− C̈N

¶¶¯̄̄̄
·
¯̄̄̄
C̈N − CN · λ

λ̂

¯̄̄̄
This can only be small if |C̈N −CN · (λ/λ̂)| is small, which, given uniform convergence of λ/λ̂ to one requires
|CN − C̈N |→ 0. ¤

Lemma 7.5 For all > 0 there is an N0 such that for N ≥ N0,¯̄̄
Pr
³
θ̂l − CN · σ̂l/

√
N ≤ θl ≤ θ̂u + CN · σ̂u/

√
N
´
− Pr

³
θ̂l − C̈N · σl/

√
N ≤ θl ≤ θ̂u + C̈N · σu/

√
N
´¯̄̄

< ,

uniformly in P ∈ P.

Proof of Lemma 7.5:
First, by uniform convergence of σ̂l and σ̂u to their probability limits, and by uniform convergence of CN−C̈N

to zero, there is for all positive 1 and 2 an N0 such that for N > N0, Pr(|CN σ̂l/σl− C̈N | > 1) < 2. Also,
there is an N1 such that for N > N1, supz |Φ(z)− Pr(

√
N(θ̂l − θl)/σl < z)| < 3. Next,¯̄̄

Pr
³
θ̂l − CN · σ̂l/

√
N ≤ θ ≤ θ̂u + CN · σ̂u/

√
N
´
− Pr

³
θ̂l − C̈N · σl/

√
N ≤ θ ≤ θ̂u + C̈N · σu/

√
N
´¯̄̄

≤
¯̄̄
Pr
³
θ̂l − CN · σ̂l/

√
N > θ

´
− Pr

³
θ̂l − C̈N · σl/

√
N > θ

´¯̄̄
(7.19)

+
¯̄̄
Pr
³
θ > θ̂u + CN · σ̂u/

√
N
´
− Pr

³
θ > θ̂u + C̈N · σu/

√
N
´¯̄̄

(7.20)

We will show that (7.19) can be made arbitrarily small. The same argument can be used to show that (7.20)
can be made arbitrarily small. To show that (7.19) can be made arbitrarily small we write

Pr
³
θ̂l − CN · σ̂l/

√
N > θ

´
− Pr

³
θ̂l − C̈N · σl/

√
N > θ

´
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= Pr

µ
θ̂l − CN · σ̂l/

√
N > θ

¯̄̄̄ ¯̄̄̄
CN

σ̂l
σl
− C̈N

¯̄̄̄
< 1

¶
· Pr

µ¯̄̄̄
CN

σ̂l
σl
− C̈N

¯̄̄̄
< 1

¶
+Pr

µ
θ̂l − CN · σ̂l/

√
N > θ

¯̄̄̄ ¯̄̄̄
CN

σ̂l
σl
− C̈N

¯̄̄̄
≥ 1

¶
·Pr

µ¯̄̄̄
CN

σ̂l
σl
− C̈N

¯̄̄̄
≥ 1

¶
−Pr

³
θ̂l − C̈N · σl/

√
N > θ

´
≤ Pr

µ
θ̂l − CN · σ̂l/

√
N > θ

¯̄̄̄ ¯̄̄̄
CN

σ̂l
σl
− C̈N

¯̄̄̄
< 1

¶
· Pr

µ¯̄̄̄
CN

σ̂l
σl
− C̈N

¯̄̄̄
< 1

¶
+Pr

µ¯̄̄̄
CN

σ̂l
σl
− C̈N

¯̄̄̄
≥ 1

¶
− Pr

³
θ̂l − C̈N · σl/

√
N > θ

´
≤ Pr

µ
θ̂l − C̈N · σl/

√
N + 1σl/

√
N > θ

¯̄̄̄ ¯̄̄̄
CN

σ̂l
σl
− C̈N

¯̄̄̄
< 1

¶
· Pr

µ¯̄̄̄
CN

σ̂l
σl
− C̈N

¯̄̄̄
< 1

¶
+ 2 − Pr

³
θ̂l − C̈N · σl/

√
N > θ

´
≤ Pr

³
θ̂l − C̈N · σl/

√
N + 1σl/

√
N > θ

´
+ 2 − Pr

³
θ̂l − C̈N · σl/

√
N ≥ θ

´
= Pr

Ã√
N · θ̂l − θl

σl
>
√
N · θ − θl

σl
+ C̈N − 1

σl

!
+ 2 − Pr

Ã√
N · θ̂l − θl

σl
>
√
N · θ − θl

σl
+ C̈N

!

= Pr

Ã√
N · θ − θl

σl
+ C̈N >

√
N · θ̂l − θl

σl
>
√
N · θ − θl

σl
+ C̈N − 1

σl

!
+ 2

≤ sup
z
Pr

Ã
z
√
N · θ̂l − θl

σl
> z − 1

σl

!
+ 2

≤ sup
z

µ
Φ(z)− Φ

µ
z − 1

σl

¶¶
+ 2 3 + 2

≤ 1 · φ
σl
+ 2 + 2 3,

where φ = supz φ(z) = φ(0) = 1/
√
2π. Following the same logic one can show that

Pr
³
θ̂l − CN · σ̂l/

√
N > θ

´
− Pr

³
θ̂l − C̈N · σl/

√
N > θ

´
≥ − 1 · φ

σl
− 2 − 2 3.

Together the two imply that (7.19) can be made arbitrarily small. ¤

Lemma 7.6 For any η, > 0, there is an N0 such that for N ≥ N0

Pr

µ
Φ

µ
C̈N +

√
N · ∆

max(σl, σu)

¶
− Φ

³
−C̈N

´
< α− η

¶
< ,

uniformly in P ∈ P.

Proof of Lemma 7.6:
First, the statement in the Lemma is, because C̈N satisfies Φ(C̈N +

√
Nλ)− Φ(−C̈N ) = α, equivalent to

Pr

µ³
Φ
³
C̈N +

√
N · λ

´
− Φ

³
−C̈N

´´
−
µ
Φ

µ
C̈N +

√
N · ∆

max(σl, σu)

¶
− Φ

³
−C̈N

´¶
> η

¶
< ε,

where λ = ∆̂/max(σl, σu).
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By Assumption 4.4 there are ν > 0, C > 0, and N0, such that with δ = ν/5, and N ≥ max(N0, C
1/δ),

so that

Pr
³√

N |∆̂−∆| > Nδ∆ν
´
≤ Pr

³√
N |∆̂−∆| > C∆ν

´
< .

Then: ³
Φ
³
C̈N +

√
N · λ

´
− Φ

³
−C̈N

´´
−
µ
Φ

µ
C̈N +

√
N · ∆

max(σl, σu)

¶
− Φ

³
−C̈N

´¶

= Φ
³
C̈N +

√
N · λ

´
− Φ

µ
C̈N +

√
N · ∆

max(σl, σu)

¶
= 1{∆̂ ≤ ∆} ·

µ
Φ
³
C̈N +

√
N · λ

´
− Φ

µ
C̈N +

√
N · ∆

max(σl, σu)

¶¶
+1{∆̂ > ∆,

√
N |∆̂−∆| ≤ Nδ∆ν} ·

µ
Φ
³
C̈N +

√
N · λ

´
− Φ

µ
C̈N +

√
N · ∆

max(σl, σu)

¶¶
+1{∆̂ > ∆,

√
N |∆̂−∆| > Nδ∆ν} ·

µ
Φ
³
C̈N +

√
N · λ

´
− Φ

µ
C̈N +

√
N · ∆

max(σl, σu)

¶¶
≤ 1{∆̂ > ∆,

√
N |∆̂−∆| ≤ Nδ∆ν} ·

µ
Φ
³
C̈N +

√
N · λ

´
− Φ

µ
C̈N +

√
N · ∆

max(σl, σu)

¶¶
+1
n√

N |∆̂−∆| > Nδ∆ν
o
.

The event in the second indicator function has probability less than . The first expression is, by a mean
value theorem, equal to:

1{∆̂ > ∆,
√
N |∆̂−∆| ≤ Nδ∆ν}·φ

Ã
C̈N +

√
N · ∆

max(σl, σu)
+ γ ·

√
N · ∆̂−∆

max(σl, σu)

!
·
√
N · ∆̂−∆
max(σl, σu)

,

for some 0 ≤ γ ≤ 1. Because the entire expression is zero unless ∆̂ > ∆, and C̈N and ∆ are nonnegative,
this can be bounded from above by its value at γ = 0 with C̈N dropped:

1{∆̂ > ∆,
√
N |∆̂−∆| ≤ Nδ∆ν} · φ

µ√
N · ∆

max(σl, σu)

¶
·
√
N · ∆̂−∆

max(σl, σu)

≤ 1{∆̂ > ∆,
√
N |∆̂−∆| ≤ Nδ∆ν} · φ

µ√
N · ∆

max(σl, σu)

¶
· Nδ∆ν

max(σl, σu)

≤ N−δ · φ
µ√

N · ∆

max(σl, σu)

¶
· N2δ∆ν

max(σl, σu)
. (7.21)

Maximizing

φ

µ√
N · ∆

max(σl, σu)

¶
· N2δ∆ν

max(σl, σu)
, (7.22)

over ∆ gives ∆ = max(σl, σu) ·√ν ·N−1/2. Substituting this into (7.22) gives an expression that is decreasing
in N if δ < 4ν, and which is therefore bounded, with the bound independent of the value of ∆ and thus

uniform over P ∈ P. Hence (7.21) can be made smaller than η by choosing N large enough, uniformly in

P ∈ P, completing the proof. ¤
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Lemma 7.7 (Difference Between C̈N and C̆N)
For any η, > 0, there is an N0 such that for N ≥ N0

Pr
³
C̈N < C̆N − η

´
< ,

uniformly in P ∈ P.

Proof of Lemma 7.7:
Let φ = φ(z(α+1)/2). Note that

...
CN and C̆N are positive and less than z(α+1)/2, and thus φ(C̈N ) ≥ φ and

φ(C̆N ) ≥ φ Using Lemma 7.6 there is an N0 such that for N ≥ N0

Pr

µ
Φ

µ
C̈N +

√
N · ∆

max(σl, σu)

¶
− Φ

³
−C̈N

´
< α− η · φ

¶
< ,

uniformly in P ∈ P. Conditional on

Φ

µ
C̈N +

√
N · ∆

max(σl, σu)

¶
− Φ

³
−C̈N

´
> α− η · φ,

and by the fact that C̆N satisfies Φ(C̆N +
√
N ·∆/max(σl, σu))− Φ(−C̆N ) = α, we have

Φ

µ
C̈N +

√
N · ∆

max(σl, σu)

¶
− Φ

µ
C̆N +

√
N · ∆

max(σl, σu)

¶
− Φ

³
−C̈N

´
+Φ

³
−C̆N

´
> −η · φ

By a mean value theorem this impliesµ
φ

µ
C̈N +

√
N · ∆

max(σl, σu)
+ γ · (C̆N − C̈N )

¶
+ φ

³
C̆N + γ · (C̈N − C̆N )

´¶
·
³
C̈N − C̆N

´
> −η · φ,

for some γ ∈ [0, 1], and thus C̈N > C̆N − η with probability 1− . ¤

The combination of Lemmas 7.4 and 7.7 implies that for any > 0 we can find an N0 such that for
N ≥ N0,

Pr
³
CN < C̆N − η

´
< ,

uniformly in P ∈ P. Note that Lemma 7.7 does not imply that |CN − C̆N | converges to zero uniformly.
This is not necessarily true unless we are willing to rule out values of ∆ close to zero, which is exactly the

point-identified area we are concerned with.

Proof of Lemma 4.1:
We will prove that for any positive , for N sufficiently large, the probability that

θ̂l − CN · σ̂l/
√
N ≤ θ ≤ θ̂u + CN · σ̂u/

√
N,

is at least α− , uniformly in P ∈ P. We will prove this for θ = θu. The proof for θ = θl is analogous, and

similar to previous cases the coverage probability is minimized at the boundary of the identification region.

For arbitrary positive 1, 2, and 3, choose N large enough so that the following conditions are satisfied

(i), supz |Pr(
√
N(θ̂l − θl)/σl ≤ z)− Φ(z)| ≤ 1, (ii), supz |Pr(

√
N(θ̂u − θu)/σu ≤ z)− Φ(z)| ≤ 1, and (iii),
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Pr(C̈N − C̆N < − 2) < 3. Existence of such an N follows for conditions (i) and (ii) from Assumption 4.2,

and for condition (iii) from Lemma 7.7.
Define the following events, E1, E2, E3, E4, and E5:

E1 ≡ θ̂l − CN · σ̂l/
√
N ≤ θu ≤ θ̂u + CN · σ̂u/

√
N,

E2 ≡ θ̂l − C̈N · σl/
√
N ≤ θu ≤ θ̂u + C̈N · σu/

√
N,

E3 ≡ θ̂l − (C̆N − 2) · σl/
√
N ≤ θu ≤ θ̂u + (C̆N − 2) · σu/

√
N,

E4 ≡ θ̂l − C̆N · σl/
√
N ≤ θu ≤ θ̂u + C̆N · σu/

√
N,

E5 ≡ C̈N − C̆N > − 2,

and let Ec
5 be the complement of E5. Note that (E5 ∩ E3) ⇒ E2 and thus (E5 ∩ E3) ⇒ (E2 ∩ E3). Define

also

P3 ≡ Φ(C̆N − 2 +
√
N ·∆/σl)− Φ(−C̆N + 2).

P4 ≡ Φ(C̆N +
√
N ·∆/σl)− Φ(−C̆N ) = α.

By conditions (i) and (ii), |P3 − Pr(E3)| ≤ 2 1 and |P4 − Pr(E4)| ≤ 2 1. Also, |P3 − P4| ≤ 2 2φ, and by
(iii), Pr(Ec

6) < 3. By Lemma 7.5 it follows that for any 4 > 0 we can choose N large enough so that
|Pr(E1)− Pr(E2)| < 4. Then, by elementary set theory:

Pr(E1) ≥ Pr(E2)− 4 ≥ Pr(E2 ∩E3)− 4 ≥ Pr(E5 ∩E3)− 4 ≥ Pr(E3)− Pr(Ec
5)− 4

≥ P3 − 2 1 − 3 − 4 ≥ P4 − 2 1 − 3 − 2 2φ̄− 4 = α− 2 1 − 3 − 2 2φ̄− 4.

Since 1, . . . , 4 were chosen arbitrarily, one can make Pr(E1) > α− for any > 0. ¤
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