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Abstract

Monte Carlo studies have shown that estimated asymptotic standard errors
of the efficient two-step generalised method of moments (GMM) estimator
can be severely downward biased in small samples. The weight matrix
used in the calculation of the efficient two-step GMM estimator is based on
initial consistent parameter estimates. In this paper it is shown that the
extra variation due to the presence of these estimated parameters in the
weight matrix accounts for much of the difference between the finite sample
and the asymptotic variance of the two-step GMM estimator that utilises
moment conditions that are linear in the parameters. This difference can
be estimated, resulting in a finite sample corrected estimate of the variance.
In a Monte Carlo study of a panel data model it is shown that the corrected
variance estimate approximates the finite sample variance well, leading to
more accurate inference.
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1. Introduction

In Monte Carlo studies it has often been found that the estimated asymptotic
standard errors of the efficient two-step generalized method of moments (GMM)
estimator are severely downward biased in small samples,' see e.g. Arellano and
Bond (1991), whereas the asymptotic standard errors of one-step GMM estima-
tors are virtually unbiased. One-step GMM estimators use weight matrices that
are independent of estimated parameters, whereas the efficient two-step GMM es-
timator weighs the moment conditions by a consistent estimate of their covariance
matrix. This weight matrix is constructed using an initial consistent estimate of
the parameters in the model. In this paper it is shown that the extra variation
due to the presence of these estimated parameters in the weight matrix accounts
for much of the difference between the finite sample and the asymptotic variance
of the two-step GMM estimator that utilizes moment conditions that are linear in
the parameters. This difference can be estimated, resulting in finite sample cor-
rected estimates of the variance. In a Monte Carlo study of a panel data model,
it is shown that this corrected variance approximates the finite sample variance
of the two-step GMM estimator well, leading to more accurate inference. The
variance correction is further illustrated using the models and data from Arellano
and Bond (1991) and Blundell and Bond (2000).

In section 2 the finite sample bias of the asymptotic variance of the two-step

! The same observation has been made for alternative GMM estimators, like the continuously
updated and iterated GMM estimators (see Hansen, Heaton and Yaron (1996)). A finite sample
variance correction for the iterated GMM estimator is discussed in section 2.1.



GMM estimator is derived. Section 3 considers a bivariate panel data model,
and Section 4 presents Monte Carlo results for this model. Section 5 presents
the empirical applications and section 6 concludes. Further, the finite sample
performance of the Sargan /Hansen test for overidentifying restrictions is discussed

in the appendix.
2. GMM and Finite Sample Variance Correction

Consider the moment conditions
Elg (X, 60)] = Elgi (60)] =0,

where g (.) is vector of order ¢ and 6, is a parameter vector of order k, with k < q.

The GMM estimator @ for 6, minimizes?
1 N ! . 1 N
= | xr i 9 N AT 7 9 )
Q= |5 X0 0)| Wit | 5 3:0)

with respect to 0; where Wy is a positive semidefinite matrix which satisfies
plimy_ Wy = W, with W a positive definite matrix. Regularity conditions
are assumed such that limy_ % Y1V, g; (6) = Eg; (0)] and \/LN SN i (6y) —
N (0,¥). Let I'(0) = E[0g; (#) /00'] and T'yp, = ' (), then \/N(é— 90) has a
limiting normal distribution, v N (5 — 60> — N (0, Viy), where

Vi = (T, W™'Ta,) Ty W 0W Ty, (Tp, W'Ty,) (2.1)

The efficient two-step GMM estimator, denoted §2, is based on a weight matrix

-1
that satisfies plimy_, . Wy = U, with Vjy = (F’GO\IJ_IF90> . A weight matrix that

2See Hansen (1982).



satisfies this property is given by
N
Wi (81) = = 200 (B:) 0. (81) (22)
i=1

where 6 is an initial consistent estimator for 6.

Let
0) = 3 a)
9 = 2.9
N =1
ag (0
0(9) = aé/
oC(0)
8(2‘09)
G(Q) — oC (6) _ 002
00 : ’
8C(6)
00y
and
0 I xr—le
o = = O (00 Wy'T (B):
62 ! — !/ —1—
Auiy = D], = O (00) WO (80) + G (60) (1 © W' ()

A standard first order Taylor series approximation of 0 around 0y, conditional on

Wy (§1>, results in

~ 4 R
62 - 80 — AQQ,WN(/G\l)bQO:WN(el)

+0, (N7,
and an estimate for the asymptotic variance of 0, is given by

var () = iy )€ (8:) Wi (8) € () A3

N 02,Wn 927WN(/9\1)'
However, a further expansion of 0, around Oy results in
By — B0 = —Ag w00y D00 W 80) + Do wi(o0) (61— 60) + Op (N 1) ,
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where
Ly
W = — 90 gz 90
N =
and
0 _
Doy, wy (80) = 89'< A @) beo,wN(e)) |66

is a k x k matrix. The j-th column of Dy, w,) is given by?

A(,_O w09 C (00) Wit (60) anLQJ(Q)bO L(00) C (6y) A9_0 W (60) 00, W (00)  (2:3)
= Ao @ ) (1 Wi 00) 2o Wi 003 00)) 43 s
A0 60) Wi (60) T o W (60)5 (8,
where /
Tk a5

The first two terms of Dy, wy (s,) are functions of A;O%WN (86000, W (9) Which is the
bias of an infeasible GMM estimator that uses an efficient weight matrix that is
based on the true parameters 6,. This bias tends to be small and will generally
not grow with the number of instruments, see Newey and Smith (2000). The third
term, which in general does increase with the number of moment conditions, will
therefore dominate.

Taking 6, as a one-step GMM estimator using a weight matrix that does not

depend on estimated parameters:

é\l - 90 = _A;ol,WNbeo,WN + OP (Nil) )

3Using results as given in Magnus and Neudecker (1988, p.151).
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in practice, an estimate of the variance of 0, that incorporates the term involving

the one-step estimator can be obtained as

(A 1
var, (92) = NA/G\;WN (51)

+ D ( )VaI‘ (81) l)‘92 WN(91)

+~D, @)% W C(0) wgte (6,) 43

N 0o, Wi 02, Wn (01)

C(0:) Wit (B) C (B) AL - (2.4)

0o, WN(Gl)

oy B W00 (B) 45, 2

N 62,Wy 01,Wn 927WN(51)‘

where the estimated variance of the one-step estimator is given by

var (é\ ) - NAa WNC (é\l)/ WJQIWN (é\l) Wﬁlc (é\l) A9:117WN

and D is as defined in (2.3) with 6, and Wy (6) substituted by 6, and

0>, W (01)
Wi (91) respectively. The first two terms of D527WN (@) are equal to zero.

The term Dy, w o) (51 — 90) is itself O, (N~!) and in this general setting,
incorporating non-linear models and/or non-linear moment conditions, whether
taking account of it will improve small sample inference depends on the other
remainder terms which are of the same order.

A definite improvement, however, will be obtained in models where all the

moment conditions used are linear in the parameters, as in this case
~ ~ —1 ~
Oy — b = —(C'W5' (6u)C)  C'Wy' (6u)7(6n)
-1
= - (C,WNI (6or) C) C'Wx" (001)  (Bor)

+ Doy, Wy (661) (911 - 901) + O, ( 3) :



where the subscript ; indicates parameters in linear moment conditions and the
J-th column of Dy, wy (s, is given by

Wy (0)
90,
xr—1 1 1 =

X (CWy! (60) C) ~ C'Wy* (60) 7 (60

oWy (01)
90,

1
—(CWF (60) C)  CWR (6n) |0 W' (601) C

1
+(C'Wy! (6u) C)  C'Wy* (6ur) oo W' (00) G (Br) -

Therefore, in this case the term Dy, wy (6, (511 — 901) will improve the accuracy
of the approximation in finite samples.

A one-step linear estimator satisfies
n rxr—1 1 —1=
b — by = — (C'WR'C) C'WR'G(6u),
and the finite sample corrected estimate of the variance of ggl can be obtained as

(7 1 roir 1 (A -1 A )

var, (921) = N (C’ Wy (911) C’) + D@hWN@H)V&r (911) Dé;lwa(b\ll)
1 Wl (6 R 1

+ ND/G;lyWN(é\ll) (C WN (911) C) + N (C WN (ell) C) D/e\gl,WN (é\ll)

where the first RHS term is the conventional estimate of the asymptotic variance,

and
i () = - (CWA0) Wy W () W' (o)
2.1. The Iterated GMM Estimator

The iterated GMM estimator, denoted §IT, is a multi-step GMM estimator that

is iterated until convergence. Therefore, in the case of linear moment conditions,
~ ~ —1 ~
Orr1 — O = — (C/Wﬁl (91Tl) C) C'Wyt (91Tl) g (Or) »

7



and the asymptotic variance is estimated as

-1

— (2 1 1 (3
var (HITI) = N (C/WNl (HITZ) C)
Using the same arguments as above, it follows that

~ -1
Orri =00 = — (C'Wy' (00)C) C'Wy" (0) F (6ur)

+ Doy, W (001) <§ITI - 901) + Oy (N_%>

and a corrected finite sample estimate for the variance of the iterated linear GMM

estimator is given by

var, (élTl) = % <I - Dngl’WN(ngl)>_l (C/Wﬁl (élTl) C’)il <I - Dé\ITl,WN(é\ITl))_l :

3. A Panel Data Model

Consider the panel data model specification
Yie = BoTir + Ui
U = 1 + Vi

fori =1,...,N,t = 2,...,T. The single regressor z; is correlated with 7; and
predetermined with respect to vy, meaning that F (z;v.5) =0, s =0,..,T — ¢,
but E (zjvy_r) # 0, 7 = 1,...,t — 1. A commonly used estimator is the GMM

estimator in the model in first differences, see Arellano and Bond (1991),

Ay = BoAzy + Auy; t=2,...,T



with 7' (7' — 1) /2 sequential instruments
zan 0 0 0 O 0
7 — 0 zn a.cig 0 O 0
0 0 0 =1 ... mra
The moment conditions are then given by F (Z!Au;) = 0, where Aw; is the (7" — 1)
vector (Auys, ..., AuiT)/. The covariance matrix of the moment conditions is de-

noted V.

A one-step GMM estimator is given by
b= (M ZWy' Z82) " AL ZW 7' Ay,

where Z'isthe T (T'— 1) /2x N (T — 1) matrix (2, Z, ..., Z ), Ax; is the (T — 1)
vector (Ao, ..., Axp), Ay; is the (T — 1) vector (Ayso, ..., Ayir), Az and Ay
are N (T — 1) vectors (Ax}, Ax)y, ..., Ax'y)" and (Ay), Ay, ..., Ayly)' respectively,
and Wx' is an initial positive definite weight matrix. For example, 2SLS sets
Wy = %Z’ Z. An initial weight matrix that is efficient when the u; are i.i.d. is
Wy = % SN | Z!AZ;, where A is a matrix with 2’s on the main diagonal, —1’s on
the first off-diagonals and zeros elsewhere.

The asymptotic variance of Bl is estimated by
@ (B) = N (A ZWy' Z'8x) " AL ZW Wy (B) Wi Z'Ax (A ZW Z/Ax)
where
1% (B ) = iizm- A, Z;
N 1 N pat i il 3144
Auy = Ay — Blez'
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with Wy (31) a consistent estimate of W. Given the estimate 31, the efficient

two-step GMM estimator is given by
By = (A ZWy' (B) Z/Ax) " A ZWR (B)) 72y
Standard theory implies that the asymptotic variance of Bg is estimated by
i (B) = N (aa'zwy! (B) 7/ax) (3.1)

which is an estimate of 4 ( ’ZM\II*]TZM)_I with Tz, = plimy_,,, +Z'Ax.

It is well documented (see for example Arellano and Bond (1991)) that the
estimated standard errors of 32 are downward biased in small samples, leading to
a very poor performance of the Wald test. Applying the Taylor series expansion
developed in the previous section to account for the presence of Bl in the estimated

weight matrix results in

Bo—fo = (ATZWy'(B) ZAx) AL ZWy (Bo) 7' Au (3.2)

+ D w(e (Br = Bo) + 0, (N2),

where Au is the N (T — 1) vector (Auj, Aub, ..., Auy)’, and Dg, wy (s is given by

ow,
T D i (6) 2/

x (A2 ZWy! (o) Z'Ax) " Ad'ZWy* (o) Z'Au
Wy (8)
op

-1
Dawnisn) = (ATZWR' (Bo) Z'Az) Ax'ZWR* (5o)

— (A ZWy (50) Z'Ax) T Ax'ZWy! () T |, Wy (By) 7' A,

with
WN (ﬁo Z Z AUZAU Z
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and

Wy (B)
9B

A small sample bias corrected estimate of the variance of BQ can then be obtained

1 N
60 = =77 22 Zi (Awilu + AuyAx) Z;.
i=1

as?

@ (B) = N(adzwg' () Z’Am)_1+Dﬁ27WN(ﬁl>\7a\1r<Bl) D5, w3
+ ND3, oy (82205 (1) Z'Az)" (3.3)
+N (Ax'zwy' (B) Zax) D% wa ()

Again, as (Az'ZWy' (B)) Z/Ax) ' ArZWy" (B) Z/AG, = 0, where Ad, =

Ay; — BQAL the expression of D/@’WN(@) simplifies.
4. Monte Carlo Results

A panel data process is generated as:

Yie = BoTit + 1 + Vit
Ty = 0.5z 14+ 1 +0.5v; 1+ €
n ~ N(0,1) gir ~ N (0,1)
Vg = O0;Tywit Wi ~ (X% — 1)
6 ~ U[0.5,1.5] 7=054+0.1(t—1)
Fifty time periods are generated, with 7, = 0.5 for ¢ = —49,...,0 and z; 49 ~

N (5773 + ﬁ), before the estimation sample is drawn. This model design corre-

sponds to the features of the panel data model described in the previous section,

4Note that ng\z Wi (A

is a scalar here.
51)
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the x;; are correlated with the unobserved heterogeneity n; and are predetermined.
The design is further such that the v; are skewed and heteroscedastic over both
time t and individual . The parameters are estimated by first differenced GMM
as described in the previous section.

Table 1 reports estimation results for Gy = 1, N = 100, T'= 4 and T' = 8.
Reported are means and standard deviations of a one-step GMM estimator with
Wy = % SN | Z!AZ;, which is not efficient in this case, the two-step GMM esti-
mator using Wy (Bl), and an infeasible estimator that uses the true parameter 3,
to evaluate the weight matrix, Wy (). This latter estimator is denoted BWN(ﬁO)'
For all three GMM estimators, means of the conventional asymptotic standard
errors are reported, denoted se 51, se 52, and se BWN (80)- For the two-step GMM
estimator the components of the Taylor series expansion (3.2) are calculated di-
rectly at the true value of 3y, and the standard deviation of the sum of the two
infeasible components is denoted sdjy¢ 52. The means of the feasible estimated
corrected standard errors, calculated from (3.3), is denoted sec B

The estimated asymptotic standard errors of the GMM estimators that do not
have estimated parameters present in the weight matrix, Bl and BWN(ﬁO)’ are on
average only slightly smaller than their standard deviations, less so at T" = 8 than
at T'= 4. For the two-step GMM estimator, however, the means of the estimated
asymptotic standard errors are considerably smaller than the standard deviations
of 52, especially at T'=8. At T = 4, se BQ accounts for 87% of sd BQ, whereas
when T' = 8, se BQ accounts for only 66% of sd Bg. When T = 8, there are 28

instruments, whereas there are only 6 instruments when 7" = 4.

12



The standard deviations of the Taylor series expansion (3.2) are almost equal
to the standard deviations of Bg. The standard deviations of the leading term
in (3.2), (Am’ZW&l (Bo) Z’Ax)il A’ ZWi (Bo) Z' Au, are given by sd /@\WN(ﬁO)7
and so the term involving (Bl — ﬁo) accounts for 10% and 33% of the standard
deviation of 52 for T'= 4 and T' = 8 respectively. As can be seen, the conventional
estimated asymptotic standard error of 52, se Bg, is in fact a good estimate of the
standard error of the estimator BWN(,BO) rather than the standard error of Bg, and
the difference between sd BQ and se 32 is due to the presence of the estimated Bl

in the weight matrix.

Table 1. Monte Carlo Results
T =14 T=28

B 0.9800  0.9738
sd B 0.1534  0.0832
se B 0.1471  0.0809
By 0.9868  0.9810
sd By 0.1423  0.0721
se (g 0.1244 0.0477
sdit B 0.1414  0.0717
sec Ba 0.1391  0.0715
B (50) 0.9895  0.9915

sd @Ww(ﬂo) 0.1278 0.0481
se Bwyg) 0.1229  0.0474

Notes: N =100, By = 1, means and standard deviations of 10,000 replications.
Sding (2 is the standard deviation of the first order Taylor series expansion (3.2)

evaluated at .
sec (3 is the estimated standard error of 35 corrected for small sample bias.
Bw (8,) 1s the GMM estimator for £y using W (5o)

13



The means of the feasible estimated standard errors that correct for this extra
variation due to the estimation of the efficient weight matrix, as estimated from
(3.3), are close to the standard deviations of . The corrected standard errors
now account for 98% and 99% of the standard deviation of BQ, for T" = 4 and
T = 8 respectively.

In order to evaluate the behavior of the Wald test statistics for the test Hj :
Bo = 1, based on the one-step and two-step estimators and associated standard
errors, Figures 1 and 2 show p-value plots (see Davidson and MacKinnon (1996))
for three Wald statistics, for T' = 4 and T = 8 respectively, based on the same
10,000 Monte Carlo replications. WALD; is based on the one-step estimator and
its asymptotic standard error. WALDs is based on the conventional two-step
estimation results, whereas WALD¢ uses the corrected variance estimate.

For T = 4, WALD, is moderately oversized, whereas WALD; and WALD,y¢
have good size properties. For T' = 8, WALD, is severely oversized. Using the
corrected standard errors improves the size of the test dramatically and WALDs¢
is only slightly oversized. WALD; is more oversized than WALD,. as it has a
larger small sample bias. It is clear that using the corrected variance estimate for

the two-step estimator improves the finite sample inference considerably.’

®The size performance of the Sargan/Hansen test for overidentifying restrictions is not af-
fected by the presence of estimated parameters in the weight matrix. This is illustrated in the
Appendix.
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In this section results of the two-step GMM variance correction are illustrated for
two examples from the literature. The first example is taken from Arellano and
Bond (1991), who used a sample of 140 UK quoted firms over the years 1976-1984.
The sample is unbalanced with observations varying between 7 and 9 records per

company. Arellano and Bond (1991) estimated dynamic employment equations,

Nit = Q1Nit—1 + QoNir—o + Pwir + Prwi—1 + Ykt + 0ysit + O1YSie—1 + M\t + 1i + Wi,

where n;; is the logarithm of UK employment in company ¢ at the end of period
t, wy is the log of the real product wage, k;; is the log of gross capital and ys;; is

the log of industry output. The model is estimated in first differences, with the



instrument set of the form

nag nz 0 0 0 -~ 0 --- 0 Az,
00 na mp 0 0 Az
0O 0 0 0 0 - nyg - ng Azl

where Azl, = [1, Awy, Awyy 1, Ak, Aysi, Aysy1]. There are a total of 25 overi-
dentifying moment conditions in this model.

Table 2 presents estimation results for the one-step estimator, using the weight
matrix + YN, Z/AZ;, and the two-step estimator.® The two-step estimation re-
sults are identical to those as presented in column (b) in Table 4 in Arellano and
Bond (1991). Both the asymptotic standard errors and some tests based on the
asymptotic variance, and the corrected versions of these are reported.

The usual asymptotic standard errors for the two-step estimator are much
smaller than the standard errors for the one-step estimator. However, the standard
errors that adjust for the estimation of the efficient weight matrix indicate that this
perceived increase in precision is due to the downward bias of the estimates of the
standard errors. The corrected standard errors are very similar to, and sometimes
even larger than those of the one-step estimator. Similarly, the corrected Wald
test for joint significance of the parameters is much smaller than the test based

on the usual asymptotic covariance matrix.

SThe estimation was performed using the DPD98 program for Gauss, see Arellano and Bond
(1998). Standard error corrections were implemented in Gauss by the author.
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Table 2. Estimation Results for Arellano-Bond (1991) data

One-Step Two-Step

coeff  std err coeff  std err std errc
Nit—1 0.5346 0.1664 0.4742 0.0853  0.1854
N2 -0.0751 0.0680 -0.0523 0.0273  0.0517
Wit -0.5916 0.1679 -0.5132 0.0493  0.1456
Wit—1 0.2915 0.1416 0.2246  0.0801 0.1420
ki 0.3585  0.0538 0.2927 0.0395  0.0626
YSit 0.5972  0.1719 0.6098 0.1085  0.1562
YSit—1 -0.6117 0.2118 -0.4464 0.1248 0.2173
my -2.493 -2.826  -1.999
msa -0.359 -0.0327  -0.316
Wald 219.6 372.0 142.0

The dependent variable is n;;

No. of firms 140. No. of observations 611. Time dummies included
std err are asymptotic standard errors, std errc are corrected for the
estimation of the efficient weight matrix.

my and mgy are N(0,1) tests for first and second order serial correlation
Wald is a x2 test of joint significance of the coefficients

The next example uses data from Blundell and Bond (2000), who investigated
estimation of production functions using the so-called system GMM estimator. A

specification that was estimated is
=k = aly—k)y 1 +8Mm—k);+vn—k)y+6+u, (51)
Uyg = 1 + Vg
where y;;, ni and k;; are the logs of sales, employment and capital stock of firm ¢ in
year t respectively. This specification accommodates first order autocorrelation in
the production function and imposes constant returns to scale. The data used are

a balanced panel of 509 R&D-performing US manufacturing companies observed

for 8 years, 1982-1989, similar to that used in Mairesse and Hall (1996).
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Table 3 presents estimation results for both the first differenced and system
GMM estimators. The first differenced estimator in this case uses the 3 (7' — 2) (7' — 3) /2

+ (T — 3) moment conditions
E (%7 Auy) =0 ; t=4,..,T

~t-3 t-3\ .t-3
where 7} ° = (1,xi ), x; ° = (Ti1, oo, Tir—3) and x5 = (Yis, Nis, Kis)-

The system GMM estimator uses the 3 (7" — 2) (7" — 3) /2 moment conditions

for the differenced equations
E <x§’3Auit) =0; t=4,...,T
plus 4 (T — 2) moment conditions in the levels equations
E(uy (1,Azy 2) =0 ; t=4,..T.

The additional 3 (T — 2) moment conditions F (u;Ax; o) = 0 are valid under
certain conditions on the initial observations, see Arellano and Bover (1995) and
Blundell and Bond (1998). The estimated gain in precision using the two-step
GMM estimator is likely to be greater in this case, since there is no feasible one-
step weight matrix that yields an asymptotically equivalent estimator to two-step
GMM, even in the case of i.i.d disturbances, see Blundell and Bond (1998) for

some simulation evidence.
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Table 3. Estimation Results for Blundell-Bond (2000) data
First Differences

One-Step Two-Step
coeff  std err coeff  std err std errc
(n—k), 0.5272  0.1024 0.5731 0.0698  0.0993
(n—Fk), 4 -0.2041 0.1086 -0.1607 0.0746  0.1158
(y—Fk)y 4 0.4600 0.0740 0.4146 0.0574  0.1000
ma -6.139 -6.210  -4.711
msa -0.612 -0.623  -0.583
Wald 129.5 236.02 120.1

System

One-Step Two-Step
coeff std err coeff std err std errc
(n—k), 0.5158 0.1009 0.5389 0.0598  0.0829
(n—Fk), 4 -0.2876 0.1169 -0.3155 0.0609  0.0946
(y—k)y_y 0.5618 0.0790 0.6292 0.0371  0.0759
ma -6.800 -8.788  -7.737
ma -0.364 -0.209  -0.202
Wald 416.4 1254.7 532.5

The dependent variable is (y — k),,

No. of firms 509. No. of observations 2545. Time dummies included
std err are asymptotic standard errors, std errc are corrected for the
estimation of the efficient weight matrix.

my and mgy are N(0,1) tests for first and second order serial correlation
Wald is a x3 test of joint significance of the coefficients

The one-step estimation results presented in Table 3 are identical to those
presented in columns 3 and 4 of Table 5 in Blundell and Bond (2000). For the
first differenced GMM estimator there are 42 overidentifying moment conditions,
whereas there are 57 overidentifying moment conditions for the system GMM esti-
mator. Although the number of firms is quite large, again the corrected standard
errors of the two-step differenced GMM estimator are much larger than the un-

corrected ones. The one-step standard errors are actually smaller for two of the
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three coefficients. For the system two-step GMM estimator, again the corrected
standard errors are larger than the uncorrected ones, but now they are smaller
than the corresponding one-step standard errors. So, as expected, in this case
there does appear to be a genuine gain in precision from using the efficient weight

matrix.

6. Conclusions

This paper has shown that the commonly found small sample downward bias of
the estimated asymptotic standard errors of the efficient two-step GMM estimator
in linear models can be attributed to the fact that the asymptotic standard errors
do not take account of the extra variation in small samples due to the estimated
parameters in the weight matrix. A simple first order Taylor series expansion
generates an extra term as a function of these initial parameter estimates, which
vanishes with increasing sample size, but provides a more accurate asymptotic
approximation in the case of linear moment conditions. This extra finite sample
variation can be estimated and in a Monte Carlo study of a panel data model it
is shown that this feasible corrected variance is close to the finite sample variance
of the two-step GMM estimator.

The Monte Carlo results further show that the conventional asymptotic vari-
ance estimate of the two-step GMM estimator is a good estimate of the variance
of an infeasible GMM estimator that uses the true values of the parameters to
calculate the efficient weight matrix. The difference between the variances of

the infeasible and feasible two-step GMM estimators can be quite large in finite
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samples, and the estimated corrected variance of the two-step GMM estimator

captures this difference well, leading to more accurate inference.
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Appendix, The Sargan/Hansen Test for Overidentifying
Restrictions
The test statistic for overidentifying restrictions in the simple linear panel data

model based on the two-step GMM estimator is given by

1 ~/ - ) I A~
SWN(ﬁl) == NAUQZWNI (ﬁl) 7 AUQ,

whereas the test statistic for overidentifying restrictions based on the infeasi-
~ -1

ble GMM estimator for 3, By (s0) = (szwjgl (Bo) X'Z) X'ZWit (Bo) X'y, is

given by

1 Py - o~
Swatsn = T ATZWy (8) 7/ Ao,

where Aug = Ay — BWN(ﬁo)Al'. Under the null that the moment conditions are
valid, Swy (s, and Sy, (3) both have a limiting x2_, distribution.

Figures 3 and 4 depicts the p-value plots for the Sargan/Hansen tests for
overidentification for the two-step and infeasible GMM estimators from the Monte
Carlo experiments as described in section 4, for T'= 4 and T" = 8 respectively. In
the figures S, (3) is denoted SAR2 and Sy, (4, is denoted SARO. It is clear that
the two measures have almost exactly the same size properties, and so the size
performance of the Sargan/Hansen test based on the two-step GMM estimator
is not affected by the estimation of the parameters in the weight matrix. For
T = 8, when there are many overidentifying restrictions, both test statistics are
severely undersized. This is due to the fact that both Wy (8y) and Wy (Bl) are

poor estimates of the covariance of the moment conditions in this case.”

"The Sargan/Hansen test based on 3SLS estimation results, based on a weight matrix that is a
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Fig 3. P-value plot, T'=4 Fig 4. P-value plot, T =8

The relation between S, () and Sy, (g, is given by

Swy(@) = AuZWy! (Br) 2 Au
— A 2w (B) 2 X (X' 2wt (B) 2X) T X' 2wyt (B1) 7' A
= AW (Bo) Z'Au
— A ZWE (60) ZX (X' ZWy' (B) X)) X'ZWR' (6o) 7' Au
+ Qo) (Br = Bo) + 0, (N7)

= Swy(6o) T QoW (60) (Bl o ﬁo) +0p <N71) ’

covariance estimate that does not allow for conditional heteroscedasticity, defined as Wy (Bl) =

+ Zfil Z! (% Zﬁl AﬂuAﬂ’li) Z;, has much better size properties.
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where (g, wy(5,) 1S given by

Wn (8)

—u' ZWy' (Bo) —57— a0 B Wa' (Bo) Z
w2z (o) S 80 2 (02 (80 2X) T X2 () 2
— W ZWH (5) X (X' ZWRH (Bo) 2/X) T X' ZW5 (o) aWNﬁ( Wi (50) 2/X

x (X'ZWy" (60) Z'X) " X' ZWy" (o) Z'u.

QoW (Bo) (Bl - ﬂo) is O, (Nfl/Q), however, the terms tend to cancel each other
out. For example, in the Monte Carlo simulations, the means of the three terms of
Q o, 1n (o) (31 - ﬁo) are given by -0.346, 0.384 and -0.098 for 7' = 4, and -1.035,

0.958 and -0.067 for T = 8.
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