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[Abstract]

This paper presents new identi�cation results for the class of structural dynamic optimal stopping time models

that are built upon the framework of the structural discrete Markov decision processes proposed by Rust (1994).

We demonstrate how to semiparametrically identify the deep structural parameters of interest in the case where the

utility function of an absorbing choice in the model is parametric but the distribution of unobserved heterogeneity

is nonparametric. Our identi�cation strategy depends on availability of a continuous observed state variable that

satis�es certain exclusion restrictions. If such excluded variable is accessible, we show that the dynamic optimal

stopping model is semiparametrically identi�ed using control function approaches.

KEYWORDS : structural dynamic discrete choice models, semiparametric identi�cation, optimal stopping

time models

1 Introduction

Over the decades, structural estimation of dynamic discrete choice models has been more and more employed

in empirical economics and for the assessment of various policies of interest. Well-known empirical applications

include Wolpin (1984) and Holz and Miller (1993) in fertility; Pakes (1986) in patent renewal; Rust (1987),

Das (1992), Cooper, Haltiwanger, and Power (1999), and Adda and Cooper (2000) in capital retirement and

replacement; Wolpin (1987) in job search; Berkovec and Stern (1991), Daula and Mo¢ tt (1995), Rust and Phelan

(1997), and Karlstrom, Palm and Svenssonin (2004) in retirement from labor force; Erdem and Keane (1996) in

brand choice; Keane and Wolpin (1997) in career choice; Eckstein and Wolpin (1999) in education choice. See

Eckstein and Wolpin (1989) for a survey of the earlier empirical work on dynamic discrete choice models and

Wolpin (1996) for the use of such models in public policy evaluation.

1 I am grateful to my advisor, Dr. Simon Lee for many helpful comments on this paper and valuable suggestions at various
stages of my research.
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Structural estimation of dynamic discrete choice models is attractive to researchers because it tightly links

economic theories of rational decision making under uncertainty in a dynamic setting to the interpretation and

prediction of the stochastic process that generates the economic data of interest. The parameters in the model and

the estimation methods are structural in the sense that they are derived from solutions of an explicitly postulated

economic behavioral model. Hence structural estimation avoids Lucas critique about the use of reduced form

analysis and it can allow researchers to simulate the consequences of vaious policy experiments after the underlying

structural parameters are estimated.

However, a common feature in the structural estimation literature is the parametric speci�cation of the under-

lying structural objects such as utility functions, transition probabilities of state variables and distributions of the

unobservables. Estimated results from parametric models may be sensitive to changes of speci�cation and hence

su¤er from problems of misspeci�cation. Therefore, later work in the literature tries to study the nonparametric

identi�cation of the dynamic discrete choice model. An in�uential work by Rust (1994) shows that the dynamic

discrete choice model is nonparametrically unidenti�ed. Magnac and Thesmar (2002) extend Rust�s framework

and show that if the history of observed variables is discrete, the dynamic discrete choice model is nonidenti�ed.

They then further characterize the degree of nonidenti�cation and show that the model is identi�ed subject to ad

hoc assumptions on distributions of unobservables and functional forms of agents�preferences. In particular, their

identi�cation result indicates that parametric speci�cations on the distributions of unobservables are indispensable

for identifying the deep structural parameters of interest, which consequently motivates the maximum likelihood

estimation approach to most of the empirical work on structural estimation of the dynamic discrete choice model.

This paper builds on the framework of Rust (1994) and Magnac and Thesmar (2002) and develops new

identi�cation results for the case where the distribution of unobservables is nonparametric. We mainly focus

on the identi�cation analysis of the optimal stopping time model which is a subclass of dynamic discrete choice

models. The reason is twofolds. First, the optimal stopping time model has appeared as an important modeling

framework in many empirical applications in which the agent faces an irreversible choice. See for example Pakes

(1986) in patent renewal, Das (1992) in capital utilization and retirement, Daula and Mo¢ tt (1995) in military

reenlistment, and Rothwell and Rust (1997) in nuclear plant operation models. The distribution of unobservables

in these models is often parametrically speci�ed and estimated. Therefore, it is important to investigate the degree

of identi�cation for such models when the researcher does not hold a priori information on the distribution of

unobservables. Second, the dynamic discrete choice model is generally highly nonlinear and the solution of the

model is often implicitly de�ned as the �xed point of a system of Bellman equations that characterize the agent�s
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rational behavior. Therefore, identi�cation analysis of dynamic discrete choice models is quite a nontrivial task

when the distribution of unobservables is nonparametric. Instead of trying to completely resolve the identi�cation

of the general model, we study the optimal stopping time model in which we can exploit the identi�cation power

arising from the irreversible (absorbing) choice restriction. We present the identi�cation analysis of the optimal

stopping time model while leaving that of the general case for further research to which the analysis in this paper

could be useful.

As in static discrete choice models, the dynamic discrete choice model is not nonparametrically identi�ed

when all regressors (observed state variables) are discrete and the distribution of unobservables is unknown and

continuous. To allow for nonparametric distribution of the unobservables, we assume the availability of continuous

observables so that we can still gain identi�cation by exploiting continuous variation from observed continuous

state variables. However, as noted in Magnac and Thesmar (2002), the dynamic discrete choice model is still

unidenti�ed even if the distribution of unobservables is given a priori. To secure identi�cation, the researcher

needs to further assume the functional form of the utility for one of the choices. When the distribution of

unobservables is nonparametric, as will be evident later the assumption on the utility function seems inevitable

to secure identi�cation. Therefore, through the paper the identi�cation analysis is semiparametric in the sense

that one of the utility functions of the choices is given a priori. Under this assumption, we show that the

optimal stopping time model is semiparametrically identi�ed if there is an exclusion restriction that provides

identi�cation power when information about distribution of unobservables is not available. When there is no

exclusion restriction, we show that the optimal stopping time model is not identi�ed even when the utility function

of one choice is known. Therefore, in this respect, our analysis provides semiparametric identi�cation for the

dynamic counterpart to the already well developed semiparametric static discrete choice models in which preference

shock distributions are nonparametric but systematic utility functions are restricted to certain function space2.

In the identi�cation analysis of structural dynamic optimal stopping time models, our work is related to

the analysis in Heckman and Navarro (2006). In their paper, they consider semiparametric identi�cation of a

variety of reduced form optimal stopping time models and a �nite horizon structural optimal stopping model.

They identify the structural model by solving it backwards. Under the �nite horizon restriction and their limit

set identi�cation strategies which generalize Taber�s (2000) identi�cation-at-in�nity arguments, they can achieve

2See Manski (1975, 1985), Cosslett (1983), Stoker (1986), Klein and Spady (1988), and Ichimura (1993) for studies of semiparametric
identi�cation and estimation of static discrete choice models in which the random shock distribution is nonparametric but systematic
utility is parametric. Matzkin (1992, 1993) and Lewbel and Linton (2005) consider nonparametric discrete choice models by further
relaxing parametric assumptions on the systematic utility to a function space de�ned under certain shape restrictions such as linear
homogeneity that are usually motivated from economic theories.
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semiparametric identi�cation of the model while allowing for richer time series dependence between nonparametric

unobservables than is assumed in Rust�s (1994) framework. However, such backward solving procedure cannot

apply in in�nite horizon models and the limiting set required for their identi�cation may also be demanding

in practical applications3. In this paper, we follow Rust�s (1994) conditional independence assumption that

precludes time series dependence between unobservables to achieve identi�cation in the in�nite horizon model.

Our identi�cation strategy is based on solving the �xed point of the Bellman equations in the model and hence

is applicable to both �nite and in�nite horizon models. Since the conditional independence framework in Rust

(1994) has been popular in empirical work, it is important to understand the identi�cation problem of in�nite

horizon models under this assumption before considering more general serial dependence between unobservables.

Furthermore, such setup also includes an important class of models in which rational expectation assumption on

agents�belief can be justi�ed from a learning process based on observations (Magnac and Thesmar 2002).

The rest of the paper is organized as follows. Section 2 presents the framework and assumptions of the optimal

stopping time model. Section 3 study the semiparametric identi�cation of the model. Section 4 concludes the

paper.

2 The framework and assumptions

Time is discrete and indexed by t 2 f1; 2; :::g. Consider an economic agent with intertemporal utility that is

additive separable over time. At each period, the agent makes a decision over two mutually exclusive choices4,

denoted as choice 0 and choice 1. One of these two choices is assumed absorbing or irreversible in the sense that

once it is chosen, the agent will never deviate from this choice in the rest of the decision horizon. Let choice 0 be

the absorbing choice. Denote as st the state variables at time t that the agent considers in this optimal stopping

time model. From the econometrician�s point of view, some components of st are observables that are denoted

by xt. Others are unobserved random shocks "t � ("0;t; "1;t) for each choice. Therefore, st = (xt; "t). At the

beginning of each period t, st is revealed to the agent who then chooses dt 2 f0; 1g and receives the instantaneous

return ut(dt; st). However, next period state variables st+1 are still uncertain to the agent. Following Rust (1994)�s

dynamic Markov discrete decision process framework, we assume the transition of state variables follows controlled

3 In the empirical example of their paper (Heckman and Navarro 2006), they report that they do not have the required limit sets in
their data.

4To present the main idea, we focus on binary choice models. It is possible to generalize the result of this paper to the multinomial
choice context. We leave such generalization for further research work.
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�rst-order Markov property. In other words, the next period state variables st+1 are drawn based on the Markov

transition probability density fs( st+1jst; dt). The agent has belief, �( st+1jst; dt) about the evolution of the state

variables. We assume that the agent�s belief is rational in the sense that it coincides with the true transition

probability fs( st+1jst; dt)5. To proceed, as in Rust (1994) and Magnac and Thesmar (2002, pp. 802-804), we

make the following assumptions on the agent�s preference and laws of motion of the states.

Assumption M1 (Additive Separability) :

for k 2 f0; 1g and for all t, ut(k; st) � uk;t(st) = u�k;t(xt) + "k;t.

Assumption M2 (Conditional Independence) :

for all t, fs(xt+1; "t+1jxt; "t; dt) = f"("t+1)fx(xt+1jxt; dt).

The additive separability assumption allows us to decompose the utility into a systematic part that depends

only on observable state variables and a preference shock that is unobserved to the econometrician. This is a

standard assumption in static discrete choice models6. M2 assumes that the unobservables "t are i.i.d. exogenous

random shocks to the model and future values of the observed states xt+1 can depend on the current control

variable dt and values of current observed states xt but they do not direct depend on current values of the exogenous

shocks "t. Since M2 restricts the time series dependence of unobserved state variables, it precludes unobserved

persistent heterogeneity and dynamic selection bias discussed in Cameron and Heckman (1998), Taber (2000),

and Heckman and Navarro (2006)7. However, general time series dependence between observables are allowed.

Besides, preference shocks can also be dependent across alternatives. Note that M2 allows rational expectation

belief to be derived from a learning process based on observations in the sense that the agent can infer joint

distribution of next period states based on observable information from other agents and on the assumption that

he knows distribution of his private signal "t (Manski 1993, Magnac and Thesmar 2002).

Let � 2 [0; 1) be the discount factor. Assuming at each period choices are made to maximize the agent�s

expected life time utility, under M1, M2 and rational expectation belief, by Bellman principle of optimality, �t;the

policy function (the optimal decision rule) which depends on previous period control variable dt�1 due to the

5 In general, the agent�s belief �(st+1jst; dt) is subject to his degree of rationality and hence may not necessarily represent the true
law of motion of the states. However, identi�cation of a general belief requires more structural assumptions about the agent�s belief
formation process.

6See Vytlacil (2002, 2005) for discussions about the use of additively separable utility functions in static discrete choice models.
7See Rust (1994) for a detailed and graphical explanation of controlled Markov process under such conditional independence

assumption.
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optimal stopping feature of the model, can be characterized as the follows.

�t(st; dt�1) = argmax
k2f0;1g

fvk;t(st)g subject to k � dt�1:8 (1)

and the value function at each period t can be obtained via the following recursive expressions.

vt(st; dt�1) = �t(st; dt�1)v1;t(st) + (1� �t(st; dt�1))v0;t(st); (2)

where

vk;t(st) � uk;t(st) + �E(vt+1(st+1; k)jst; dt = k) for k 2 f0; 1g: (3)

Assuming the agent starts from non-absorbing choice such that �0 = 1, then under rationality the time series

of observed choice is the sequence of optimal decisions f�t = �t(st; �t�1)g that follows the law of motion as follows.

�t = 1fv1;t(st) � v0;t(st)g�t�1: (4)

It is clear that under M1 and M2, for k 2 f0; 1g and for all t, there is v�k;t(xt) , which is a function of xt only,

such that the choice speci�c value functions, vk;t(st) can be written as :

for k 2 f0; 1g and for all t,

vk;t(st) = v
�
k;t(xt) + "k;t; (5)

where

v�k;t(xt) = u
�
k;t(xt) + �E(vt+1(st+1; k)jxt; dt = k): (6)

Note that M1 together with M2 gives additive separability to the choice speci�c value functions, which greatly

facilitates the development of identi�cation and estimation methods in dynamic discrete choice models9.

For the rest of the paper, we will suppress the time index from the functions and variables. This can be justi�ed

since we can put the time index as part of the observed state variables. Furthermore, if we set the instantaneous

utility to be zero for any t > T , then we can also represent a �nite horizon model as an in�nte horizon model.

Denote variables y and y0 indicate the current and next period objects, respectively. Under this notation, we can

8When distribution of "t is continous (see assumption M4), ties between the two choice speci�c value functions do not occur almost
surely so that there is a unique solution to this optimization problem.

9 Identi�cation results for dynamic models with persistent unobserved state variables are generally negative (Magnac and Thesmar
2002). Besides, since violation of conditional independence implies that the entire history of unobserved state variables may enter value
functions, due to the need of integrating these unobservables out, even in completely parametric setup, estimation of such models is in
general so complicated that they are rarely used in practice (Rust 1994).
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formulate the model as follows. For k 2 f0; 1g,

v(s0; d) = �
0
(s0; d)v1(s

0) + (1� �0(s0; d))v0(s0) (7)

uk(s) = u�k(x) + "k (8)

vk(s) = v�k(x) + "k (9)

v�k(x) = u�k(x) + �E(v(s
0; k)jx; d = k) (10)

�(s0; d) = 1fv1(s0) � v0(s0)gd (11)

Let �v�(x) � v�1(x)� v�0(x) and �" � "1 � "0. Using the following lemma, we can further rewrite (10) to get

a more convenient representation of the choice speci�c value functions.

Lemma 1 Under M1 and M2, the systematic Bellman equations (10) can be written as the follows.

v�1(x) = u
�
1(x) + �E(v

�
0(x

0) + "00jx; d = 1) + �[E(�v�(x0)�(s0; 1)jx; d = 1) + E(�"0�(s0; 1)jx; d = 1)] (12)

and

v�0(x) = u
�
0(x) + �E(v

�
0(x

0) + "00jx; d = 0) (13)

Proof. Lemma 1 follows immediately by putting equations (7) and (11) into (10).

Equation (12) expresses the value function for choice 1 as the sum of three terms. The �rst term on the right

hand side of (12) is the instantaneous utility the agent receives when he makes choice 1. The second term is the

discounted expected future value when at next period the agent makes choice 0 given that his current action is

choice 1. The third term is the discounted expected gain when it is optimal for the agent to deviate from choice 0

at next period given that his current action is choice 1. Equation (13) interprets the value function for choice 0 in

a similar fashion except that the term of the expected gain vanishes due to the behavioral restriction that choice

0 is absorbing and hence deviation is not allowed once choice 0 is made at previous period. The reduced form

equation of this model is the conditional choice probability, P (�
0
= 1jx0; � = 1) = P (�v�(x0) + �"0 � 0jx0; � = 1).

It is clear that the distribution of �" is more critical than the joint distribution of " = ("i)i2f0;1g in characterizing

the reduced form equation. Furthermore, if E("0) is normalized to be zero, then the systematic Bellman equations

(12) and (13), as we will show later, will be completely characterized by the distribution of �".

Assumption M3 : E("0) = 0.
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M3 provides location normalization for the random shock of the absorbing choice10. By M2, we have E("00jx; d =

0) = E("00) so that under M3 we can further simplify the systematic Bellman equations (12) and (13) as follows.

v�1(x) = u
�
1(x) + �E(v

�
0(x

0)jx; d = 1) + �[E(�v�(x0)�(s0; 1)jx; d = 1) + E(�"0�(s0; 1)jx; d = 1)] (14)

and

v�0(x) = u
�
0(x) + �E(v

�
0(x

0)jx; d = 0) (15)

To proceed, we need further assumptions on the distribution of �".

Assumption M4 : ��" has �nite �rst moment and strictly increasing and absolutely continuous (with respect

to Lebesgue measure) distribution function G that induces a density function g, whose support is [G,G]. The

support can be either bounded or unbounded.

Restricting G to be strictly increasing ensures that G is invertible, which is a key condition for identi�cation of

the model (Hotz and Miller 1993). The absolute continuity property of G ensures that the dynamic programming

model has a unique optimal solution almost surely.

2.1 Parameters of interest

Let B be the set of all measurable, real-valued and bounded functions under sup norm. Then B is clearly a Banach

space. We assume that for k 2 f0; 1g, u�k(x) 2 B. Then using Blackwell su¢ cient conditions (see Theorem 3.3 in

Stockey and Lucas 1989), it can be shown that the value functions v�i (x) are also in B and are the unique �xed

point of the system of Bellman equations (14) and (15). The parameters of interest in this model are therefore

(u�k(x); v
�
k(x); �;G; fx(x

0jx; k)) for k 2 f0; 1g. We will refer to v�k(xt) as the derived structural parameters as they

are derived from the primitive structural parameters (u�k(x); �;G; fx(x
0jx; k)) via the Bellman equations (14) and

(15). Obtaining these structural parameters will then allow researchers to answer a variety of policy questions11.

For example, the researcher may study a counterfactual policy experiment � such that under policy � , the agent�s

behavior is generated from the new structure characterized by (u��k (x); v
��
k (x); �

� ; G� ; f �x (x
0jx; k))12. Assuming the

counterfactual structural parameters have a known mapping to the set of (u�k(x); �;G; fx(x
0jx; k)), then we can

simulate the agent�s behavior under the counterfactual policy if the set of structural parameters can be identi�ed.

10As in the static discrete choice models, the locations of the distributions for "1 and "0 are not separately identi�ed since only the
di¤erence �" matters in the conditional choice probability.
11Of course, we assume that the policy does not change the nature of the decision problem such that the agent still faces an optimal

stopping time decision problem with the same absorbing choice.
12All variables superscripted with � denote the same variables treated under the counterfactual policy � .
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Take a more concrete example from Aguirregabiria (2005). Consider the counterfactual policy is speci�ed as

�k(x), which may be some instantaneous tax bene�t if the agent chooses alternative k. Then one interesting

policy question would be to evaluate the conditional choice probability P (�� = 1jx) under this counterfactual

policy. Another interesting aspect may be welfare analysis of such policy intervention and in this case, one could

consider studying E(v� (s0; �� )�v(s0; �)jx0)13, which is the average impact of the policy. In this tax bene�t example,

u��k (x) = u
�
k(x) + �k(x). In general �k(x) is known and speci�ed in the policy experiment so that obtaining the

deep structural parameters u�k(x) allows us to identify the counterfactual parameter u
��
k (x). To simplify this

example, we assume the policy does not change the remaining primitive parameters (�;G; fx(x0jx; k))14, then

using equations (14) and (15), we can identify the counterfactual value function v��k (x) as follows.

v��1 (x) = u
��
1 (x) + �E(v

��
0 (x

0)jx; d = 1) + �[E(�v�� (x0)�� (s0; 1)jx; d = 1) + E(�"0�� (s0; 1)jx; d = 1)] (16)

and

v��0 (x) = u
��
0 (x) + �E(v

��
0 (x

0)jx; d = 0) (17)

Equations (16) and (17) illustrate a key di¤erence in counterfactual policy experiment studies between static

and dynamic models. In static models, �k(x) directly speci�es the utility di¤erence u��k (x) � u�k(x). However, in

dynamic models �k(x) 6= v��k (x) � v�k(x) since the agent is forward looking such that �k(x) will also a¤ect the

expected future values. Identi�cation of the whole structure parameters will hence be su¢ cient to answer many

interesting policy questions including those given in the example above15.

3 Semiparametric identi�cation of the optimal stopping time model

We have a sample of individuals indexed by i who follow the constituted structural optimal stopping time model.

Data consist of the observed state variables and optimal choices for two consecutive periods (�i; xi; �0i; x
0
i), i =

1; 2; :::; n, where n denotes the sample size. Assume random sampling, we can suppress the individual index i.

Under conditional independence (M2) assumption, the agent�s belief fx(x0jx; k) for k 2 f0; 1g can be identi�ed
13 Indeed, E(v(s0; �)jx0) is a dynamic version of McFadden�s social surplus function. See also Rust (1988, 1994) for the properties of

this surplus function.
14 In other words, we assume (�� ; G� ; f�x (x

0jx; k)) = (�;G; fx(x0jx; k)):
15 If the counterfactual conditional choice probability is the main object of interest, then obtaining u�k(x) is not necessary for

identi�cation. See Aguirregabiria (2005,2006) for more discussions about identi�cation of counterfactual conditional choice probability
in the dynamic context.
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from the data (�; x; x0). To see this, with slight abuse of notation, let x0(k) be the value of x0 when the control

variable d is evaluated at k 2 f0; 1g. In other words, x0(k) is the transition function that describes how next

period state variable x0 evolves given that the value of current control variable is k. M2 implies that the transition

function x0(k) is not a function of "16. Therefore, fx(x0jx; d = k) = fx(x
0(k)jx). Note that fx(x0(k)jx) is a

counterfactual object since we observe x0(k) only for those individuals who actually chooses k. In other words,

x0(k) is observed only when it is optimal to choose alternative k. We can identify fx(x0jx; � = k) and

fx(x
0jx; � = k) = fx(x0(k)jx; � = k) = fx(x0(k)jx); (18)

where the second equality follows because the observed (optimal) choice � evolves according to (4) and given

x, x0(k) is independent of " under conditional independence assumption M217. Therefore, the agent�s belief can

be identi�ed using the factual object fx(x0jx; � = k) under M2, which is essentially the selection on observables

assumption that is widely employed in the policy evaluation literature18 to identify the counterfactual objects of

interest. Since fx(x0jx; d = k) = fx(x0jx; � = k) is identi�ed, we can replace the control variable (counterfactual)

d with the observed choice � in Bellman equations (14) and (15). Using �0 = �(s0; �) and the assumption M2, we

can further rewrite these two Bellman equations as

v�1(x) = u
�
1(x) + �E(v

�
0(x

0)jx; � = 1) + �[E(�v�(x0)�0jx; � = 1) + E(�"0�0jx; � = 1)] (19)

and

v�0(x) = u
�
0(x) + �E(v

�
0(x

0)jx; � = 0) (20)

Therefore, for the rest of the paper, we will direct work on the Bellman equations (19) and (20).

3.1 Identi�cation of the structural parameters when the distribution G is known (Review

of Magnac and Thesmar�s identi�cation analysis)

Following Magnac and Thesmar (2002), we will �rst characterize the degree of identi�cation for this optimal

stopping time model.

16However, x0(k) may depend on current state variable x.
17Though �t depends on �t�1 through its law of motion (4), xt+1(k) is independent of �t�1 conditional on xt due to the assumption

that the structural model.is �rst order Markov.
18See Heckman and Robb (1985) and Heckman, Lalonde, and Smith (1999) for surveys of policy evaluation literature based on

counterfactual settings.
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Lemma 2 Under M4, the conditional choice probability is P (�0 = 1jx0; � = 1) = G(�v�(x0)) so given G, �v� can

be identi�ed. On the other hand, given �v� , G is identi�ed over the support of �v�.

Proof. Note that P (�0 = 1jx0; � = 1) = P (�v�(x0) + �"0 � 0jx0; � = 1). Since �" is serially independent

and independent of the process of x, we have P (�0 = 1jx0; � = 1) = G(�v�(x0)). Under M4, G is invertible so

�v�(x0) = G�1(P (�0 = 1jx0; � = 1)) is identi�ed. On the other hand, if �v� is given, then G is identi�ed as

P (�0 = 1j�v�(x0); � = 1) over the support of �v�.

Therefore, given � and u�0, we can identify v
�
0 as the unique �xed point of the Bellman equation (20). Given

G; we can identify �v� using Lemma 2 and hence v�1 can also be identi�ed. Then u
�
1 can be identi�ed by plugging

v�1, v
�
0, � and G into the Bellman equation (19).

Table 1 summarizes the identi�cation analysis demonstrated above. Indeed this result is a special case of identi-

�cation analysis of the general dynamic discrete choice model with known distribution of unobserved heterogeneity

that has been studied in Magnac and Thesmar (2002)19.

Table 1 : Degree of Identi�cation of the dynamic optimal stopping time model

Given We can identify

G �v�

� and u�0 v�0

G, � and u�0 u�1,v
�
1, v

�
0

From Table 1, we can see that G, the distribution of ��", plays almost the most important role in this

model not only because most of interesting structural parameters can be derived from G but also because G

is indispensable when, besides identi�cation of the structural parameters, the aim is to predict the conditional

choice probability. Most empirical literature makes parametric assumptions on G. Though this facilitates the

identi�cation task in view of the results in Table 1, such parametric approach is rarely justi�ed a priori and hence

su¤ers from misspeci�cation problems. Another remark on Table 1 is that obtaining G alone is not su¢ cient to

identify the complete structure of the model. We need the discounter factor � and in particular the utility function

for Choice 020. Therefore, to identify the complete structure of the model, a natural alternative approach parallel

to semiparametric methods of the static discrete choice models is to assume the systematic utilities while keeping

the distribution of unobservables nonparametric. This paper aims to develop such semiparametric identi�cation

19Note that this identi�cation result still holds even all choices are recurrent (non-absorbing). See Magnac and Thesmar (2002) for
proof of the general case.
20 If time index is part of the state variables such that u�0 may change with time (for example, u

�
0(t; xt) = 0 for t > T in �nite horizon

models), then the whole path of u�0 needs to be assumed. This can be regarded as the curse of dimensionality in the sense that the
degree of under-identi�cation gets more severe as the model horizon gets longer.
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results. In particular, we discuss the degree of identi�cation in the case where only the path of utilities for the

absorbing choice is assumed and then provide su¢ cient conditions that guarantee nonparametric identi�cation of

G, from which we can proceed to identify more structural parameters using the results in Table 1.

3.2 Identi�cation of the structural parameters when the distribution G is unknown

The Bellman equation (20) of the absorbing choice implies that once � and u�0 are given, v
�
0 can be identi�ed as

the �xed point solution of this functional equation that does not depend on the distribution G. Therefore, by

exploiting this behavioral restriction implied from the optimal stopping time model, it is natural to specify the

instantaneous utility of the absorbing choice so that we can �rst obtain v�0 by solving equation (20). However, in

contrast with the results in Table 1, the following lemma shows that even assuming both � and u�0, at best v
�
0 can

be recovered and other structural parameters are still unidenti�ed if there is no information about the distribution

G.

Lemma 3 Assume M4, given only � and u�0, then G, u
�
1 and v

�
1 are not identi�ed.

Proof. We assume v�0 is known since it can be identi�ed in the model once � and u
�
0 are given. Let G, u

�
1 and v

�
1

be a set of possible structure parameters that satisfy Bellman equation (19) and

P (�0 = 1jx0; � = 1) = G(v�1(x0)� v�0(x0)):

Consider another distribution eG 6= G. For example, one can take eG(y) = [G(y)]� for some � > 1. Then the
value function ev�1(x0) � v�0(x0) + eG�1(G(v�1(x0)� v�0(x0))) and eG generate the same conditional choice probability

as that generated by v�1 and G. Using Bellman equation (19), ev�1(x0) and eG then implicitly de�ne a utility functionfu�1. Therefore, the parameters (u�1; v�1; G) and (fu�1; ev�1; eG) are observationally equivalent and they are not identi�ed.
Lemma 3 says that assuming one value function alone provides no identi�cation power. This result arises from

lack of variation to distinguish between the unknown distribution G and the unknown index function v�1 � v�0.

Therefore, v�1 and G can be separately identi�ed if we can �x v
�
1 but at the same time freely move v

�
0 which is an

identi�able object when � and u�0 are given so that we can trace the distribution G. As shown in Lemma 3, there

is no such variation-free condition for identi�cation when v�1 and v
�
0 share completely the same set of regressors.

Therefore, to achieve semiparametric identi�cation when G is nonparametric, it is useful to impose an exclusion

restriction to provide such source of variation. In other words, if there is one continuous variable that is in the
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arguments of v�0 but is excluded from those of v�1, then we can separately identify v
�
1 and G up to a location

normalization. Theorem 4 demonstrates this semiparametric identi�cation strategy.

Theorem 4 Let x = (w; z) in which the subvectors w and z have no common component and both of them are

non-empty. Denote the support of x as �X = �W� �Z , where �W and �Z are the supports of w and z, respectively.

Let u�0(x) = u
�
0(w; z) 2 B be a known function. Assume also the following : (i) (excluded regressors) u�1(x) = u�1(w)

(ii) (conditional independence between observables) (w0; z0) ? zjw; d = 1 (iii) (continuous regressors) 9 at least

one continuous variable zs in the subvector z such that the distribution of zs conditional on w is non-degenerate

and v0(x) is di¤erentiable with respect to zs with
@v�0(x)
@zs

6= 0 almost surely over �X . Then under M4, given �,

v�0(x) = v
�
0(w; z) is identi�ed and v

�
1(x) = v

�
1(w) is identi�ed up to a location normalization. The distribution G

is also identi�ed up to a location normalization within the support of �v�.

Proof. Given � and u�0(x) = u
�
0(w; z) 2 B , we can identify v�0(x) = v�0(w; z) by solving the �xed point of Bellman

equation (20). Under assumptions (i) and (ii), the Bellman equation (19) implies that v�1(x) = v
�
1(w). Consider

any two pairs of the rest structural parameters (u�1; v
�
1; G) and (fu�1; ev�1; eG): If they are observationally equivalent,

then following the proof in Lemma 3 we have

ev�1(w0) � v�0(w0; z0) + eG�1(G(v�1(w0)� v�0(w0; z0))) (21)

Equation (21) should hold for all values of (w0; z0) in �W� �Z . Let �(y) � eG�1(G(y)): M4 implies that � is
di¤erentiable. So Under assumption (iii), we can take partial derivative of both sides in equation (21) with respect

to zs. Therefore, we have
@v�0(w

0; z0)

@zs
= �0(v�1(w

0)� v�0(w0; z0))
@v�0(w

0; z0)

@zs
(22)

Since @v�0(x)
@zs

6= 0 almost surely, this implies �0(y) = 1 and hence G(y) = eG(c + y) for all y in the support of
�v� where the constant c is a location parameter. Therefore, G and v�1 are identi�ed up to a location.

Setting the location parameter of G, for example the median of G, can normalize the location in Theorem

4. A direct implication of Theorem 4 is the identi�cation of the partial derivatives of the value functions. These

marginal values do not depend on the location normalization of value functions and may already be the structural

objects of interest. For example, in doing welfare analysis, we may need @E(v(x0; "0)jx0; � = 1)=@xk, a measure to

assess the impact of changing a particular state variable xk on the average social surplus function for the � = 1

13



subpopulation. Note that

@E(v(x0; "0)jx0; � = 1)
@xk

=
@v�1(x

0)

@xk
P (�0 = 1jx0; � = 1) + @v

�
0(x

0)

@xk
P (�0 = 0jx0; � = 1)21 (23)

is identi�ed since the conditional choice probability is identi�ed from the data and all the partial derivatives are

identi�ed under Theorem 4. In fact, using the control function approach, we can obtain direct identi�cation

of these derivatives. To see this, assume v�1(w) and v
�
0(w; z) are di¤erentiable with respect to some continuous

component wr. The conditional choice probability equation is

P (�0 = 1jw0; z0; � = 1) = G(v�1(w0)� v�0(w0; z0)) = P (�0 = 1jw0; v�0(w0; z0); � = 1) (24)

Take partial derivative with respect to wr and get

@P (�0 = 1jw0; z0; � = 1)
@wr

= g(v�1(w
0)� v�0(w0; z0))

�
@v�1(w

0)

@wr
� @v

�
0(w

0; z0)

@wr

�
22 (25)

On the other hand, we can identify g(v�1(w
0)� v�0(w0; z0)) by taking derivative with respect to v�0 as follows.

@P (�0 = 1jw0; v�0(w0; z0); � = 1)
@v�0

= �g(v�1(w0)� v�0(w0; z0)) (26)

So putting (25) and (26) together, we have

@v�1(w
0)

@wr
= �

�
@P (�0 = 1jw0; z0; � = 1)

@wr

�
=

�
@P (�0 = 1jw0; v�0(w0; z0); � = 1)

@v�0

�
+
@v�0(w

0; z0)

@wr
(27)

Therefore, identi�cation of @v
�
1(w

0)
@wr

immediately follows since given � and u�0 the right hand side objects of (27)

are identi�ed.

The assumptions of excluded regressors (i) and conditional independence (ii) in Theorem 4 can produce the

required exclusion restriction between the two value functions so that we can distinguish the source of variation

between the unknown v�1 and G by moving only the excluded variables. Assumption (i) may be justi�ed if there

are choice speci�c attributes. Note that assumptions (i) does not preclude common attributes since the vector

of attributes w is allowed to appear in u�0 and v
�
0. Only the attributes z are excluded. However, assumption (i)

21Since the model implies that E(v(x0; "0)jx0; � = 1) =
R
max(v�1(x

0) + "01; v
�
0(x

0) + "00)dF ("
0); this formula follows by interchanging

the integral and di¤erentiation, which can be justi�ed under Lebesgue Dominated Convergence Theorem when both @v�1 (x)
@xk

and @v�0 (x)
@xk

are bounded.
22Recall that g is the density of ��"
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alone is not su¢ cient to generate the required exclusion restriction in the conditional choice probability equation

since the choice speci�c attributes may enter both value functions via the information set that the agent uses to

form their expected future value. Assumption (ii) is su¢ cient to remove such e¤ect by regulating the predicability

of these attributes through conditional independence assumption. A su¢ cient condition to validate assumption

(ii) is the case in which the transition probability density f(w0; z0jw; z; � = 1) can be factored out as the product

of f(z0jw0; � = 1)f(w0jw; � = 1). Hence assumption (ii) essentially requires that once conditional on � = 1, w

serves as a su¢ cient statistic for predicting all observed state variables of next period. Note that semiparametric

identi�cation in Theorem 4 can be achieved by requiring only one excluded variable z and over-identi�cation

may arise if more than one exclusion restrictions are available. Therefore, the identi�cation restrictions stated in

Theorem 4 may not be very demanding for practical applications.

Theorem 4 requires u�0 is speci�ed a priori. However, complete speci�cation of the instantaneous utility function

u�0 may not be necessary in the sense that one can specify it up to �nite dimensional unknown parameters. Of

course, if u�0 depends on some unknown parameters, one also needs to guarantee these parameters are identi�ed.

Let u�0(x) = u
�
0(w; z; �) be known up to a �nite J-dimensional vector of parameters, � 2 �, where � is a compact

subset of RJ . It is not easy to characterize the value function v�0(x; �) a priori even though the shape of u
�
0(x) is

given. This is due to the nonparametric transition probability density f(x0jx; � = 0) that operates in the Bellman

equation (20) and hence also determines the shape of v�0(x; �). Instead of providing identi�cation of � in the

general case, we will give the identi�cation result for some popular speci�cations of utility functions23.

Theorem 5 Assume all conditions in Theorem 4 still hold except that u�0(x) = u�0(w; z; �) = �0h(w; z) where

h(w; z) is a J-dimensional vector of known functions hj(w; z) 2 B and each component �j in the vector � is not

zero. Then v�0(x) = �
0r(w; z), where r(w; z) is a J-dimensional vector of functions rj(w; z) with each rj(w; z) 2 B

satisfying the Bellman equation rj(w; z) = hj(w; z) + �E(rj(w0; z0)jw; z; � = 0). Hence, given �, � is identi�ed up

to a scale normalization.

Proof. Given u�0(x) = u�0(w; z; �) = �0h(w; z), we shall �rst verify the conjecture that v�0(x) = �0r(w; z) does

satisfy Bellman equation (20). Plugging v�0(x) = �
0r(w; z) into equation (20), we have

�0r(x) = �0h(x) + �E(�0r(x0)jx; � = 0) = �0(h(x) + �E(r(x0)jx; � = 0)) (28)

23We leave the identi�cation analysis of a general speci�cation u�0(w; z; �) for further research.
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Therefore,

r(x) = h(x) + �E(r(x0)jx; � = 0) (29)

Since h(x) 2 B, r(x) is then the unique �xed point of Bellman equation (29). So v�0(x) = �0r(x) is the unique

�xed point of Bellman equation (20). Since h(x) is known, given �, r(x) is then identi�ed using equation (29) and

hence v�0(x) is identi�ed up to �. So the conditional choice probability in this case is

P (�0 = 1jw0; z0; � = 1) = G(v�1(w0)� v�0(w0; z0))

= G(v�1(w
0)� �0r(w0; z0)) = P (�0 = 1jw0; r(w0; z0); � = 1) (30)

Taking partial derivative with respect to rj(w0; z0), we have

@P (�0 = 1jw0; r(w0; z0); � = 1)
@rj

= �g(v�1(w0)� �0r(w0; z0))�j (31)

Using the average derivative arguments, we have

E(
@P (�0 = 1jw0; r(w0; z0); � = 1)

@rj
) = �E(g(v�1(w0)� �0r(w0; z0)))�j (32)

Therefore, �j is identi�ed up to a scale normalization.

Theorem 5 provides the identi�cation result when the instantaneous utility u�0 is speci�ed as linear in parame-

ters. Note that in order to provide the required exclusion restriction, each rj(w; z) in Theorem 5 needs to be a

non-trivial function in z. This requires either each hj(w; z) is a non-trivial function in z or the transition probabil-

ity p(w0; z0jw; z; � = 0) varies with z. Therefore, together with the exclusion restriction imposed in Theorem 4, it is

more clear to note that the variable z essentially serves as the "instrumental variable" in semiparametric identi�-

cation of this structural model in the sense that it provides variation for the identi�able endogenous object v�0(w; z)

(the "rank condition") but cannot a¤ect the "unobserved" object v�0(w) (the "exclusion" condition). Theorem 5

adopts the usual average derivative approach to identify the unknown parameters �. As in static discrete choice

models, the average derivative method can at best identify the unknown parameters up to scale normalization.

Such scale normalization is innocuous in discrete choice models since expected utility theory implies that one can

only identify an agent�s preferences up to a positive linear transformation (Rust 1994). Once the scale of � is

determined, using Theorem 4 we can proceed to identify v�0, v
�
1 and G over the support of �v

�.

16



To identify the remaining structural parameter u�1(x), note that from the Bellman equation (19), we have

u�1(x) = v
�
1(x)� �E(v�0(x0)jx; � = 1)� �[E(�v�(x0)�0jx; � = 1) + E(�"0�0jx; � = 1)] (33)

Given �, after applying previous theorems, all righthand side objects except the last term of equation (33)

can be identi�ed. The term E(�"0�0jx; � = 1) may not be identi�ed because the value functions are assumed

bounded in this model so that the support of the distribution G may not be completely contained in the support

of �v�. In other words, u�1(x) is not identi�ed unless the support of G is a subset of the support of �v
� or more

information about the tail behavior (outside the support of �v�) of G is available. By further investigating the

unidenti�ed term E(�"0�0jx; � = 1), although not point identi�ed, we can show that the upper bound of u�1(x)

can be identi�ed. To see this, let the support of �v� be [Lv; Uv] and note that

E(�"0�0jx; � = 1) = E(�"0j�0 = 1; x; � = 1)P (�0 = 1jx; � = 1)

= E(E(�"0j�0 = 1; x0; x; � = 1)j�0 = 1; x; � = 1)P (�0 = 1jx; � = 1)

= E(E(�"0j�v�(x0) + �"0 � 0; x0; x; � = 1)j�0 = 1; x; � = 1)P (�0 = 1jx; � = 1)

= �
"Z

�x

R �v�(�)
�1 (��"0)g(��"0)d(��"0)
P (�0 = 1jx0 = � ; � = 1) f(� j�0 = 1; x; � = 1)d�

#
P (�0 = 1jx; � = 1) (34)

We can further analyze the term
R �v�(�)
�1 (��"0)g(��"0)d(��"0) in (34) as follows. Let � = ��"0 and W �R Lv

�1G(�)d�. Then

Z �v�(�)

�1
(��"0)g(��"0)d(��"0) =

Z �v�(�)

�1
�g(�)d� =

Z Lv

�1
�g(�)d� +

Z �v�(�)

Lv

�g(�)d�

= LvG(Lv) +

Z �v�(�)

Lv

�g(�)d� �W (35)

Note that the value of W is not identi�ed since the distribution G is not identi�ed for � =2 [Lv; Uv]. However,

the "bias" term W is non-negative and shrinks to zero when the lower bound of the support of �v� approach G,

the lower bound of the support of G. Plugging (35) into (34), we have

E(�"0�0jx; � = 1) = (W � LvG(Lv))E(
�0

P (�0 = 1jx0; � = 1) jx; � = 1))�AP (�
0 = 1jx; � = 1); (36)
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where A is de�ned as

A =

Z
�x

R �v�(�)
Lv

�g(�)d�

P (�0 = 1jx0 = � ; � = 1)f(� j�
0 = 1; x; � = 1)d� (37)

Since W is non-negative, setting W = 0 will give a lower bound of E(�"0�0jx; � = 1) and hence the upper

bound of u�1(x) is identi�ed. Therefore, treating the tail area of G as zero (setting W = 0) gives a nonparametric

approximation of u�1(x) and this approximation gets more precise when G is less heavy-tailed. In practice, one

would expect that the bias W does not matter if the support of �v� is wide enough.

It is clear that given the discount factor �, W can be identi�ed if one is willing to parameterize u�1(x). For

example, if u�1(x) = u�1(x; �) for some �nite dimensional vector of parameters �, then W and � can be (over-)

identi�ed by plugging (36) into (33) and then solving for W and �24. Table 2 summarizes the semiparametric

identi�cation results developed in this paper.

Table 2 : Semiparametric Identi�cation of the dynamic optimal stopping time model

Key conditons We can identify

�; u�0(x) v�0(x)

�, u�0(x), and excluded variables v�0(x), v
�
1(x), G over [Lv; Uv], and upper bound of u

�
1(x)

3.3 Illustrating examples : disposal of capital and retirement from labor force

We present in this section two motivating examples in which the analysis of this paper may be useful.

3.3.1 A model of capital disposal

Consider the following microeconometric capital retirement model25. A �rm produces a good using a machine.

Assume the industry is competitive so that the unit price of the good pt at every period is exogenous to the �rm�s

decision. At every period, the �rm decides whether or not to retire the machine. Assuming the machine is on at

its full capacity kt when the �rm decides to keep and operate the machine. Operating at full capacity may be due

to the high cost of adjusting the machine�s utilization level. Alternatively, we can regard kt as the optimized level

of utilization when the machine is operated so that ptkt is interpreted as the per period indirect pro�t function.

When the machine is on, there is also associated maintenance or operating cost c(kt; at; wt; lt), where at is the

age of the machine, wt is the wage of the engineer who looks after the machine, and lt is the number of engineers

required to operate the machine. Let Choice 1 be the decision of keeping and operating the machine and Choice

24Of course, the usual rank condition should be satis�ed to guarantee a unique solution of W and �.
25See Das (1992) for another similar but more detailed structural capital retirement model.
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0 be retiring and scrapping it. Then we have u1(x; "1) = pk� c(k; a; w; l)+ "1 and hence u�1(x) = pk� c(k; a; w; l).

When the machine is retired, the �rm receives its scrapping value. Decompose the scrapping value of the machine

as zt+ "2;t, where zt is the booked (estimated) remaining value of the machine that may be observed on the �rm�s

accounting balance sheet and "2;t is the unobservable that accounts for unobserved disposal cost or any discrepancy

betweeb zt and the actual selling value of the machine. Then in our terminology we have u0(x; "2) = z + "2 and

u�0(x) = z. The parameters of interest are the nonparametric cost function c(k; a; w; l) and the value functions

v�0(x) and v
�
1(x). To apply the developed identi�cation strategy, we need to assume the excluded variable zt

satis�es the key conditional independence assumption stated in Theorem 426. This assumption may be satis�ed

when the �rm estimates the current remaining value of the machine based on its generated revenue and operation

cost in the past plus some independent random noise that re�ects the �rm�s reassessment to the current status of

the machine. When conditions in Theorem 4 are ful�lled, we can identify the cost function if the support of the

distribution G is in the support of �v� or the lower bound of the cost function if G has unbounded support.

3.3.2 A model of retirement behavior

Assuming a retirement model in which at every period the agent needs to decide whether to continue working

(dt = 1) or to retire from the labor force (dt = 0). Once the agent retires, he stay retired forever. Therefore,

the retirement decision is absorbing. The instantaneous utility of working is u�1(w), where w denotes the wage.

On the other hand, the instantaneous utility of retiring is u�0(p) , where p denotes the pension
27. The agent is

forward-looking and he will form expectation of future level of wage and pension conditional on current state

variables that are relevant for prediction. The rest of relevant state variables are his current position or rank

in this system denoted as r and his current tenure denoted as l. The transition equations of the observed state

variables in this system are assumed as follows.

Wage : w0 = d(hw(w; l; r; �0w))

Tenure : l0 = l + d

rank : r0 = d(hr(r; l; �0r)) + (1� d)r

pension : p0 = hp(l; r; �0p);

where hw, hr, and hp are deterministic functions that represent the wage, rank, and pension schedules. �w,

�r, and �p are mutually and serially independent random noises that re�ect the unexpected deviations from the

26 Indeed, the conditional independence assumption in Theorem 4 is testable because this restriction is imposed on observed state
variables.
27The pension variable is always observed since in most cases, even if the agent stays at work, he can obtain information about his

scheduled pension at each period from his pension administrators.
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speci�ed schedules of the wage, rank, and pension variables, respectively. Note that this simple setup can catch

the key features of a tenure-based working system in which workers�wage and promotion of rank are mainly based

on workers�tenure. Typical examples for this kind of system are public servants, military personnel, and teachers

who are paid by the government. Then under such a system, (w0; l0; r0; p0) ? pjw; l; r; � = 128 so that we can adopt

Theorem 4 to identify this model. Note that the key source of identi�cation in this example comes from the sticky

design of the pension schedule. If the agent is allowed to invest his pension in some �nancial assets, then his

pension will depend on the performance of the �nancial market so that p will be serially correlated, which then

invalidates the conditional independence assumption. However, as the developed identi�cation strategy requires

only one excluded variable that can validate the conditional independence condition, if some part of the pension

schedule is sticky, then the availability of the information of this part can still provide identi�cation. Intuitively

speaking, as the instrumental variable approach, the identi�cation power comes from the sticky institional feature

that a¤ects value function of choosing to retire but does not a¤ect that of choosing to work.

4 Conclusions

This paper develops semiparametric identi�cation results for a structural dynamic optimal stopping time model.

The main parametric assumption for this semiparametric identi�cation method is the parametric speci�cation

of the per-period return function associated with the absorbing choice. The distribution of unobserved state

variables and per-period return function for non-absorbing choice are both nonparametric. The identi�cation

crucially depends on the availability of at least one excluded continuous variable that a¤ect the value function

of the absorbing choice but not that of the non-absorbing choice. The implementation of the identi�cation

method developed in this paper will result in mutli-stage estimation procedure. In the �rst stage, one needs to

obtain the value function for the absorbing choice. This requires solving a contraction mapping for the empirical

counterpart of Bellman equation (20). Note that there is no unobserved component in equation (20) so one

can save computational complexity arising from integrating out the unobservables as in the usual discrete choice

models. In the second stage, one can use the estimated value function of the absorbing choice as the control

function to estimate the value function of the non-absorbing choice.

5 Reference
28Recall that we can replace the counterfactual control variable d with the observed choice � under the conditional independence
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