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Abstract 

Measurement errors in survey data on hourly pay may lead to serious upward bias in low pay 

estimates. We consider how to correct for this bias when auxiliary accurately measured data 

are available for a subsample. An application to the UK Labour Force Survey is described. 

The use of fractional imputation, nearest neighbour imputation, predictive mean matching 

and propensity score weighting are considered. Properties of point estimators are compared 

both theoretically and by simulation.  A fractional predictive mean matching imputation 

approach is advocated. It performs similarly to propensity score weighting, but displays 

slight advantages of robustness and efficiency.  
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1. INTRODUCTION 

A national minimum wage was introduced in the United Kingdom (UK) in April 1999 and 

there is considerable interest in how the lower end of the distribution of hourly pay has 

changed since then, both overall and within subgroups, such as by gender. The UK Labour 

Force Survey (LFS) provides an important source of estimates of this distribution (Stuttard 

and Jenkins 2001). A major problem with the use of household surveys to produce such 

estimates is the difficulty in measuring hourly pay accurately (Rodgers, Brown and Duncan 

1993; Moore, Stinson and Welniak 2000). Measurement error may lead to biased estimates of 

distribution functions, especially at the extremes (Fuller 1995). For example, the bold line in 

Figure 1 represents a standard estimate of the lower end of the distribution function of 

hourly pay using LFS data from the June-August 1999 ignoring measurement error. We 

suggest that this estimate is seriously biased upwards and that improved estimates, using 

methods to be described in this paper, are given by the three lower lines. These results 

suggest that the proportion of jobs paid at or below the national minimum wage rate may be 

overestimated by four or five times if measurement error is ignored.  

[Figure 1 about here] 

When a variable is measured with error, it is sometimes possible, as in our application, to 

measure the variable more accurately for a subsample. In these circumstances, if we assume 

that the variable measured accurately on the subsample is the true variable, inference about 

the distribution of this variable becomes a missing data problem. The variable measured 

erroneously on the whole sample is treated as an auxiliary variable.  The case when the 

subsample is selected using a randomised scheme is well studied and referred to as double 

sampling or two phase sampling (e.g. Tenenbein 1970). In this case, unbiased estimates can 

be constructed from the subsample alone, but use of data on the correlated proxy variable 

for the whole sample may improve efficiency. See, for example, Luo, Stokes and Sager 
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(1998). In the application in this paper, the selection of the subsample is not randomised and 

we shall just assume that the accurate variable is missing at random (MAR) (Little and Rubin 

2002) conditional on variables measured on the whole sample. Because the aim is to estimate 

a distribution function, which is unlikely to follow exactly a standard parametric form, we 

avoid approaches which make parametric assumptions about the true distribution, as for 

example in Buonaccorsi (1990). It is also desirable in our application to avoid strong 

assumptions about the measurement error model, for example that it is additive with zero 

mean and constant variance as in the SIMEX method of Luo et al. (1998). Instead, we 

consider the application of various imputation and weighting methods from the missing data 

literature to our measurement error problem. The main aim of this paper is to investigate 

how best to design these methods to improve the quality of point estimators of the 

distribution function of hourly pay, as measured by bias, efficiency and robustness to model 

assumptions. 

The paper is structured as follows. The application and the estimation problem are 

introduced in section 2. Imputation and weighting approaches are set out in sections 3 and 4 

respectively and their properties are studied and compared theoretically in section 5 and via a 

simulation study in section 7. The primary focus is on point estimation, but we briefly 

consider variance estimation in section 6. Some concluding remarks are given in section 8.  

The basic measurement error problem considered in this paper was described by Skinner, 

Stuttard, Beissel-Durrant and Jenkins (2003), who also proposed the use of one imputation 

method. This paper extends that work by considering a wider class of approaches to missing 

data, by comparing their properties both theoretically and via simulation and by considering 

variance estimation. The imputation approach developed in this paper, which extends that 

considered by Skinner et al. (2003), has now been implemented by the Office for National 

Statistics in the United Kingdom as a new approach to producing low pay estimates. 
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2. THE ESTIMATION PROBLEM 

Our aim is to estimate the distribution of hourly pay from LFS data. This inference problem 

requires consideration of both (i) sampling and unit nonresponse of employees and (ii) 

measurement error and item nonresponse for hourly pay. We outline the basic set-up for 

both (i) and (ii) in this section. The main focus of the paper will be the choice of methods to 

address (ii). Standard procedures will be used to handle (i). 

The LFS is a quarterly survey of households selected from a national file of postal addresses 

with equal probabilities by stratified systematic sampling. All adults in selected households 

are included in the sample. The resulting sample is clustered by household but not otherwise 

by geography. Each selected household is retained in the sample for interview on five 

successive quarters and then rotated out and replaced. The questions underlying the hourly 

pay variables, described below, are asked in just the first and fifth interviews, giving 

information on hourly pay on about 17,000 employees per quarter. Survey weights are 

constructed by a raking procedure to compensate for differential unit nonresponse. Separate 

weights are constructed for earnings data (ONS, 1999). 

The traditional method of measuring hourly pay in the LFS is (a) to ask employees questions 

about their main job to determine earnings over a reference period, (b) to ask questions to 

determine hours worked over the reference period and (c) to divide the result of (a) by the 

result of (b).  We refer to the result of (c) as the derived hourly pay variable, since it is derived 

from answers to several questions. This is the variable used to produce the bold line in 

Figure 1. Skinner et al. (2003) describe and provide empirical evidence of many sources of 

measurement error in this variable. A more recent method of measuring hourly pay is first to 

ask whether the respondent is paid a fixed hourly rate and then, if the answer is positive, to 

ask respondents what this (basic) rate is. We refer to the resulting measure of hourly pay as 

the direct variable. Skinner et al. (2003) conclude from their study that the direct variable 
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measures hourly pay much more accurately than the derived variable and a key working 

assumption of this paper is that the direct variable measures hourly pay without error.  

The problem with the direct variable is that it is missing for respondents who state that they 

are not paid at a fixed hourly rate (and for item nonrespondents) and this missingness may 

be expected to be positively associated with hourly pay. The proportion of LFS respondents 

with a (main) job who provide a response to the direct question is about 43%. This 

proportion tends to be higher for lower paid employees, for example the rate is 72% among 

those in the bottom decile of the derived variable. The direct variable is not collected for 

second (and further) jobs and we therefore restrict attention only to first jobs. 

This paper addresses the following missing data problem. We wish to estimate the 

distribution of hourly pay defined as: 

1( ) ( )i
i U

F y N I y y
�

�

� ��    (1) 

where U is the population of N  (first) jobs, iy  is (basic) hourly pay for job i and y may take 

any specified value. Our data consist of values *
iy , ix  and ir  for i s�  and values iy  for 

i s�  when 1ir � , where s is the set of (first) jobs for unit respondents in the sample drawn 

from U, *
iy  is the value of the derived variable, iy  is the value of the direct variable 

assumed identical to the hourly pay variable of interest, 1ir �  if iy  is measured and 0ir �  

if not and ix  is a vector of other variables measured in the survey.  

We assume that inference from the sample s to the population U can be made using standard 

methods of survey sampling. Our primary concern is with the missingness of iy . We 

consider two approaches to handle this missingness: 

(i) imputation of iy  for cases where 0ir �  ( i s� ), using the values *
iy  and ix  as 

auxiliary information; 
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(ii) weighting of an estimator based upon the subsample \ ^1 ; 1is i s r� � � , in 

particular, the use of propensity score weighting (Little 1986). 

These approaches to estimating ( )F y  will be discussed in the following two sections. 

 

3. IMPUTATION APPROACHES 

We shall construct imputation methods based upon the assumption that the population 

values ( *, , ,i i i iy y x r ), i U� , are independently and identically (IID) distributed. To allow for 

the LFS sampling design and unit nonresponse, we propose to incorporate the survey 

weights in the resulting point estimator of ( )F y , in the same way that a pseudo-likelihood 

approach (Skinner, 1989) weights estimators based upon an IID assumption. We do not 

attempt to take account of the weights or the complex design directly in the imputation 

methods. It is, of course, desirable that allowance is made for the weights and complex 

design in variance estimation and this is referred to briefly in section 6. 

 Under the IID assumption and the assumption that sampling is ignorable (that is that the 

distribution of ( *, , ,i i i iy y x r ) is the same whether or not i s� ), if it were possible to observe 

iy  for i s� ,  

1

1

ˆ( ) ( )
n

i
i

F y n I y y
�

�

� ��    (2) 

would be an unbiased estimator of ( )F y  (in the sense that ˆ[ ( ) ( )] 0E F y F y� �  for all y), 

where we write {1,..., }s n� . We assume that this estimator remains unbiased under the 

actual sampling design and unit nonresponse if the mean in (2) is weighted by the survey 

weights. The IID assumption used in the remainder of this section may be interpreted as 

holding condition on inclusion in s , with the implicit assumption that survey weighting will 

also be required to handle the selection of s from U.  
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To address the problem that iy  is missing when 0ir � , we first consider a single 

imputation approach where iy  is replaced in (2) by a single imputed value I
iy  when 0ir �  

(and i s� ) and let i iy y��  if 1ir �  and I
i iy y��  otherwise. We assume that I

iy  is 

determined in a specified way using the data *{[ , , ; ], [ ; 1, ]}i i i i iD y x r i s y r i s� � � �  and 

perhaps a stochastic mechanism. The resulting estimator of ( )F y  is  

1

1

( ) ( )
n

i
i

F y n I y y
�

�

� ��� � .   (3) 

A sufficient condition for ( )F y�  to be an unbiased estimator of ( )F y  is that the conditional 

distribution of I
iy  given 0ir � , denoted [ | 0]I

i iy r � , is the same as the conditional 

distribution [ | 0]i iy r � . However, since iy  is only observed when 1ir � , the data provide 

no direct information about [ | 0]i iy r �  without further assumptions (Little and Rubin 

2002). We consider two possible assumptions. The first assumption is common in the 

missing data literature (Little and Rubin 2002).  

Assumption (MAR): ir  and iy  are conditionally independent given *
iy  and ix .  

The second assumption is that the measurement error model, defined as the conditional 

distribution of *
iy  given iy  and ix , is the same for respondents ( 1ir � ) and 

nonrespondents ( 0ir � ), which may be expressed as follows.  

Assumption (Common Measurement Error Model): ir  and *
iy  are conditionally 

independent given iy  and ix .  

The first assumption is the standard one made when using imputation or weighting and is 

the one which we shall make. We shall use the second assumption in the simulation study in 

section 7 to assess robustness of MAR-based procedures. Inference under the second 

assumption could be made under strong assumptions on the measurement error model, for 

example the additive error assumption in methods in Carroll, Ruppert and Stefanski (1995, 
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sect. 12.1.2.) and Luo et al. (1998). It does not appear straightforward to make inference 

under the second assumption for a measurement error model which is realistic for our 

application and we do not pursue this possibility further in this paper. The plausibility of 

these assumptions is discussed further in Skinner et al. (2003).  

Under the MAR assumption we have *[ | , , 0]i i i iy y x r � � *[ | , , 1]i i i iy y x r �  and a sufficient 

condition for ( )F Y�  to estimate  ( )F Y  unbiasedly is that  

* *[ | , , 0] [ | , , 1]I
i i i i i i i iy y x r y y x r� � � .  (4) 

We therefore consider an imputation approach where the conditional distribution of y given 

*y  and x is ‘fitted’ to the respondent ( 1)ir �  data and then the imputed values I
iy  are 

‘drawn from’ this fitted distribution at the values *
iy  and ix  observed for the 

nonrespondents. We consider representing the conditional distribution *[ | , , 1]i i i iy y x r �  by 

a parametric regression model: 

*( ) ( , ; )i i i ig y h y x H� � , *( | , ) 0i i iE e y x �   (5) 

where (.)g  and (.)h  are given functions and  is a vector of regression parameters. A simple 

point predictor of iy , given an estimator ˆ  of  based on respondent data, is 

1 * ˆˆ [ ( , ; )]i i iy g h y x
�

� .    (6) 

Using ˆ iy  for imputation may, however, lead to serious underestimation of ( )F Y  for low 

values of y, since such simple regression imputation may be expected to reduce the variation 

in ( )F Y  artificially (Little and Rubin 2002, p. 64). This effect might be avoided by taking 

1 * ˆ ˆ[ ( , ; ) ]I
i i i iy g h y x H�

� � , where îe  is a randomly selected empirical residual (Little and 

Rubin 2002, p. 65). Our experience is, however, that this approach fails to generate imputed 

values which reproduce the ‘spiky’ behaviour of hourly pay distributions, for example 

around a minimum wage or rounded pay rates, and this may lead to bias around these spikes. 

We prefer therefore to consider donor imputation methods, which set ( )
I
i d iy y�  ( 0)ir �  
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for some donor respondent ( )j d i�  for which 1jr � . The imputed value from a donor will 

always be a genuine value, as reported by the donor respondent, and will thus respect the 

spiky behaviour these values display. The basic donor imputation method we consider is 

predictive mean matching (Little 1988), that is nearest neighbour imputation with respect to 

îy , i.e. 

( ) : 1
ˆ ˆ ˆ ˆ| | min| |

j
i d i i jj r

y y y y
�

� � �    (7) 

where 0ir �  and ( ) 1d ir � .  

Some conditions for the resulting estimator ( )F Y�  to be approximately unbiased for ( )F Y  

follow from Corollary 2 of Theorem 1 of Chen and Shao (2000). First, we require that iy  is 

missing at random (MAR) conditional on 1 *z [ ( , ; )]i i ig h y x
	

� , where ˆplim( )� . This 

condition seems reasonable if the MAR assumption above holds and if the distribution of 

iy  only depends on *
iy  and ix  via zi . Second, we require that the conditional expectation 

of iy  given zi  is monotonic and continuous in zi , which seems reasonable if *
iy  is a good 

proxy for iy . Third, we require that zi  and ( | z )i iE y  have finite third moments which 

seems reasonable if we restrict attention to the lower part of the pay distribution. Fourth, we 

require the probability of response given z to be bounded above zero, which again seems 

reasonable if we restrict attention to the lower part of the pay distribution. Finally, Chen and 

Shao’s (2000) result needs to be adapted for the fact that the nearest neighbour is defined 

with respect to  ̂ whereas the above conditions are with respect to . Again, it seems 

reasonable that this can be done if  ̂converges to a limit ˆplim( )�  and close neighbours 

with respect to 1 * ˆˆ [ ( , ; )]i i iy g h y x



�  are also close neighbours with respect to 

1 *z [ ( , ; )]i i ig h y x
�

� .  

There are thus theoretical grounds that nearest neighbour imputation with respect to îy  will 

lead to an approximately unbiased estimator of ( )F Y , subject to the MAR assumption and 
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certain additional plausible conditions. It is also of interest, however, to consider the 

efficiency of ( )F Y� . The variance of ( )F Y�  for nearest neighbour imputation may be 

expected to be inflated, in particular because certain donors may be used much more 

frequently than others. We consider a number of approaches to reducing this variance 

inflation effect.  

First, we may smooth the number of times that respondents are used as donors by defining 

imputation classes by disjoint intervals of values of îy  and drawing donors for a recipient by 

simple random sampling from the class within which the recipient’s value of îy  falls. The 

smoothing will be greatest if we draw donors without replacement. We denote this hot deck 

method HDIWR or HDIWOR, depending on whether sampling is with or without 

replacement. A second approach is to undertake donor selection sequentially and to penalize 

the distance function employed for determining the nearest neighbour d i( )  as follows 

( ) : 1
ˆ ˆ| | min{| | (1 )}

j
i d i i j jj r

y y y y W
�

� � � � � ,  (8) 

where 


�\  is a penalty factor, jt  is the number of times the respondent j has already 

been used as a donor, 0ir �  and ( ) 1d ir �  (Kalton 1983). A third approach is to employ 

repeated imputed values ( )I m
iy , m=1, …, M, determined for each recipient i s�  such that 

0ir � . The resulting estimator of ( )F Y  is 1 ( )( )m

m

M F y
�

� � , the mean of the resulting 

estimators ( )( )mF y� , or equivalently is obtained by multiplying the weight for each imputed 

value by a factor 1/ M . We refer to the third approach as fractional imputation (Kalton and 

Kish 1984; Fay 1996) rather than multiple imputation (Rubin 1996), since we do not require 

the imputation method to be ‘proper’, that is to fulfil conditions which ensure that the 

multiple imputation variance estimator is consistent. We do not stipulate this requirement 

because our primary objective is point estimation and an alternative variance estimator is 

available (section 6). In our use of fractional imputation we aim to select donors ( , )d i m , 
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m=1,…, M, each a close neighbour to i, so that ( )( )mF y�  remains approximately unbiased for 

( )F Y . We consider the following variations of this approach. 

(i) The / 2M  nearest neighbours above and below îy  are taken, for M=2 or 10, 

denoted NN2 and NN10 respectively.  

(ii) M/ 2 donors are selected by simple random sampling with replacement from the M 

respondents above and from the M respondents below îy , for M=2 or 10, denoted 

NN2(4) and NN10(20) respectively. 

(iii) M=10 donors are selected by simple random sampling with or without replacement 

from the imputation classes referred to in the HDIWR and HDIWOR methods 

described above. We refer to these as the HDIWR10 and HDIWOR10 methods.  

For comparison we also consider the Approximate Bayesian Bootstrap method of multiple 

imputation (Rubin and Schenker 1986), denoted ABB10, defined with respect to the 

imputation classes referred to in the HDIWR and HDIWOR methods.  

 

4. WEIGHTED ESTIMATION 

The estimator ( )F y�  implied by the different imputation approaches considered in the 

previous section may be expressed in weighted form as: 

1 1

( ) ( )/i i i
i s i s

F y w I y y w
� �

� �� ��   (9) 

where 1 { ; 1}is i s r� � �  is the set of respondents and 1 /i iw d M� � , where id  is the total 

number of times that respondent i is used as a donor over the M repeated imputations. Note 

that 
1

is
w n�� . The weight iw  may be multiplied by the survey weight to allow for unit 

nonresponse. Other choices of weight iw  may also be considered. In particular, we may set 

iw  equal to the reciprocal of an estimated value of the propensity score, *( 1| , )i i iPr r y x�  

(Little 1986). This approach has been proposed for the hourly pay application in this paper 
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by Dickens and Manning (2002). This propensity score might be estimated, for example, 

under a logistic regression model relating ir  to *
iy  and ix . Under the MAR assumption, the 

resulting estimator ( )F y�  will be approximately unbiased assuming validity of the model for 

the conditional distribution *[ | , ]i i ir y x  and some regularity conditions, such as those 

described in section 3 for the imputed estimator. Note that the need to model *[ | , ]i i ir y x  

replaces the need to model *[ | , ]i i iy y x  in the imputation approach. 

 

5. THEORETICAL PROPERTIES OF IMPUTATION AND 

WEIGHTING APPROACHES 

In this section we investigate and compare the properties of the imputation and propensity 

score weighting approaches introduced in the previous two sections under various 

simplifying assumptions. We fix y and set ( )i iu I y y� � . Letting N ld  we suppose that 

the parameter of interest is ( )iE uR� . We consider the imputation approach first and 

suppose that iy  depends upon *
iy  and ix  only via 1 *z [ ( , ; ]i i ig h y x C

�

�  and that iy  is 

missing at random given zi . Ignoring the difference between C  and Ĉ  for large samples we 

consider nearest neighbour imputation with respect to zi . As in (9) the imputed estimator of 

R  may be expressed as 

IMP i i i
i s i s

w u w
1 1

ˆ /
� �

�� �R     (10) 

where 1 /i iw d M� �  (and 
1

is
w n�� ). We write the corresponding expression for 

propensity score weighting as P̂S  with iw  replaced by PS iw . Let zPS i  be the scalar function 

of * ,i iy x  upon which ir  depends and write: 

*( 1| , ) (z )i i i PS iPr r y x� � Q .   (11) 
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Just as we ignored the difference between C  and Ĉ , we ignore error in estimating (z )PS i  

and write  1(z )PS i PS iw
�

� . 

The imputation and propensity score weighting approaches may be expected to give similar 

estimation results if zi  and zPS i  are similar, that is they are close to deterministic functions 

of each other, and M is large. To see this, consider a simple example of the imputation 

approach, where the donor is drawn randomly from an imputation class c of close 

neighbours with respect to zi , containing cm  respondents and c cn m�  nonrespondents, as 

described in section 3, then iw  will approach 1 ( )/ /c c c c cn m m n m� � �  as M ld  and 

this is the inverse of the response rate within the class (David, Little, Samuhel and Triest 

1983). More generally, with the other nearest neighbour imputation approaches considered 

in section 3, the weight 1 /i iw d M� �  may be interpreted as a local (with repect to zi ) 

nonparametric estimate of 1Pr( 1| z )i ir
�

�  and thus may be expected to lead to similar 

estimation results to propensity score weighting if zi  and zPS i  are deterministic functions of 

each other. In general, however, this will not be the case. Since Pr( 1| z )i ir �  may be 

expressed as an average of *Pr( 1| , )ir y x�  across values of *y  and x  for which z zi� , 

we may interpret iw  as a smoothed version of PS iw  and may expect it to show less 

dispersion. This suggests that it may be possible to use imputation to improve upon the 

efficiency of estimates based upon propensity score weighting, as also discussed by David et 

al. (1983) and Rubin (1996, sect. 4.6). To investigate this further, let us now make the MAR 

assumption and the other assumptions in sections 3 and 4 upon which the approaches are 

based. In this case both imputation and weighting approaches lead to approximately 

unbiased estimation of ( )F y  and we may focus our comparison on relative efficiency. It 

follows from equation (3.3) of Chen and Shao (2000), under their regularity conditions, that 

the variance of IMPR̂  may be approximated for large n by 
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IMP i i i is
n E w V u n V

1

2 2 1ˆvar( ) [ ( | z )] [ (z )]� �

x ��R Z  (12) 

where i(z ) ( | z )i iE uZ � . Note that Chen and Shao (2000) consider single imputation with 

M=1 but their proof of this result carries through if 1M � . It is convenient to reexpress 

this result using  

2[ (z )] [ ( | z )]i i iV E V u� �Z T ,   (13) 

where 2 ( )iV uT �  and a corollary of Chen and Shao’s (2000) Theorem 1 that  

1

1 1/ 2[ ( | z )] [ ( | z )] ( )i i i i i ps
E n w V u E V u o n

� �

� �� . (14) 

It follows that to the same order of approximation as in (12) 

IMP i i i is
n n E w w V u

1

1 2 2 2ˆvar( ) [ ( ) ( | z )]� �

x � ��R T . (15) 

Note that 2 ( / )(1 / ) 0i i i iw w d M d M� � � p . This expression may be interpreted from both 

‘missing data’ and ‘measurement error’ perspectives. From a missing data perspective, the 

first term in (15) is just the variance of R̂  in the absence of missing data and the second term 

represents the inflation of this variance due to imputation error. From a measurement error 

perspective, we may consider limiting properties under ‘small measurement error 

asymptotics’ (Chesher 1991), that is where *
iy  becomes a better measure of iy  and 

( | z )i iV u  approaches zero. In this case, the second term also approaches zero and IMPR̂  

becomes ‘fully efficient’, i.e. its variance approaches 2 / nT . 

Let us now consider propensity score weighting. We make the corresponding assumption 

that iy  is missing at random given zPS i . Linearising the ratio in (9) and using the fact that 

1
( )PS is

E w n��  we may write 

ˆvar( )PSR
1

2 var[ ( )]PS i is
n w u

�

x �� R    (16) 

      1 2[ ( ) ]PS i in E w u
�

� �R  

which may be expressed alternatively as  
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       ˆvar( )PSR
1

2 2 1 2[ ( | z )] { [ (z ) ] }PS i i PS i PS i PS is
n E w V u n E w

� �

x � �� Z R . (17) 

To compare the efficiency of weighting and imputation it is convenient to use (13) and (14) 

(which hold also with PS iw  in place of iw ) to obtain  

  ˆvar( )PSR
1

1 2 2 2[ ( ) ( | z )]PS i PS i i PS is
n n E w w V u

� �

x � ��T  

                       
1

1 2{ [ 1][ (z ) ] }PS i PS is
n E w

�

� � �� Z R .  (18) 

Note that, in comparison with (15), this involves a third term, which does not necessarily 

converge to zero as *
iy  approaches iy  and ( | z ) 0i PS iV u l . Hence propensity score 

weighting does not become fully efficient as the measurement error disappears.  

The second term of (18) may also be expected to dominate the second term of (15) when 

( | z )i iV u  and ( | z )i PS iV u  are constant and equal, since, recalling that 

1 1
( )i PS is s

w E w n� �� � , these second terms are primarily determined by the variances of 

the weights iw  and PS iw , and, provided M is sufficiently large, we may expect iw  to display 

less variation than PS iw , as argued above. In general, however, it does not appear that ÎMPR  is 

necessarily more efficient than P̂SR  and we look to the simulation study in section 7 for 

numerical evidence. 

Let us finally consider the impact of departures from the MAR assumption. Under small 

measurement error asymptotics where ( | z ) 0i iV u l  and I
i iy yl , the imputation 

approach will provide consistent inference about  even if the MAR assumption fails. This 

is not the case for the propensity score weighting approach. This suggests that the 

imputation approach may display more robustness to departures from the MAR assumption 

if the amount of measurement error is relatively small. 
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6. VARIANCE ESTIMATION 

Point estimation is the priority in our application, but we do now consider variance 

estimation briefly. Ideally, variance estimation should take account of the survey weights and 

complex design. Some methods have been developed for nearest neighbour imputation, 

allowing for weighting and stratification (Chen and Shao, 2001). The treatment of household 

clustering seems less well understood. We are currently exploring the application of 

replication methods developed by Kim and Fuller (2002). In this section we simply describe 

how delta method estimators can be constructed under the assumption of IID observations 

and ignorable sampling (see section 3) ignoring finite population corrections, i.e. treating N  

as effectively infinite. See Rancourt (1999) and Fay (1999) for other variance estimation 

approaches for nearest neighbour imputation and Little and Rubin (2002) for multiple 

imputation approaches.  

The delta method is applied most simply to the estimator P̂S  obtained from propensity 

score weighting. From equation (16), a delta-method estimator of P̂S  is given by 

1 1

2 2 2ˆ ˆ(̂ ) ( ) ( )PS PS i PS i i PSs s
V w w u

�

� �� �R R .  (19) 

We next consider the single and fractional imputation methods in section 3 based upon 

nearest neighbour imputation and use the expression for the variance of ÎMP  in (15).  

The simple estimator of the first term 2 / Q  : 

1

1 2 2 2ˆˆ ( )i i IMPs
n Q Z X� �

� ��    (20) 

is approximately unbiased from Corollary 1 of Chen and Shao (2000). It follows that an 

approximately unbiased estimator of ˆvar( )IMP  is 

1

1 2 2 2ˆˆ ˆˆ( ) ( ) ( | z )IMP i i i is
V n n w w V u

� �

� � ��R T  (21) 

 if we can construct an approximately unbiased estimator (̂ | z )i iV u  of ( | z )i iV u . Various 

approaches to estimating ( | z )i iV u  seem possible. Following Fay (1999), we might consider 
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the sample variance of ju  values for responding neighbours near to i with respect to z. With 

iu  binary this may be a rather unstable estimator, however, if the number of neighbours is 

small and might be biased if the number of neighbours is large. We have therefore 

considered instead a model-based approach in which a model is fitted to (z ) ( | z )i i i( X�  

for i s�  giving (̂z )i  and we set ˆ ˆ(̂ | z ) (z )[1 (z )]i i i iV u � �Z Z  . We have considered 

nonparametric methods of fitting (z )i , but have found with the LFS data that these lead to 

very similar values of ˆ(̂ )IMPV  as a logistic regression model for (z )i .  

 

7. SIMULATION STUDY 

The aim of the study is to generate independent repeated samples ( )hs , 1h ,...,H� , with 

realistic values *
i i i iy , y , x , r , ( )hi s� , to compute the corresponding estimates ( )( )hF y�  for 

alternative approaches to missing data and values of y and to assess the performance of the 

estimators ( )F y�  empirically. In order to employ realistic values, the samples ( )hs  of size n 

were drawn with replacement (i.e. using the bootstrap) from an actual sample of about 

16,000 jobs for the March-May 2000 quarter of the LFS (only main jobs of employees aged 

18+ were considered and the very small number of cases with missing values on *
iy  or ix  

were omitted). The effective assumption that the population size is infinite seems reasonably 

given the small sampling fraction of the LFS. The assumption of (simple) random sampling 

neglects the clustering of the sample into households, although the impact of this 

simplification on the relative properties of estimators is expected to be slight. The values of 

ix  for each sample ( )hs  were taken directly from the values in the LFS sample. Variables 

were chosen for inclusion in ix  if they were either related to hourly pay, measurement error 

in *
iy  or response ir  (see Skinner et al. 2003) and included age, gender, household position, 

qualifications, occupation, duration of employment, full-time/  part-time, industry and region 
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(several of these variables were represented by dummy variables). We set n=15,000 and 

H=1000 and generated the values of iy , *
iy  and ir  for each sample ( )hs  from models, rather 

than directly from the LFS data, for the following reasons.  

iy :  these values were generated from a model because they were frequently missing in the 

LFS. A linear regression model was used, relating ln( )iy  to *ln( )iy  and ix  with a 

normal error and with 20 covariates including squared terms in *ln( )iy  and age and 

interactions between *ln( )iy  and 5 components of ix . The model was fitted to the 

roughly 7000 cases where iy  was observed.  

*
iy : these values were generated from a model to avoid duplicate values of ( *

iy , ix ) within 

each ( )hs , which it was considered might lead to an unrealistic distribution of distances 

between units for the nearest neighbour method. The model was a linear regression 

model relating *ln( )iy  to ix  with a normal error and with 12 covariates, including a 

squared term in age and one interaction, fitted to the LFS data.  

ir : these values were generated from a model to ensure that the missing data mechanism 

was known. Several models were fitted. The only one reported here is a logistic 

regression relating ir  to *ln( )iy  and ix  with 17 covariates including squared *ln( )iy  

and interactions between *ln( )iy  and two covariates. The model was fitted to the LFS 

data. Note that this missing data mechanism is MAR given the *
iy  and ix . An 

alternative non-MAR assumption was also used – see the next section.  

Estimates ( )ĥ
t  of two parameters ( 1,2)t �  were obtained for each sample ( )hs , 

1 =  proportion with pay below the national minimum wage (=£3.00 per hour age 18-21, 

£3.60 per hour aged 22+) 

2 =  proportion with pay between minimum wage and £5/ hour.  
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The true values are 1 =0.056 and 2 = 0.185. The bias and standard error were estimated as 

ˆˆ ( )t t tbias � �  and 1 ( ) 2 1/ 2

1

ˆ ˆ.̂ .( ) [ ( ) ]
H

h
t t t

h

s e + �

 

� �� , where 1 ( )h
t th

+ !

� � .  

We first compare results for the alternative imputation approaches. Table 1 presents 

estimates of the biases of estimators of 1  and 2  for different imputation methods, for a 

MAR missing data mechanism. There is no evidence of significant biases for any of the 

nearest neighbour (NN) methods. The bias/ standard error ratios are small and may be 

expected to be even smaller for estimates within domains e.g. regions or age groups. We 

conclude that there is no evidence of important bias for these methods, provided the MAR 

mechanism holds and the model is correctly specified.  

There is some evidence of statistically significant biases for each of the three methods based 

on imputation classes (HDIWR10, HDIWOR10, ABB10) perhaps because of the width of 

the classes, although the bias appears to be small relative to the standard error. Given the 

additional disadvantage of these methods, that the specification of the boundaries of the 

classes is arbitrary, these methods appear to be less attractive than the nearest neighbour 

methods. This finding contrasts with the preference sometimes expressed (e.g. Brick and 

Kalton, 1996, p. 227) for stochastic methods of imputation, such as the HDI methods, 

compared to deterministic methods, such as nearest neighbour imputation, when estimating 

distributional parameters.  

[Table 1 about here] 

Corresponding estimates of standard errors are given in Table 2. We find as expected that 

the greatest standard error occurs for the single NN1 imputation method. The variance is 

reduced by around 10% using the penalty function method (NN1P). About 10-20% 

reduction arises from using two imputations (NN2 or NN2(4)) and around 20% reduction 

from using ten imputations (NN10, NN10(20)), HDIWR10, HDIWOR10, ABB10). For a 

given number of imputations (2 or 10) there seem to be no obvious systematic effects of 

using a stochastic method (NN2(4) or NN10(20)) versus a deterministic method (NN2 or 
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NN10). We conclude that NN10 is the most promising approach, avoiding the bias of the 

imputation class methods and having appreciable efficiency gains over the methods 

generating one or two imputations. 

[Table 2 about here] 

We next compare the NN10 imputation approach with propensity score weighting. We 

consider not only the case when the specification of the model used for imputation or 

weighting corresponds to the model used in the simulation, as in Table 1, but also some 

cases of misspecification. To ensure a fair comparison of weighting and imputation we use 

the same covariates when fitting both the models generating iy  and ir . We first consider the 

estimated biases in Table 3. When the model for imputation (NN10) or the propensity 

scores is correctly specified neither method demonstrates any significant bias in the 

estimation of 1  or 2 . Significant bias does arise, however, in both cases if the model is 

misspecified by failing to include covariates used in the simulation. The amount of bias is 

noticeably greater for the weighting approach. Corresponding estimated standard errors of 

1̂  and 2̂  are given in Table 4. These also tend to be greater for the weighting approach 

with the increase of mean squared error ranging from 20% to 28% for the six values in Table 

4. At least under the MAR assumption, the NN10 imputation approach appears to be 

preferable to propensity score weighting in terms of bias and variance.  

[Table 3 and 4 about here] 

Finally, we compare the properties of imputation (NN10) and propensity score weighting 

when the MAR assumption fails. We now simulate missingness according to the Common 

Measurement Error model assumption of section 3.  The same logistic model with the same 

coefficients as in the previous simulation except that *
iy  is replaced as a covariate by iy . 

Simulation estimates of biases and standard errors are presented in Table 5. We observe a 

non-negligible significant relative bias of around 5% for the imputation approach and a little 

higher for the propensity score weighting approach. The positive direction of the bias of 1̂  
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is as expected from arguments in Dickens and Manning (2002) and Skinner et al. (2003). The 

relative bias of 5% of the NN10 approach does not, however, appear to make the resulting 

estimates unusable.  

[Table 5 about here] 

 

8. CONCLUSION S 

Measurement error may lead to serious upward bias in the estimation of proportions with 

low pay. Missing data methods have been used to correct for this bias. Figure 1 compares an 

estimated distribution which ignores measurement error (the bold line) with estimates based 

on three missing data methods (the three dotted lines). We suggest the latter estimates are 

more approximately unbiased than the former estimate. Corresponding estimates of two low 

pay proportions of interest are presented in Table 6. The estimates in both Figure 1 and 

Table 6 employ survey weights. Note that the estimates presented here might differ slightly 

from official UK estimates since, for example, the official estimates are based on different 

imputation models, treating outliers differently or imputing differently for certain 

professions. 

[Table 6 about here] 

The ‘missing data adjustments’ have a substantial impact. The differences between the 

missing data methods are much smaller. Among imputation methods, nearest neighbour 

methods have performed most promisingly in terms of bias. These deterministic methods 

display no evidence of greater bias than stochastic imputation methods. Fractional 

imputation has shown appreciable efficiency gains compared to single imputation and 

appears more effective than penalizing the distance function or sampling without 

replacement with single imputation. In comparison to a propensity score weighting 

approach, the fractional nearest neighbour imputation has performed similarly, but has 

demonstrated slight advantages of robustness and efficiency.  
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Figure 1. Alternative Estimates of the Distribution of Hourly Earnings From £ 2 to 

£ 4 for Age Group 22+, June-August 1999. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Distribution of hourly earnings from £2 to £4 for age group 22+, JA99

Hourly earnings in £/hour

P
er

ce
nt

2.0 2.5 3.0 3.5 4.0

0

2

4

6

8

10

12

14

Derived Variable
Hot Deck Imputation (wor)
NN10 Imputation
Propensity Score Weighting

 

 

1DWLRQDO�
0LQLPXP�
:DJH��



 25 

Table 1. Simulation Estimates of Biases of Estimators of 1  and 2  for Different 

Imputation Methods, Assuming MAR and Correct Covariates.  

 

Imputation 
Method 

Bias of T̂1  Rel. Bias 

ofT̂1  
Bias of T̂2  Rel. Bias 

of T̂2  

NN1 1.2*10-4 
(0.9*10-4) 

0.2 % 0.9*10-4 
(1.7*10-4) 

0.0 % 

NN1P1 4.4*10-4 
(2.6*10-4) 

0.8 % 0.3*10-4 
(5.1*10-4) 

0.0 % 

NN2 0.6*10-4 
(8.5*10-4) 

0.1 % 1.6*10-4 
(1.5*10-4) 

0.0 % 

NN2(4) 1.4*10-4 
(0.9*10-4) 

0.2 % -2.5*10-4 
(1.5*10-4) 

-0.1 % 

NN10 0.2*10-4 
(6.5*10-4) 

0.0 % -1.2*10-4 
(1.5*10-4) 

-0.1 % 

NN10(20) 0.2*10-4 
(0.8*10-4) 

0.0 % 0.7*10-4 
(1.5*10-4) 

0.0 % 

HDIWR10 2.8*10-4 
(0.7*10-4) 

0.5 % 26.2*10-4 
(1.5*10-4)  

1.4 % 

HDIWOR10 2.5*10-4  
(0.7*10-4) 

0.4 % 28.0*10-4 
(1.2*10-4) 

1.5 % 

ABB10 4.6*10-4 
(0.8*10-4) 

0.8 % 29.8*10-4 
(1.5*10-4) 

1.6 % 

 Standard errors of bias estimates are below the estimates in parentheses. 
 1 Note: H=100 iterations were used due to computing time. 
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Table 2. Simulation Estimates of Standard Errors of Estimators of 1  and 2  for 

Different Imputation Methods, Assuming MAR and Correct Covariates.  

 

Imputation 
Method 

ˆ. .( )s e T1  ˆ. .( )s e T2  ˆ( )
ˆ( )NN

V
V

T
T
1

1 1

 
ˆ( )

ˆ( )NN

V
V

T
T
2

1 2

 

NN1 2.79*10-3 5.43*10-3 1 1 

NN1P2 2.60*10-3 5.15*10-3 0.87 0.91 

NN2 2.68*10-3 5.05*10-3 0.91 0.86 

NN2(4) 2.73*10-3 4.88*10-3 0.94 0.80 

NN10 2.56*10-3 4.88*10-3 0.83 0.81 

NN10(20) 2.57*10-3 4.79*10-3 0.84 0.77 

HDIWR10 2.52*10-3 4.66*10-3 0.82 0.74 

HDIWOR10 2.48*10-3 4.72*10-3 0.78 0.76 

ABB10 2.63*10-3 4.87*10-3 0.88 0.80 

 2 Note: H=100 iterations were used due to computing time. 
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Table 3. Simulation Estimates of Biases of Estimators of 1  and 2  for Nearest 

Neighbour Imputation (N N10) and Propensity Score Weighting, Assuming MAR 

and Correct and Misspecified Covariates.  

 

Method Assumed 
Covariates 

Bias of T̂1  Rel. Bias 

of T̂1  
Bias of T̂2  Rel. Bias 

of T̂2  

A1 (correct) -0.18*10-4 
(0.64*10-4) 

-0.03 % -5.8*10-4 
(1.20*10-4) 

-0.31 % 

A2 -1.31*10-4 
(0.65*10-4) 

-0.24 % -4.74*10-4 
(1.23*10-4) 

-0.25 % 

NN10 

A3 -1.66*10-4 
(0.63*10-4) 

-0.30 % -10.6*10-4 
(1.23*10-4) 

-0.57 % 

A1 (correct) 0.15*10-4 
(0.72*10-4) 

0.03 % -2.62*10-4 
(1.35*10-4) 

-0.14 % 

A2 -8.96*10-4 
(0.68*10-4) 

-1.64 % 70.2*10-4 
(1.40*10-4) 

3.80 % 

Propensity 
Score 
Weighting  

A3 -5.02*10-4 
(0.68*10-4) 

-0.92 % 67.8*10-4 
(1.41*10-4) 

3.66 % 

  Note:  A1 is the correct model 
A2 excludes the interactions and the square terms from the correct model 

 A3 drops further covariates from model A2.  

 

Table 4. Simulation Estimates of Standard Errors of Estimators of 1  and 2  for 

Nearest Neighbour Imputation (N N10) and Propensity Score Weighting, Assuming 

MAR and Correct and Misspecified Covariates.  

 

Method Assumed 
Covariates 

ˆ. .( )s e T1  ˆ. .( )s e T2  MSE(T̂1 ) MSE(T̂2 ) 

A1 (correct) 2.02*10-3 3.80*10-3 4.10*10-6 1.49*10-5 

A2 2.06*10-3 3.88*10-3 4.29*10-6 1.54*10-5 

NN10 

A3 2.01*10-3 3.89*10-3 4.10*10-6 1.63*10-5 
A1 (correct) 2.27*10-3 4.27*10-3 5.16*10-6 1.83*10-5 

A2 2.17*10-3 4.42*10-3 5.51*10-6 6.90*10-5 
Propensity 
Score 
Weighting  A3 2.16*10-3 4.46*10-3 4.94*10-6 6.59*10-5 
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Table 5. Simulation Estimates of Biases and Standard Errors of Estimators of 1  and 

2  for Nearest Neighbour Imputation (N N10) and Propensity Score Weighting. 

Under the (non-MAR) Common Measurement Error Model.   

 

Method Bias of T̂1  Rel. Bias 
of T̂1  

Bias of T̂2  Rel. Bias 
of T̂2  

ˆ. .( )s e T1   

 

ˆ. .( )s e T2  

NN10 29.0*10-4 

(0.8*10-4) 

5.1 % 92.0*10-4 

(1.48*10-4) 

5.0 % 2.53*10-3 4.70*10-3 

Propensity 
Score Weighting  

32.3*10-4 

(0.73*10-4) 
5.7 % 100*10-4 

(1.40*10-4) 
5.7 % 2.31*10-3 4.42*10-3 

 

 

Table 6. Estimates of T̂1  and T̂2  (Weighted) for 18+ Using Different Propensity Score 

Models and Imputation Models Applied to LFS, June-August 1999. 

 

Method Propensity Score 
Model or 

Imputation Model 

(Weighted) 

T̂1  in % 

(Weighted) 

T̂2  in % 

Derived 
Variable  

- 7.13 20.5 

A1 0.96 34.5 
A2 1.08 38.4 

Propensity 
Score 
Weighting  A3 1.08 38.4 

A1 1.44 32.1 
A2 1.41 32.9 

HDIWOR10 

A3 1.50 33.2 
A1 1.32 32.6 
A2 1.44 32.8 

NN10 

A3 1.50 33.0 
 


