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Abstract

We consider the identification of a Markov process {Wt, X
∗

t } for t = 1, 2, ..., T when
only {Wt} for t = 1, 2, ..., T is observed. In structural dynamic models, Wt denotes
the sequence of choice variables and observed state variables of an optimizing agent,
while X∗

t denotes the sequence of serially correlated unobserved state variables. The
Markov setting allows the distribution of the unobserved state variable X∗

t to depend
on Wt−1 and X∗

t−1
. We show that the joint distribution fWt,X∗

t
,Wt−1,X∗

t−1
is identified

from the observed distribution fWt+1,Wt,Wt−1,Wt−2,Wt−3
under reasonable assumptions.

Identification of fWt,X∗

t ,Wt−1,X∗

t−1
is a crucial input in methodologies for estimating dy-

namic models based on the “conditional-choice-probability (CCP)” approach pioneered
by Hotz and Miller.

1 Introduction

In this paper, we consider the identification of a Markov process {Wt, X
∗
t } for t = 1, 2, ..., T

when only {Wt} for t = 1, 2, ..., T is observed. The variable Wt describes the observed

behavior and status of agent i at period t. X∗
t consists of latent variables, which are

observed by the agent, but unobserved to the econometrician. The common interpretation

of the latent variable X∗
t is an unobserved state variable at period t.

We show that the distribution fWt,X
∗
t ,Wt−1,X∗

t−1
is identified from the observed distribution

fWt+1,Wt,Wt−1,Wt−2,Wt−3
under reasonable assumptions. In most applications, Wt consists of

∗The authors can be reached at yhu@jhu.edu and mshum@jhu.edu. We thank seminar participants at
LSE, NYU, Penn, and Toulouse for useful comments.
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two elements Wt = (Yt,Mt), where Yt denotes the agent’s action in period t, and Mt denotes

the period-t observed state variable. X∗
t are persistent unobserved state variables (USV for

short), which are observed by agents and affect their choice of Yt, but are unobserved by the

econometrician. In turn, the realization of the USV X ∗
t can also be affected by Yt−1 or Mt−1,

in addition to X∗
t . We begin by giving two motivating examples of well-known Markovian

dynamic discrete-choice models which have been estimated in the existing literature.

Example 1: Rust (1987) In Rust’s bus engine replacement model, Yt is an indicator

for whether Harold Zurcher (the bus depot manager) decides to replace the bus engine in

week t. Mt is the accumulated mileage of the bus since the last engine replacement, in

week t. Although Rust’s original paper had no persistent unobserved state variable X ∗
t ,

it is reasonable to extend the model to allow for them. For example, X ∗
t could be Harold

Zurcher’s health, or weather or road conditions during week t.1 �

Example 2: Pakes (1986) Pakes estimates an optimal stopping model of the year-by-

year renewal decision on European patents. In his model, the decision variable Yt is an

indicator for whether a patent is renewed in year t, and the unobserved state variable X ∗
t

is the profitability from the patent in year t, which is not observed by the econometrician.

The observed state variable Mt could be other time-varying factors, such as the stock price

or total sales of the firm holding the patent, which affect the renewal decision. �

The main result in this paper concerns the identification of the joint density fWt,X
∗
t ,Wt−1,X∗

t−1
.

This implies that the conditional density fWt,X
∗
t |Wt−1,X∗

t−1
is also identified. Once this is

known, it can be factorized into conditional and marginal distributions of economic interest.

For Markov dynamic choice models (such as the two examples given above), an interesting

factorization is

fWt,X
∗
t |Wt−1,X∗

t−1
= fYt,Mt,X

∗
t |Yt−1,Mt−1,X∗

t−1

= fYt|Mt,X
∗
t︸ ︷︷ ︸

CCP

· fMt,X
∗
t |Yt−1,Mt−1,X∗

t−1︸ ︷︷ ︸
state transition

. (1)

The second term is the Markovian transition probabilities for the state variables (Mt, X
∗
t ).

The first term denotes the conditional choice probability for the agent’s optimal choice in

period t. Note that this setting accommodates quite general feedback in the unobserved

1See Norets (2006), who likewise considers an example of the Rust (1987) model extended to accommodate
persistent unobserved state variables.
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state variable process from previous values Wt−1, X
∗
t−1 to X∗

t .

Once the CCP’s and the state transitions are recovered, it is straightforward to use them

as inputs in a CCP-based approach for estimating dynamic discrete-choice models. This

approach was pioneered in Hotz and Miller (1993) and Hotz, Miller, Sanders, and Smith

(1994), and subsequent methodological developments in this vein include Aguirregabiria and

Mira (2002), Pesendorfer and Schmidt-Dengler (2003), Bajari, Benkard, and Levin (2008),

Aguirregabiria and Mira (2007), Pakes, Ostrovsky, and Berry (2007), and Hong and Shum

(2007).2 Alternatively, it is possible to use our identification results for the CCP’s and

state transition densities as a “first-step” in an argument for identification of the per-period

utility functions, in the spirit of Magnac and Thesmar (2002) and Bajari, Chernozhukov,

Hong, and Nekipelov (2007), who considered the case of dynamic discrete-choice models

without unobserved state variables.

A general criticism of these CCP-based methods is that they cannot accommodate unob-

servables which are persistent over time. However, there are some recent papers focusing on

the CCP-based estimation of dynamic discrete-choice models, in the presence of the latent

state variable X∗
t . Buchinsky, Hahn, and Hotz (2004) and Houde and Imai (2006) consider

the case where X∗
t is time-invariant, corresponding to the case of unobserved heterogeneity,

and discrete. Arcidiacono and Miller (2006) develop a CCP-based approach to estimate dy-

namic discrete models where X∗
t can vary over time according to an exogenous and discrete

first-order Markov process.

Several recent papers have focused on the estimation of parametric dynamic models with

unobserved state variables, using non-CCP-based approaches. Imai, Jain, and Ching (2005)

and Norets (2006) consider Bayesian MCMC estimation. Fernandez-Villaverde and Rubio-

Ramirez (2007) develop an efficient simulation procedure (based on particle filtering) for

estimation these models via simulation.

While these papers have focused on estimation, our focus is on identification. Kasahara

and Shimotsu (2007) considers the nonparametric identification of dynamic models when

the latent variable X∗
t is time-invariant and discrete. In section 3.2 of their paper, Kasahara

and Shimotsu prove the nonparametric identification of the Markov kernel Wt+1|Wt, X
∗ in

this setting, using six periods of data. In this paper, we build upon these results to the case

2Applications applying the CCP insights to dynamic settings have grown quickly in recent years, and
include Collard-Wexler (2006), Ryan (2006), and Dunne, Klimer, Roberts, and Xu (2006). See the discussion
in Pakes (2008, section 3) and Ackerberg, Benkard, Berry, and Pakes (2007). All of these papers apply the
CCP insight to dynamic games, which are more complex multi-agent generalizations of the single-agent
dynamic setting consider in this paper.
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where X∗
t is continuous, and can vary over time and evolve depending on (Wt−1, X

∗
t−1).

Finally, Cunha, Heckman, and Schennach (2006) apply the result of Hu and Schennach

(2008) to show nonparametric identification of a nonlinear factor model containing (Wt,W
′
t ,W

′′
t , X

∗
t ),

where the observed processes {Wt}
T
t=1, {W

′
t}

T
t=1, {W

′′
t }

T
t=1 constitute noisy measurements of

the latent process {X∗
t }

T
t=1, contaminated with random disturbances. In contrast, we con-

sider a setting where (Wt, X
∗
t ) jointly evolves as a dynamic Markov process. We use obser-

vations of Wt in different periods t to identify the joint distribution of
(
Wt, X

∗
t ,Wt−1, X

∗
t−1

)
.

Thus, our model and identification strategy are different from theirs.

The paper is organized as follows. Section 2 contains our main identification result, which we

prove for the case where X∗
t is continuous. We discuss the implications of the identification

assumptions in the context of Rust’s (1987) bus engine replacement model in Section 3.

Section 4 discusses the nonparametric identification of DDC models given the results in

section 2. We conclude in Section 5. The appendix includes the proof of the theorem,

remarks, and a special case where the unobserved state variable X ∗
t is discrete.

2 Nonparametric identification with unobserved state vari-

ables

Consider an i.i.d. sample of the dynamic process
{(
Wt+1, X

∗
t+1

)
, (Wt, X

∗
t ) , ..., (W1, X

∗
1 )

}
i

for agent i ∈ {1, 2, . . . , n}. The researcher observes an i.i.d. random sample of the dy-

namic process {Wt+1,Wt,Wt−1,Wt−2,Wt−3}i for many agents i. The variable Wt de-

scribes the observed behavior and status of the agent i at period t. The variable X ∗
t

stands for the unobserved state variable at period t. We assume that for each agent i,{(
Wt+1, X

∗
t+1

)
, (Wt, X

∗
t ) , ..., (W1, X

∗
1 )

}
i
is an independent random draw from the identical

distribution fWt+1,Wt,...,W1,X∗
t+1

,X∗
t ,...,X∗

1
. Let Wt ⊆ R

d be the support of Wt and X ∗
t ⊆ R be

the support of X∗
t . Define Ω<t =

{
Wt−1, ...,W1, X

∗
t−1, ..., X

∗
1

}
.

We assume the dynamic process satisfies:

Assumption 1 (i) First-order Markov:

fWt,X
∗
t |Wt−1,X∗

t−1
,Ω<t−1

= fWt,X
∗
t |Wt−1,X∗

t−1
; (2)
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(ii) Limited feedback:

fWt|Wt−1,X∗
t ,X∗

t−1
= fWt|Wt−1,X∗

t
. (3)

Assumption 1(i) is just a first-order Markov assumption, which is assumed in most empirical

applications of dynamic discrete-choice models, and holds for both the Pakes and Rust

examples. Assumption 1(ii) is a “limited feedback” assumption, because it rules out direct

feedback from the last period’s USV, X∗
t−1, on the current value of the observed component

Wt. When Wt = (Yt,Mt), where Yt denotes the agent’s action in period t, and Mt denotes

the period-t observed state variable, Assumption 1 implies that:

fWt|Wt−1,X∗
t ,X∗

t−1
= fYt,Mt|Yt−1,Mt−1,X∗

t ,X∗
t−1

= fYt|Mt,Yt−1,Mt−1,X∗
t ,X∗

t−1
· fMt|Yt−1,Mt−1,X∗

t ,X∗
t−1

= fYt|Mt,X
∗
t ,Yt−1,Mt−1

· fMt|Yt−1,Mt−1,X∗
t
.

(4)

In the bottom line of the above display, the limited feedback assumption eliminates X ∗
t−1 as a

conditioning variable in both terms. In most applications of Markov dynamic choice models,

the first term (corresponding to the CCP) can be further simplified to fYt|Mt,X
∗
t
, because the

Markovian transition probabilities for the state variables Mt, X
∗
t ) imply that the optimal

policy function depends just on the current state variables, but not past realizations. (See

Rust (1994, section 2) for a discussion of optimal policy functions in Markovian dynamic

decision models.)

optimal policy function depends just on the current state variables, which are (Mt, X
∗
t ).

Hence, the above display shows that Assumption 1 imposes weaker restrictions on the first

term than typical dynamic optimization models. Moreover, if we move outside the class of

dynamic optimization models, Eq. (4) also shows that Assumption 1 does not rule out the

dependence of Yt on Yt−1 or Mt−1, which corresponds to some models of state dependence.3

In the second term of the above display, the limited feedback condition rules out direct

feedback from last period’s unobserved state variable X ∗
t−1 to the current observed state

variableX∗
t . However, it allows indirect effects viaX∗

t−1’s influence on Yt−1 orMt−1. Indeed,

3These may include linear or nonlinear panel data models with lagged dependent variables, and serially
correlated errors, cf. Arellano and Honore (2000). Arellano (2003, chs. 7–8) considers linear panel models
with lagged dependent variables and persistent unobservables, which is also related to our framework.
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most empirical applications of dynamic optimization models with unobserved state variables

satisfy the Markov and limited feedback conditions above. Examples of models in the

industrial organization setting satisfying these conditions include Pakes (1986), Ackerberg

(2003), Erdem, Imai, and Keane (2003), Crawford and Shum (2005), Das, Roberts, and

Tybout (2007), Xu (2007), and Hendel and Nevo (2007). Finally, note that when X ∗
t is

time invariant, so that X∗
t = X∗

t−1, the limited feedback assumption is trivial.

Our goal is to identify the density

fWt,X
∗
t ,Wt−1,X∗

t−1
.

Since Wt+1 is usually a vector and X∗
t is a scalar, we first reduce the dimensionality of Wt+1

by defining

Vt+1 ≡ g(Wt+1)

where the function g : R
d → R is known. (WhenWt+1 is a scalar, we may just let g(w) = w.)

Another advantage of introducing Vt+1 is that the identification still holds with a discrete

X∗
t if we let g : Wt+1 → X ∗

t . The restrictions imposed later on the function g guarantee that

the scalar random variable Vt+1 still contains enough information to identify X ∗
t . Similarly,

we reduce the dimensionality of Wt−2 by defining

Zt−2 ≡ q(Wt−2),

with a known function q : R
d → R. When X∗

t is discrete, we may let q : Wt−2 → X ∗
t−2. We

introduce the function q only for the reason of avoiding technical complications. As shown

later, we may just let q(w) = w by using the generalized inverse of an operator.

The identification argument consists of four steps. The discussion in this section omits the

derivation of some equations. A complete proof, including all derivations, is given in the

Appendix.

Step 1: Identification of fVt+1|Wt,X
∗
t
. The most substantial step of the argument

is the first step, which demonstrate the identification of fVt+1|Wt,X
∗
t
. Consider the joint

density of {Vt+1,Wt,Wt−1, Zt−2}. One can show that assumption 1 implies that for any
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(x,wt, wt−1, z) ∈ g(Wt+1) ×Wt ×Wt−1 × q (Wt−2)

fVt+1,Wt|Wt−1,Zt−2
(x,wt|wt−1, z) (5)

=

∫
fVt+1|Wt,X

∗
t
(x|wt, x

∗
t ) fWt|Wt−1,X∗

t
(wt|wt−1, x

∗
t ) fX∗

t |Wt−1,Zt−2
(x∗t |wt−1, z) dx

∗
t .

The density on the left hand side is observed in the data. Let Lp (X ), 1 ≤ p <∞ stand for

the space of function h (·) with
∫
X |h(x)|pdx <∞, and let L∞ (X ) denote the space of func-

tion h (·) with supx∈X |h(x)| <∞. We let p = 2 when an inner product is introduced later.

For any 1 ≤ p ≤ ∞, we define the integral operator LVt+1,wt|wt−1,Zt−2
: Lp (q (Wt−2)) →

Lp (g(Wt+1)) for any given (wt, wt−1) ∈ Wt ×Wt−1 and any h ∈ Lp (q (Wt−2)),

(
LVt+1,wt|wt−1,Zt−2

h
)
(x) =

∫
fVt+1,Wt|Wt−1,Zt−2

(x,wt|wt−1, z) h(z)dz.

Notice that we treat (wt, wt−1) as fixed and LVt+1,wt|wt−1,Zt−2
is a mapping from Lp (q (Wt−2))

to Lp (g(Wt+1)).

For any given wt ∈ Wt, we also define the operator corresponding to the unobserved density

fVt+1|Wt,X
∗
t
, i.e., LVt+1|wt,X

∗
t

: Lp (X ∗
t ) → Lp (g(Wt+1)), as follows:

(
LVt+1|wt,X∗

t
h
)

(x) =

∫
fVt+1|Wt,X∗

t
(x|wt, x

∗
t )h(x

∗
t )dx

∗
t .

As shown in Hu and Schennach (2008), the identification of an operator, e.g, LVt+1|wt,X
∗
t
,

is equivalent to that of its corresponding density, e.g., fVt+1|Wt,X
∗
t
. Define for any given

wt ∈ Wt

A (wt) =
{
wt−1 ∈ Wt−1 : LVt+1,wt|wt−1,Zt−2

is one-to-one
}
.

Identification of LVt+1|wt,X
∗
t

from the observed LVt+1,wt|wt−1,Zt−2
requires

Assumption 2 for any wt ∈ Wt,

(i) LVt+1|wt,X
∗
t

is one-to-one ;

(ii) Pr {A (wt)} > 0.

Assumption 2(i) implies that the function g reduces the dimension ofWt but Vt+1 = g(Wt+1)

still contains enough information on X∗
t . A sufficient condition for assumption 2(i) is that

LVt+1|wt,X
∗
t
h = 0 implies h = 0. A detailed discussion on one-to-one operators can be found
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in Carrasco, Florens, and Renault (2005) and Hu and Schennach (2008). In the case where

Wt+1 are discrete and X∗
t is continuous, the assumption 2(i) fails. Notice that assumption

2(ii) is imposed on the observables.

Remark: The one-to-one assumptions on LVt+1|wt,X∗
t

and LVt+1,wt|wt−1,Zt−2
rule out cases

where X∗
t has a continuous support, but Wt+1 has only discrete components. Hence, dy-

namic discrete-choice models with a continuous unobserved state variable X ∗
t , but only

discrete observed state variables Mt, fail this assumption, and may be nonparametrically

underidentified without further assumptions. Moreover, models where the Wt and X∗
t pro-

cesses evolve independently will also fail the one-to-one assumption. �

Remark: When we just use Wt−2 instead of Zt−2, it is possible that the corresponding

operator LVt+1,wt|wt−1,Wt−2
may be surjective. In this case, there are extra instruments for

X∗
t , and Assumption 2(ii) may be replaced by the condition that

Pr
{
wt−1 : LVt+1,wt|wt−1,Wt−2

L∗
Vt+1,wt|wt−1,Wt−2

is one-to-one
}
> 0.

where L∗ denotes an adjoint operator.4 We would then need to use the generalized inverse

of LVt+1,wt|wt−1,Wt−2
instead of the inverse of LVt+1,wt|wt−1,Zt−2

. By using Zt−2 = q(Wt−2)

and reducing the dimensionality of Wt−2 to that of X∗
t , we avoid the technical complications

of stating assumptions in terms of inner products or adjoint operators. �

Inspired by the identification strategies in Carroll, Chen, and Hu (2008), Hu (2007), and

Hu and Schennach (2008), we assume, in assumption 3 below, that for any given wt ∈ Wt

there exists (wt, wt−1, wt−1) ∈ Wt×Wt−1×Wt−1 such that wt 6= wt, wt−1 6= wt−1, and that

LVt+1,wt|wt−1,Zt−2
, LVt+1,wt|wt−1,Zt−2

, LVt+1,wt|wt−1,Zt−2
and LVt+1,wt|wt−1,Zt−2

are all one-to-

one mappings. One can show that equation 5 implies

LVt+1,wt|wt−1,Zt−2
L−1

Vt+1,wt|wt−1,Zt−2

(
LVt+1,wt|wt−1,Zt−2

L−1
Vt+1,wt|wt−1,Zt−2

)−1

≡ LVt+1|wt,X∗
t
Dwt,wt,wt−1,wt−1,X∗

t
L−1

Vt+1|wt,X
∗
t

(6)

where Dwt,wt,wt−1,wt−1,X∗
t

: Lp (X ∗
t ) → Lp (X ∗

t )

(
Dwt,wt,wt−1,wt−1,X∗

t
g
)
(x∗t ) = k (wt, wt, wt−1, wt−1, x

∗
t ) g(x

∗
t ),

4Let L∗
x,z

: L2 (Z) → L2 (X ) denotes the adjoint operator of operator Lx,z : L2 (X ) → L2 (Z) such that

〈Lx,zϕ, φ〉Z =
˙

ϕ, L∗
x,zφ

¸

X
, where the inner product is defined as 〈ϕ, φ〉 =

R

ϕ (t)φ (t) dt.
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k (wt, wt, wt−1, wt−1, x
∗
t ) =

fWt|Wt−1,X∗
t
(wt|wt−1, x

∗
t )fWt|Wt−1,X∗

t
(wt|wt−1, x

∗
t )

fWt|Wt−1,X∗
t
(wt|wt−1, x

∗
t )fWt|Wt−1,X∗

t
(wt|wt−1, x

∗
t )
.

Notice that the operator Dwt,wt,wt−1,wt−1,X∗
t

is a ”diagonal” or multiplication operator

with a given (wt, wt, wt−1, wt−1). This equation implies that the observed operator on

the left hand side, which is a mapping from Lp (X ∗
t ) → Lp (X ∗

t ), has an eigenvalue-

eigenfunction decomposition. The eigenfunctions are fVt+1|Wt,X
∗
t
(·|wt, x

∗
t ), which are nor-

malized by
∫
fVt+1|Wt,X

∗
t
dxt+1 = 1. Notice that the eigenfunction in LVt+1|wt,X

∗
t

does not

depend on (wt, wt−1, wt−1), while the eigenvalue in Dwt,wt,wt−1,wt−1,X∗
t

may be different for

a different (wt, wt−1, wt−1). The identification of fVt+1|Wt,X
∗
t

then relies on the uniqueness

of such a decomposition.

Formally, define a set B (wt) for a given wt such that any (wt, wt−1, wt−1) ∈ B (wt) satisfies

the following conditions:

1. wt ∈ Wt, wt−1 ∈ A (wt), wt−1 ∈ A (wt) ∩A (wt), wt 6= wt, and wt−1 6= wt−1;

2. k (wt, wt, wt−1, wt−1, x
∗
t ) <∞ for all x∗t ∈ X ∗

t .

Essentially, for a given wt ∈ Wt, the set B(wt) contains triples of points (w̄t, wt−1, w̄t−1) ∈

Wt×Wt−1×Wt−1 such that wt 6= wt, wt−1 6= wt−1, and that LVt+1,wt|wt−1,Zt−2
, LVt+1,wt|wt−1,Zt−2

and LVt+1,wt|wt−1,Zt−2
are all one-to-one mappings. Notice that LVt+1,wt|wt−1,Zt−2

in equa-

tion 6 is not required to be one-to-one. Furthermore, at these points, the eigenvalues

k (wt, wt, wt−1, wt−1, x
∗
t ) are bounded away from +∞. The boundedness of the eigenvalues

allows us to use the results on the spectral decomposition of bounded linear operators in

Dunford and Schwartz (1971).

A sufficient condition for k (wt, wt, wt−1, wt−1, x
∗
t ) < ∞ for all x∗t ∈ X ∗

t is that, for all

(wt, wt−1) ∈ Wt ×Wt−1, there exist functions L(wt, wt−1) and U(wt, wt−1) such that for all

x∗t ∈ X ∗
t

0 < L(wt, wt−1) ≤ fWt|Wt−1,X∗
t
(wt|wt−1, x

∗
t ) ≤ U(wt, wt−1) <∞. (7)

The existence and uniqueness of the decomposition in equation 6 requires

Assumption 3 for any given wt ∈ Wt,

(i) Pr {B (wt)} > 0;
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(ii) for any x̂∗t 6= x̃∗t ∈ X ∗
t , there exists (wt, wt−1, wt−1) ∈ B (wt) such that k (wt, wt, wt−1, wt−1, x̂

∗
t ) 6=

k (wt, wt, wt−1, wt−1, x̃
∗
t ) .

Part (i) of this assumption guarantees that for any given wt ∈ Wt, there exists more than

one (wt, wt−1, wt−1) ∈ B (wt) such that wt 6= wt, wt−1 6= wt−1, and that LVt+1,wt|wt−1,Zt−2
,

LVt+1,wt|wt−1,Zt−2
, LVt+1,wt|wt−1,Zt−2

and LVt+1,wt|wt−1,Zt−2
are all one-to-one. This validates

taking inverses of the operators in equation 6.

Part (ii) implies that all the eigenvalues are finite and distinctive for some (w t, wt−1, wt−1)

in equation 6. Notice that ln k (wt, wt, wt−1, wt−1, x
∗
t ) can be treated as a second order

difference of ln fWt|Wt−1,X∗
t

with respect to wt and wt−1. Therefore, a sufficient condition

for part (ii) is that for any x∗t ∈ X ∗
t and wt ∈ Wt, there exists wt−1 ∈ Wt−1 such that

∂3

∂wt∂wt−1∂x
∗
t

ln fWt|Wt−1,X∗
t
(wt|wt−1, x

∗
t ) 6= 0. (8)

Remark: Since condition 2 in the definition of B(wt) must be satisfied for all wt ∈ Wt,

it will be violated if fWt|Wt−1,X∗
t

is identically zero for all X∗
t , and all Wt−1. However, in

practice, most empirical applications of dynamic models avoid this possibility by including

i.i.d. shocks which smooth out the CCP’s and state transitions in order to avoid zeros,

which are inconvenient from a computational point of view. In section 3 and Appendix B,

we present examples of fWt|Wt−1,X∗
t

which satisfy assumption 3. �.

Remark: Given the forgoing discussion, assumptions 2 and 3 may be replaced by the

following sufficient conditions:

1. For any wt ∈ Wt and wt−1 ∈ Wt−1, LVt+1,wt|wt−1,Zt−2
and LVt+1|wt,X

∗
t

are one-to-one ;

2. For any wt ∈ Wt and wt−1 ∈ Wt−1, there exist functions L(wt, wt−1) and U(wt, wt−1)

such that the density fWt|Wt−1,X∗
t

satisfies Eq. (7) for all x∗t ∈ X ∗
t ;

3. For any wt ∈ Wt and x∗t ∈ X ∗
t , there exists wt−1 ∈ Wt−1 such that the density

fWt|Wt−1,X∗
t

satisfies Eq. (8). �

Without further assumptions, an eigenfunction fVt+1|Wt,X
∗
t
(·|wt, x

∗
t ) for a given wt is only

identified up to the value of the index x∗t . Since the value of x∗t is not observed anywhere,

there is no difference between x∗t and its monotone transformation. We may make the

following assumption:
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Assumption 4 for any given wt ∈ Wt,

(i) There exist a known functional G such that G
[
fVt+1|Wt,X∗

t
(·|wt, x

∗
t )

]
is monotonic in x∗t ;

(ii) Without loss of generality, we normalize x∗t as x∗t = G
[
fVt+1|Wt,X∗

t
(·|wt, x

∗
t )

]
.

This assumption pins down the value of x∗t identified from each eigenfunction fVt+1|Wt,X
∗
t
(·|wt, x

∗
t ).

This normalization allows x∗t to depends on wt, which accommodates the fact that X∗
t may

be correlated with Wt. Assumption 4 also provides an approach to estimate the model

following the identification procedure. As shown in Hu and Schennach (2008), such a nor-

malization may be very flexible. Because this procedure holds for all wt ∈ Wt, the density

fVt+1|Wt,X
∗
t
(·|wt, x

∗
t ) and operator LVt+1|wt,X

∗
t

are nonparametrically identified.

Remark: The functional G may map the density f to its mean, mode, median or other

quantile, for example, G [f ] =
∫
xf(x)dx or G [f ] = inf

{
x̃∗ :

∫
ex∗

−∞ f(x)dx ≥ τ
}

. Moreover,

the functional G may depend on wt. When G corresponds to a quantile, Matzkin (2003)

suggests that for a fixed wt one may have Vt+1 = hwt
(X∗

t , ε), where ε is independent of

X∗
t and has a standard uniform distribution. The function hwt

can be interpreted as the

inverse of the cdf FVt+1|Wt=wt,X
∗
t
. That implies the τ -th quantile of fVt+1|Wt,X

∗
t
(·|wt, x

∗
t ) is

hwt
(x∗t , τ). Assumption 4 then requires that hwt

(x∗t , τ ) is monotonic in x∗t for a known τ .

We may then normalize x∗t as x∗t = hwt
(x∗t , τ) without loss of generality. �

Step 2: Identification of fWt+1|Wt,X
∗
t
. In order to identify the density fWt+1|Wt,X∗

t
, we de-

fine the following operators LWt+1,wt|wt−1,Zt−2
: Lp (q(Wt−2)) → Lp (Wt+1) and LWt+1|wt,X

∗
t

:

Lp (X ∗
t ) → Lp (Wt+1) as

(
LWt+1,wt|wt−1,Zt−2

h
)
(x) =

∫
fWt+1,Wt|Wt−1,Zt−2

(x,wt|wt−1, z)h(z)dz,

(
LWt+1|wt,X

∗
t
h
)

(x) =

∫
fWt+1|Wt,X

∗
t
(x|wt, x

∗
t )h(x

∗
t )dx

∗
t .

One may show that LWt+1|wt,X
∗
t

is identified from

LWt+1|wt,X∗
t

= LWt+1,wt|wt−1,Zt−2
L−1

Vt+1,wt|wt−1,Zt−2
LVt+1|wt,X∗

t
. (9)

for any wt ∈ Wt. To see this, note that

LWt+1,wt|wt−1,Zt−2
= LWt+1|Wt,X

∗
t
Dwt|wt−1,X∗

t
L−1

X∗
t |wt−1,Zt−2

LVt+1,wt|wt−1,Zt−2
= LVt+1|Wt,X

∗
t
Dwt|wt−1,X∗

t
L−1

X∗
t |wt−1,Zt−2

(10)
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which leads to equation 9. Consequently, the density fWt+1|Wt,X
∗
t

is identified.

Remark: In the time-invariant case whereX∗
t = X∗, ∀t, the conditional density fWt+1|Wt,X∗

is the main object of interest, and is enough to permit CCP-based estimation of dynamic

discrete-choice models. However, when X∗
t varies over time, knowing fWt+1|Wt,X∗ is not

enough to permit CCP-based estimation. �

Step 3: Identification of fWt,X
∗
t
,Wt−1,Zt−2

. As an intermediate step, we show that the

density fWt,X
∗
t |Wt−1,Zt−2

is also identified. With LVt+1|wt,X
∗
t

identified in the first step, the

density fWt,X
∗
t ,Wt−1,Wt−2

may also be identified as

fWt=wt,X
∗
t ,Wt−1,Wt−2

= L−1
Vt+1|wt,X

∗
t
fVt+1,Wt=wt,Wt−1,Wt−2

.

for any given wt ∈ Wt. Given the known mapping from Wt−2 to Zt−2, the identifica-

tion of fWt,X
∗
t ,Wt−1,Wt−2

implies that of fWt,X
∗
t |Wt−1,Zt−2

. Moreover, because the density

of Wt−1, Zt−2 is identified from the data, the conditional density fWt,X
∗
t |Wt−1,Wt−2

is also

identified.

Step 4: Identification of fWt,X
∗
t
,Wt−1,X∗

t−1
. Finally, we show that the density of interest

fWt,X
∗
t ,Wt−1,X∗

t−1
is identified. Assumption 1(i) implies

fWt,X
∗
t |Wt−1,Zt−2

=

∫
fWt,X

∗
t |Wt−1,X∗

t−1
fX∗

t−1
|Wt−1,Zt−2

dx∗t−1. (11)

The density fWt,X
∗
t |Wt−1,Zt−2

on the left hand side of equation 11 is identified in the previous

step. Thus far, we have only used the four observations {Wt+1,Wt,Wt−1,Wt−2}. In order

to identify the density fX∗
t−1

|Wt−1,Zt−2
on the right hand side of equation 11, we use one

more period of the data Wt−3. Replacing t by t− 1 in the previous three steps implies that

the density of {Wt,Wt−1,Wt−2,Wt−3} identifies fWt−1,X∗
t−1

|Wt−2,Zt−3
for Zt−3 = q(Wt−3).

In turn, we can identify the density fX∗
t−1

|Wt−1,Wt−2
from fWt−1,X∗

t−1
,Wt−2,Zt−3

as

fX∗
t−1

,Wt−1,Wt−2
=

∫
fWt−1,X∗

t−1
|Wt−2,Zt−3

fWt−2,Zt−3
dzt−3.

Given the known mapping q from Wt−2 to Zt−2, we can identify fX∗
t−1

|Wt−1,Zt−2
.

Now that the densities fWt,X
∗
t |Wt−1,Zt−2

and fX∗
t−1

|Wt−1,Zt−2
in equation 11 have been identi-

fied, the density of interest fWt,X
∗
t |Wt−1,X∗

t−1
may be identified under the following assump-
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tion. Define Lwt,X
∗
t |wt−1,X∗

t−1
: Lp

(
X ∗

t−1

)
→ Lp (X ∗

t ),

(
Lwt,X

∗
t |wt−1,X∗

t−1
h
)

(x∗t ) =

∫
fWt,X

∗
t |Wt−1,X∗

t−1
(wt, x

∗
t |wt−1, x

∗
t−1)h(x

∗
t−1)dx

∗
t−1.

We assume

Assumption 5 for any wt−1 ∈ Wt−1 and wt ∈ Wt, Lwt,X
∗
t |wt−1,X∗

t−1
is one-to-one.

When X∗
t is discrete, this assumption requires that the support of X ∗

t is time-invariant,

i.e., X ∗
t−1 = X ∗

t . Under assumption 5, one can show that the density fWt,X
∗
t |Wt−1,X∗

t−1
is

identified from equation 11. We summarize the main identification results as follows:

Theorem 1 Under the assumptions 1, 2, 3, 4, and 5, the density fWt+1,Wt,Wt−1,Wt−2,Wt−3

uniquely determines the density fWt,X
∗
t |Wt−1,X∗

t−1
.

Proof. see appendix.

In the case where X∗
t is discrete, the whole identification procedure still holds, which is

presented in detail in the appendix. This result implies that the whole dynamic process

{Wt, X
∗
t } is identified even if we only observe {Wt}. Moreover, the density fWt−1,X∗

t−1
is

identified from fWt−1,X∗
t−1,Wt−2,Xt−3

, so that the unconditional density fWt,X
∗
t ,Wt−1,X∗

t−1
is

also identified from fWt+1,Wt,Wt−1,Wt−2,Wt−3
.

3 Comments on Assumptions in Specific Example: Rust’s

(1987) Engine Replacement Model

Because some of the assumptions that we made for our identification argument are quite

abstract, in this section we discuss these assumptions in the context of a version of Rust’s

(1987) bus-engine replacement model, augmented to allow for persistent unobserved state

variables. As we remarked before, in this model, Wt = (Yt,Mt), where Yt is the indicator

that the bus engine was replaced in week t, and Mt is the mileage since the last engine

replacement.

Because the stylized model we consider here is fully parametric, it may be identified without

needing our identification results. However, what we focus on here is not the identifiabil-
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ity of this model, but rather whether data generated from this model would allow us to

nonparametrically identify the Markov kernel Wt, X
∗
t |Wt−1, X

∗
t−1.

We introduce two specifications of the model, which differ in how the unobserved state

variable X∗
t enters. In both specifications, we assume that X ∗

t evolves as a first-order

Markov process, which can depend on past realizations of Yt and Mt. For technical reasons

(as will be clear below), we will restrict X∗
t to have a bounded support: for [L,U ] such that

−∞ < L < U < +∞,

X∗
t =

{
0.5X∗

t−1 + 0.3ψ (Mt−1) + 0.2ν t if Yt−1 = 0

0.8X∗
t−1 + 0.2νt if Yt−1 = 1

(12)

with

ψ (Mt−1) = L+ (U − L)
exp (Mt−1) − 1

exp (Mt−1) + 1
,

where νt is a truncated standard normal shock over the interval [L,U ], distributed inde-

pendently over weeks t, and the ψ(·) function maps mileage Mt−1 ∈ [0,+∞) into [L,U ].

We also assume that the support of the initial value X ∗
0 is [L,U ], which guarantees that

the support of X∗
t is [L,U ] for all t. Hence, X∗

t |X
∗
t−1, Yt−1,Mt−1 is distributed with density

determined by fνt
(·). Furthermore, we assume that the characteristic function of ν t satisfies

that φνt
(s) 6= 0 for any real s, which simply requires L + U 6= 0. This restriction on φνt

guarantees that the operator corresponding to the density fX∗
t |X

∗
t−1

,Yt−1,Mt−1
is injective.

Let St ≡ (Mt, X
∗
t ) denote the persistent state variables in this model. Following Rust

(1987), we assume that the single-period utility from each choice is additive in a function

of the state variables St, and a choice-specific non-persistent preference shock:

ut =

{
u0(St) + ε0t if Yt = 0

u1(St) + ε1t if Yt = 1

where ε0t and ε1t are i.i.d. Type I Extreme Value shocks, which are also independent over

time, and also independent of the state variables St.

Specification A In this specification, the choice-specific utility functions are:
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u0(St) = −c(Mt) +X∗
t

u1(St) = −RC.
(13)

In the above, c(Mt) denotes the maintenance cost function, which is increasing in mileage

Mt, and 0 < RC < +∞ denotes the cost of replacing the engine. We also assume that the

maintenance cost function c(·) is bounded below and above:

c(0) = 0; lim
M→+∞

c(M) = c̄ < +∞.

Mileage evolves as:

Mt+1 =

{
Mt + ηt+1 if Yt = 0

ηt+1 if Yt = 1
(14)

where the incremental mileage ηt+1 > 0 is uniformly distributed U [0, 1],5 independent across

weeks, and independent of (X∗
t , ε0t, ε1t). �

Specification B In this second specification, the agent’s per-period utility functions are

given by:

u0(St) = −c(Mt)

u1(St) = −RC.
(15)

with the same assumptions on RC and c(·) as in Specification A. Mileage evolves as:

Mt+1 =

{
Mt + ηt+1 · exp(X∗

t+1) if Yt = 0

ηt+1 · exp(X∗
t+1) if Yt = 1.

(16)

Here, the incremental mileage ηt+1 · exp(X∗
t+1) is distributed as a mixture of a uniform and

truncated lognormal distribution. �

Finally, for the dimension-reducing mappings g(·) and q(·) introduced at the beginning of

5For this to be reasonable, assume that mileage is measured in units of 10,000 miles.
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Section 3, we use:

Vt+1 = g(Wt+1) = Mt+1

Zt−2 = q(Wt−2) = Mt−2.

That is, the g(·) and q(·) mappings pick out the continuous component of Wt, which is just

the mileage Mt.

The main difference between the two specifications is that in Specification A, the unob-

served state variable X∗
t affects utilities directly (and therefore the CCP’s), but not the

mileage process. In Specification B, X∗
t directly affects the evolution of mileage, but not

the agent’s utilities. We will see that these two specifications differ in how well they satisfy

the assumptions of the identification proof.

Given the assumptions so far, the conditional choice probabilities take the multinomial logit

form (for Yt = 0, 1):

P (Yt|St) =
exp (VYt

(St))∑1
y=0 exp (Vy(St))

where Vy(St) is the choice-specific value function in period t, which is defined recursively

by

Vy(St) = uy(St) + βE


log





1∑

y′=0

exp
(
Vy′(St+1

)


 |Yt = y, St


 .

Assumption 1 has already been discussed in much detail thus far, and it is satisfied for both

specifications. We now comment on each remaining assumption in turn.

Assumption 2 Assumption 2 contains two “injectivity” (or one-to-one) assumptions, and

we consider both in some detail. The first requirement is that: for all wt ∈ Wt, there exists

wt−1 such that LMt+1,wt|wt−1,Mt−2
is one-to-one. (Note that we have substituted Mt+1 for

g(Wt+1), and Mt−2 for q(Wt−2).)

Consider Specification A, and consider wt such that Yt = 1 (so that the engine is replaced in

period t). In this case, Mt+1|Yt = 1 is uniformly distributed on [0, 1], and does not depend

stochastically on either wt−1 or Mt−2. Hence, the one-to-one assumption fails.
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Now consider Specification B, using the same wt such that Yt = 1. Because X∗
t directly

enters the mileage process, the distribution of Mt+1 depends on X∗
t+1. Similarly, Mt−2 is

a mixture of a truncated lognormal with a uniform random variable, and this distribution

depends on X∗
t−2. Since (X∗

t+1, X
∗
t−2) are correlated, conditional on wt−1 (which does not

include X∗
t−1), the one-to-one assumption should be satisfied.

The second requirement in Assumption 2 requires that, for all wt, the mapping LMt+1|wt,X∗
t

is

one-to-one. As before, consider a value wt such that Yt = 1. In Specification A, Mt+1|wt, X
∗
t

is uniformly distributed on [0, 1], regardless of the value of X ∗
t . Hence, the one-to-one

requirement fails. For Specification B, however, Mt+1 is distributed according to a mixture

distribution which depends on X∗
t+1. Given the serial correlation between X∗

t+1 and X∗
t ,

the one-to-one assumption should be satisfied.

Assumption 3 Assumption 3 concerns the behavior of fWt|Wt−1,X∗
t−1

, at fixed values of

wt, wt−1 but holding for all values of X∗
t . We focus here on the sufficient condition (7),

given right before Assumption 3, that for given (wt, wt−1), the density fWt|Wt−1,X∗
t

must be

bounded strictly between 0 and +∞. We note that

fWt|Wt−1,X∗
t

= fYt|Mt,X
∗
t
· fMt|X∗

t ,Yt−1,Mt−1
.

The mileage transition fMt|X∗
t ,Yt−1,Mt−1

is a uniform distribution, so it is bounded away from

zero and +∞. Moreover, the CCP fYt|Mt,X
∗
t

is a logit probability. Because the per-period

utilities (under both specification A and B), net of the ε’s, are bounded away from −∞ and

+∞, the logit choice probabilities are also bounded away from zero.

The bounded support assumption on the observed state variableMt is crucial here. However,

in practice, these assumptions on Mt imply very little loss in generality, because typically in

estimating these models, one can take the upper and lower bounds on Mt from the observed

data.

Assumption 4 Assumption 4 requires that there exist a known functional G such that

G
[
fMt+1|Mt,Yt,X

∗
t
(·|mt, yt, x

∗
t )

]
is monotonic in x∗t . Let the functional G map a density f to

its median, i.e., G [f ] = inf
{
x̃∗ :

∫
ex∗

−∞ f(x)dx ≥ 0.5
}

. Equations 12 and 16 imply that

Mt+1 =

{
Mt + ηt+1 · exp(0.2ν t+1) · exp(0.3ψ (Mt)) · exp(0.5X∗

t ) if Yt = 0

ηt+1 · exp(0.2ν t+1)) · exp(0.8X∗
t ) if Yt = 1.

(17)
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Let constant Cmed stand for the median of the random variable ηt+1 · exp(0.2ν t+1), which is

a product of a uniform and a truncated lognormal random variable. Given the distribution

of ηt+1 and νt+1 and the value of (yt,mt), we have

G
[
fMt+1|Mt,Yt,X

∗
t
(·|mt, yt, x

∗
t )

]
=

{
mt +Cmed · exp(0.3ψ (mt)) · exp(0.5x∗t ) if yt = 0

Cmed · exp(0.8x∗t ) if yt = 1,

which is monotonic in x∗t . The normalization just requires redefining x∗t according the the

equation above in the whole identification procedure.

Assumption 5 This assumption requires that, for a given pair wt, wt−1, the Markov

transition kernel LWt,X
∗
t |Wt−1,X∗

t−1
is one-to-one. For both specifications of the Rust model,

we can factorize

fWt,X
∗
t |Wt−1,X∗

t−1
= fYt|Mt,X

∗
t
· fMt|X∗

t ,Yt−1,Mt−1
· fX∗

t |X
∗
t−1

,Yt−1,Mt−1
.

Because fX∗
t |X

∗
t−1

,Yt−1,Mt−1
is a truncated normal density which is differentiable and positive

everywhere on its support, the one-to-one requirement is satisfied unless there are wt−1, wt

such that the CCP fYt|Mt,X
∗
t

and the mileage transition fMt|X∗
t ,Yt−1,Mt−1

are equal to zero for

multiple values of X∗
t . However, our support assumptions (see discussion under Assumption

3 before) already imply that both of these quantities are bounded away from zero.

4 Using the Markov Kernel Wt, X
∗
t |Wt−1, X

∗
t−1 to Identify DDC

models

The identification of the Markov kernel Wt, X
∗
t |Wt−1, X

∗
t−1 is only the first step in es-

tablishing nonparametric identification of the underlying dynamic model. However, once

Wt, X
∗
t |Wt−1, X

∗
t−1 can be identified, nonparametric identification of the remaining parts of

the models – particularly, the per-period utility functions – can proceed by straightforward

application of the identification results in Magnac and Thesmar (2002) and Bajari, Cher-

nozhukov, Hong, and Nekipelov (2007), which were developed for dynamic models without

persistent latent variables X∗
t . In this section, we use the identification arguments in Ba-

jari, Chernozhukov, Hong, and Nekipelov (2007) to show nonparametric identification of

the per-period utility functions once the nonparametric identification of Wt, X
∗
t |Wt−1, X

∗
t−1
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has been established.

We make the following assumptions, which are standard in this literature (except for the

inclusion of X∗
t as the unobserved state variable):

1. Agents are optimizing in an infinite-horizon, stationary setting. Hence, Wt, X
∗
t |Wt−1X

∗
t−1

is identical for all periods t. Therefore, in the rest of this section, we use primes ′’s to

denote next-period values.

2. Actions Y are chosen from the set Y = {0, 1, . . . ,K}.

3. The state variables are S ≡ (M,X∗).

4. The per-period utility from taking action y ∈ Y in period t is:

uy(St) + εy,t, ∀y ∈ Y.

The εy,t’s are utility shocks which are independent of St, and distributed i.i.d with

known distribution F (ε) across periods t and actions y. Let ~εt ≡ (ε0,1, ε1,t, . . . , εK,t).

5. From the data, the CCP’s

py(S) ≡ Prob(Y = 1|S),

and the Markov transition kernel for S, denoted p(S ′|Y, S), are identified. Nonpara-

metric identification of these two elements was the main result demonstrated in Section

2 of this paper.

6. u0(S), the per-period utility from Y = 0, is normalized to zero, for all S.

7. β, the discount factor, is known.6

Following the arguments in Magnac and Thesmar (2002) and Bajari, Chernozhukov, Hong,

and Nekipelov (2007), we will show the nonparametric identification of uy(·), y = 1, . . . ,K,

the per-period utility functions for all action except Y = 0.

The Bellman equation for this dynamic optimization problem is

V (S,~ε) = max
y∈Y

(
uy(S) + εy + βES′,~ε′|Y,SV (S′,~ε′)

)

6Magnac and Thesmar (2002) discuss the possibility of identifying β via exclusion restrictions, but we do
not pursue that here.
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where V (S,~ε) denotes the value function. We define the choice-specific value function as

Vy(S) ≡ uy(S) + βES′,~ε′|Y,SV (S′,~ε′).

Given these definitions, an agent’s optimal choice when the state is S is given by

y∗(S) = argmaxy∈Y (Vy(S) + εy) .

Hotz and Miller (1993) and Magnac and Thesmar (2002) show that in this setting, there

is a known one-to-one mapping, q(S) : R
K → R

K , which maps the K-vector of choice

probabilities (p1(S), . . . , pK(S)) to theK-vector (∆1(S), . . . ,∆K(S)), where ∆y(S) denotes

the difference in choice-specific value functions

∆y(S) ≡ Vy(S) − V0(S).

Let the i-th element of q(p1(S), . . . , pK(S)), denoted qi(S), be equal to ∆i(S). The known

mapping q derives just from F (ε), the known distribution of the utility shocks.

Hence, since the choice probabilities can be identified from the data, and the mapping q is

known, the value function differences ∆1(S), . . . ,∆K(S) is also known.

Next, we note that the choice-specific value function also satisfies a Bellman-like equation:

Vy(S) = uy(S) + βES′|S,Y

[
E~ε′ max

y′∈Y
(Vy′(S′) + ε′y)

]

= uy(S) + βES′|S,Y

[
G(∆1(S

′), . . . ,∆K(S′)) + V0(S
′)
] (18)

where G(· · · ) denotes McFadden’s “social surplus” function, for random utility models (cf.

Rust (1994, pp. 3104ff)). Like the q mapping, G is a known function, which depends just

on F (ε), the known distribution of the utility shocks.

From the normalization assumption that u0(S) = 0, ∀S, we can write the Bellman equation

for V0(S) as

V0(S) = βES′|S,Y

[
G(∆1(S

′), . . . ,∆K(S′)) + V0(S
′)
]
. (19)

In this equation, everything is known (including, importantly, the distribution of S ′|S, Y ),

except the V0(·) function. Hence, by iterating over Eq. (19), we can recover the V0(S)
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function. Once V0(·) is known, the other choice-specific value functions can be recovered as

Vy(S) = ∆y(S) + V0(S), ∀y ∈ Y, ∀S.

Finally, the per-period utility functions uy(S) can be recovered from the choice-specific

value functions as

uy(S) = Vy(S) − βES′|S,Y

[
G(∆1(S

′), . . . ,∆K(S′)) + V0(S
′)
]
, ∀y ∈ Y, ∀S,

where everything on the right-hand side is known.

Remark: For the case where F (ε) is the Type 1 Extreme Value distribution, the social

surplus function is

G(∆1(S), . . . ,∆K(S)) = log


1 +

K∑

y=1

exp(∆y(S))




and the mapping q is such that

qy(S) = ∆y(S) = log(py(S)) − log(p0(S)), ∀y = 1, . . . K,

where p0(S) ≡ 1 −
∑K

y=1 py(S). �

5 Concluding remarks

In this paper, we have considered the identification of a Markov process {Wt, X
∗
t } for

t = 1, 2, ..., T when only {Wt} for t = 1, 2, ..., T is observed. We showed that the joint dis-

tribution fWt,X
∗
t ,Wt−1,X∗

t−1
is identified from the observed distribution of the five observations

Wt+1,Wt,Wt−1,Wt−2,Wt−3 under reasonable assumptions. Identification of fWt,X
∗
t ,Wt−1,X∗

t−1

is a crucial input in methodologies for estimating dynamic models based on the “conditional-

choice-probability (CCP)” approach pioneered by Hotz and Miller.

In the identification arguments, we have not invoked a stationarity assumption, which

would require that the fWt,X
∗
t ,Wt−1,X∗

t−1
be invariant across periods t. Because of this, our

identification argument works in both stationary and non-stationary settings. One caveat

is that, because we require the five observations Wt+1,Wt,Wt−1,Wt−2,Wt−3 to identify

fWt,X
∗
t ,Wt−1,X∗

t−1
for every t, we would only be able to identify fWt,X

∗
t ,Wt−1,X∗

t−1
from period
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t = 4, . . . T − 1.

Another assumption we made is that the unobserved state variable X ∗
t is scalar-valued. We

believe the proof can be extended to cases where X ∗
t is a multivariate process. This may

enable our identification procedure to be applied to dynamic game settings, where Mt and

X∗
t may contain the set of, respectively, observed and unobserved state variables for all

agents in the game.

Finally, this paper has focused completely on identification, but not estimation. While

our identification proof is constructive, and can be mimicked directly for estimation, it is

cumbersome to invert the functional operators computationally. For this reason, it may be

more convenient to estimate using a semi-nonparametric sieve maximum likelihood proce-

dure (Carroll, Chen, and Hu (2008)). In ongoing work, we are applying our identification

results to estimate dynamic discrete-choice models with unobserved state variables.
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A Proofs

Proof. (Theorem 1)

We prove the identification result in six steps. First, we show an equation which links the

observed and the unobserved densities; Second, such an equation implies a relationship be-

tween corresponding linear operators; Third, we reduce the number of unknown by showing

that an observed operator has an inherent eigenvalue-eigenfunction decomposition; Fourth,

the uniqueness of the decomposition implies the identification of fVt+1|Wt,X
∗
t
; Fifth, we show

that fWt+1|Wt,X∗
t

and fWt,X
∗
t ,Wt−1,Zt−2

are also identified; Finally, the identification of the

density fWt,X
∗
t |Wt−1,X∗

t−1
follows.

First, we show that assumption 1 implies

fWt+1,Wt|Wt−1,Wt−2
=

∫
fWt+1|Wt,X

∗
t
fWt|Wt−1,X∗

t
fX∗

t |Wt−1,Wt−2
dx∗t . (20)

For simplicity, we omit all the arguments in the density functions. Assumption 1(i) implies

that

fWt+1,Wt,Wt−1,Wt−2

=

∫ ∫
fWt+1,Wt,Wt−1,Wt−2,X∗

t ,X∗
t−1
dx∗t dx

∗
t−1

=

∫ ∫
fWt+1|Wt,Wt−1,Wt−2,X∗

t ,X∗
t−1
fWt,X

∗
t |Wt−1,Wt−2,X∗

t−1
fWt−1,Wt−2,X∗

t−1
dx∗t dx

∗
t−1

=

∫ ∫
fWt+1|Wt,X

∗
t
fWt,X

∗
t |Wt−1,X∗

t−1
fWt−1,Wt−2,X∗

t−1
dx∗tdx

∗
t−1

=

∫ ∫
fWt+1|Wt,X

∗
t
fWt|Wt−1,X∗

t ,X∗
t−1
fX∗

t |Wt−1,X∗
t−1
fWt−1,Wt−2,X∗

t−1
dx∗t dx

∗
t−1

=

∫ ∫
fWt+1|Wt,X

∗
t
fWt|Wt−1,X∗

t ,X∗
t−1
fX∗

t |Wt−1,Wt−2,X∗
t−1
fWt−1,Wt−2,X∗

t−1
dx∗t dx

∗
t−1

=

∫ ∫
fWt+1|Wt,X

∗
t
fWt|Wt−1,X∗

t ,X∗
t−1
fX∗

t ,X∗
t−1,Wt−1,Wt−2

dx∗t dx
∗
t−1.
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Assumption 1(ii) then implies that

fWt+1,Wt,Wt−1,Wt−2

=

∫
fWt+1|Wt,X

∗
t
fWt|Wt−1,X∗

t

(∫
fX∗

t ,X∗
t−1

,Wt−1,Wt−2
dx∗t−1

)
dx∗t

=

∫
fWt+1|Wt,X

∗
t
fWt|Wt−1,X∗

t
fX∗

t ,Wt−1,Wt−2
dx∗t .

Second, we show that equation 20 implies an equality between corresponding operators.

Let Lp (X ), 1 ≤ p <∞ stand for the space of function h (·) with
∫
X |h(x)|pdx <∞, and let

L∞ (X ) denote the space of function h (·) with supx∈X |h(x)| <∞. For any 1 ≤ p ≤ ∞, we

define operators as follows: for any function h ∈ Lp (Wt−m)

L
Wt+1,wt|wt−1,Wt−2

: Lp (Wt−2) → Lp (Wt+1) ,

(
LWt+1,wt|wt−1,Wt−2

h
)
(x) =

∫
fWt+1,Wt|Wt−1,Wt−2

(x,wt|wt−1, z)h(z)dz,

LWt+1|wt,X
∗
t

: Lp (X ∗
t ) → Lp (Wt+1) ,

(
LWt+1|wt,X

∗
t
h
)

(x) =

∫
fWt+1|Wt,X

∗
t
(x|wt, x

∗
t )h(x

∗
t )dx

∗
t ,

LX∗
t |wt−1,Wt−2

: Lp (Wt−2) → Lp (X ∗
t ) ,

(
LX∗

t |wt−1,Wt−2
h
)

(x∗t ) =

∫
fX∗

t |Wt−1,Wt−2
(x∗t |wt−1, z)h(z)dz,

Dwt|wt−1,X∗
t

: Lp (X ∗
t ) → Lp (X ∗

t ) ,
(
Dwt|wt−1,X∗

t
h
)

(x∗t ) = fWt|Wt−1,X∗
t
(wt|wt−1, x

∗
t )h (x∗t ) .

Notice that the operator Dwt|wt−1,X∗
t

is a ”diagonal” or multiplication operator. As shown

in Hu and Schennach (2008), the identification of an operator, e.g, LVt+1|wt,X
∗
t
, is equivalent

to that of its corresponding density, e.g., fVt+1|Wt,X∗
t
. For any given (wt, wt−1) ∈ Wt×Wt−1,
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we have for any function h ∈ Lp (Wt−2)

(
L

Wt+1,wt|wt−1,Wt−2
h
)

(x)

=

∫
fWt+1,Wt|Wt−1,Wt−2

(x,wt|wt−1, z)h(z)dz

=

∫
fWt+1|Wt,X∗

t
(x|wt, x

∗
t )fWt|Wt−1,X∗

t
(wt|wt−1, x

∗
t )

(∫
fX∗

t |Wt−1,Wt−2
(x∗t |wt−1, z)h(z)dz

)
dx∗t

=

∫
fWt+1|Wt,X

∗
t
(x|wt, x

∗
t )fWt|Wt−1,X∗

t
(wt|wt−1, x

∗
t )

(
LX∗

t |wt−1,Wt−2
h
)

(x∗t ) dx
∗
t

=

∫
fWt+1|Wt,X

∗
t
(x|wt, x

∗
t )

(
Dwt|wt−1,X∗

t
LX∗

t |wt−1,Wt−2
h
)

(x∗t ) dx
∗
t

=
(
LWt+1|wt,X

∗
t
Dwt|wt−1,X∗

t
LX∗

t |wt−1,Wt−2
h
)

(x) .

Therefore, equation 20 is equivalent to

L
Wt+1,wt|wt−1,Wt−2

= LWt+1|wt,X
∗
t
Dwt|wt−1,X∗

t
LX∗

t |wt−1,Wt−2
. (21)

Let g ,q : R
d → R, and

Vt+1 = g(Wt+1),

Zt−2 = q (Wt−2) .

We may apply the same procedure to the joint density of {Vt+1,Wt,Wt−1, Zt−2} for any

(x,wt, wt−1, z) ∈ g (Wt+1) ×Wt ×Wt−1 × q(Wt−2) to obtain

L
Vt+1,wt|wt−1,Zt−2

= LVt+1|wt,X∗
t
Dwt|wt−1,X∗

t
LX∗

t |wt−1,Zt−2
, (22)

where

LVt+1,wt|wt−1,Zt−2
: Lp (q (Wt−2)) → Lp (g(Wt+1)) ,

(
LVt+1,wt|wt−1,Zt−2

h
)
(x) =

∫
fVt+1,Wt|Wt−1,Zt−2

(x,wt|wt−1, z) h(z)dz,

LVt+1|wt,X
∗
t

: Lp (X ∗
t ) → Lp (g(Wt+1)) ,

(
LVt+1|wt,X

∗
t
h
)

(x) =

∫
fVt+1|Wt,X

∗
t
(x|wt, x

∗
t )h(x

∗
t )dx

∗
t ,
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LX∗
t |wt−1,Zt−2

: Lp (q (Wt−2)) → Lp (X ∗
t ) ,

(
LX∗

t |wt−1,Zt−2
h
)

(x∗t ) =

∫
fX∗

t |Wt−1,Zt−2
(x∗t |wt−1, z)h(z)dz.

Notice that the operator LVt+1|wt,X∗
t

does not depend on wt−1 and LX∗
t |wt−1,Zt−2

does not

depend on wt. This important fact may help the identification of LVt+1|wt,X
∗
t

in equation

22.

Third, we show that an observed operator may have an inherent eigenvalue-eigenfunction

decomposition, where the eigenfunctions are fVt+1|Wt,X∗
t
(·|wt, x

∗
t ). For any wt ∈ Wt, we

consider with wt ∈ Wt, wt−1, wt−1 ∈ A (wt) ∩A (wt) , wt−1 6= wt−1, and wt 6= wt,

for (wt, wt−1) : LVt+1,wt|wt−1,Zt−2
= LVt+1|wt,X

∗
t
Dwt|wt−1,X∗

t
LX∗

t |wt−1,Zt−2
, (23)

for (wt, wt−1) : LVt+1,wt|wt−1,Zt−2
= LVt+1|wt,X∗

t
Dwt|wt−1,X∗

t
LX∗

t |wt−1,Zt−2
, (24)

for (wt, wt−1) : LVt+1,wt|wt−1,Zt−2
= LVt+1|wt,X

∗
t
Dwt|wt−1,X∗

t
LX∗

t |wt−1,Zt−2
, (25)

for (wt, wt−1) : LVt+1,wt|wt−1,Zt−2
= LVt+1|wt,X

∗
t
Dwt|wt−1,X∗

t
LX∗

t |wt−1,Zt−2
. (26)

Assumptions 2 and 3 guarantee that the inverse of the operators on the left hand side exist.

Eliminating LX∗
t |wt−1,Zt−2

in equations 23 and 24 leads to

A ≡ LVt+1,wt|wt−1,Zt−2
L−1

Vt+1,wt|wt−1,Zt−2

= LVt+1|wt,X
∗
t
Dwt|wt−1,X∗

t
LX∗

t |wt−1,Zt−2

(
LVt+1|wt,X

∗
t
Dwt|wt−1,X∗

t
LX∗

t |wt−1,Zt−2

)−1

= LVt+1|wt,X
∗
t
Dwt|wt−1,X∗

t
D−1

wt|wt−1,X∗
t
L−1

Vt+1|wt,X
∗
t
. (27)

Similarly, eliminating LX∗
t |wt−1,Zt−2

in equations 25 and 26 results in

B ≡ LVt+1,wt|wt−1,Zt−2
L−1

Vt+1,wt|wt−1,Zt−2

= LVt+1|wt,X
∗
t
Dwt|wt−1,X∗

t
D−1

wt|wt−1,X∗
t
L−1

Vt+1|wt,X
∗
t
. (28)
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We then eliminate L−1
Vt+1|wt,X

∗
t

in equations 27 and 28 to obtain

AB−1 ≡ LVt+1,wt|wt−1,Zt−2
L−1

Vt+1,wt|wt−1,Zt−2

(
LVt+1,wt|wt−1,Zt−2

L−1
Vt+1,wt|wt−1,Zt−2

)−1

= LVt+1|wt,X
∗
t
Dwt|wt−1,X∗

t
D−1

wt|wt−1,X∗
t
L−1

Vt+1|wt,X
∗
t
×

×
(
LVt+1|wt,X

∗
t
Dwt|wt−1,X∗

t
D−1

wt|wt−1,X∗
t
L−1

Vt+1|wt,X
∗
t

)−1

= LVt+1|wt,X
∗
t

(
Dwt|wt−1,X∗

t
D−1

wt|wt−1,X∗
t
Dwt|wt−1,X∗

t
D−1

wt|wt−1,X∗
t

)
L−1

Vt+1|wt,X∗
t

≡ LVt+1|wt,X
∗
t
Dwt,wt,wt−1,wt−1,X∗

t
L−1

Vt+1|wt,X
∗
t
, (29)

where

(
Dwt,wt,wt−1,wt−1,X∗

t
h
)
(x∗t )

=
(
Dwt|wt−1,X∗

t
D−1

wt|wt−1,X∗
t
Dwt|wt−1,X∗

t
D−1

wt|wt−1,X∗
t
h
)

(x∗t )

= k (wt, wt, wt−1, wt−1, x
∗
t ) h (x∗t ) ,

k (wt, wt, wt−1, wt−1, x
∗
t ) =

fWt|Wt−1,X∗
t
(wt|wt−1, x

∗
t )fWt|Wt−1,X∗

t
(wt|wt−1, x

∗
t )

fWt|Wt−1,X∗
t
(wt|wt−1, x

∗
t )fWt|Wt−1,X∗

t
(wt|wt−1, x

∗
t )
.

This equation implies that the observed operator AB−1 on the left hand side of equa-

tion 29 has an inherent eigenvalue-eigenfunction decomposition. The eigenfunctions are

fVt+1|Wt,X∗
t
(·|wt, x

∗
t ), which is normalized by

∫
fVt+1|Wt,X∗

t
(x|wt, x

∗
t )dx = 1. Notice that the

eigenfunction in LVt+1|Wt,X
∗
t

does not depend on wt, wt−1, or wt−1, while the eigenvalue in

Dwt,wt,wt−1,wt−1,X∗
t

may be different for a different wt, wt−1, or wt−1.

Fourth, we show that the uniqueness of the decomposition in equation 29. Notice that

the decomposition in equation 29 is similar to but more complicated than the decompo-

sition in Hu and Schennach (2008) or Carroll, Chen, and Hu (2008). Their results im-

ply that such a decomposition is unique under assumptions 3 and 4. We may show the

reasoning as follows. Suppose that for two indices x̂∗t 6= x̃∗t the two eigenvalues are the

same, i.e., k (wt, wt, wt−1, wt−1, x̂
∗
t ) = k (wt, wt, wt−1, wt−1, x̃

∗
t ) for some (wt, wt−1, wt−1) ∈

Wt ×Wt−1 ×Wt−1. Therefore, we can’t identify the two corresponding eigenfunctions. But

assumption 3 guarantees that there exist another (ŵt, w̃t−1, ŵt−1) ∈ Wt×Wt−1×Wt−1 such

that k (wt, ŵt, w̃t−1, ŵt−1, x̂
∗
t ) 6= k (wt, ŵt, w̃t−1, ŵt−1, x̃

∗
t ), which are two eigenvalues corre-

sponding to the same eigenfunctions fVt+1|Wt,X
∗
t
(·|wt, x̂

∗
t ) and fVt+1|Wt,X

∗
t
(·|wt, x̃

∗
t ). There-

fore, the eigenfunction fVt+1|Wt,X
∗
t
(·|wt, x

∗
t ) is identified up to the value of x∗t for any
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given wt ∈ Wt. Moreover, assumption 4 reveals the value of x∗t in each eigenfunction

fVt+1|Wt,X∗
t
(·|wt, x

∗
t ). Hence, the density fVt+1|Wt,X∗

t
or LVt+1|wt,X∗

t
is nonparametrically

identified for any given wt ∈ Wt.

Fifth, we show the identification of the density fWt+1|Wt,X∗
t
. Equations 20 and 22 imply for

any given wt ∈ Wt

L
Wt+1,wt|wt−1,Zt−2

L−1
Vt+1,wt|wt−1,Zt−2

LVt+1|wt,X
∗
t

= LWt+1|wt,X
∗
t
Dwt|wt−1,X∗

t
LX∗

t |wt−1,Zt−2

(
LVt+1|wt,X

∗
t
Dwt|wt−1,X∗

t
LX∗

t |wt−1,Zt−2

)−1
LVt+1|wt,X

∗
t

= LWt+1|wt,X
∗
t
,

where the left hand side is identified. Moreover, the following equation

fVt+1,Wt,Wt−1,Wt−2
=

∫
fVt+1|Wt,X

∗
t
fWt,X

∗
t ,Wt−1,Wt−2

dx∗t

implies that for any given wt ∈ Wt,

fVt+1,Wt=wt,Wt−1,Wt−2
= LVt+1|wt,X

∗
t
fWt=wt,X

∗
t ,Wt−1,Wt−2

.

Therefore, we identify fWt=wt,X
∗
t ,Wt−1,Wt−2

for any given wt ∈ Wt through

fWt=wt,X
∗
t ,Wt−1,Wt−2

= L−1
Vt+1|wt,X

∗
t
fVt+1,Wt=wt,Wt−1,Wt−2

.

In summary, the densities fWt+1|Wt,X
∗
t

and fWt,X
∗
t ,Wt−1,Wt−2

are identified from fWt+1,Wt,Wt−1,Wt−2
.

Given the known function q in Zt−2 = q (Wt−2), the identification of fWt,X
∗
t ,Wt−1,Wt−2

im-

plies that of fWt,X
∗
t ,Wt−1,Zt−2

.

Furthermore, we show that the operator corresponding to fWt,X
∗
t |Wt−1,Zt−2

is in factDwt|wt−1,X∗
t
LX∗

t |wt−1,Zt−2
.
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Similar to the proof of equation 20, we have

fWt,X
∗
t |Wt−1,Zt−2

=

∫
fWt,X

∗
t ,X∗

t−1
|Wt−1,Zt−2

dx∗t−1

=

∫
fWt,X

∗
t |Wt−1,X∗

t−1
,Zt−2

fX∗
t−1

|Wt−1,Zt−2
dx∗t−1

=

∫
fWt,X

∗
t |Wt−1,X∗

t−1
fX∗

t−1
|Wt−1,Zt−2

dx∗t−1

=

∫
fWt|Wt−1,X∗

t ,X∗
t−1
fX∗

t |Wt−1,X∗
t−1
fX∗

t−1
|Wt−1,Zt−2

dx∗t−1

=

∫
fWt|Wt−1,X∗

t
fX∗

t ,X∗
t−1

|Wt−1,Zt−2
dx∗t−1

= fWt|Wt−1,X∗
t
fX∗

t |Wt−1,Zt−2
. (30)

The corresponding operator of fWt|Wt−1,X∗
t
fX∗

t |Wt−1,Zt−2
is Dwt|wt−1,X∗

t
LX∗

t |wt−1,Zt−2
, which

is identified through equation 22 as follows:

Dwt|wt−1,X∗
t
LX∗

t |wt−1,Zt−2
= L−1

Vt+1|wt,X
∗
t
L

Vt+1,wt|wt−1,Zt−2
. (31)

Finally, we show the identification of the density fWt,X
∗
t |Wt−1,X∗

t−1
. Assumption 1 implies

fWt,X
∗
t |Wt−1,Zt−2

=

∫
fWt,X

∗
t |Wt−1,X∗

t−1
,Zt−2

fX∗
t−1

|Wt−1,Zt−2
dx∗t−1

=

∫
fWt,X

∗
t |Wt−1,X∗

t−1
fX∗

t−1
|Wt−1,Zt−2

dx∗t−1. (32)

The left hand side has been identified in the previous step. Thus far, we have only used the

four observations Wt+1,Wt,Wt−1,Wt−2. In order to identify the density fX∗
t−1

|Wt−1,Zt−2
on

the right hand side of equation 32, we use one more period of the data Wt−3 or Zt−3. Replac-

ing t by t− 1 in the previous procedure implies that the observed density fVt,Wt−1|Wt−2,Zt−3

uniquely determines fWt−1,X∗
t−1

|Wt−2,Zt−3
. Therefore, the density fX∗

t−1
|Wt−1,Zt−2

in equation

32 is identified from

fX∗
t−1

,Wt−1,Wt−2
=

∫
fWt−1,X∗

t−1
|Wt−2,Zt−3

fWt−2,Zt−3
dzt−3

with Zt−2 = q (Wt−2) for the known function q.

Given that fWt,X
∗
t |Wt−1,Zt−2

and fX∗
t−1

|Wt−1,Zt−2
are identified, equation 32 implies that the

density of interest fWt,X
∗
t |Wt−1,X∗

t−1
may be identified as follows. For any given wt−1 ∈ Wt−1
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and wt ∈ Wt, we define

Lwt,X
∗
t |wt−1,X∗

t−1
: Lp

(
X ∗

t−1

)
→ Lp (X ∗

t ) ,
(
Lwt,X

∗
t |wt−1,X∗

t−1
h
)

(x∗t ) =

∫
fWt,X

∗
t |Wt−1,X∗

t−1
(wt, x

∗
t |wt−1, x

∗
t−1)h(x

∗
t−1)dx

∗
t−1

and

LX∗
t−1

|wt−1,Zt−2
: Lp (q(Wt−2)) → Lp

(
X ∗

t−1

)
,

(
LX∗

t−1
|wt−1,Zt−2

h
) (
x∗t−1

)
=

∫
fX∗

t−1
|Wt−1,Zt−2

(x∗t−1|wt−1, z)h(z)dz.

As shown above, the corresponding operator of fWt|Wt−1,X∗
t
fX∗

t |Wt−1,Zt−2
isDwt|wt−1,X∗

t
LX∗

t |wt−1,Zt−2
,

which has been identified in equation 31. We then show that equation 32 implies

Dwt|wt−1,X∗
t
LX∗

t |wt−1,Zt−2
= Lwt,X∗

t |wt−1,X∗
t−1
LX∗

t−1
|wt−1,Zt−2

(33)

as follows. For any function h ∈ Lp (q(Wt−2)), equation 30 implies

(
Dwt|wt−1,X∗

t
LX∗

t |wt−1,Zt−2
h
)

(x∗t )

=

∫
fWt|Wt−1,X∗

t
(wt|wt−1, x

∗
t )fX∗

t |Wt−1,Zt−2
(x∗t |wt−1, z)h(z)dz

=

∫
fWt,X

∗
t |Wt−1,Zt−2

(wt, x
∗
t |wt−1, z)h(z)dz.

Equation 32 then implies

(
Dwt|wt−1,X∗

t
LX∗

t |wt−1,Zt−2
h
)

(x∗t )

=

∫ ∫
fWt,X

∗
t |Wt−1,X∗

t−1
(wt, x

∗
t |wt−1, x

∗
t−1)fX∗

t−1
|Wt−1,Zt−2

(x∗t−1|wt−1, z)dx
∗
t−1h(z)dz

=

∫
fWt,X

∗
t |Wt−1,X∗

t−1
(wt, x

∗
t |wt−1, x

∗
t−1)

(∫
fX∗

t−1
|Wt−1,Zt−2

(x∗t−1|wt−1, z)h(z)dz

)
dx∗t−1

=

∫
fWt,X

∗
t |Wt−1,X∗

t−1
(wt, x

∗
t |wt−1, x

∗
t−1)

(
LX∗

t−1
|wt−1,Zt−2

h
)

(x∗t−1)dx
∗
t−1

=
(
Lwt,X

∗
t |wt−1,X∗

t−1
LX∗

t−1
|wt−1,Zt−2

h
)

(x∗t ) .

Combining equations 31 and 33 leads to

Lwt,X
∗
t |wt−1,X∗

t−1
LX∗

t−1
|wt−1,Zt−2

= L−1
Vt+1|wt,X

∗
t
L

Vt+1,wt|wt−1,Zt−2
.
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Notice that assumptions 2, 3, and 5 imply that LX∗
t−1

|wt−1,Zt−2
is one-to-one. Since LX∗

t−1
|wt−1,Zt−2

and fX∗
t−1

|Wt−1,Zt−2
are identified, fWt=wt,X∗

t |Wt−1=wt−1,X∗
t−1

and Lwt,X∗
t |wt−1,X∗

t−1
are identi-

fied as

Lwt,X
∗
t |wt−1,X∗

t−1
=

(
L−1

Vt+1|wt,X
∗
t
L

Vt+1,wt|wt−1,Zt−2

)
L−1

X∗
t−1

|wt−1,Zt−2
.

for any given wt−1 ∈ Wt−1 and wt ∈ Wt. Hence, the density fWt,X
∗
t |Wt−1,X∗

t−1
is identified.

B Remarks

Example of fWt|Wt−1,X∗
t
satisfying Assumption 3 Because the second condition defin-

ing the set B(wt) is not completely obvious, here we present an example which satisfies the

condition. We seek a density fWt|Wt−1,X∗
t

such that k (wt, wt, wt−1, wt−1, x
∗
t ) ∈ (0,∞). Let

fWt|Wt−1,X∗
t
(wt|wt−1, x

∗
t ) = φ (wt − F (x∗t )) ,

where φ (·) is the pdf of the standard normal and F (·) is a strictly increasing cdf. Therefore,

fWt|Wt−1,X∗
t
(wt|wt−1, x

∗
t )

fWt|Wt−1,X∗
t
(wt|wt−1, x

∗
t )

=
φ (wt − F (x∗t ))

φ (wt − F (x∗t ))

= exp

[
−

1

2

[
(wt − F (x∗t ))

2 − (wt − F (x∗t ))
2
]]

Let

fWt|Wt−1,X∗
t
(wt|wt−1, x

∗
t ) =

1

0.5
φ

(
wt − F (x∗t )

0.5

)
,

and therefore,

fWt|Wt−1,X∗
t
(wt|wt−1, x

∗
t )

fWt|Wt−1,X∗
t
(wt|wt−1, x

∗
t )

=
φ

(
wt−F (x∗

t )
0.5

)

φ
(

wt−F (x∗
t )

0.5

)

= exp
[
−2

[
(wt − F (x∗t ))

2 − (wt − F (x∗t ))
2
]]
.
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The kernel function then becomes

k (wt, wt, wt−1, wt−1, x
∗
t ) =

fWt|Wt−1,X∗
t
(wt|wt−1, x

∗
t )fWt|Wt−1,X∗

t
(wt|wt−1, x

∗
t )

fWt|Wt−1,X∗
t
(wt|wt−1, x

∗
t )fWt|Wt−1,X∗

t
(wt|wt−1, x

∗
t )

=
exp

[
−1

2

[
(wt − F (x∗t ))

2 − (wt − F (x∗t ))
2
]]

exp
[
−2

[
(wt − F (x∗t ))

2 − (wt − F (x∗t ))
2
]]

= exp

[
3

2

(
w2

t − w2
t

)
− 3 (wt − wt)F (x∗t )

]

Thus, for any given (wt, wt, wt−1, wt−1), the kernel function k (wt, wt, wt−1, wt−1, x
∗
t ) is in

(0,∞) for any x∗t ∈ X ∗
t because F (x∗t ) ∈ [0, 1]. Assumption 3(ii) also holds in this example

because k (wt, wt, wt−1, wt−1, x
∗
t ) is monotonic in x∗t for any given (wt, wt, wt−1, wt−1). �

C Special case: a discrete unobserved state variable

In this section, we illustrate our identification strategy in the special case where X ∗
t is

discrete:

∀t, X∗
t ∈ X ∗ ≡ {1, 2, . . . , J} .

The main difference between this discrete case and the previous continuous case is that the

linear integral operators are replaced by matrices, which may be more straightforward.

Since we assume the unobserved state variable X ∗
t is discrete in this section, we first dis-

cretize the observed variable Wt and then use the discretized Wt to identify the distribution

involving the latent X∗
t . Let Wt be the support of Wt and W1

t , W
2
t , ..., WJ

t be a known

partition of Wt. We define a discrete variable Vt ∈ X ∗
t such that Vt = j if Wt ∈ Wj

t , i.e.,

Vt =
J∑

j=1

j × I
(
Wt ∈ Wj

t

)
,

where I (·) is the indicator function. This mapping corresponds to the known functions g

and q in the continuous case, which also implies we use Xt−2 as Zt−2 in the continuous case.

Given the proof of theorem 1, a number of equations and derivations are stated without

proof in this section.
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Step 1: Identification of fVt+1|Wt,X
∗
t
. Equations 2 and 3 implies for any x, z ∈ X ∗

t ,

wt ∈ Wt, and wt−1 ∈ Wt−1,

fVt+1,Wt|Wt−1,Vt−2
(x,wt|wt−1, z)

=
∑

x∗
t∈X

∗
t

fVt+1|Wt,X
∗
t
(x|wt, x

∗
t ) fWt|Wt−1,X∗

t
(wt|wt−1, x

∗
t ) fX∗

t |Wt−1,Vt−2
(x∗t |wt−1, z) .(34)

Define the J -by-J matrices

LVt+1,wt|wt−1,Vt−2
=

[
fVt+1,Wt|Wt−1,Vt−2

(i, wt|wt−1, j)
]
i,j
,

LVt+1|wt,X
∗
t

=
[
fVt+1|Wt,X

∗
t
(i|wt, j)

]
i,j
,

LX∗
t |wt−1,Vt−2

=
[
fX∗

t |Wt−1,Vt−2
(i|wt−1, j)

]
i,j
,

for i, j = 1, 2, ..., J and a J -by-J diagonal matrix

Dwt|wt−1,X∗
t

=



fWt|Wt−1,X∗

t
(wt|wt−1, 1) 0 0

0 ... 0

0 0 fWt|Wt−1,X∗
t
(wt|wt−1, J)




for wt ∈ Wt, wt−1 ∈ Wt−1. Given these definitions, we can write equation 34 in matrix

notation as

LVt+1,wt|wt−1,Vt−2
= LVt+1|wt,X

∗
t
Dwt|wt−1,X∗

t
LX∗

t |wt−1,Vt−2
. (35)

for any wt ∈ Wt, wt−1 ∈ Wt−1. Obviously, the unknown matrices on the right hand side

are not uniquely determined by the observed matrix on the left hand side without further

assumptions. Notice, however, that the matrix LVt+1|wt,X
∗
t

does not depend on wt−1 and

LX∗
t |wt−1,Vt−2

does not depend on wt. This important fact in equation 35 may help the

identification of LVt+1|wt,X
∗
t
.

We assume that for any given wt ∈ Wt there exists (wt, wt−1, wt−1) with wt 6= wt and wt−1 6=

wt−1 ∈ Wt−1 such that the matrices LVt+1,wt|wt−1,Vt−2
, LVt+1,wt|wt−1,Vt−2

, LVt+1,wt|wt−1,Vt−2
,

and LVt+1,wt|wt−1,Vt−2
are all invertible. This assumption is testable from the data. Equation
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35 then implies

for (wt, wt−1): LVt+1,wt|wt−1,Vt−2
= LVt+1|wt,X

∗
t
Dwt|wt−1,X∗

t
LX∗

t |wt−1,Vt−2
, (36)

for (wt, wt−1): LVt+1,wt|wt−1,Vt−2
= LVt+1|wt,X∗

t
Dwt|wt−1,X∗

t
LX∗

t |wt−1,Vt−2
, (37)

for (wt, wt−1): LVt+1,wt|wt−1,Vt−2
= LVt+1|wt,X

∗
t
Dwt|wt−1,X∗

t
LX∗

t |wt−1,Vt−2
, (38)

for (wt, wt−1): LVt+1,wt|wt−1,Vt−2
= LVt+1|wt,X

∗
t
Dwt|wt−1,X∗

t
LX∗

t |wt−1,Vt−2
, (39)

where all the left hand side matrices are observed. The key identification procedure includes

three eliminations. First, eliminating matrix LX∗
t |wt−1,Vt−2

in equations 36 and 37 leads to

A ≡ LVt+1,wt|wt−1,Vt−2
L−1

Vt+1,wt|wt−1,Vt−2

= LVt+1|wt,X
∗
t
Dwt|wt−1,X∗

t
D−1

wt|wt−1,X∗
t
L−1

Vt+1|wt,X
∗
t
. (40)

Second, eliminating LX∗
t |wt−1,Vt−2

in equations 38 and 39 results in

B ≡ LVt+1,wt|wt−1,Vt−2
L−1

Vt+1,wt|wt−1,Vt−2
(41)

= LVt+1|wt,X
∗
t
Dwt|wt−1,X∗

t
D−1

wt|wt−1,X∗
t
L−1

Vt+1|wt,X∗
t
.

Notice that matrices A and B are still directly estimable from the data. Third, we eliminate

LVt+1|wt,X∗
t

in equation 40 and 41 to obtain

AB−1 = LVt+1|wt,X
∗
t
Dwt,wt,wt−1,wt−1,X∗

t
L−1

Vt+1|wt,X
∗
t
, (42)

where

Dwt,wt,wt−1,wt−1,X∗
t

= Dwt|wt−1,X∗
t
D−1

wt|wt−1,X∗
t
Dwt|wt−1,X∗

t
D−1

wt|wt−1,X∗
t
.

Since Dwt|wt−1,X∗
t

is diagonal, the matrix Dwt,wt,wt−1,wt−1,X∗
t

is also diagonal with j-th di-

agonal entry equal to

k (wt, wt, wt−1, wt−1, j) =
fWt|Wt−1,X∗

t
(wt|wt−1, j)fWt|Wt−1,X∗

t
(wt|wt−1, j)

fWt|Wt−1,X∗
t
(wt|wt−1, j)fWt|Wt−1,X∗

t
(wt|wt−1, j)

.

Therefore, equation 42 implies that the observed matrix AB−1 on the left hand side has an

eigenvalue-eigenvector decomposition. Each value on the diagonal of Dwt,wt,wt−1,wt−1,X∗
t

is

an eigenvalue and each corresponding column of LVt+1|wt,X
∗
t

is a corresponding eigenvector.

An eigenvector is automatically normalized because the sum of each column of LVt+1|wt,X
∗
t
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is 1.

One ambiguity left is the possibility that the eigenvalues may not be distinctive. There-

fore, we need to assume that for any wt ∈ Wt, there exists a (wt, wt−1, wt−1) such that 0 <

k ( wt, wt, wt−1, wt−1, j) <∞ for all j ∈ X ∗
t and k ( wt, wt, wt−1, wt−1, j1) 6= k (wt, wt, wt−1, wt−1, j2)

for j1 6= j2. This assumption can be relaxed to assumption 3 when equation 42 holds for

another (ŵt, w̃t−1, ŵt−1). Then all the unknowns on the right hand side of equation 42 are

uniquely determined by the decomposition of the observed matrix on the left hand side.

This matrix LVt+1|wt,X∗
t

is identified up to the permutation of its columns, which implies

the identification of fVt+1|Wt,X
∗
t
(·|wt, x

∗
t ) up to the value of x∗t .

In order to identify how the USV X∗
t changes, it is still useful to reveal its value. As shown

in Hu (2007), there are various ways to fix the value of x∗t . For example, we may normalize

the value of x∗t be the median or another quantile of the distribution fVt+1|Wt,X∗
t
(·|wt, x

∗
t ).

As required in assumption 4, such a quantile needs to be different for a different value of

x∗t . In summary, the conditional density fVt+1|Wt,X∗
t
(·|wt, x

∗
t ) is identified for any wt ∈ Wt.

Step 2: Identification of fWt+1|Wt,X
∗
t
. We then show that the identification of fVt+1|Wt,X

∗
t

implies that of fWt+1|Wt,X∗
t
. Define for any given wt+1 ∈ Wt+1, wt ∈ Wt, and wt−1 ∈ Wt−1,

−→
f Wt+1,Wt|Wt−1,Vt−2

=
[
fWt+1,Wt|Wt−1,Vt−2

(wt+1, wt|wt−1, 1), ..., fWt+1 ,Wt|Wt−1,Vt−2
(wt+1, wt|wt−1, J)

]
,

−→
f Wt+1|Wt,X

∗
t

=
[
fWt+1|Wt,X

∗
t
(wt+1|wt, 1), ..., fWt+1 |Wt,X

∗
t
(wt+1|wt, J)

]
.

One can show that for any wt ∈ Wt

−→
f Wt+1|Wt,X∗

t
=

−→
f Wt+1,Wt|Wt−1,Vt−2

(
LVt+1,wt|wt−1,Vt−2

)−1
LVt+1|wt,X∗ .

Therefore, the density fWt+1|Wt,X
∗
t

is identified.

Step 3: Identification of fWt,X
∗
t
,Wt−1,Vt−2

. Moreover, the identification of fVt+1|Wt,X
∗
t

also implies that of fWt,X
∗
t ,Wt−1,Vt−2

. Equation 34 also implies

fVt+1,Wt,Wt−1,Vt−2
=

∑

X∗
t ∈X

∗
t

fVt+1|Wt,X
∗
t
fWt,X

∗
t ,Wt−1,Vt−2

. (43)

Define for any given wt ∈ Wt and wt−1 ∈ Wt−1,

Lwt,X
∗
t ,wt−1,Vt−2

=
[
fWt,X

∗
t ,Wt−1,Vt−2

(wt, i|wt−1, j)
]
i,j
.
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Equation 43 is equivalent to7

LVt+1,wt|wt−1,Vt−2
= LVt+1|wt,X∗Lwt,X

∗
t ,wt−1,Vt−2

.

Therefore, the identification of LVt+1|wt,X∗ implies that Lwt,X
∗
t ,wt−1,Vt−2

is identified as

L−1
Vt+1|wt,X∗LVt+1,wt|wt−1,Vt−2

for any wt ∈ Wt. Consequently, the density fWt,X
∗
t ,Wt−1,Vt−2

is identified.

Step 4: Identification of fWt,X
∗
t
,Wt−1,X∗

t−1
. So far, we have only used the four observa-

tions Wt+1,Wt,Wt−1,Wt−2. In the last step, we use one more period of the data Wt−3 to

identify the desired joint density fWt,X
∗
t ,Wt−1,X∗

t−1
.

Replacing t by t−1 in the previous three steps implies that the additional information from

{Wt,Wt−1,Wt−2,Wt−3} or the density fWt,Wt−1,Wt−2,Wt−3
identifies fWt−1,X∗

t−1
,Wt−2,Vt−3

. In

turn, we can identify the density fX∗
t−1

|Wt−1,Vt−2
given the known mapping from Wt−2 to

Vt−2.

We then use the identified densities fWt,X
∗
t ,Wt−1,Vt−2

and fX∗
t−1

|Wt−1,Vt−2
to identify fWt,X

∗
t |Wt−1,X∗

t−1
.

The Markov property implies

fWt,X
∗
t |Wt−1,Vt−2

(wt, x
∗
t |wt−1, z) (44)

=
∑

X∗
t−1

∈X ∗
t−1

fWt,X
∗
t |Wt−1,X∗

t−1

(
wt, x

∗
t |wt−1, x

∗
t−1

)
fX∗

t−1
|Wt−1,Vt−2

(
x∗t−1|wt−1, z

)
.

Define for any wt ∈ Wt, and wt−1 ∈ Wt−1

Lwt,X
∗
t |wt−1,Vt−2

=
[
fWt,X

∗
t |Wt−1,Vt−2

(wt, i|wt−1, j)
]
i,j
,

Lwt,X∗
t |wt−1,X∗

t−1
=

[
fWt,X∗

t |Wt−1,X∗
t−1

(wt, i|wt−1, j)
]
i,j
,

LX∗
t−1

|wt−1,Vt−2
=

[
fX∗

t−1
|Wt−1,Vt−2

(i|wt−1, j)
]
i,j
,

for i, j = 1, 2, ..., J . Then it is straightforward to show that equation 44 implies

Lwt,X
∗
t |wt−1,Vt−2

= Lwt,X
∗
t |wt−1,X∗

t−1
LX∗

t−1
|wt−1,Vt−2

, (45)

where the invertibility of LVt+1,wt|wt−1,Vt−2
in equation 35 implies that of Lwt,X

∗
t |wt−1,Vt−2

.

That mean all the matrices in equation 45 are invertible. Therefore, Lwt,X
∗
t |wt−1,X∗

t−1
is

7In fact, Lwt,X∗

t
,wt−1,Xt−2

= Dwt|wt−1,X∗

t
LX∗

t
|wt−1,Xt−2

.
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identified as

Lwt,X
∗
t |wt−1,X∗

t−1
= Lwt,X

∗
t |wt−1,Vt−2

L−1
X∗

t−1
|wt−1,Vt−2

.

This results hold for any wt ∈ Wt, andwt−1 ∈ Wt−1, and therefore, the density fWt,X
∗
t |Wt−1,X∗

t−1

is identified. Notice that the identification of fWt−1,X∗
t−1

|Wt−2,Vt−3
implies that of fWt−1,X∗

t−1
.

Hence, fWt,X
∗
t ,Wt−1,X∗

t−1
is identified. �

In summary, the observed density fWt+1,Wt,Wt−1,Wt−2,Wt−3
uniquely determines fWt+1|Wt,X

∗
t

and fWt,X
∗
t ,Wt−1,X∗

t−1
under the following assumptions:

1. Assumption 1 (first-order Markov and limited feedback) holds;

2. For any given wt ∈ Wt there exists (wt, wt−1, wt−1) with wt 6= wt and wt−1 6=

wt−1 such that the matrices LVt+1,wt|wt−1,Vt−2
, LVt+1,wt|wt−1,Vt−2

, LVt+1,wt|wt−1,Vt−2
, and

LVt+1,wt|wt−1,Vt−2
are all invertible, and that

3. k ( wt, wt, wt−1, wt−1, j) <∞ for all j ∈ X ∗
t and k ( wt, wt, wt−1, wt−1, j1) 6= k (wt, wt, wt−1, wt−1, j2)

for j1 6= j2.

4. A known quantile of fVt+1|Wt,X
∗
t
(·|wt, x

∗
t ) is monotonic in x∗t . Without loss of general-

ity, we normalize x∗t to be that quantile.
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