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Abstract

This paper extends the method of local instrumental variables developed by Heckman and Vyt-
lacil (1999, 2001, 2005) to the estimation of not only means, but also distributions of potential
outcomes. The newly developed method is illustrated by applying it to changes in college enroll-
ment and wage inequality using data from the National Longitudinal Survey of Youth of 1979.
Increases in college enrollment cause changes in the distribution of ability among college and high
school graduates. This paper estimates a semiparametric selection model of schooling and wages to
show that, for fixed skill prices, a 14% increase in college participation (analogous to the increase
observed in the 1980s), reduces the college premium by 12% and increases the 90-10 percentile ratio
among college graduates by 2%.

Keywords: Comparative advantage, composition effects, local instrumental variables, marginal treat-
ment effect, semiparametric estimation, wage inequality.

JEL classification codes: C14; C31; J31.

∗Corresponding address: Department of Economics, University College London, London, WC1E 6BT, UK; emails:
p.carneiro@ucl.ac.uk (Carneiro) and l.simon@ucl.ac.uk (Lee). We thank an editor, an associate editor, and three anonymous
referees for helpful comments. Especially, we thank one anonymous referee for pointing out a mistake in the previous version
of this paper. We also thank participants in numerous seminars for useful comments, especially Rita Almeida, Joe Altonji,
David Autor, Richard Blundell, Olympia Bover, Peter Gottschalk, Alan Krueger, Alan Manning, Costas Meghir, Steve
Pischke and Tom Stoker. This research is supported in part by the Economic and Social Research Council (ESRC)
Research Grant RES-000-22-2542. We thank the Leverhulme Trust and ESRC (RES-589-28-0001) through the funding of
the Centre for Microdata Methods and Practice (Carneiro and Lee) and of the research programme Evidence, Inference

and Inquiry (Lee). Carneiro also thanks the Poverty Unit of the World Bank Research Group and Georgetown for their
hospitality. Earlier versions of the paper were circulated under the titles “Changes in College Enrollment and Wage
Inequality: Distinguishing Price and Composition Effects” and “Ability, Sorting and Wage Inequality”.



1 Introduction

The potential outcomes framework has been increasingly popular in applied research. In a series of

papers, Heckman and Vytlacil (1999, 2001, 2005) developed the method of local instrumental variables

in nonparametric selection models using potential outcomes. Heckman, Urzua, and Vytlacil (2006)

further extended the method of local instrumental variables and Aakvik, Heckman, and Vytlacil (2005)

used factor structures for the analysis of the latent variable framework of Heckman and Vytlacil (1999,

2001, 2005). Vytlacil and Yildiz (2007) considered marginal means of potential outcomes in weakly

separable models. Moffitt (2008) proposed a nonparametric series estimation method of estimating

marginal treatment effects in heterogeneous populations. This paper makes two new contributions to

this literature: first, we show how to extend the method of local instrumental variables of Heckman and

Vytlacil to identify the distributions of potential outcomes; second, we develop a semiparametric method

for estimating the entire marginal distributions of potential outcomes.

Distributions of potential outcomes are useful for policy makers who care about distributional effects

of policies. To our best knowledge, estimation of marginal distributions of potential outcomes has been

considered by Imbens and Rubin (1997) and Abadie (2002, 2003).1 However, these three papers develop

estimators under the local average treatment effect (LATE) framework of Imbens and Angrist (1994).

They are useful for evaluating the effects of polices in place, but not for forecasting those of new polices.

One could estimate a structural econometric model that describes individual choices and corresponding

outcomes to predict the distributional effects of new polices, but this would involve stringent parametric

and functional-form assumptions on the econometric model. In this paper, we provide an alternative

method that can be used to evaluate the distributional effect of a new policy without specifying a

complete parametric model. Moreover, since quantile treatment effects are defined as the differences

between quantiles of marginal distributions of potential outcomes, we also contribute to the literature

on quantile treatment effects and on instrumental variables estimation of quantile regression models.2

We apply our method to investigate changes in college enrollment and wage inequality in the United

States. College enrollment doubled from 30% to 60% between 1960 and 2000 in the United States. Such

a large increase in college enrollment rates is bound to cause changes in the quality of college and high

school workers. As a result, we cannot compare measures of the college premium and within group

inequality across different periods. Trends in the college premium and wage inequality confound changes

in prices and changes in composition, and it is important to separate the two.

1A recent working paper by Chen and Khan (2007) develops estimators of the scale ratio between potential outcomes
under some symmetry conditions on the joint distribution of outcome and selection errors.

2Some recent papers in this literature include: Abadie, Angrist, and Imbens (2002), Chesher (2003), Imbens and Newey
(2003), Chernozhukov and Hansen (2005, 2006), Chernozhukov, Imbens, and Newey (2007), Ma and Koenker (2006), Lee
(2006), and Horowitz and Lee (2007) among others.
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The goal of our empirical exercise is to uncover the empirical magnitude of this problem, generally

called composition effect. In order to do so, we estimate a semiparametric model of heterogeneous

agents self-selecting into college, and uncover the magnitude of selection observed in the data.3 We

use the resulting estimates to characterize the distributions of wages for individuals enrolling either in

college or in high school at a given point in time, and how they change in response to changes in college

enrollment. We find that, for fixed skill prices, an increase of 14% in the proportion of college-goers

(of similar magnitude to the one observed in the 1980s) leads to: i) a reduction of 12% in the college

premium; ii) a 2% increase in the ratio of the 90th to the 10th percentile (P90-P10) of the college wage

distribution; iii) and no change in the P90-P10 ratio of the high school wage distribution.

The remainder of this paper is organized as follows. In section 2 we present a simple econometric

model which underlies our empirical work. In section 3, we describe the basic ideas behind a semi-

parametric estimation procedure based on Section 2, and in section 4 we describe in detail the way we

apply it. Secion 5 presents asymptotic distributions for our estimators. The data we use are described

in Section 6. In section 7 we apply our model to the study of wage inequality using white males in

the NLSY. Using our estimates we document the patterns of sorting of individuals to different levels of

schooling and the empirical importance of selection bias and composition effects. Section 8 gives some

concluding remarks. In the Appendix we provide a detailed description of the data, further details of

our estimation procedure, and proofs of theorems given in Section 5.

2 The Econometric Model and Identification of Potential Out-

come Distributions

The econometric model we consider is that of Heckman and Vytlacil (1999, 2001, 2005).4 Let Y1 and Y0

be potential individual outcomes in two states, 1 and 0. In this paper, Y1 is the log college wage and Y0

is the log high school wage, as in Willis and Rosen (1979).

We assume

(2.1) Y1 = µ1 (X,U1) and Y0 = µ0 (X,U0) ,

where X is a vector of observed random variables influencing potential outcomes, µ1 and µ0 are unknown

functions, and U1 and U0 are unobserved random variables.

3One measure of the importance of selection is, say, the OLS-IV gap in estimates of the returns to schooling. As discussed
in Card (2001), the usual finding is that instrumental variables (IV) estimates of the return to one year of schooling are
above ordinary least squares (OLS) estimates of the same parameter by 2 to 3 percentage points (corresponding to 25 to
50% of the size of the OLS coefficient). Much of the literature on inequality studies the evolution of the college premium,
estimated as the difference in log wages of individuals with 12 and 16 years of education. If we extrapolated the reported
OLS-IV gap to four years of schooling we would get something on the order of 8-12% percentage points. This corresponds
to roughly 20 to 25% of the college premium in 1980, and almost 40 to 50% of its increase in between 1980 and 1990 (Katz
and Murphy, 1992).

4For example, see Section 2 of Heckman and Vytlacil (2005).
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We assume that individuals choose to be in state 1 or 0 (prior to the realizations of the outcomes of

interest) according to the following equation:

(2.2) S = 1 if µS (Z) − US > 0,

where Z is a vector of observed random variables influencing the decision equation, µS is an unknown

function of Z, and US is an unobserved random variable. In this paper, equation (2.2) can be interpreted

as the reduced form of an economic model of college attendance.5 The advantage of specifying it this way

is the relatively little structure it imposes on the model. In particular, Vytlacil (2002) shows that the

independence and monotonicity assumptions needed to interpret instrumental variables estimates in a

model of heterogeneous returns (e.g., Imbens and Angrist, 1994) imply that the data can be rationalized

with the model of equations (2.1) and (2.2) (as long as one does not impose parametric functional forms

and distributional assumptions on the model). This result guarantees that our model is consistent with

the IV estimates of the returns to college that can be produced in our data.

For each individual, the observed outcome Y is

Y = SY1 + (1 − S)Y0.

The set of variables in X can be a subset of Z. For identification, assume that there is at least one

variable in Z that is not in X (exclusion restriction). As in Heckman and Vytlacil (2001,2005), we can

rewrite (2.2) as:

S = 1 if P > V,

where V = FUS |X,Z [US |X,Z], P = FUS |X,Z [µS(Z)|X,Z], and FUS |X,Z(us|x, z) is the CDF of US condi-

tional on X = Z and Z = z.6 Note that for any arbitrary distribution of US conditional on X and Z,

by definition, V ∼ Unif [0, 1] conditional on X and Z.

We make the following assumptions as in Heckman and Vytlacil (2005).

Assumption 1. Assume that (1) µS(Z) is a nondegenerate random variable conditional on X; (2)

(U1, US) and (U0, US) are independent of Z conditional on X; (3) The distribution of US conditional on

(X,Z) and that of µS(Z) conditional on X are absolutely continuous with respect to Lebesgue measure;

and (4) For a measurable function G, E|G(Y1)| < ∞, and E|G(Y0)| < ∞.

The following theorem provides identification of our objects of interest in the nonparametric model

given by (2.1) and (2.2).

5Carneiro, Heckman and Vytlacil (2007) use this model to study heterogeneity in the returns to college and present an
economic model that can justify the specification in (2.2).

6Throughout the paper, for any random vector X, fX (x) denotes the PDF of X and FX (x) denotes the CDF of X.
In addition, for any random variables X and Y , fY,X(y, x), fY |X(y|x), and FY |X(y|x) denote the joint PDF of Y and X
and the conditional PDF and CDF of Y on X = x, respectively. We suppress subscripts in the notation whenever this can
be done without causing confusion.
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Theorem 1. Consider the nonparametric selection model given by (2.1) and (2.2). Let V = FUS |X,Z [US |X,Z]

and P = FUS |X,Z [µS(Z)|X,Z]. Let Assumption 1 hold. Then

E [G(Y1)|X = x, V = p] = E [G(Y )|X = x, P = p, S = 1]

+ p
∂E [G(Y )|X = x, P = p, S = 1]

∂p

E [G(Y0)|X = x, V = p] = E [G(Y )|X = x, P = p, S = 0]

− (1 − p)
∂E [G(Y )|X = x, P = p, S = 0]

∂p

provided that E [G(Y )|X = x, P = p, S = 1] and E [G(Y )|X = x, P = p, S = 0] are continuously differ-

entiable with respect to p for almost every x.

Proof. Assumptions (1) and (3) ensure that P is a nondegenerate, continuously distributed random

variable conditional on X. Assumption (4) is needed to ensure that expectations considered below are

finite. Notice that

E [G(Y )|X = x, P = p, S = 1] = E [G(Y )|X = x, P = p, V < p]

=

∫ p

0

E [G(Y1)|X = x, V = v] fV |X(v|x)dv/p

=

∫ p

0

E [G(Y1)|X = x, V = v]

∫

fV |X,Z(v|x, z)fZ|X(z|x)dz dv/p

=

∫ p

0

E [G(Y1)|X = x, V = v] dv/p,

where the second equality follows from assumption (2), the fourth equality comes from the fact that V

is uniformly distributed on [0, 1] conditional on X and Z. The first conclusion follows by multiplying

both sides of the equation above by p and differentiating both sides with respect to p. The proof of the

second conclusion is similar.

This theorem extends the identification results of Heckman and Vytlacil (1999, 2001, 2005).7 The

conditional means of Y1 and Y0 given X = x and V = v are identified by taking G(Y ) = Y and therefore

the marginal treatment effect (MTE), defined as E (Y1 − Y0|X = x, V = v), is identified. Furthermore,

the conditional distributions of Y1 and Y0 given X = x and V = v are identified by choosing G(Y ) =

1(Y ≤ y), where 1(·) is the standard indicator function, and therefore the conditional densities and

quantiles are also identified.

Notice that we can only identify E [G(Y1)|X = x, V = p] over the support of P for individuals in

S = 1 conditional on X = x, and E ([G(Y0)|X = x, V = p] over the support of P for individuals in S = 0

7The identification results of Heckman and Vytlacil (1999, 2001, 2005) are mainly concerned with average treatment
effects. Vytlacil and Yildiz (2007) develop identification results for the marginal means of potential outcomes in weakly
separable models. We identify not only average treatment effects but also whole marginal distributions of potential
outcomes.
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conditional on X = x. As a consequence, we can only identify the MTE over the common support of P

for individuals in S = 1 and S = 0 conditional on X = x.

The identification result in Theorem 1 is very general since it does not impose any restrictions on

the functional forms of µ1 and µ0 in (2.1). However, such a flexible framework has some disadvantages

that limit its practical usefulness. One important disadvantage is that the precision of a nonparametric

estimator based on Theorem 1 decreases rapidly as the number of continuously distributed components

of X increases (curse of dimensionality). Another disadvantage is that it is difficult to have full support

of P for some observed values of X, thereby implying that treatment parameters such as the MTE

or counterfactuals distributions such as FY1
(y1) and FY0

(y0) are not identified. To circumvent these

disadvantages, we specify and estimate a separable version of (2.1) under a more stringent assumption

on unobservables, but one that is relatively standard in empirical work: we assume that (U1, US) is

independent of Z as well as independent of X; likewise for (U0, US). The assumption of separability

implies the following modification in our model:

Y1 = µ1 (X) + U1(2.3)

Y0 = µ0 (X) + U0,

as opposed to Y1 = µ1 (X,U1) and Y0 = µ0 (X,U0). In addition, we impose flexible but parametric

forms for (µ1, µ0) and a semiparametric form for µS on the model so that estimating the model reduces

to a feasible semiparametric estimation problem. The main reason why we adopt this particular semi-

parametric specification is that it is relatively more difficult to model parametric relationships among

unobservables, (U1, US) and (U0, US) than those among observables. Exact specifications are given in

section 7.1.8

3 Semiparametric Estimation

This section describes semiparametric estimators of the expectations, quantiles, and marginal distrib-

utions of Y1 and Y0 conditional on X = x and V = v. We consider a semiparametric selection model

given by (2.2) and (2.3). From now on, let V = FUS
[US ] and P = FUS

[µS(Z)]. We now assume that:

Assumption 2. Assume that (1) µS(Z) is a nondegenerate random variable conditional on X; (2)

(U1, US) and (U0, US) are independent of (Z,X); (3) The distributions of US and µS(Z) are absolutely

continuous with respect to Lebesgue measure; (4) E|Y1| < ∞ and E|Y0| < ∞; (5) 0 < Pr(S = 1|Z) < 1;

8One important advantage of estimating a flexible model over a complete parametric model is that the sources of
variation in the data that identify the model are very clear, as are the types of simulations that can be performed. For
example, suppose that, empirically, the variables Z are never high enough or low enough to induce full participation in
college, or no participation in college. In this case we cannot estimate the full distribution of unobserved heterogeneity,
and we cannot simulate economies where college participation rates are 0 or 1 without imposing more structure in the
model (e.g., Heckman and Vytlacil, 2005, Ichimura and Taber, 2000). The use of semiparametric methods forces discipline
both in the reporting of results, and in the construction of simulations within the range of the data.
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and (6) E [U1|P = p, S = 1], E [U0|P = p, S = 0], fU1|P,S=1(u1|p) and fU0|P,S=0(u0|p) are continuously

differentiable with respect to p.

We first consider estimation of E[Y1|X = x, V = v] and E[Y0|X = x, V = v]. Under the assumption

that (U1, US) and (U0, US) are independent of X,

E[Y1|X = x, V = v] = µ1(x, β1) + E[U1|V = v],

and

E[Y0|X = x, V = v] = µ0(x, β0) + E[U0|V = v],

where the functional forms of µ1 and µ0 are specified up to finite dimensional parameters β1 and β0.

Thus, estimates of E[Y1|X = x, V = v] and E[Y0|X = x, V = v] can be obtained by estimating β1, β0,

E[U1|V = v], and E[U0|V = v].

First, we estimate β1 and β0 using a semiparametric version of the sample selection estimator of Das,

Newey, and Vella (2003). Notice that under the assumption that U1 and V are independent of X and

Z, we have

(3.1) E[Y |X = x, P = p, S = 1] = µ1(x, β1) + λ1(p),

where λ1(·) is an unknown function of P . Equation (3.1) suggests that β1 can be estimated by a partially

linear regression of Y on X and P using only observations with S = 1. Since P is unobserved, Das,

Newey, and Vella (2003) suggest a two-step procedure. The first step consists in the construction of the

estimated P and the second step consists in the estimation of β1 using the estimated P . In this paper,

the first step is carried out by a series regression of S on Z. In particular, we approximate µS(z) by

some linear parts and some nonparametric parts. The second step is accomplished using a Robinson

(1988)-type estimator with the estimated P .9 Analogously, β0 can be estimated by a partially linear

regression of Y on X and estimated P using only observations with S = 0. See Section 4.1 for a detailed

description of our estimators of P , β1 and β0.

We now consider estimation of E[Uj |V = v] for j = 0, 1. It follows from directly applying Theorem

1 with G(u) = u:

E [U1|V = v] = E [U1|P = v, S = 1] + v
∂E [U1|P = v, S = 1]

∂p
(3.2)

E [U0|V = v] = E [U0|P = v, S = 0] − (1 − v)
∂E [U0|P = v, S = 0]

∂p
.(3.3)

Equations (3.2) and (3.3) are the basis for nonparametric estimators of E[U1|V = v] and E[U0|V = v]

proposed in this paper.

9Series estimation is used in Das, Newey, and Vella (2003) for both the first and second steps. See also Heckman,
Ichimura, Smith and Todd (1998).
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Local polynomial estimation is used in the paper to estimate E(U1|P = v, S = 1) (which corresponds

to λ1 (p) |p = v in equation (3.1)), E(U0|P = v, S = 0) and their partial derivatives with respect to

P . This is because local polynomial estimation not only provides a unified framework for estimating

both a function and its derivative but also has a variety of desirable properties in comparison to other

available nonparametric methods.10 See Section 4.2 for detailed description of nonparametric estimators

of E[U1|V = v] and E[U0|V = v].

Finally, notice that fY1|X,V (y1|x, v) and fY0|X,V (y0|x, v) can be obtained by location shifts from

fU1|V (u1|v) and fU0|V (u0|v), i.e.,

fY1|X,V (y1|x, v) = fU1|V (y1 − µ1(x, β1)|v) and

fY0|X,V (y0|x, v) = fU0|V (y0 − µ0(x, β0)|v) .

To obtain fY1|X,V (y1|x, v) and fY0|X,V (y0|x, v), once we know β1 and β0 we only need to estimate

fU1|V (u1|v) and fU0|V (u0|v). As in (3.2) and (3.3), we can obtain identifying relationships for fU1|V (u1|v)

and fU0|V (u0|v) and resulting sample analog estimators can be constructed. Note that given estimators

of PDF’s, it is straightforward to obtain estimators of corresponding CDF’s by integrating the estimated

PDF’s, and to obtain estimators of corresponding quantiles by inverting the estimated CDF’s. In section

4.3 we describe in detail the corresponding nonparametric estimators.

Heckman and Vytlacil (2001,2005) show how we can construct a variety of treatment effect parameters

as weighted averages of E (Y1 − Y0|X = x, V = v), and develop weights for several parameters of interest.

Drawing on their work, we can estimate E[Yj ], E[Yj |S = 1], and E[Yj |S = 0] by integrating out our

estimator of E[Yj |X = x, V = v] with some suitable weights for j = 0, 1. Specifically, we obtain

estimators of E[Yj ], E[Yj |S = 1], and E[Yj |S = 0] by the sample analogs of the following formulae:

E[Yj ] =

∫ ∫ 1

0

E[Yj |X = x, V = v]fX(x) dv dx,

E[Yj |S = 1] =

∫ ∫ 1

0

E[Yj |X = x, V = v]
1 − FP |X(v|x)

Pr(S = 1)
fX(x) dv dx,

and

E[Yj |S = 0] =

∫ ∫ 1

0

E[Yj |X = x, V = v]
FP |X(v|x)

Pr(S = 0)
fX(x) dv dx.

(3.4)

for j = 0, 1. See Appendix B.1 for details on implementing (3.4). Using estimates of these conditional

10Fan and Gijbels (1996) provide a detailed discussion of the properties of local polynomial estimators. The advantages
of the local polynomial estimators are that (1) the form of bias is simpler than that of the standard kernel estimator, (2) it
adapts to various types of distributions of explanatory variables, (3) it does not require boundary modifications to achieve
the same convergence rate, and (4) it has very good minimax efficiency property.
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expectations, standard treatment effect parameters can be estimated:

ATE (Average Treatment Effect) = E[Y1] − E[Y0],

TT (Average Treatment Effect on the Treated) = E[Y1|S = 1] − E[Y0|S = 1],

TUT (Average Treatment Effect on the Untreated) = E[Y1|S = 0] − E[Y0|S = 0],

OLS (Ordinary Least Squares) = E[Y1|S = 1] − E[Y0|S = 0].

E[Y1|S = 1] and E[Y0|S = 0] can also be estimated directly by taking sample means of observed college

and high school wages. Therefore, comparison between model-based and direct estimates of E[Y1|S = 1]

and E[Y0|S = 0] provides a goodness-of-fit check of our model.11 Similarly, integrating our estimators of

fYj |X,V (yj |x, v) for j = 0, 1 with the weights in (3.4), we can obtain estimators of fYj
(·), fYj |S=1(·|S = 1),

and fYj |S=0(·|S = 0) for j = 0, 1. Note that fY1|S=1(·|S = 1) and fY0|S=0(·|S = 0) can also be estimated

directly by taking sample analogs of observed college and high school wages, which again allows us to

do a goodness-of-fit check of our model.

4 Details of Estimation Procedure

4.1 Estimating P , β1 and β0

This section provides a detailed description of our estimators of P , β1 and β0. Assume that the data

consist of i.i.d. observations {(Yi, Si,Xi, Zi) : i = 1, . . . , n}. First, we consider series estimation of P .

In Section 3, P = FUS
[µS(Z)] = Pr(S = 1|Z). In order to avoid the curse of dimensionality, we model

Pr(S = 1|Z = z) as a partially linear additive regression model:

(4.1) Pr(S = 1|Z = z) = ϕ1(z1) + . . . + ϕd(zd) + z′pcϑ,

where z = (zc, zpc), zc = (z1, . . . , zd)
′ is a d-dimensional vector of continuous random variables (non-

parametric components), zpc is a vector of parametric components, ϕ1, . . . , ϕd are unknown functions,

and ϑ is a vector of unknown parameters. The partially linear additive structure in (4.1) is adopted to

have a good precision in our estimation procedure.

To describe the series estimator, let {pk : k = 1, 2, . . .} denote a basis for real-valued smooth functions

defined on R such that a linear combination of {pk : k = 1, 2, . . .} can approximate ϕj(·) for each

j = 1, . . . , d as the number of approximating functions increases to infinity. For any positive integer κ,

define

Pκ(z) = [p1(z1), . . . , pκ(z1), . . . , p1(zd), . . . , pκ(zd), zpc]
′.

11In this paper, we have not yet developed asymptotic distribution theory for average treatment effects, such as ATE,
TT, and TUT, nor asymptotic properties of the proposed goodness-of-fit check. These are topics for future research.
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Then for each i, the series estimator of P (Zi) is

P̃ (Zi) = Pκ(Zi)
′θ̂nκ,

where

θ̂nκ =

[

n
∑

i=1

Pκ(Zi)Pκ(Zi)
′

]−1 [ n
∑

i=1

Pκ(Zi)Si

]

.

In finite samples, estimated P (Zi)’s might be negative or larger than one. To solve this, our estimator

is a trimmed version:

P̂ (Zi) = P̃ (Zi) + (1 − δ − P̃ (Zi))1(P̃ (Zi) > 1) + (δ − P̃ (Zi))1(P̃ (Zi) < 0)(4.2)

for sufficiently small δ > 0.12

We now consider estimation of β1 and β0. For convenience, we assume linear-in-parameters forms for

µ1 and µ0, that is µj(x, βj) = µj(x)′βj for each j = 0, 1. Then β1 and β0 are estimated as in Robinson

(1988) (using the estimated rather than the true P ) with the S = 1 subsample and the S = 0 subsample,

respectively. Specifically, for j = 0, 1,

β̂j =

[

n
∑

i=1

Wji

{

µj(Xi) − Êh

[

µj(Xi)
∣

∣

∣
P̂ (Zi),Wji

]}{

µj(Xi) − Êh

[

µj(Xi)
∣

∣

∣
P̂ (Zi),Wji

]}′
]−1

×

[

n
∑

i=1

Wji

{

µj(Xi) − Êh

[

µj(Xi)
∣

∣

∣
P̂ (Zi),Wji

]}{

Yi − Êh

[

Yi

∣

∣

∣
P̂ (Zi),Wji

]}

]

,

(4.3)

where Wji = 1(Zi ∈ Z)(Si)
1(j=1)(1 − Si)

1(j=0) and Êh[·|·] denotes the kernel mean regression estimator

with a bandwidth h. Here, Z is a strict subset of the support of Z. A trimming function of the form

1(Zi ∈ Z) is considered here to avoid unduly influences of outliers of Z. Alternatively, one could consider

Wn,ji = (Si)
1(j=1)(1 − Si)

1(j=0)ωn,ji, where ωn,ji is some trimming function that may converge to one

at a certain asymptotic rate.

4.2 Estimating E[U1|V = v] and E[U0|V = v]

This section gives a detailed description of nonparametric estimators of E[U1|V = v] and E[U0|V = v].

First consider local polynomial estimation of E[U1|V = v]. In general, use of higher order polynomials

may reduce the bias but increase the variance by introducing more parameters. Fan and Gijbels (1996)

suggest that the order π of polynomial be equal to π = µ + 1, where µ is the order of the derivative

of the function of interest. That is, Fan and Gijbels (1996) recommend a local linear estimator for

fitting a function and a local quadratic estimator for fitting a first-order derivative. Following their

12Alternatively, one may develop the series estimator of P based on a logit or probit model, so that the fitted probability
always lies between 0 and 1.
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suggestions, E(U1|P = v, S = 1) is estimated by a local linear estimator using observations with S = 1

and ∂E(U1|P = v, S = 1)/∂p is estimated by a local quadratic estimator.

To be more specific, let {(Û1i, P̂i, Si) : i = 1, . . . , n} denote observations of estimated U1 and P along

with S, where Û1i = Yi − µ1(Xi, β̂1) for i = 1, . . . , n. The local linear estimator Ê(U1|P = v, S = 1) is

obtained by solving the problem

min
c0,c1

n
∑

i=1

Si

[

Û1i − c0 − c1(P̂i − v)
]2

K

(

P̂i − v

hn1

)

,

where K(·) is a kernel function and hn1 is a bandwidth. The resulting value of c0 is the local linear

estimator of E(U1|P = v, S = 1). Similarly, the local quadratic estimator ∂̂E(U1|P = v, S = 1)/∂p is

obtained by solving the problem

min
c0,c1,c2

n
∑

i=1

Si

[

Û1i − c0 − c1(P̂i − v) − c2(P̂i − v)2
]2

K

(

P̂i − v

hn2

)

,

where hn2 is a bandwidth that can be different from hn1. The resulting value of c1 is the local quadratic

estimator of ∂E(U1|P = v, S = 1)/∂p. Then the estimator of E[U1|V = v] is given by

Ê[U1|V = v] = v
∂̂

∂p
E(U1|P = v, S = 1) + Ê(U1|P = v, S = 1).(4.4)

Similarly, the estimator of E[U0|V = v] can be obtained by replacing unknown functions in the right

hand side of (3.3) with their nonparametric estimators.

4.3 Estimating f(u1|v) and f(u0|v)

This section describes nonparametric estimators of f(u1|v) and f(u0|v). As in (3.2) and (3.3), an

application of Theorem 1 yields the following relationships

fU1|V (u1|v) = fU1|P,S=1(u1|v, S = 1) + v
∂

∂p
fU1|P,S=1(u1|v, S = 1) and(4.5)

fU0|V (u0|v) = fU0|P,S=0(u0|v, S = 0) − (1 − v)
∂

∂p
fU0|P,S=0(u0|v, S = 0).(4.6)

Sample analogs of the right-hand sides of equations (4.5) and (4.6) can be obtained by some suitable

nonparametric estimators.

We only discuss estimation of f (u1|v) in detail, since estimation of f (u0|v) is similar. To develop an

estimator of f (u1|v) using the equation (4.5), it is necessary to estimate fU1|P,S=1(u1|p, S = 1) and its

derivative with respect to p. Specifically, the estimator of f (u1|v) can be obtained by

f̂(u1|v) = v
∂̂

∂p
fU1|P,S=1(u1|v, S = 1) + f̂U1|P,S=1(u1|v, S = 1),(4.7)

where f̂U1|P,S=1(u1|v, S = 1) and ∂̂fU1|P,S=1(u1|v, S = 1)/∂p are defined below.
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In order to compute f̂U1|P,S=1(u1|v, S = 1) and ∂̂fU1|P,S=1(u1|v, S = 1)/∂p in (4.7), we begin with

estimated data {(Û1i, P̂i) : i = 1, . . . , n, Si = 1}, where Û1i = Yi − µ1(Xi, β̂1). One could estimate

the conditional density of U1 given P and its derivative by estimating the joint and marginal densities

using the standard kernel density estimators, taking the ratio between them to estimate the conditional

density, and finally computing a derivative of the conditional density. This procedure would yield

consistent estimators but it is quite cumbersome. Instead we use a direct method of Fan, Yao, and Tong

(1996), who develop local polynomial estimators of the conditional density function and its derivative.

To motivate the estimators of Fan, Yao, and Tong (1996), notice that, as δn → 0,

E

[

δ−1
n K

(

U1 − u1

δn

) ∣

∣

∣

∣

P = v, S = 1

]

≈ fU1|P,S=1(u1|v, S = 1)

≈ fU1|P,S=1(u1|v0, S = 1) +
∂

∂p
fU1|P,S=1(u1|v0, S = 1)(v − v0)

for any v in a neighborhood of v0, where K is a nonnegative density function and δn is a bandwidth. This

suggests that the local linear estimator of fU1|P,S=1(u1|v, S = 1) can be defined as f̂U1|P,S=1(u1|v, S =

1) ≡ ĉ0, where (ĉ0, ĉ1) solves the problem

(4.8) min
c0,c1

n
∑

i=1

Si

[

δ−1
n K

(

Û1i − u1

δn

)

− c0 − c1(P̂i − v)

]2

K

(

P̂i − v

hn1

)

,

and the local quadratic estimator of ∂fU1|P,S=1(u1|v, S = 1)/∂p can be defined as ∂̂fU1|P,S=1(u1|v, S =

1)/∂p ≡ ĉ1, where (ĉ0, ĉ1, ĉ2) solves the problem

(4.9) min
c0,c1,c2

n
∑

i=1

Si

[

δ−1
n K

(

Û1i − u1

δn

)

− c0 − c1(P̂i − v) − c2(P̂i − v)2

]2

K

(

P̂i − v

hn2

)

.

The estimator defined in (4.7) is an unrestricted estimator. Thus, it can be negative for a given finite

sample, although it is a consistent estimator of f(u1|v) under certain regularity conditions. To ensure

that the estimator is positive in finite samples, we consider a trimmed version of (4.7):

f̂pdf (u1|v) = max[ε, f̂(u1|v)],

where ε is a fixed, very small positive number.

Now we describe estimators of F (u1|v) and F (u0|v). Again we only discuss estimation of F (u1|v).

To develop an estimator that is a distribution function for a given finite sample, note that

(4.10) F (u1|v) = FU1|V (u1|v) +

∫ u1

u
1

fU1|V (u|v)du,

for any fixed constant u1 < u1. We estimate F (u1|v) by replacing FU1|V (u1|v) and fU1|V (u|v) in (4.10)

with their sample analogs. More specifically, the estimator of FU1|V (u1|v) is defined as

(4.11) F̂ cdf
U1|V

(u1|v) = max[0, F̂U1|V (u1|v)],
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where

F̂U1|V (u1|v) = v
∂̂

∂p
FU1|P,S=1(u1|v, S = 1) + F̂U1|P,S=1(u1|v, S = 1),

and F̂U1|P,S=1(u1|v, S = 1) and ∂̂FU1|P,S=1(u1|v, S = 1)/∂p, respectively, are local linear and quadratic

estimators that solve the problems similar to those in (4.8) and (4.9) with δ−1
n K

(

(Û1i − u1)/δn

)

replaced

by 1(Û1i ≤ u1). Then our estimator of F (u1|v) is defined as

F̂cdf (u1|v) = min

[

1, F̂ cdf
U1|V

(u1|v) +

∫ u1

u
1

f̂pdf (u|v)du

]

.

The constant u1 can be chosen such that most of estimated values Û1i are greater than u1. Notice that

by construction, our estimator is a strictly increasing, continuous function of u1 (for u1 > u1) and is

restricted to be between 0 and 1. In other words, our estimator is a distribution function for a given

finite sample. One could also use an unrestricted estimator (4.11), which is not necessarily a distribution

function in finite samples.

Notice that as a by-product of estimating F̂cdf (u1|v), we obtain an estimator of the τ -th quantile of

U1 conditional on V = v for any τ ∈ (0, 1), which is denoted by QU1|V (τ |v). Simply, the estimator is

given by

Q̂U1|V (τ |v) = F̂−1
cdf (τ |v) ,

where the right-hand side is unique for a given finite sample provided that u1 is sufficiently small, since

F̂cdf (u1|v) is a strictly increasing function when u1 > u1. Furthermore, under the assumption that U1

and V are independent of X and Z, the τ -th quantile of Y1 conditional on X = x and V = v can be

estimated by

Q̂Y1|X,V (τ |x, v) = µ1(x, β̂1) + Q̂U1|V (τ |v).

Therefore, we can also obtain estimators of marginal quantile treatment effects, which are defined as

Q̂Y1|X,V (τ |x, v) − Q̂Y0|X,V (τ |x, v).

This is a quantile analog to the marginal treatment effect of Heckman and Vytlacil (1999, 2001, 2005).

5 Asymptotic Properties of the Estimators

This section provides asymptotic properties of the proposed estimators. The proof of theorems in

this section are provided in the Appendix. Recall that Zc denotes the components of Z which enter

nonparametrically in the estimation of P . We consider regression splines as approximating functions

{pk : k = 1, . . .} since regression splines have a smaller bias than power series (Newey, 1997). The

following assumptions are standard in the literature on series estimation (Newey, 1997).

Assumption 3. The data {(Yi, Si,Xi, Zi) : i = 1, . . . , n} are independent and identically distributed.

12



This is a standard assumption in empirical microeconomics, but it has some limitations. One limita-

tion that might be related with our application is that we do not allow for clustered data. The extension

of the asymptotic results obtained in this section to clustered data is non-trivial, and we leave it for

future research.

Assumption 4. The support of Zc is known and is a Cartesian product of compact connected intervals

on which Zc has a probability density function that is bounded away from zero.

Assumption 5. Each function ϕj in (4.1) is rϕ-times continuously differentiable on the support of Zc

for some rϕ > 2.

Assumptions 4 and 5 are standard in the literature (Newey, 1997). In particular, Assumption 5

implies that the asymptotic bias (due to the series approximation by regression splines) converges to

zero at a rate of κ−rϕ as the number of approximation functions, κ, diverges to infinity.

Note that a finite-sample correction in (4.2) would not have any effect on the asymptotic properties

of the estimator. Then the following theorem is a standard result in series estimation.

Theorem 2. Let Assumptions 2, 3, 4, and 5 hold. Then with regression splines as approximating

functions, we have

max
i=1,...,n

|P̂ (Zi) − P (Zi)| = Op

[ κ

n1/2
+ κ−(2rϕ−1)/2

]

.

We now consider the asymptotic distribution of n1/2(β̂j − βj) for j = 0, 1. Let Wj = 1(Z ∈

Z)S1(j=1)(1−S)1(j=0), where Z is a strict subset of the support of Z. We make additional assumptions

that are standard in semiparametric estimation.

Assumption 6. Assume that P (Z) is continuously distributed and its density is bounded away from

zero on Z.

It might be too strong to assume that P is bounded away from zero on the whole support of Z.13

Instead, we assume that it holds in an interior of the support of Z.

Assumption 7. The conditional expectation E[µj(X)|P = p,Wj ] is twice continuously differentiable

with respect to p and its kernel estimator Êh[µj(X)|P = p,Wj ] is consistent uniformly over p ∈ P, where

P is an interior of the range of P (Z) on Z. Furthermore, assume that

sup
p∈P

∣

∣

∣
Êh[µj(X)|P = p,Wj ] − E[µj(X)|P = p,Wj ]

∣

∣

∣
= op

(

n−1/4
)

.

Assumption 8. Assume that κ4/n → 0 and κ2rϕ/n → ∞.

13We would like to thank an associate editor for pointing this out.
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Note that Assumption 8 is satisfied, for example, if κ ∝ na with 1/(2rϕ) < a < 1/4. For j = 0, 1,

define

Ωj = E
[

Wj (µj(X) − E[µj(X)|P,Wj ]) (µj(X) − E[µj(X)|P,Wj ])
′]

,

νj(z) = E

[

Wj(µj(X) − E[µj(X)|P,Wj ])
∂ λj(p)

∂p

∣

∣

∣

∣

p=P

∣

∣

∣

∣

Z = z

]

,

and

Σj = E
[

WjU
2
j (µj(X) − E[µj(X)|P,Wj ]) (µj(X) − E[µj(X)|P,Wj ])

′]

+ E [P (1 − P )νj(Z)νj(Z)′] ,

where λj(p) was defined in (3.1) for j = 1 and can be defined similarly for j = 0.

Assumption 9. For each j = 0, 1, Ωj is positive definite, νj(z) is continuously differentiable with respect

to z, E[νj(Z)νj(Z)′] is nonsingular, and Σj is finite.

The following theorem gives the asymptotic distribution of the estimator of βj for j = 0, 1.

Theorem 3. Let Assumptions 2-9 hold. Then for each j = 0, 1, as n → ∞,

n1/2(β̂j − βj) →d N(0,Ω−1
j ΣjΩ

−1
j ),

Our estimation details are different from Das, Newey and Vella (2003); however, the asymptotic

distribution of n1/2(β̂j −βj) is comparable to that of Das, Newey and Vella (2003). It is straightforward

to construct a sample analog of the asymptotic variance Ω−1
j ΣjΩ

−1
j . We now turn to estimation of

E[Uj |V = v] for j = 0, 1.

Assumption 10. E[Uj |V = v] is four times continuously differentiable for j = 0, 1.

Assumption 11. K is a second-order kernel function with compact support and is Lipschitz continuous.

Assumption 12.

max
i:1≤i≤n

|P̂i − Pi| = op

(

h2
n1

)

and max
i:1≤i≤n

|P̂i − Pi| = op

(

h2
n2

)

.

In addition,

hn2

hn1
→ ∞ and

h3
n2

hn1
→ 0.

The following theorem gives the asymptotic distribution of the estimators of E[Uj |V = v] for j = 0, 1.

Theorem 4. Let Assumptions 2-12 hold. Then for any point v that is in the interior of the range

of P (Z) on Z, the asymptotic distributions of the estimators of E[U1|V = v] and E[U0|V = v] are
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normal with the same means and variances that they would be if U1i, U0i, and Pi were observed directly.

Furthermore,

and

(nh3
n2)

1/2
{

Ê[U0|V = v] − E[U0|V = v] − B0(v)h2
n2

}

→d N(0, V0(v)),

where

B1(v) =
v

3!

∫

u4K(u)du
∫

u2K(t)du

∂3E[U1|P = v, S = 1]

∂p3
,

V1(v) = v2

∫

u2K2(u)du
(∫

u2K(t)du
)2

E[(U1 − E[U1|P = v, S = 1])
2
|P = v, S = 1]

fP,S=1(v)
,

B0(v) =
−(1 − v)

3!

∫

u4K(u)du
∫

u2K(t)du

∂3E[U0|P = v, S = 0]

∂p3
,

V0(v) = (1 − v)2
∫

u2K2(u)du
(∫

u2K(t)du
)2

E[(U0 − E[U0|P = v, S = 0])
2
|P = v, S = 0]

fP,S=0(v)
.

This theorem says that the asymptotic distribution of the estimators of E[U1|V = v] and E[U0|V = v]

are driven by corresponding partial derivative estimators and that estimation errors from β̂j and P̂i are

asymptotically negligible. The asymptotic bias is not easy to estimate because it involves nonparametric

estimation of higher-order partial derivatives, but one can adopt undersmoothing to make the asymptotic

bias negligible (at the expenses of slower rates of convergence in distribution). The asymptotic variance

is relatively easy to estimate (e.g., see equations (4.8) and (4.9) of Fan and Gijbels, 1996). Combining

theorems above gives the main result of this section.

Theorem 5. Let Assumptions 2-12 hold. Then for any x in the support of X and for any point v

that is in the interior of the range of P (Z) on Z, the asymptotic distributions of the estimators of

E[Y1|X = x, V = v], E[Y0|X = x, V = v], and E[Y1 − Y0|X = x, V = v] are as follows:

(nh3
n2)

1/2
{

Ê[Y1|X = x, V = v] − E[Y1|X = x, V = v] − B1(v)h2
n2

}

→d N(0, V1(v)),

(nh3
n2)

1/2
{

Ê[Y0|X = x, V = v] − E[Y0|X = x, V = v] − B0(v)h2
n2

}

→d N(0, V0(v)),

and

(nh3
n2)

1/2
{

Ê[Y1 − Y0|X = x, V = v] − E[Y1 − Y0|X = x, V = v] − {B1(v) − B0(v)}h2
n2

}

→d N(0, V1(v) + V0(v)),

where Bj(v) and Vj(v), j = 0, 1, are defined in Theorem 4.

It would be straightforward to establish similar results for estimators of distributions of Y1 and

Y0 conditional on X = x and V = v. In particular, the asymptotic distributions of the estimators
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would be driven by corresponding nonparametric partial derivative estimators. We have not developed

asymptotic theory for average treatment effects, such as ATE, TT, and TUT. Notice that Theorem 5

provides asymptotic normality only for interior points of V . To develop asymptotic results for objective

defined in (3.4), it would be necessary to extend our asymptotic results for boundary points with careful

treatment on tail conditions. This is a topic for future research.

6 Data

The dataset we use consists of a sample of white males surveyed in the NLSY. In the NLSY there exists

detailed information on cognitive ability and family background, which are important determinants

of both schooling and labor market outcomes. Furthermore we know the place of residence of most

respondents in the NLSY during their adolescent years. As a result, we can construct school and labor

market characteristics in different areas of residence of adolescent NLSY respondents and use them as

instrumental variables for schooling, as is often done in the literature.

We estimate the model for 1992, 1994, 1996 and 1998. The reason we choose to start our analysis

in the 1990s and not before is because NLSY respondents were very young in the 1980s. Our sample

consists of white males born between 1957 and 1964. The hourly wage measure we use was created by

the NLSY. In order to minimize measurement error and reduce concerns with selective unemployment,

our wage measure for each year is a 5 year average of all non-missing wages reported in the five year

interval centered in the year of interest.14 The model of Section 2 only allows for selection into two

levels of schooling, so we need to group some schooling categories into these two. The two groups we

consider are: high school graduates plus high school dropouts; and some college plus college graduates

and above.15

The instruments for schooling we use are standard in the literature: distance to college, tuition,

and local unemployment rates, all measured in the place of residence of each individual during late

adolescence.16 We provide details on their construction in the Appendix.

14The percentage of individuals in our sample who have a missing observation for our measure of wages (due to unem-
ployment or non-reporting, but not due to attrition in the panel) is the following for each year: 3.21% in 1992, 3.03% in
1994, 3.19% in 1996, and 2.78% in 1998. When we use different measures of wages such as yearly wages or averages over
three years of wages, our results are qualitatively similar but they are more imprecise.

15The wage distribution of the NLSY roughly replicates that of the CPS during the 1990s for white males born between
1957 and 1964 (available on request from the authors).

16For example, see Cameron and Taber (2004), Card (1995, 1999), Carneiro, Heckman and Vytlacil (2007), Currie and
Moretti (2003), Kane and Rouse (1995), Kling (2001), among others.
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7 Selection Bias, Composition Effects and the Evolution of In-

equality

7.1 Specification of the Model

We consider potential wage equations for the college and high school sectors, denoted by Y1 and Y0.

Considering only two schooling levels is a limitation of our analysis, but nevertheless a common prac-

tice in the literature on inequality (and in studies of the returns to schooling using selection models,

such as Willis and Rosen, 1979, and Carneiro, Heckman and Vytlacil, 2007).17 Using the econometric

framework described in previous sections, we can estimate the following objects: E (Y1|X = x, V = v),

E (Y0|X = x, V = v), FY1|X,V (y1|x, v) and FY0|X,V (y0|x, v). These functions tell us how the distribu-

tions of counterfactual wages vary with observed (X) and unobserved (V ) heterogeneity.

Our focus on E (Y1|X = x, V = v), E (Y0|X = x, V = v), FY1|X,V (y|1x, v) and FY0|X,V (y0|x, v) is

useful for two reasons. First, they help us characterize how individuals sort across different levels of

schooling according to observed and unobserved heterogeneity. Second, these objects are especially

useful for simulating the effect of changes in composition on inequality. As college enrollment increases,

there will be changes in the distribution of X and V at each level of schooling because some individuals

will switch from high school to college (those who switch will probably be those at the margin). If we can

characterize these changes, then we can use them together with our estimates of FY1|X,V (y1|x, v) and

FY0|X,V (y0|x, v) to compute the implied effects on inequality (see Heckman and Vytlacil, 1999, 2001,

2005).

We now turn to the exact specification of the equations that we estimate. The X vector in the log wage

equations includes years of actual experience, the Armed Forces Qualifying Test score (AFQT, a measure

of cognitive ability), number of siblings, mother’s years of schooling, father’s years of schooling, cohort

dummies, and the state unemployment rate in the current state of residence (five year average centered

in the year of interest, mimicking our construction of wages). In order to use a flexible specification

for the Xs each variable (except the dummy variables and the current state unemployment rate) enters

with a linear and a quadratic term. We also interact number of siblings, mother’s education and father’s

education. Finally, we include a dummy variable for being a high school dropout, another dummy

variable for being a college attendee without a college degree, and interactions of these variables with

quadratic polynomials in experience and AFQT (the most important observables in the wage equations).

This is an attempt to allow for some selection on observables within each broad schooling category (fully

interacted models where we interact all variables with one another produce qualitatively similar results

17Heckman and Vytlacil (2005) consider models with multiple levels of schooling, but which we have difficulty imple-
menting with the data at hand. Allowing for multiple levels of schooling would in principle require different instruments
for different transitions, although that may not be strictly necessary provided that different regressors have different effects
in different transitions (see, e.g., Heckman and Navarro, 2007).
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but more imprecision).

We use a partially linear additive model for schooling choice. In particular, regressors (the Z

vector) include a constant, cohort dummies, distance to college (an indicator variable for whether a

four-year college is in the county of residence at age 14), linear terms of family background variables

(number of siblings, mother’s schooling, and father’s schooling), interactions between distance to college

and family background variables, and cubic B-splines with equally spaced knots (based on quantiles of

variables of interest) for corrected AFQT, unemployment at 17, and college tuition at 17. The number

of interior knots as well as the inclusion of interaction terms were determined by the least squares cross-

validation method. The variables that we exclude from the outcome equations are distance to college,

tuition and local unemployment rate. Distance is a strong predictor of schooling, but it takes only two

values. By interacting it with the remaining variables in the model we are able to expand the available

variation in this variable. The proportion of observations that were trimmed in implementing (4.2) is

between 0.07 and 0.08 across years. We set δ to be 1e − 8 in (4.2).

Sample statistics are presented in table 1. In each year of our data, individuals who attend college have

on average higher wages than those who do not attend college. They also have less years of experience,

higher levels of cognitive ability, fewer siblings, more educated parents, live nearer to colleges and in

counties with lower tuition at age 17 than those individuals who never enrolled in college. College

enrollment rates increase from 50% (1992) to 52% (1998), although we follow relatively mature cohorts

for college enrollment (the NLSY respondents in year 1992 are between 28 and 35 years old).

In implementing our selection model we estimate the model for each year where the dependent variable

is college attendance.18 Average derivatives are presented in table 2. Ability and family background

are strong predictors of college attendance. The presence of a college in the county of residence at 14

is also an important determinant of enrollment in college, as are local unemployment and tuition. We

test the null hypothesis that three average derivatives for instruments are all zeros and reject this null

hypothesis at any conventional level.

For each year we estimate fY1|X,V (y1|x, v) and fY0|X,V (y0|x, v) and then weight these objects with

appropriate weights to construct the counterfactuals of interest, as described in Section 4. However, it

is only possible to estimate these functions within the support of the data. In particular, we can only

estimate them for values of X and P (accordingly V ) for which we have individuals both in college and

high school. Figure 1 shows the support of the data for 1992, a representative year in our sample (this

figure varies very little across years). The top two figures refer to P and the bottom two figures refer

18Alternatively we could have estimated a single selection model for all the years of the sample. The reason we choose
not to do it is that, even though these individuals are well into their adult years in the beginning of the 1990s, there are
still changes in schooling attainment during the decade. In particular, the college enrollment rate in this sample increases
from 50% to 52%. A similar pattern is found in the CPS. When we redo the analysis considering that schooling is fixed at
a particular level for all the years the overall results do not change substantially.
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to AFQT. AFQT is only one of the variables in the X vector on which we condition, but it is the most

important one and is also most likely to have non-overlapping supports (see table 1). Notice that the

support of P is almost the full unit interval which allows us to estimate our model over the full support

of V . We are able to achieve large support for P because: (i) we combine multiple instruments into an

index; (ii) if we assume that X is independent of (U1, U0, V ) we can trade-off variation in X and Z to

increase the support of P (since X is controlled for in the outcome equations in a very flexible way).19

Most of our simulations are within the range of the data, since we only consider movements in P in

regions well within the support.

7.2 Choosing Tuning Parameters

In our implementation of (4.2), we used δ = 1e − 8.20 Also, in our application, we use cubic B-splines

with equi-spaced knots (based on sample quantiles of variables) as {pk : k = 1, 2, . . .}. The number of

approximating functions is chosen by least-squares cross validation. In our empirical work, β1 and β0

are estimated with ωn,ji ≡ 1 in (4.3) and a bandwidth of h = 0.10 (with the standard normal density as

kernel function) for estimation of the kernel estimator. The main estimation results did not change as

we used alternative bandwidths (0.05 and 0.20), or we trimmed the data by 5 or 10% of the observations

with the smallest density estimates of the estimated P .

Estimating E(U1|P = v, S = 1) and its derivative requires choices of two bandwidths hn1 and hn2.

A reasonable data-driven bandwidth selection rule is important to carry out nonparametric estimation.

We carry out some initial search for bandwidths using a method called residual squares criterion (RSC)

proposed in Fan and Gijbels (1996, Section 4.5). After experimenting different bandwidths around RSC-

chosen bandwidths, we finally choose hn1 = 0.35 and hn2 = 1.25hn1 for estimating both E (Y1|X,V )

and E (Y0|X,V ) for all the years. The bandwidth hn2 is chosen to be larger than hn1 since hn2 has to go

to zero at a rate slower than hn1 asymptotically. Varying the value of hn1 from 0.2 to 0.5 did not make

any important changes in the shape of estimated functions. Throughout the paper, we use the standard

normal density function as the kernel function K.

To estimate these conditional PDF’s and CDF’s, we adopt the same bandwidths hn1 and hn2 that

are used to estimate the corresponding conditional means. The bandwidth δn is chosen by Silverman’s

19When X is not independent of (U1, U0, V ) our procedure is not valid and the identification condition is that P has
full support at each value of X, which is a very demanding condition. For each X, variation in P identifies the objects of
interest for small intervals of V . However, if X is independent of (U1, U0, V ) we can put these intervals all together and
identify the objects interest over the whole support of V . This is equivalent to using not only Z, but also interactions of
X and Z as instruments for college attendance (controlling for X in the wage regressions). In such a case it is important
to ensure that variation in P is not driven exclusively by variation in X. In order to assess the importance of this problem
we performed the following exercise. Let D = 1 indicate the presence of a college in the county of residence at 14. We
divided the sample in four groups according to S and D, and checked the support of P in each group: S = 1 and D = 1,
S = 0 and D = 1, S = 1 and D = 0, S = 0 and D = 0. For each group, the support of P is close to the interval between 0
and 1. Conversely, if we look at the extremes of the support of P , there are individuals with both D = 1 and D = 0.

20This is an arbitrary choice; however, the result would not be very sensitive, provided that δ is sufficiently small.
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normal reference rule (Silverman, 1986, p.45). These choices of bandwidths are arbitrary, but our

estimation results were not very sensitive to the choices of the bandwidths.

7.3 Empirical Results

There are three components in our empirical analysis. First, we analyze how individuals sort into

different levels of schooling and illustrate how sorting affects inequality. Second, we investigate the role

of composition changes for the evolution of inequality. Third, we characterize selection bias and its

evolution over time.21

7.3.1 Characterizing the Patterns of Sorting

We start by presenting estimates of E (Y1|X,V ) and E (Y0|X,V ) for 1992, a representative year in

our sample. Figure 2 shows estimates of E (Y1|AFQT,X, V = 0.5), E (Y0|AFQT,X, V = 0.5), and the

difference between these two objects, as functions of AFQT, along with 95% pointwise asymptotic

confidence intervals for E (Y1 − Y0|AFQT,X, V = 0.5).22

We fix years of experience at 10 to abstract from life-cycle effects, V at its median value, and the

remaining variables in X at: 3 siblings, 12 years of mother’s and father’s education, cohort at 1964 and

7% for the local unemployment rate. This figure shows that, in 1992, on average AFQT is a strong

determinant of college wages (Y1) and of the return to college (Y1 − Y0), but not of high school wages

(Y0).

In figure 3 we graph E (Y1|AFQT = 0,X, V ), E (Y0|AFQT = 0,X, V ), E (Y1 − Y0|AFQT = 0,X, V )

(the Marginal Treatment Effect, or MTE, of Heckman and Vytlacil, 2001, 2005), as functions of V ,

along with 95% pointwise confidence intervals for E (Y1 − Y0|AFQT = 0,X, V ). Again we fix years of

experience at 10 and the remaining X variables at the values described above apart from AFQT, which

we fix at its mean value 0. As V increases, college wages decrease and so does the return to college, while

high school wages increase (recall that the higher the V is, the smaller the likelihood that an individual

enrolls in college).

These figures show that those individuals most likely to attend college (the ones with high levels

of AFQT and low levels of V ) have high wages in the college sector (since college wages increase with

AFQT and decrease with V ) but have low wages in the high school sector (since high school wages do

21We have carried out an informal goodness-of-fit check of our model specification by comparing estimates of E (Y1|S = 1),
E (Y0|S = 0), Quantile (Y1|S = 1) and Quantile (Y0|S = 0) from the model with the corresponding quantities in the data,
for all the years of our analysis. Overall, our model fits the data relatively well, giving us confidence in the specification of
the model.

22The pointwise asymptotic confidence intervals were constructed by normal approximations with estimated pointwise
asymptotic variances, while ignoring asymptotic biases (undersmoothing). The asymptotic variance is estimated based on
equations (4.8) and (4.9) of Fan and Gijbels (1996). Alternatively, one could consider bootstrap confidence intervals (for
example, a percentile method for each point). See Horowitz (2001, Section 4.2) for general exposition on bootstrapping
kernel-type estimators and Chen, Linton, and van Keilegom (2003, Theorem B) for the asymptotic validity of the bootstrap
inference for the GMM-type semiparametric estimators. It is expected that the bootstrap provides an asymptotically valid
inference for our case, but it is beyond the scope of this paper to prove its validity.
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not move substantially with AFQT and increase with V ). Conversely, individuals less likely to attend

college have low college wages and high high school wages. In summary, individuals sort into the sector

where they have both comparative and absolute advantage.

These results confirm the findings in Willis and Rosen (1979), Carneiro, Heckman and Vytlacil

(2007), and Deschenes (2007). Single skill models of the labor market implicit in standard specifications

of earnings equations with no heterogeneity predict college goers to have higher earnings both in the high

school and college sectors than high school graduates. Our findings (and those of the recent literature

cited above) are inconsistent with such a model (see also Heckman and Scheinkman, 1987, Heckman and

Sedlacek, 1985, and Gould, 2002, 2005). Similar patterns are found for other years, as shown in figure

4 (which shows these graphs for 1992, 1994, 1996 and 1998).

Figure 5 presents estimates of the 25th, 50th and 75th percentiles of f (u1|v) and f (u0|v) for 1992

(which, under our assumptions, correspond up to location to f (y1|x, v) and f (y0|x, v)). U1 and U0 are

normalized to have mean zero. The way these three quantiles vary with V parallels the patterns we

observed for means. While the dispersion in Y1 is flat over a large range of V , the dispersion in Y0

increases more visibly with V . The latter indicates that the components of heterogeneity that do not

determine selection are more disperse for individuals with a higher level of V (indicating more uncertainty

in high school wages; see Carneiro, Hansen and Heckman, 2003), or that the prices of these components

of heterogeneity (skills) are higher for individuals with a high V .23

7.3.2 Composition Effects and Education Policy

In this section we examine the importance of changes in the educational composition of the population

for wage inequality. Since we follow a single cohort of individuals over time, there are no significant

composition changes which we can examine in the raw data. Therefore, instead of looking directly to

the data for evidence of composition effects, we use our estimates of the selection and outcome equations

to simulate what would happen to inequality if college enrollment rates were different than the ones we

observe, keeping prices fixed (partial equilibrium framework; see also Ferreira and Leite, 2005).

The main difficulty of this exercise is to determine which individuals shift across schooling levels

when the college enrollment rate changes. This is why a model is needed. Even though our data is only

representative of a fixed set of cohorts working in the 1990s, our model can be useful for studying other

time periods. The restriction we face is that we can only simulate changes in composition for skill prices

fixed at their 1990s levels, and skill prices are probably higher in the 1990s than ever before. Therefore

23When estimating the model using data for the 1980s the patterns of selection we obtained were quite unstable, unlike
what we observe in the 1990s when, across different years, all the curves have similar shapes. In terms of selection on
AFQT, we observe roughly similar patterns for the 1980s and 1990s (at least in qualitative terms). However, the patterns
of selection on unobservables are more erratic. Therefore we believe our estimates for the 1990s to be much more reliable
and we ignore the 1980s data in the rest of our analysis. We also note that the 1980s data is not very adequate for our
analysis since most individuals are in their 20s, and their wages have not yet stabilized.
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composition effects will be larger when we evaluate them using 1990s prices than they would be if we

evaluated them instead using 1980s prices or 1970s prices.

The mechanics of the simulation are simple: first we change the intercept of the schooling equation

and we identify the distribution of (X,V ) for individuals who are induced to enroll in college; second we

generate the distribution of high school and college wages for this set of individuals; third, we compute

how their exit from the high school sector affects the high school wage distribution and how their

entry into the college sector affects the college wage distribution. We use the estimates using the 1992

data. The details of the simulation procedure are presented in Appendix B.2. When conducting the

simulations, our aim is to mimic the change in college participation among working-age (25-65) white

males that is observed between the 1980 and 1990 Censuses, which is an increase from 41% to 55%.

Table 3 (columns (1) and (2)) shows the result of an experiment where we increase the fraction of

individuals in college from 41% to 55% (which, according to the Census, is roughly the same change

that is observed from 1980 to 1990 for white males aged 25 to 65). The consequence is a decrease in

average college wages by 5%, and an increase in average high school wages by 7%. The reason is that

the marginal individuals induced to attend college are of below average college quality and they are also

of below average high school quality. As a result, the OLS estimate of the return to schooling decreases

from 54% to 42%.

We simulate much smaller changes in within group inequality and overall inequality as a result of

changes in composition. The ratio of the 90th to the 10th percentile of college wages increases from 1.29

to 1.31, an increase of 2%. In high school, the 90-10 percentile wage differential does not change. Finally,

our simulations show a very small decrease in the 90-10 differential in the overall wage distribution, from

1.30 to 1.29.

Our simulation shows that in the absence of composition effects the college premium in the 1980s

would have grown by 12 percentage points more than it did in the data. Even if we exaggerate the

magnitude of these effects by using 1990s prices, we conjecture that they would be still large if evaluated

at 1980s prices. Ignoring them would lead us to severely underpredict the increase in the college premium

in the 1980s. As a flip side, if we were to estimate the elasticity of substitution between college and high

school labor in this data, it would be overstated.

The consequences of our simulated changes in composition for within group inequality are smaller,

although they are still sizeable in the college sector. At first glance it is surprising to find large effects

of composition on between group inequality but small effects on within group and overall inequalities.

However, it is possible to reconcile these facts. This will happen if the amount of heterogeneity on which

individuals select does not explain a lot of the dispersion in wages. As emphasized in Carneiro, Hansen

and Heckman (2003) and Cunha, Heckman and Navarro (2005), even if the returns to schooling are very
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heterogeneous across individuals, individuals only select on returns to the extent that this heterogeneity

is known at the time they make the schooling decision. In our data individuals do select into schooling

based on their returns. However, their ex-ante expectation of returns is quite imperfect, and it only

accounts for a small portion of the total dispersion in the returns to schooling.24 In such a context, it

is possible to have a large impact of changes in composition on average parameters such as the college

premium, but only a small effect on dispersion parameters, such as the 90-10 percentile ratio.

In table 4 we compute the variance of counterfactual wages in each sector (Var (Y1) and Var (Y0))

for all the years and decompose it into components due to X and V (on which agents select), and

a residual component (on which agents do not select).25 Carneiro, Hansen and Heckman (2003) and

Cunha, Heckman and Navarro (2005) interpret the former as (ex-ante) heterogeneity and the latter as

uncertainty. We could also relate the former to the permanent component and the latter to the transitory

component of an earnings variance decomposition. The latter accounts for 66-74% of the variance of

college wages and 37-66% of the variance of high school wages (the literature on earnings dynamics

usually finds that the permanent component represents 50% of the total variance of earnings and that

this number is higher in college than high school; see, e.g., Meghir and Pistaferri, 2004).

7.3.3 The Importance of Selection Bias

The fact that individuals sort into different levels of schooling implies that selection bias affects both

within and between group inequality and their evolution over time. Selection bias is always defined

relatively to a specific parameter of interest. Here we illustrate the role of selection bias by comparing

inequality in the observed economy with inequality in a simulated counterfactual economy where indi-

viduals are randomly assigned to different schooling levels, as in Heckman and Sedlacek (1985, 1990).

Therefore, we assess the effect of selection bias on inequality parameters under random assignment. We

are able to approximate random assignment fairly well because we have close to full support on P ,

although, as mentioned above, this relies on the assumption of full independence between (X,Z) and

(U1, U0, V ).

The first column of Table 5 characterizes the observed distribution of log wages in 1992, and the

second column of the table corresponds to the counterfactual distribution of log wages in the same year

24This interpretation will change under different assumptions about the agents’ access to insurance markets. As argued
in Cunha, Heckman and Navarro (2005), it is not possible to estimate the information set of the agents without first
specifying the market structure they face.

25In particular, since X and U1 are assumed to be independent:

Var (Y1) = Var [µ1 (X)] + Var (U1)

= Var [µ1 (X)] + Var [E (U1|V )] + E [Var (U1|V )] ,

where Var [E (U1|V )] is the component of variance due to V and E [Var (U1|V )] is the remainder. Var (Y0) can be decom-
posed in the same way. The first row of table 4 corresponds to E [Var (U1|V )], the part of the variance that cannot be
associated with selection, the second corresponds to Var [µ1 (X)], the third corresponds to Var [E (U1|V )] and the fourth
corresponds to E [Var (U1|V )]/Var (Y1), the fraction of the variance in Y1 that is not due to any variable related to selection
into schooling.

23



for the random assignment economy. Columns (3) and (4) of the table show the actual and counterfactual

distributions of log wages in 1998, and columns (5) and (6) concern the evolution of these distributions

between 1992 and 1998. Composition changes do not contaminate this exercise because most individuals

in the sample are out of school during the 1990s.

In both 1992 and 1998, average wages in college (panel A) and high school (panel B) are higher in the

observed economy than in the random assignment economy due to self selection. The college premium

(panel C) is lower in the observed than in the random assignment economy in 1992, although in theory

this was not guaranteed to happen (the college premium in the random assignment economy corresponds

to the average treatment effect, or ATE). The observed OLS estimate increased by 9%, but there is no

increase in the average return to college in the random assignment economy. Thus, the commonly used

measure of college premium cannot reveal the true evolution of skill prices.

Table 5 also shows that selection leads to lower within group wage dispersion in college (measured by

differences in percentiles of the log wage distribution). In high school the effect of selection is negligible

in 1998. Finally, selection bias leads us to underestimate the growth in within group inequality in college

relative to the random assignment economy (with the exception of the P90-P50 differential in college)

and to have a different trend in within group inequality in high school.

8 Conclusion

Much of the literature on inequality considers simple models without heterogeneity and self-selection into

schooling. Our paper examines the importance of accounting for selection into schooling in the empirical

study of inequality. We estimate a semiparametric selection model with two levels of schooling (high

school and college) using four years of data (1992, 1994, 1996 and 1998) from the NLSY, and use it for

three different exercises. First, we have used it to understand the main patterns of sorting of individuals

into different levels of schooling. We find that individuals sort into the level of schooling where they have

absolute and comparative advantage. Second, we have used the model to simulate a change in college

enrollment and examine its effect on the wage structure. In our data increases in educational attainment

lead to reductions in between group inequality and increases in within group inequality in college. Third,

we have used it to analyze the evolution of inequality and of its determinants in our sample during the

1990s, purging our estimates of selection bias. We find that the trends in the commonly measured college

wage premium and within group inequality cannot reveal the trends of prices of skills.

We have also made two new contributions to the econometrics literature. First, we have extended

the method of local instrumental variables of Heckman and Vytlacil (1999, 2001, 2005) to identify the

distributions of potential outcomes. Second, we have developed a semiparametric method for estimating

the entire marginal distributions of potential outcomes.
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Some of the effects we emphasize in this paper are also present in some analyses of larger samples.

Using the Census, Juhn, Kim and Vella (2005) find evidence of cohort quality effects systematically

related to the educational attainment of different cohorts, but argue these can only explain a small

fraction of recent fluctuations in the college premium. Carneiro and Lee (2007), using almost the same

data but an alternative approach, find larger effects. However, more work remains to be done.

Appendix

A Description of the Data

We restrict the NLSY sample to white males. We define four schooling categories: high school dropouts,

high school graduates, some college and college graduates. Because there are multiple useful reports of

schooling in the NLSY we construct the educational categories as follows: individuals without a high

school degree are high school dropouts; individuals with a high school degree but with less than 13 years

of schooling are high school graduates; those reporting 13 to 15 years of schooling and without a four

year college degree go into the some college group; finally, those reporting a four year college degree or

16 or more years of schooling are considered to be four year college graduates. GED recipients who never

attend college are included in the group of high school graduates. GED recipients that do not have a

high school degree, who have less than 12 years of schooling completed and who never reported college

attendance are excluded from the sample. The wage variables we use are deflated (to 1983) non-missing

hourly wages from 1990 to 2000. We use these to construct 5 year averages which we use in the analysis.

We delete all wage observations that are below 1 or above 100. Experience is actual work experience

in weeks accumulated from 1979 to the year of interest (annual weeks worked are imputed to be zero if

they are missing in any given year). The remaining variables that we include in the X and Z vectors are

number of siblings, father’s years of schooling, mother’s years of schooling, schooling corrected AFQT,

average tuition in four year colleges in the county of residence at age 17 deflated (to 1993), distance to

four-year colleges at age 14 and local unemployment rate in state of residence at age 17. The distance

variable, which is from Kling (2001), is an indicator variable whether a four-year college is in the county

of residence at age 14. The state unemployment rate data comes from the BLS website. However, from

the BLS website it is not possible to get state unemployment data for all states for all the 1970s (data is

available for all states from 1976 on, and it is available for 29 states for 1973, 1974 and 1975), and therefore

for some of the individuals we have to assign them the unemployment rate in the state of residence in

1976 (which will correspond to age 19 for those born in 1957 and age 18 for those born in 1958).

Annual records on tuition, enrollment, and location of all public four year colleges in the United States

were constructed from the Department of Education’s annual Higher Education General Information

Survey and Integrated Postsecondary Education Data System “Institutional Characteristics” surveys.

By matching location with county of residence, we determined the presence of four-year colleges. Tuition

measures are taken as enrollment weighted averages of all public four-year colleges in a person’s county

of residence (if available) or at the state level if no college is available. County and state of residence

at 17 are not available for everyone in the NLSY, but only for the cohorts born in 1962, 1963 and 1964

(age 17 in 1979, 1980 and 1981). However, county and state of residence at age 14 is available for most
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respondents. Therefore, we impute location at 17 to be equal to location at 14 for cohorts born between

1957 and 1962 unless location at 14 is missing, in which case we use location in 1979 for the imputation.

For a description of the NLSY sample see BLS (2001). The NLSY79 has an oversample of poor whites

which we exclude from this analysis. We also exclude the military sample. To remove the effect of

schooling on AFQT we implement the same procedure as in Carneiro, Heckman and Vytlacil (2007)

(based on Hansen, Heckman and Mullen, 2004).

B More Details of Estimation Procedure

B.1 Obtaining Sample Analogs of (3.4)

Estimators of E[Yj ], E[Yj |S = 1], and E[Yj |S = 0] are obtained by

E[Yj ] = n−1
n
∑

i=1

∫ 1

0

Ê[Yj |X = Xi, V = v] dv,

E[Yj |S = 1] = n−1
n
∑

i=1

∫ 1

0

Ê[Yj |X = Xi, V = v]
1 − F̂P |X(v|Xi)

P̂r(S = 1)
dv,

and

E[Yj |S = 0] = n−1
n
∑

i=1

∫ 1

0

Ê[Yj |X = x, V = v]
F̂P |X(v|Xi)

P̂r(S = 0)
dv,

(B.1)

where Ê[Yj |X = x, V = v] = µj(x, β̂j) + Ê[Uj |V = v] is defined in section 4.2, F̂P |X(v|x) is a nonpara-

metric kernel estimator of FP |X(v|x), and P̂r(S = j) is the sample proportion of S = j for j = 0, 1. The

integration with respect to v can be evaluated numerically.

B.2 Simulating Wage distributions of Different Compositions of Education

Groups

This subsection describes how we carry out simulations whose results are shown in table 3. Suppose

there is a policy that shifts the distribution of P in the population from FP |X (p|x) to F ∗
P |X (p|x), but

has no effect on f (y0|x, v) nor f (y1|x, v). In view of (3.4), the post-policy distributions of college and

high school wages are

f(y1|S = 1) =

∫ ∫ 1

0

f(y1|x, v)
1 − F ∗

P |X(v|x)

Pr∗(S = 1)
fX(x) dv dx,

and

f(y0|S = 0) =

∫ ∫ 1

0

f(y0|x, v)
F ∗

P |X(v|x)

Pr∗(S = 0)
fX(x) dv dx.

(B.2)

Thus, in order to simulate wage distributions of different compositions of education groups, we need to

compute only F ∗
P |X (p|x) and Pr∗(S = 1). Recall that in our empirical work, P̂ is a series estimator.

We simulate changes in college enrollment rates simply by varying the intercept of P̂ . Then F ∗
P |X (p|x)

can be estimated by a nonparametric kernel regression of 1{(P̂ + c∗) ≤ p} on X and Pr∗(S = 1) can be

estimated by a sample average of (P̂ + c∗), where we choose the values of c∗ to match college enrollment

rates in 1980 and 1990. Finally the results shown in table 3 can be obtained by sample analogs of (B.2).
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C Mathematical Proofs

Proof of Theorem 2. Given the partially linear additive structure in the modelling of P , this lemma is

a direct consequence of Theorem 7 of Newey (1997).

Proof of Theorem 3. This can be proved using general results for two-step semiparametric estimators.

In particular, we verify regularity conditions of Ichimura and Lee (2006, hereafter IL) and apply their

general theorem to our case. We consider only the case that j = 1. The other case is very similar. To

simplify the notation, we make our derivation below implicit in the trimming function 1(z ∈ Z). Now

we view the estimator β̂1 as an M-estimator with

m [(y, s, x, z), b, f(·)] =
1

2
s [y − f1(f3(z)) − {x − f2(f3(z))}′b]

2
,

where f = (f1, f2, f3) are the nonparametric components of the model. In particular, the true function

f0 = (f10, f20, f30) satisfies f10(·) = E[Y |P = ·, S = 1], f20(·) = E[X|P = ·, S = 1], and f30(·) =

E[S|Z = ·].

First, we check their regularity conditions. Assumption 3.1(a) of IL is not needed in our case because

we have an estimator that minimizes a convex objective function. Assumptions 3.1(b) is guaranteed

by the assumption that Ωj is positive definite (see Section 4 of Robinson, 1988). The consistency of

the estimator can be easily obtained in view of Assumption 7, so that Assumption 3.1(c) is satisfied.

Assumptions 3.2 and 3.3 of IL are trivially satisfied given the form of the objective function m. In view

of Theorem 2, Assumption 8 implies that

max
i:1≤i≤n

|P̂ (Zi) − P (Zi)| = op

(

n−1/4
)

.

Then using this and Assumption 7, Assumption 3.4 of IL is easily verified. Given the form of m, it is

trivial to verify Assumption 3.5 of IL (see, Proposition 3.1 of IL and discussions on Examples 2.2 and 2.3

of IL). Assumption 3.6 of IL is a key assumption that characterizes the effect of the first stage estimation

of P . Using the notation that is same as in IL, it is straightforward to calculate

Df1
m∗(b, f0(·))[h1(·)] = −E [S {(Y − E[Y |P, S = 1]) − (µ1(X) − E[µ1(X)|P, S = 1])′b}h1(·)] ,

Df2
m∗(b, f0(·))[h2(·)] = E [S {(Y − E[Y |P, S = 1]) − (µ1(X) − E[µ1(X)|P, S = 1])′b}h2(·)

′b] ,

Df3
m∗(b, f0(·))[h3(·)] = E

[

S {(Y − E[Y |P, S = 1]) − (µ1(X) − E[µ1(X)|P, S = 1])′b}

×
{

−∂f10(p)/∂p
∣

∣

p=P
+ ∂f20(p)/∂p′

∣

∣

p=P
b
}

h3(·)
]

.

Then it easy to see that

∂

∂b
Df1

m∗(b, f0(·))[h1(·)]
∣

∣

b=β1

= 0,

∂

∂b
Df2

m∗(b, f0(·))[h2(·)]
∣

∣

b=β1

= 0,

∂

∂b
Df3

m∗(b, f0(·))[h3(·)]
∣

∣

b=β1

= E
[

S(µ1(X) − E[µ1(X)|P, S = 1])∂λ1(p)/∂p
∣

∣

p=P
h3(·)

]

.

Thus, only the third term above affects the asymptotic distribution. Its limiting behavior evaluated at

P̂ −P is easy to describe, because it is a linear functional of P̂ −P . For example, see Section 4 of Newey

(1997). Assumption 7 of Newey (1997) is satisfied with ν(z) that is defined above (see Assumption 9).

Then the desired result follows from Theorem 3.3 of IL with the restriction that n1/2κ−rϕ → 0.
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Proof of Theorem 4. Define Û =
[

Û11, . . . , Û1n

]′

and Ŵh = diag
{

S1Kh(P̂1 − v), . . . , SnKh(P̂n − v)
]′

,

where Kh(·) = h−1K(·/h). In addition, define

X̂L =







1 (P̂1 − v)
...

...

1 (P̂n − v)






and X̂Q =







1 (P̂1 − v) (P̂1 − v)2

...
...

...

1 (P̂n − v) (P̂n − v)2






.

Then using this notation, it follows from (4.4) that

Ê[U1|V = v] = v × e′2

(

X̂′
QŴhn2

X̂Q

)−1 (

X̂′
QŴhn2

Û
)

+ e′1

(

X̂′
LŴhn1

X̂L

)−1 (

X̂′
LŴhn1

Û
)

,(C.1)

where e1 = (1, 0)′ and e2 = (0, 1, 0)′.

Let U = [U11, . . . , U1n]
′
and µ1(X) = [µ1(X1), . . . , µ1(Xn)]. Since Û1i = U1i −µ1(Xi)

′
(

β̂1 − β1

)

, we

have

Ê[U1|V = v] = Tn(v) − Rn(v)
(

β̂1 − β1

)

,(C.2)

where

Tn(v) = v × e′2

(

X̂′
QŴhn2

X̂Q

)−1 (

X̂′
QŴhn2

U
)

+ e′1

(

X̂′
LŴhn1

X̂L

)−1 (

X̂′
LŴhn1

U
)

Rn(v) = v × e′2

(

X̂′
QŴhn2

X̂Q

)−1 (

X̂′
QŴhn2

µ1(X)
)

+ e′1

(

X̂′
LŴhn1

X̂L

)−1 (

X̂′
LŴhn1

µ1(X)
)

.

Then since Rn(v) = Op(1),

Ê[U1|V = v] = Tn(v) + Op

(

n−1/2
)

,(C.3)

which implies that the error from estimating β1 is asymptotically negligible.

To analyze Tn(v), define

U∗ = (E[U1|P = P1, S = 1], . . . , E[U1|P = Pn, S = 1])
′

and

XL =







1 (P1 − v)
...

...
1 (Pn − v)






and XQ =







1 (P1 − v) (P1 − v)2

...
...

...
1 (Pn − v) (Pn − v)2






.

It follows from Assumptions 11 and 12 that

max
i

∣

∣

∣
Kh(P̂i − v) − Kh(Pi − v)

∣

∣

∣
= op(1),(C.4)

which implies that
∥

∥

∥
Ŵhn1

− Whn1

∥

∥

∥
= op(1). By Taylor series expansion,

E[U1|P = Pi, S = 1] = E[U1|P = v, S = 1] +
∂E[U1|P = v, S = 1]

∂p
(Pi − v)

+
1

2

∂2E[U1|P = v, S = 1]

∂p2
(Pi − v)2 +

1

3!

∂3E[U1|P = v, S = 1]

∂p3
(Pi − v)3 + Rp(v),
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where Rp(v) is a Taylor remainder term. Further, expand the equation above as

E[U1|P = Pi, S = 1] = E[U1|P = v, S = 1]

+
∂E[U1|P = v, S = 1]

∂p
(P̂i − v) −

∂E[U1|P = v, S = 1]

∂p
(P̂i − Pi)

+
1

2

∂2E[U1|P = v, S = 1]

∂p2
(Pi − v)2

+
1

3!

∂3E[U1|P = v, S = 1]

∂p3
(Pi − v)3 + Rp(v).

(C.5)

Using (C.4) and (C.5), we have

e′1

(

X̂′
LŴhn1

X̂L

)−1 (

X̂′
LŴhn1

U
)

− E[U1|P = v, S = 1]

= e′1

(

X̂′
LŴhn1

X̂L

)−1 (

X̂′
LŴhn1

[U − U∗]
)

+ Op

(

max
i:1≤i≤n

|P̂i − Pi| + h2
n1

)

= e′1 (X′
LWhn1

XL)
−1

(X′
LWhn1

[U − U∗]) [1 + op(1)] + Op

(

max
i:1≤i≤n

|P̂i − Pi| + h2
n1

)

= Op

(

(nhn1)
−1/2 + max

i:1≤i≤n
|P̂i − Pi| + h2

n1

)

.

Similar arguments also give

e′2

(

X̂′
QŴhn2

X̂Q

)−1 (

X̂′
QŴhn2

U
)

−
∂E[U1|P = v, S = 1]

∂p

= e′2

(

X̂′
QŴhn2

X̂Q

)−1 (

X̂′
QŴhn2

[U − U∗]
)

+ Op

(

max
i:1≤i≤n

|P̂i − Pi| + h2
n2

)

= e′2
(

X′
QWhn2

XQ

)−1 (
X′

QWhn2
[U − U∗]

)

[1 + op(1)] + Op

(

max
i:1≤i≤n

|P̂i − Pi| + h2
n2

)

= Op

(

(nh3
n2)

−1/2 + max
i:1≤i≤n

|P̂i − Pi| + h2
n2

)

.

Then the theorem follows from standard results on local polynomial regression (for example, see Chapter

3 of Fan and Gijbels, 1996).

Proof of Theorem 5. This theorem follows easily by combining Theorems 2, 3, and 4 with the fact that

the S = 1 and S = 0 samples are independent of each other.
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Table 1: Summary Statistics of Data

Variable Year 1992 Year 1994 Year 1996 Year 1998
Mean SD Mean SD Mean SD Mean SD

College (S = 1) n = 907 n = 903 n = 893 n = 891
Log Wage 2.70 0.55 2.74 0.55 2.81 0.55 2.88 0.57
Years of Experience 7.65 3.36 9.46 3.57 11.14 3.70 12.93 3.91
Current Unemployment 7.46 1.37 5.93 1.29 5.25 1.05 4.27 0.93
Born in 57 0.10 0.30 0.10 0.30 0.10 0.30 0.11 0.31
Born in 58 0.12 0.32 0.11 0.32 0.11 0.32 0.11 0.32
Born in 59 0.09 0.29 0.09 0.29 0.10 0.29 0.10 0.30
Born in 60 0.12 0.33 0.12 0.33 0.12 0.33 0.13 0.34
Born in 61 0.14 0.34 0.14 0.34 0.13 0.34 0.13 0.34
Born in 62 0.17 0.37 0.17 0.37 0.16 0.37 0.15 0.36
Born in 63 0.14 0.34 0.14 0.34 0.14 0.34 0.14 0.35
Corrected AFQT 0.56 0.77 0.56 0.77 0.56 0.76 0.53 0.77
Number of Siblings 2.61 1.66 2.61 1.66 2.65 1.72 2.66 1.73
Mother’s Schooling 12.91 2.25 12.90 2.21 12.87 2.24 12.82 2.25
Father’s Schooling 13.70 3.15 13.67 3.14 13.61 3.17 13.58 3.19
Distance to College 0.58 0.49 0.58 0.49 0.57 0.50 0.57 0.50
Unemployment at 17 7.09 1.86 7.08 1.87 7.08 1.87 7.09 1.86
College Tuition at 17 2.05 0.78 2.05 0.79 2.05 0.78 2.06 0.79
Some College 0.46 0.50 0.45 0.50 0.45 0.50 0.45 0.50

High School (S = 0) n = 898 n = 872 n = 844 n = 821
Log Wage 2.36 0.58 2.37 0.55 2.40 0.50 2.45 0.54
Years of Experience 10.94 3.24 12.69 3.46 14.40 3.63 16.02 3.96
Current Unemployment 7.34 1.48 5.80 1.24 5.12 1.02 4.26 0.94
Born in 57 0.10 0.30 0.10 0.30 0.10 0.30 0.10 0.30
Born in 58 0.08 0.28 0.08 0.27 0.08 0.27 0.08 0.27
Born in 59 0.12 0.33 0.12 0.33 0.12 0.32 0.12 0.32
Born in 60 0.14 0.35 0.14 0.34 0.14 0.35 0.14 0.35
Born in 61 0.13 0.34 0.13 0.33 0.13 0.33 0.13 0.33
Born in 62 0.17 0.37 0.17 0.37 0.17 0.37 0.17 0.38
Born in 63 0.14 0.34 0.14 0.34 0.13 0.34 0.13 0.34
Corrected AFQT -0.46 0.90 -0.47 0.89 -0.49 0.88 -0.50 0.89
Number of Siblings 3.25 2.06 3.26 2.08 3.24 2.03 3.28 2.05
Mother’s Schooling 11.31 2.15 11.27 2.16 11.25 2.16 11.24 2.15
Father’s Schooling 11.06 2.98 11.00 2.96 10.98 2.96 10.94 2.93
Distance to College 0.47 0.50 0.46 0.50 0.46 0.50 0.46 0.50
Unemployment at 17 7.10 1.81 7.09 1.81 7.07 1.81 7.09 1.82
College Tuition at 17 2.12 0.85 2.11 0.84 2.11 0.83 2.09 0.83
High School Dropout 0.19 0.39 0.18 0.38 0.17 0.37 0.17 0.37

Note: Entries in this table are means and standard deviations of variables. For each year, n denotes the
sample size of each schooling group. The log wages are 5 year averages of non-missing hourly wages.
Years of experience are actual work experience from 1979. Current unemployment is 5 year averages
of the state unemployment in percentage in the current state of residence. The omitted variable for
the birth-year is 1964. Correct AFQT is schooling-adjusted and normalized to have mean zero in the
NLSY population. Parental schooling is measured in years of education. Distance to college is an
indicator variable that has value one when there is a four-year college in the county of residence at
age 14. Unemployment at 17 is the unemployment rate in percentage in the state of residence at 17.
College tuition at 17 is the average tuition in thousand dollars of four year public colleges in the county
of residence at 17. Finally, some college and high school dropout are indicator variables that have value
one when an individual belongs to corresponding education groups.



Table 2: Average Derivatives for the College Attendance Logit Model

Variable Year 1992 Year 1994 Year 1996 Year 1998

Corrected AFQT 0.2171 0.2194 0.2283 0.2231
(0.0116) (0.0115) (0.0110) (0.0111)

Number of Siblings -0.0514 -0.0465 -0.0377 -0.0446
(0.0158) (0.0157) (0.0167) (0.0167)

Mother’s Schooling 0.2110 0.2079 0.1231 0.1303
(0.0840) (0.0842) (0.0847) (0.0851)

Father’s Schooling 0.3585 0.3839 0.4168 0.4093
(0.0601) (0.0597) (0.0600) (0.0608)

Unemployment at 17 0.0119 0.0140 0.0148 0.0140
(0.0067) (0.0067) (0.0069) (0.0070)

College Tuition at 17 -0.0270 -0.0335 -0.0365 -0.0270
(0.0142) (0.0144) (0.0147) (0.0147)

Distance to College 0.0403 0.0459 0.0402 0.0506
(0.0200) (0.0200) (0.0202) (0.0204)

Test for Instruments

P-value 0.0073 0.0008 0.0012 0.0018

Note: For each year, the average derivatives are obtained from a partially linear additive regression of
college attendance on explanatory variables using B-splines. In particular, regressors include a constant,
cohort dummies, distance to college (a dummy variable), linear terms of family background variables
(number of siblings, mother’s schooling, and father’s schooling), interactions between distance to college
and family background variables, and cubic B-splines with equally spaced knots (based on quantiles of
variables of interest) for corrected AFQT, unemployment at 17, and college tuition at 17. The number
of interior knots as well as the inclusion of interaction terms were determined by the least squares
cross-validation method. Standard errors are in parentheses. The last row shows p-values for the null
hypothesis that three average derivatives for instruments are all zeros.
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Table 3: Results of Simulating 1980’s

Column (1) (2) (3) (4)
Variable Simulation 1980 Simulation 1990 Census 1980 Census 1990

Panel A: College

College Enrollment Rates 0.41 0.55 0.41 0.55
Average College Wages 2.78 2.73 2.72 2.76
90-10 College Wages 1.29 1.31 1.46 1.57

Panel B: High School

Average High School Wages 2.23 2.30 2.50 2.43
90-10 High School Wages 1.09 1.09 1.34 1.43

Panel C: All Individuals

Average Overall Wages 2.45 2.54 2.60 2.62
90-10 Overall Wages 1.30 1.29 1.41 1.56

Panel D: Return to College

College Premium (OLS) 0.54 0.42 0.22 0.33

Note: The first two columns present measures of average schooling and characteristics of the wage
distribution using Census data from 1980 and 1990 for white males. The second two columns present
characteristics of simulated wage distributions from our model under the assumption that the college
participation rate is 41% (the third column) and 55% (the fourth column).
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Table 4: Analysis of Counterfactual Variances of Y1 and Y0

Component Year 1992 Year 1994 Year 1996 Year 1998

Panel A: Variance Decomposition of Y1

E[Var(U1|V )] 0.223 0.206 0.188 0.218
Var[µ1(X)] 0.068 0.078 0.070 0.099
Var[E(U1|V )] 0.013 0.023 0.015 0.015
E[Var(U1|V )]/Var(Y1) 0.736 0.670 0.688 0.656

Panel B: Variance Decomposition of Y0

E[Var(U0|V )] 0.156 0.126 0.138 0.174
Var[µ0(X)] 0.071 0.085 0.033 0.036
Var[E(U0|V )] 0.116 0.132 0.039 0.085
E[Var(U0|V )]/Var(Y0) 0.455 0.367 0.656 0.589

Note: The first panel of this table decomposes the variance of Y1 in a component due to X (second
line), another due to V (third line) and a third one due neither to X nor V (first line). The latter
represents the variance in Y1 that is not related with selection and in the fourth line of the panel we
report the percentage of the total variance accounted for this component. The second panel presents a
similar decomposition for Y0.
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Table 5: The Impact of Self-Selection on the Distribution of Log Wages, 1992 and 1998

Column (1) (2) (3) (4) (5) (6)
NLSY 92 Random 92 NLSY 98 Random 98 NLSY 98-92 Random 98-92

Panel A: College

Mean 2.70 2.58 2.88 2.79 0.18 0.21
P90-P10 1.25 1.39 1.31 1.50 0.06 0.11
P90-P50 0.62 0.63 0.70 0.72 0.08 0.09
P50-P10 0.63 0.76 0.61 0.78 -0.02 0.02

Panel B: High School

Mean 2.36 2.00 2.45 2.21 0.09 0.21
P90-P10 1.10 1.24 1.17 1.16 0.07 -0.08
P90-P50 0.54 0.76 0.59 0.58 0.05 -0.18
P50-P10 0.56 0.48 0.58 0.58 0.02 0.10

Panel C: Return to College

OLS 0.34 0.58 0.43 0.58 0.09 0.00

Note: The first column of the table reports actual values for the distribution of log wages in 1992,
whereas the second column of the table provides counterfactual values for the distribution of log wages
in 1992 that would be observed if individuals were randomly assigned to college and high-school sectors.
Columns (3) and (4) of the table show the actual and counterfactual distributions of log wages in 1998
and columns (5) and (6) give the differences between the 1992 and 1998 values. OLS in the last row
denotes the Ordinary Least Squares estimate of return to college.
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Figure 1: Support of P and AFQT (Year 1992)

Note: This figure shows the support of the data for 1992. The top two figures refer to P and the bottom
two figures refer to AFQT.
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Figure 2: MTE as a Function of AFQT (Year 1992)

Note: This figure shows estimates of E (Y1|AFQT,X, V = 0.5), E (Y0|AFQT,X, V = 0.5), and
E (Y1 − Y0|AFQT,X, V = 0.5), as functions of AFQT, along with 95% pointwise asymptotic confidence
intervals for E (Y1 − Y0|AFQT,X, V = 0.5). The remaining X variables are fixed at 10 years of ex-
perience, 3 siblings, 12 years of mother’s and father’s education, cohort at 1964 and 7% for the local
unemployment rate.
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Figure 3: MTE as a Function of V (Year 1992)

Note: This figure shows estimates of E (Y1|AFQT = 0,X, V ), E (Y0|AFQT = 0,X, V ), and
E (Y1 − Y0|AFQT = 0,X, V ), as functions of V , along with 95% pointwise asymptotic confidence in-
tervals for E (Y1 − Y0|AFQT = 0,X, V ). The remaining X variables are fixed at 10 years of experience,
3 siblings, 12 years of mother’s and father’s education, cohort at 1964 and 7% for the local unemployment
rate.
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Figure 4: E[Y1|X,V ] and E[Y0|X,V ] (All Years)

Note: This figure shows estimates of E[Y1|X,V ] and E[Y0|X,V ] for years 1992, 1994, 1996 and 1998, as
functions of AFQT and V . The remaining X variables are fixed at 10 years of experience, 3 siblings, 12
years of mother’s and father’s education, cohort at 1964 and 7% for the local unemployment rate.
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Figure 5: Q[U1|V ] and Q[U0|V ] (Year 1992)

Note: This figure shows estimates of the 25th, 50th and 75th percentiles of f (u1|v) and f (u0|v) for
1992. U1 and U0 are normalized to have mean zero.
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