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Abstract: This paper presents a nonparametric method for calculating a lower bound on
the virtual or reservation price of a new good. This allows the welfare effects of product
market innovations to be investigated. We illustrate the technique using consumer panel
data.
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1. Introduction

The measurement of the welfare effects of the introduction of a new product in consumer markets
is important in many areas in economics, from the correct measurement of cost-of-living indices
to the evaluation of mergers and price regulation issues in industrial organisation2. The arrival
of a new good is potentially welfare-improving because it expands the set of choices available
to the consumer. Valuing this welfare change requires the identification of the reservation or
‘virtual’ price3 of the good. The most common approach to calculating this is the parametric4

estimation of a demand system, which is then extrapolated to solve for the virtual price5.
Such methods have typically resulted in estimates of the welfare gains that are very large,
which in turn has lead to worries that this may be due to functional form assumptions and the
extrapolation of the demand curve outside of the range of any price variation that may have
been observed. This paper presents an alternative nonparametric approach which uses revealed
preference restrictions. At its heart, this method only requires the existence of a well-behaved

1Address for correspondence: Institute for Fiscal Studies, 7 Ridgmount Street, London, WC1E 7AE.
laura_blow@ifs.org.uk or ian_crawford@ifs.org.uk

2See for example Boskin et al (1996) and the papers collected in T. F. Bresnahan and R. J. Gordon (ed’s)
(1997)

3The term is due to Rothbarth (1941).
4Heckman (1974) discusses the econometrics of virtual prices in a labour supply setting.
5Recent examples are Hausman (1997a,b) and Nevo (2001).



utility function. The form of the utility function need not be specified and no further restrictions
are necessary. It can also make use of very few observations and does not seek to extrapolate
from these. Finally, it is computationally very simple. We illustrate the idea with an application
to a consumer panel dataset on milk.

2. New goods and consumer welfare

A new good6 is usually thought of as a special case of a rationed good: non-existence is treated
like a ration level of zero. Hicks (1940) and Rothbarth (1941) and more recently Neary and
Roberts (1980) discuss the question of how to deal with rationed goods in economic problems.
They show how the properties of demands under rationing can be expressed in terms of un-
rationed choices by replacing the observed market prices with a vector of ‘virtual’ prices or
‘support’ prices. Convexity, continuity and strict monotonicity of the consumer’s preferences
are sufficient to ensure that there always exists a set of strictly positive support prices consistent
with any set of demands7. The virtual or support prices for the unrationed goods are identical
to their actual prices8 and so the term ‘virtual’ is therefore usually reserved for the support
prices of the rationed goods only.
To place the new goods problem in a simple rationing context we suppose that there are

T + 1 periods, t = 0, ..., T , and K + 1 goods, k = 0, ....,K. The 0th good is subject to a ration
level of 0 in period t = 0 but is freely available from period 1 onwards. All other goods are
freely available in every period. We denote by qKt and pKt the (K × 1) sub-vectors consisting of
quantities and prices of the k = 1, ..,K goods in period t. The consumer’s problem in period 0
is

maxq u (q) subject to pK00 q
K ≤ x0 and q00 = 0 (2.1)

and
maxq u (q) subject to p0tq ≤ xt (2.2)

for all t > 0 where xt denotes the available budget in period t. The first order conditions in the
pre-introduction period are ⎡⎣ u0

¡
q00
¢

u0
¡
qK0
¢
⎤⎦ = λ0

⎡⎣ µ0
λ0

pK0

⎤⎦ (2.3)

and
u0 (qt) = λtpt (2.4)

otherwise. The scalar λ0 is the marginal utility of income and µ0 is the value of the rationing

constraint in period 0. The vectors π0 =
h
µ0
λ0
,pK00

i0
and πt = pt for t 6= 0 are the support price

vectors where the virtual price of the new good is

π00 =
µ0
λ0

(2.5)

6 In what follows we concentrate on the launch of a single new good. It will be clear in due course that our
methods can be extended to the simultaneous launch of two or more goods. This would require the existence of
a data-consistent utility function with a more restrictive (weakly separable) structure.

7Neary and Roberts (1980).
8Neary and Roberts (1980), p.27-9.
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and

π00 =
u0
¡
q00
¢

λ0

so that the virtual price measures the welfare gain associated with a marginal relaxation of the
rationing constraint, normalised by the marginal utility of income at that point. The support
price vectors for all the other periods are simply the observed prices. Clearly the support prices
are such that the outcome of the rationed model is identical to the outcome of the unrationed
choice generated by

max
qt

u (qt) subject to π0tqt ≤ xt for t = 0, 1, ..., T (2.6)

in every period.
The most usual approach to calculating the virtual price of a new good has been the para-

metric estimation of demand curves. Generally an integrable demand system is posited and
estimated using data from the post-introduction period. This is then used to “backcast” to the
pre-introduction period by extrapolating the demand curve for the new good back to the q0 = 0
axis. The price consistent with this demand (i.e. π00) can then be read off. Due to worries about
the high virtual prices often recovered by this method and their reliance on functional form
assumptions we suggest a conservative nonparametric alternative based on revealed preference
restrictions.

3. A revealed preference approach

The first attraction of revealed preference conditions is that they apply to any well behaved
utility function and, beyond this, they require no additional restrictions on the precise form of
preferences underlying consumer demands. This property is set out in Afriat’s Theorem9 which
shows that, if a consumer’s observed choices, given the prices they face, satisfy the Generalised
Axiom of Revealed Preference (GARP), then these choices are consistent with having been
generated by the maximisation of a well behaved utility function subject to a linear budget
constraint10. The second attraction of the revealed preference approach which we are proposing
is that it is computationally very simple. Finally, as we show, it can make effective use of very
few post-introduction price observations. The drawback is that we recover a bound, not a point
estimate. Nevertheless this is a conservative, useful and robust piece of information and one
which does not derive from functional assumptions. Following Varian (1982) we set out the
following definitions of revealed preference conditions;

Definition 1. qt is directly revealed preferred to q, written qtR0q, if π0tqt ≥ π0tq.
Definition 2. qt is strictly directly revealed preferred to q, written qtP 0q, if π0tqt > π0tq.
Definition 3. qt is revealed preferred to q, written qtRq, if π0tqt ≥ π0tqs, π

0
sqs ≥ π0sqr, ...,

π0mqm ≥ π0mq, for some sequence of observations (qt, qs, ...,qm). In this case, we say that the
relation R is the transitive closure of the relation R0.

9Afriat (1967), Diewert (1973), Varian (1982).
10That is, there exists some well-behaved utility function u (q) such that u (qt) ≥ u (q) for any q such that

p0tqt ≥ p0tq.
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Definition 4. qt is strictly revealed preferred to q, written qtPq, if there exist observations qs
and qm such that qtRqs, qsP 0qm, qmRq.
Definition 5. Data can be said to satisfy GARP if qtRqs ⇒ π0sqs ≤ π0sqt. Equivalently, the
data satisfy GARP if qtRqs implies not qsP 0qt.

Our aim is to use the restrictions imposed by revealed preference theory to place a lower
bound on the virtual price of the new good in period 0. Suppose that we have data on prices
and demands in period 0, {π0;q0}, with the missing element π00 and that we also have data
on prices and demands after the introduction of the new good,{πt,qt}t=1,...,T with no missing
variables. The lower bound on the virtual price consistent with utility maximising behaviour
and a stable, well-behaved utility function is

min
n
π00 : {π0,πt;q0,qt}t=1,...,T passes GARP

o
(3.1)

Given post-introduction data {πt;qt}t=1,...,T which pass GARP, this can be computed in the
following way. Let the sub-set of all post-introduction observations which are revealed preferred
to q0 be denoted by

Q = {qt : qtRq0, t > 0} (3.2)

Then GARP requires not q0P 0qt (i.e. π00q0 ≤ π00qt) ∀qt ∈ Q and hence the lower bound on
the virtual price is

π00 = max
t

©
minπ00 : x0 ≤ π00qt, ∀qt ∈ Q

ª
(3.3)

where11 the solution to the minimisation problem

minπ00 : x0 ≤ π00qt (3.4)

is
πK0
0

¡
qK0 − qKt

¢
q0t

if q0t > 0; 0 otherwise (3.5)

The number π00 is the lowest value of π
0
0 which makes the choice q

0
0 = 0 consistent with the unra-

tioned maximisation of a stable utility function, i.e. precisely the virtual price of the new good in
period 0 that we wish to calculate12. Note that if the post introduction data {πt;qt}t=1,...,T vio-
lates GARP then there can exist no virtual price such that {π0,πt;q0,qt}t=1,...,T passes GARP.
Note too that if there are no post-introduction observations which are revealed preferred to q0
and where the consumer buys the new good, then there are no restrictions and hence no bound.
Assuming, for the moment, that some π00 can be found, then we have the following result which
shows that if we can recover π00, then we know that it is indeed the minimum value that π00 can
take given the requirement that the consumer is rational.

11Note that if qtP 0q0 then the inequality is strict.
12Note that this bound could negative, in which case we would set it to zero, since we assume that consumption

of the new good never detracts from utility, and hence that π00 > 0.
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Theorem 1: If π00 < π00 then {π0,πt;q0,qt}t=1,...,T violates GARP.

Proof:

(1) Denote π0 =
¡
π00, π

1
0, ..., π

K
0

¢
(2) Let s index the observation which gives the maximum lower bound. Then π00 is
such that π00qs = πK0

0 q
K
0 = π00q0 = x0 where qsRq0

(3) Suppose we take π00 < π00, and let π0 =
¡
π00, π

1
0, ..., π

K
0

¢
(4) Then from (2) and (3) π00qs < π00qs = π00q0 = π00q0 (since q

0
0 = 0) ⇒ q0P

0qs
which is a violation of GARP.¥

Figure 1

1q

0q

2q

The basic idea is illustrated in Figure 1 in which there are three observations: the pre-
introduction observation q0 (where the good measured on the horizontal axis has yet to be
introduced), and two post-introduction observations q1 and q2. Our method essentially asks
what are the limits that rationality places on the slope of the virtual budget line passing through
q0? The answer is that any budget line through q0 steeper than the dashed line in Figure 1 is
admissible. If we chose a lower virtual price for the new good then we would have q0P 0q1 and
a violation of GARP. Thus we can nonparametrically bound the virtual price, using only the
restriction of rationality and with very little data.
The main problem with these bounds is that they may not be informative if movements of the

budget line between periods are large and relative price changes small. In these circumstances
data may lack power either to reject13 , or usefully to invoke GARP. In particular any observations
such that qt À q0 and any observations such that π0tqt < π0tq0 (including, in both cases, those
observations where q0t = 0) are uninformative. Such a situation is illustrated in Figure 2 in
which the lower bound on the virtual price is zero.

13As pointed out by Varian (1982)
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Figure 2

2q

1q

0q

In these circumstances our method will not work well and we would need either more post-
introduction data (in the hope that some observations will be informative) or more information
from other sources. We now explore how additional information might help.
The key issue is that variation in the total budget between observations can remove the

informational content of the data. If we were able to control the total budget at each observation
what levels would we optimally set? We can show that, if demands are normal14 , we would
ideally set the budgets at every post-introduction observation to be the lowest value which still
yields a qt that is revealed preferred to q0. Let qt (x) denote the Marshallian demand vector at
budget x, given period t prices. Then for each post-introduction observation we need to find the
minimum x such that qt (x)Rq0. The bound on the virtual price can then be set in a manner
analogous to the original method, but using these demands. Let the set of all observations at
these budget levels be denoted by

eQ= {eqt : eqt = qt (min {x : qt (x)Rq0})} (3.6)

Then the lower bound on the virtual price is

eπ00 = maxt n
minπ00 : x0 ≤ π00eqt, ∀eqt ∈ eQo (3.7)

where the solution to the minimisation problem

minπ00 : x0 ≤ π00eqt (3.8)

is
πK0
0

¡
qK0 − eqKt ¢eq0t if eq0t > 0; 0 otherwise. (3.9)

We then have the following result paralleling Theorem 1.

14That is, q (x) is a vector valued function such that q (x) ≥ q (x0) for all x ≥ x0.
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Theorem 2: If π00 < eπ00 then {π0,πt;q0, eqt}t=1,...,T violates GARP.
Proof:

Analogous to Theorem 1. ¥

We can also show that, if demands are normal, then demands at these particular budget levels
will always provide a tighter bound on the virtual price than any other arbitrary set of demands.

Theorem 3: If all goods are normal then eπ00 ≥ π00.

Proof:

(1) Suppose the bound π00 is provided by the observation qs ∈ Q.
(2) From the definition of the set eQ, π0seqs ≤ π0sqs and therefore, by normality,eqks ≤ qks ∀k.
(3) By definition π00 = πK0

0

¡
qK0 − qKs

¢
/q0s , and, since eqks ≤ qks ∀k, this implies

π00 = πK0
0

¡
qK0 − qKs

¢
/q0s ≤ πK0

0

¡
qK0 − eqKs ¢ /eq0s ≡ π00 (eqs).

(4) By definition eπ00 = maxt nminπ00 : x0 ≤ π00eqt, ∀eqt ∈ eQo, hence π00 (eqs) ≤ eπ00.
(5) Thus π00 ≤ π00 (eqs) ≤ eπ00 .¥

If we are able to control the budget levels at each observation, then we can always potentially
improve the bound (not least by increasing the number of informative observations by utilising
observations not originally revealed preferred to q0). The question is how might we go about
this? The simplest way is to make an assumption like local homotheticity. This is illustrated
in Figure 3 where we have two observations {q0,q1}. The post-introduction observation q1 is
not informative (the budget level is too high), but given we know the budget shares at prices
π1 and the budget x1, it is easy to find the informative demand eq1 by assuming that shares
are roughly constant over the range [ex1, x1]. We can then derive eπ00 by noting that any virtual
budget plane π00q = x0 with its dashed sides steeper than those shown15 would give a GARP
violation for the data {π0,π1;q0, eq1}. It is not necessary, of course, to assume that demands are
globally homothetic, and as long ex1 and x1 are not too far apart then local invariance in budget
shares might be a reasonably inoffensive assumption to make. With more data (many repeat
observations on the consumer’s demands at different budgets with prices and other conditioning
variables held constant) it will be possible to estimate the relationship nonparametrically by
estimating a system of Engel curves.

15We have gone to a 3d example here because in 2d, or in 3d when there are no relative price movements, the
planes π00q =x0 and π

0
1q =x1 coincide.

7



Figure 3

0q

1q 1
~q

So far we have set aside the possibility that the post-introduction data violate GARP —
other than by noting that if they do then our method, as described above, is not applicable.
One option which would allow progress to be made in the face of GARP violations is based on
weakening the requirements for rationality. A GARP test can be interpreted as a test of two
sub-hypotheses16

1. the consumer has rational preferences.
2. the consumer is an efficient programmer.

If the data violates GARP then these hypotheses can be modified. Afriat’s suggestion is that if
(1) is not to be modified, then (2) must be modified. Instead of requiring exact efficiency, a form
of partial efficiency is allowed, denoted by e where 0 ≤ e ≤ 1. The consumer is now allowed to
waste a fraction (1− e) of their budget through optimisation error. This is done by modifying
the preference relation R0 to

qsR
0
eqt ⇔ eπ0sqs ≥ π0sqt (3.10)

This stiffens the empirical requirement to reveal a preference in the sense that π0sqs now has
to be 1/e times bigger than π0sqt in order to reveal a preference for qs over qt. This efficiency
concept can be used to define a weaker consistency test:

GARP (e) : qsReqt ⇒ Not qtP 0e qs (3.11)

where “not qtP 0e qs” ≡ eπ0tqt ≤ π0tqs and where Re denotes the transitive closure of R0e.
Note that if e = 1 then GARP (e) is equivalent to GARP and that if e = 0 then there is no
restriction on behaviour. The ideas outlined above for bounding π00 can be generalised to allow
for inefficiency in the following way. The bound described in (3.3) becomes

min
n
π00 : {π0,πt;q0,qt}t=1,...,T passes GARP (e)

o
(3.12)

where e is the maximum value such that the post-introduction data {πt;qt}t=1,...,T pass GARP(e) .
We then denote the sub-set of observations revealed preferred to q0 at this e by

Qe= {qt : qtReq0} (3.13)

16Afriat. S. N. (1973)
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and the lower bound is

π00 (e) = maxt

©
minπ00 : ex0 ≤ π00qt, ∀qt ∈ Qe

ª
(3.14)

which clearly reduces π00 as e moves below one. Whilst one might specify an acceptable level
of e beforehand, it is also very simple to calculate the maximum value that e can take such
that any given dataset satisfies GARP, and then to calculate the bound conditional on this level
of efficiency. Our method of improving the bounds by controlling the budget levels at each
observation also generalises to allow for cost inefficiency - a description of the algorithm we use
can be found in the appendix.

4. An empirical illustration; “Minimælk”

A new type of milk was introduced in Denmark in the week beginning 5thFebruary 2001. This
was organically produced and contained 0.5% fat and called minimælk/minimilk to distinguish
it from skimmed milk (0.1% fat content) and semi-skimmed milk (1.5% fat). Figure 4 plots the
market shares (by value) of the various milk types over the period September 1999 to September
2001. As can be seen minimilk quickly established a market share of about 10% by value.

Figure 4: Percent market shares by value September 1999 to September 2001
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Our dataset is an unbalanced 2 year Danish consumer panel of 1,614 milk-buying house-
holds observed over the period September 1999 to September 2001. The data records some
demographic information and their weekly purchases of milk. In what follows we use data
from the period after 5th February 2001 to calculate the virtual price of organic minimilk in
each period in which the household is observed prior to that date. For each household we
first calculate the bound directly from their post-introduction observed demands, that is, we
set e0 = max(e : {π0,πt;q0,qt}t=1,...,T passes GARP (e)) and then set π00 = maxt{minπ00
: e0x0 ≤ π00qt, ∀qt ∈ Qe0}. We then also look at the improved bounds derived under the
assumption of local homotheticity (using the method described in the appendix).
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Figure 5: The density of the distribution of virtual prices minimilk

(a) All values (b) Positive values

Figure 5 shows kernel estimates of the density of the distribution of virtual prices for min-
imilk17 . The solid line shows the density recovered using our basic method, the dashed line
shows the density when we tighten the bound. The right hand panel concentrates on households
for which we are able to recover a non-zero bound. Further details are shown in Table 1. The
improvement brought about by the local homotheticity assumption is apparent: there are fewer
zero bounds, for example, in the improved set of bounds compared to the simple bounds (we
can recover 74% non-zero bounds compared to 59% when the extra assumption is not made). In
addition, the mean value of the improved bounds for the 17,867 observations for which we could
get a positive simple bound is 495 øre/litre, as compared to 450 øre/litre from the simple bound.
In calculating these bounds we allow for the minimum necessary level of optimisation error such
that the post-introduction data pass GARP. We need to make very little such allowance: the
median Afriat Efficiency required 0.999878.

Table 1: Descriptive statistics; bounds on the virtual price of minimilk

Simple Bounds
(øre/litre)

Improved Bounds
(øre/litre)

All values Positive values All values Positive values
Mean 263 450 354 476
Std Dev. 254.37 163.39 247.61 156.01
10th percentile 0 230 0 250
1st quartile 0 323 0 391
Median 265 495 436 504
3rd quartile 520 570 555 640
90th percentile 613 638 626 661
n 30504 17867 30504 22674

17The unit of observation underlying these pictures is a virtual price for a certain household at a certain date -
there are therefore repeated virtual prices for individual households, and multiple observations on virtual prices
at a point in time.
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Table 2: Descriptive statistics: OLS regression of simple virtual price bounds on household
characteristics

Coefficient Standard Error
Mean age of adults 7.302 0.616
(Mean age of adults)2 -0.0667 0.006
# Children -20.007 1.782
# Adults -33.502 2.391
Female head of household -11.586 4.794
An existing organic buyer 6.340 4.202
Pre-launch share of full fat -110.874 6.256
Copenhagen 23.127 2.872
Zealand 6.531 3.166
Total milk budget in kroner 0.372 0.093
Constant 330.109 14.987

Table 2 gives a simple illustration of the how the virtual price bounds (we have used the
straightforward unimproved bounds here) vary with some household characteristics observed
in the dataset. The table shows the coefficients of an OLS regression of the virtual price on
the listed characteristics and reports coefficients and standard errors (all of the explanatory
variables are significant at 95%). The highest welfare gains seem to have been amongst middle
aged households (the virtual price relationship is quadratic and peaks at about 55 years). The
presence of increasing numbers of children in the household tends to decrease the welfare gain
and does increasing numbers of adults (although at a slower rate). Households in which the head
is female tend to have lower gains. If the household was a buyer of organic milk prior to the
launch of minimilk (which is organic too) then their welfare gains tends to be higher, whereas if
the household tended to buy a lot of full fat milk prior to the launch of minimilk (as measured
by the share by quantity) their welfare gains are reduced (minimilk is a low fat variety). Finally
there is a positive relationship with the household’s total milk budget; households which spend
more on milk overall tended to experience higher welfare gains associated with the launch of the
new variety.

5. Conclusions

This paper presents a nonparametric method for calculating the lower bound on the virtual price
of a new good. This bound is chosen such that the data are consistent with the Generalised
Axiom of Revealed Preference and, therefore, it is also consistent with the maximisation of a
well-behaved utility function. As a result this bound encompasses all parametric solutions which
arise from fitting integrable demand systems to the same data. We also present a method for
improving the bounds recoverable. We argue that this approach has three principal merits com-
pared to parametric estimation. First, it does not require a maintained assumption regarding
the form of the utility function. Second, it is computationally simple. Thirdly it can make effi-
cient use of very few post-introduction price observations. We provide an empirical illustration
using consumer panel data on milk purchases.
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A. Improving the bound

During the period of our data it was only possible to buy milk in discrete jumps of 0.25 litres
because of the way it was packaged and so, when making use of the local hometheticity assump-
tion, we respect this and only use observations bqt defined from the observed set of demands
{qt}t=1,...,T as follows:

bqt = mqt and bqt = 0.25i
where

m > 0 and i is a (K × 1) vector of zeros or positive integers

Call this set of demands bQ. Let e0 = maxe

n
e : {πt,qt}t=1,...,T satisfies GARP (e)

o
. Di-

viding the original observations into two sets, Qe0= {qt : qtRe0q0} (as before) and Q− =
{qt}t=1,...,T \Qe0 (i.e. those observations revealed preferred to q0 with efficiency e0, and those

not revealed preferred to q0) we calculate the improved bound bπ00 using the following algorithm:
Algorithm :

1. Set bπ00 = maxt ©minπ00 : e0x0 ≤ π00qt, ∀qt ∈ Qe0
ª

2. Define the set H as max
∀t:qt∈Qe0

³bqt ∈ bQ : m < 1, bqt /∈ Qe0

´
. Set Qe0= Qe0 ∪H.

3. Define the set H− as min
∀t:qt∈Q−

³bqt ∈ bQ : m > 1,m ≤ min
¡
m : e0π0tbqt ≥ π0tq0

¢
, bqt /∈ Q−´.

Set Q−= Q− ∪H−. If H− = ∅ go to step 4, otherwise go to step 5.

4. Define the set H− as max
∀t:qt∈Q−

³bqt ∈ bQ : m < 1, bqt /∈ Q−´. Set Q−= Q− ∪H−.
5. If H = ∅ and H− = ∅, stop.

6. Calculate eN = max
³
e :
©
π0,πt;q0,Qe0 ,Q

−ª
t=1,...,T

passes GARP (e)
´
. If eN < e0,

stop.

7. Calculate the set QR = {qt : qtRe0q0 , ∀qt ∈ Qe0 ∪Q−}

8. Set bπ00 = maxt ©minπ00 : e0x0 ≤ π00qt, ∀qt ∈ QR
ª
. Go to step 2.

In words, for each period for which the original observation was revealed preferred to q0
we move in along the expansion path adding successive feasible demands (step 2). For each
period for which the original observation was not revealed preferred to q0 we move out along
the expansion path adding successive feasible demands stopping as soon as we reach a demand
that is directly revealed preferred to q0 (step 3). If this point is reached, we then start moving
in along the expansion path from the original observed demand for completeness (step 4). After
we add each new round of observations we check to see whether the e required for this updated
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dataset to pass GARP has decreased. If it has, then we stop, as our goal is to improve the bound
on π00 as far as possible without weakening the original efficiency, e

0, required for the data to
pass GARP. If it has not then we use the updated data to calculate a new bound on π00. It can
be seen that the algorithm is finite as we can not go in along the expansion path further that
the origin, or out further than the first demand that is directly revealed preferred to q0, and
so we must achieve H = ∅ and H− = ∅ in a finite number of iterations since there are only a
finite number of feasible demands on any bounded section of the expansion path. We also have
the following theorem:

Theorem 4: If the data at all points on the expansion paths satisfy GARP perfectly
then (given the discreteness of the possible demands allowed) the output bπ00 from the
algorithm must always equal the best possible bound eπ00 as defined in Section 3.
Proof: Since e0 = eN = 1, the algorithm continues until H = ∅ and H− = ∅.
Therefore, when the algorithm stops, Qe0 contains all the original observed qt such
that qtRe0q0 and all the feasible 0 < bqt < qt along the expansion paths for these
periods. For the periods where the original observations were not revealed preferred
to q0, Q− contains bqt ≡min¡bqt : bqtR0e0q0¢ and all the feasible 0 < bqt <bqt for
these periods. Hence, for each t = 1, ..., T , ∃ qt ∈ Qe0 ∪Q− such that qtRe0q0, and
Qe0∪Q− contains all feasible demands smaller than this qt. Hence, by the definition
of eqt, Qe0 ∪Q− must contain {eqt}t=1,...,T .¥
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