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Abstract 

Regression, matching, control function and instrumental variables methods for 
recovering the impact of education on individual earnings are reviewed for 
single treatment and sequential multiple treatments with and without heteroge-
neous returns. The sensitivity of the estimates once applied to a common data-
set is then explored. We show the importance of correcting for detailed test 
score and family background differences and of allowing for (observable) het-
erogeneity in returns. We find an average return of 27% for those completing 
higher education versus anything less. Compared to stopping at 16 without 
qualifications, we find an average return to O-levels of 18%, to A-levels of 
24% and to higher education of 48%. 
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1. Introduction 
With extensive data available over time and individuals on schooling and on earnings, the 

measurement of the causal effect of education on earnings is one area where we might expect 

agreement. However, the literature reveals a wide range of estimates. Many of the differences in 

estimates reflect genuine differences across the types of educational qualifications and the types 

of individuals being analysed. But other differences are a result of the statistical approach 

adopted to recover the impact of education on earnings. The aim of this paper is to provide an 

empirical and methodological comparison of different approaches. In so doing we provide a 

number of new contributions. First, four popular estimation methods – least squares, matching, 

control function and instrumental variables – are compared both from a methodological point of 

view within a common framework and in terms of the sensitivity of the resulting estimates when 

applied to a common dataset. Secondly, by contrasting the relative magnitude of the different 

estimates, we try to infer what kind of selection and outcome models underlie our data. The 

control function provides us with the basis for assessing the importance of residual selection on 

unobserved returns as well as unobserved individual heterogeneity. We also devote attention to 

matching, both in its links to simple least squares regression and in terms of the insights it can 

provide in the interpretation of the results. Thirdly, we use the uniquely rich data from the 

British cohort studies, in particular the National Child Development Survey (NCDS), to assess 

the importance of test score and family background information in generating reliable estimates. 

Finally, our focus on heterogeneity is not limited to individual (observed and unobserved) 

heterogeneity both in characteristics and in returns, but explicitly considers treatment 

heterogeneity in a multiple treatment framework distinguishing between discrete levels of 

educational qualifications.  

We are not the first to consider these issues. Indeed, there is a growing literature that tries to 

understand the variety of estimates and point to the ‘correct’ causal estimate. The paper by Card 

(1999) is the most recent comprehensive study. Here we also draw on the study by Angrist 

(1998) who compares OLS, matching and IV estimators in models with heterogeneous treatment 

effects. As to the empirical literature on the impact of education on earnings in the UK, most 

studies use the repeated cross-section available in the Family Expenditure Survey, the General 

Household Survey or the Labour Force Survey. For example, Gosling, Machin and Meghir 

(2000), Schmitt (1995) and McIntosh (2002) focus on the changing returns over time and are 

unable to condition on test score and family background information. Harmon and Walker 

(1995) exploit the natural experiment of a change in the minimum school-leaving age to 

circumvent the need to observe ability and family background variables. Dearden (1999a and 
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1999b) and Blundell, Dearden, Goodman and Reed (2000) both use the British NCDS cohort 

data, although not focusing on a systematic analysis of the type discussed in this paper. Overall, 

for the UK, most authors choose to adopt qualification-based measures of educational 

attainment rather than years of education.  

We begin our analysis using a single treatment specification focusing on the impact of a 

specific educational level – such as undertaking higher education. We then consider a multiple 

treatment model, which distinguishes the impact of many different education levels, thus 

allowing the attainment of different educational qualifications to have separate effects on 

earnings. In general, the multiple treatment model would seem a more attractive framework 

since we will typically be interested in a wide range of education levels with potentially very 

different returns. We also highlight the distinction between heterogeneous and homogeneous 

returns, that is whether the response coefficient on the education variable(s) in the earnings 

equation is allowed to differ across individuals. Observable heterogeneity is straightforward to 

account for and in our application we extend the least squares, control function and instrumental 

variables estimators in this direction, thus providing a ‘bridge’ to the matching estimator. By 

contrast, to allow the heterogeneity to be unobservable to the econometrician, but acted upon by 

individuals, completely changes the interpretation and the properties of many common 

estimators. In addition, defining which average parameter is of interest becomes crucial. Section 

2 outlines in detail our overall modelling framework and the more specialised models it embeds. 

Even where there is agreement on the model specification, there are alternative statistical 

methods that can be adopted to estimate these models. With experimental data, the standard 

comparison of control and treatment group recovers an estimate of the average return for the 

treated under the assumption that the controls are unaffected by the treatment. Although 

experimental design is possible and growing in popularity in some studies of training, for large 

reforms to schooling and for measuring the impact of existing educational systems, non-

experimental methods are essential. There are broadly two categories of non-experimental 

methods: those that attempt to control for the correlation between individual factors and 

schooling choices by way of an excluded instrument, and those that attempt to measure all 

individual factors that may be the cause of such dependence and then match on these observed 

variables. Whilst the feasibility of these alternative methods clearly hinges on the nature of the 

available data, their implementation and properties differ according to whether the model is one 

of homogeneous or heterogeneous response and whether schooling is represented through a 

single or a multiple measure. No given non-experimental estimator is uniformly superior to all 

others; the choice between the various estimation methods should be guided by the postulated 
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model for the outcome and selection processes and the corresponding parameter of interest to be 

recovered, as well as the richness and nature of the available data in the application at hand.  

Our results argue for a cautious approach to the use of any estimator. These results are 

derived in Section 4 using the British NCDS data, a rich longitudinal cohort study of all people 

born in Britain in a week in March 1958. In particular, our results show the importance of test 

score and family background information in pinning down the effect of educational 

qualifications on earnings. When adopting a matching estimator, they point towards a careful 

choice of matching variables and highlight the difference in interpretation between measuring 

the impact of an educational qualification among those who received the qualification and those 

who did not. They also suggest the use of a control function approach to assess the validity of 

assumptions on selection where suitable exclusion restrictions can be found.  

The estimates point to an average return of about 27% for those completing some form of 

higher education compared with anything less. Compared with leaving school at 16 without 

qualifications, we also find an average return to O levels of around 18%, to A levels of 24% and 

to higher education of 48%. This latter finding implies that the annualised rate of return is 9.5% 

compared with leaving school at 16 without qualifications. However, the distinction between 

those who leave school at the minimum school-leaving age with and without (O-level) 

qualifications makes it more difficult to estimate a unique rate of return to ‘years’ of education. 

In fact, when the baseline comparison is with leaving school at 16 irrespective of qualifications, 

the average return to a year of higher education falls to around 6.6%. If we instead annualise the 

returns to A levels (compared with leaving at 16 irrespective of qualifications), the average 

return per year of education is even lower, at 5.6%. In comparison with US studies, we thus find 

less evidence of a ‘linear’ relationship between years of schooling and earnings; educational 

stages seem to matter.  

It may be worth pointing out that in line with most microeconometric literature, we uniquely 

focus on the private return to education, ignoring any potential externalities that may benefit the 

economy at large. In addition, the average individual ‘return’ to education we report here is only 

one component in a full analysis of the private returns to education, which would have to 

balance individual costs against a flow of such returns over the working life. Moreover, we say 

nothing about the riskiness of education returns, an important determinant of educational 

choices among less wealthy families. 

The paper proceeds as follows. In Section 2, the single treatment and multiple treatment 

specifications are examined. Section 3 then compares the least squares, matching, control 

function and instrumental variables estimators for these specifications. The estimators are then 
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empirically contrasted in Section 4, focusing on men to avoid confounding issues arising from 

selection into employment. We first consider a simple single treatment model looking at the 

return from undertaking some form of higher education (college education). We then move on to 

look at the estimates from a multiple treatment model, which includes higher education as well 

as lower-level school qualifications and their equivalents. In Section 5, we highlight our main 

methodological conclusions. 

 
2. The general modelling framework  
The problem of measuring the impact of education on earnings falls quite neatly into the 

evaluation literature: the measurement of the causal impact of a generic ‘treatment’ on an 

outcome of interest (see, for example, Card (2001) and Heckman, LaLonde and Smith (1999)). 

In order to cover a fairly flexible representation of schooling, we will consider the multiple 

treatment case of a finite set of highest schooling levels attainable by any given individual. We 

write the exhaustive set of J+1 treatments (schooling levels) under examination as 0,1,…,J and 

denote the attainment by individual i of schooling level j as his or her highest level by Sji=1. 

This specification is very flexible and can cover education outcomes that occur in some natural 

sequence – including completion of j years of schooling by individual i. 

One can think of a set of potential outcomes associated to each of the J+1 treatments: 0
iy , 1

iy , 

..., J
iy , where j

iy  denotes the (log) earnings of individual i were i to receive schooling level j. 

The problem of estimating the returns to education can be phrased as the evaluation of the 

causal effect of one schooling level j relative to another (without loss of generality, let this be 

treatment 0) on the outcome considered, y. In terms of the notation established above, interest 

will lie in recovering quantities of the form 0j
i iy y− , averaged over some population of interest, 

such as the whole population or those who did actually achieve that level.  

Each individual, however, receives only one of the treatments, and the remaining J potential 

outcomes are unobserved counterfactuals. At the core of the evaluation problem, including its 

application to the returns to education framework, is thus the attempt to estimate missing data. 

The observed outcome of individual i can be written as 

 0 0

1
( ) .

J
j

i i i i ji
j

y y y y S
=

= + −∑         (1) 

Equation (1) is extremely general; however, we require some further notation before we can 

discuss the various models and estimation methods that are the subject of this paper. We let 

potential outcomes depend on both observed covariates Xi and unobserved factors j
iu  in the 
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following general way:  

 ( )   for  0 1j j
i j i iy f X u j J= , = , ,..., .        (2) 

For this representation to be meaningful, the stable unit-treatment value assumption needs to be 

satisfied (SUTVA – Rubin (1980), and, for further discussions, Rubin (1986) and Holland 

(1986)). This assumption requires that an individual’s potential outcomes as well as the chosen 

education level are independent from the schooling choices of other individuals in the 

population, thus ruling out spillover or general equilibrium effects. Note also that implicit in (2) 

is the requirement that the observables X be exogenous in the sense that their potential values do 

not depend on treatment status, or, equivalently, that their potential values for the different 

treatment states coincide (Xji = Xi for j=0,1,…,J). Natural candidates for X that are not 

determined or affected by treatments S are time-constant factors, as well as pre-treatment 

characteristics.  

Assuming additive separability between observables and unobservables, we can write  

 ( )j j
i j i iy m X u= +  

with [ ] ( )j
i i j iE y X m X| = , i.e. assuming that the observable regressors X are unrelated to the 

unobservables u. We will maintain these exogeneity assumptions on the Xs throughout.  

Let the state-specific unobservable components of earnings be written as  

    for   0 1j
i i i jiu b j Jα ε= + + = , ,...,  

with αi representing some unobservable individual trait, such as ability or motivation, that 

affects earnings for any given level of schooling, bji measuring the individual-specific 

unobserved marginal return to schooling level j relative to level 0 in terms of the particular 

definition of earnings yi (for convenience, let us normalise b0i to 0) and iε  being the standard 

residual, possibly capturing measurement error in earnings as well (measurement error in the 

schooling variable S may also be important and will be touched upon later).  

Given this general specification, equation (1) for observed earnings becomes 
0

0 01 1
( ) ( ( ) ( )) ( )J J j

i i j i i ji i i ji i ij j
y m X m X m X S u u S α ε

= =
= + − + − + +∑ ∑  

  = 0 1 1
( ) ( )J J

i j i ji ji ji i ij j
m X b X S b S α ε

= =
+ + + +∑ ∑      (3) 

 = 0 1
( ) J

i ji ji i ij
m X Sβ α ε

=
+ + +∑  

with ( )ji j i jib X bβ ≡ + . 

In this set-up, βji, the private return to schooling level j (relative to schooling level 0), is 

allowed to be heterogeneous across individuals in both observable and unobservable 
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dimensions; bj(Xi) represents the return for individuals with characteristics Xi and thus captures 

observable heterogeneity in returns; while bji represents the individual-specific unobserved 

return to schooling level j, conditional on Xi. Typically, we would assume the αi and bji to have a 

finite population mean (denoted by α0 and bj0 respectively) and variance.  

With this general specification in place, we can now look at the differences between the 

homogeneous and heterogeneous returns models and within these models look at differences 

between single treatment, multiple treatment and one-factor models.  

 
2.1 The homogeneous returns model 
In the homogeneous returns framework, the rate of return to a given schooling level j is the same 

across individuals; that is, βji =βj for all individuals i. In the case of a finite set of schooling 

levels (specific discrete educational levels as in the application that will be used in our paper, or 

even finer with each level representing a year of education), the multiple treatment model (3) 

becomes 

0 1 1 2 2( ) .i i i i J Ji i iy m X S S Sβ β β α ε= + + + . . + + +      (4) 

where αi represents differing relative levels of earnings across individuals for any given level of 

schooling and the βjs measure the impact of schooling level j relative to the base level. Although 

the returns to a given level are homogeneous across individuals, the different schooling levels 

are allowed to have different impacts on earnings.  

This is not true in the popular one-factor human capital model, where it is assumed that 

education can always be aggregated into a single measure, say years of schooling, Si ∈ {0, 1, …, 

J}. In this specification,  

0 ( )i i i i iy m X Sβ α ε= + + +         (5) 

which can be obtained from our general set-up (3) with the various treatment levels as years of 

education (so that 
1

J
i jij

S jS
=

= ∑  with ( )1
iji S jS =≡ ) by assuming the linear relationship 

ji j jβ β β= =  – that is, that the (homogeneous) return to j years of schooling is simply j times 

the return to one year of schooling – or, equivalently, 1j i jiβ β β+ , − =  for all 0 1 ,j J= , ,...  – that 

is, that each additional year of schooling has the same marginal return.  

A final specification, which can be obtained from (3) by setting J=1, is the single treatment 

model, the aim of which is to recover the causal impact of a single type of schooling level 

S1∈{0,1} – for example, undertaking higher education or college compared to not doing so. In 

the homogeneous returns model, this single treatment specification can be expressed as 
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0 1( )i i i i iy m X Sβ α ε= + + +  

where β is the return to achieving the education level under consideration (relative to 

educational level 0 as chosen for S1i=0).  

Note that although in these homogeneous returns models βji is constant across all individuals, 

αi is allowed to vary across i to capture the differing productivities (or abilities or earnings 

levels) across individuals with the same education levels. Since educational choices and thus 

attained educational levels are likely to differ according to productivity (or expected earnings 

levels more generally), the schooling variable S is very likely to be correlated with αi and this in 

turn will induce a bias in the simple least squares estimation of β. In addition, if S is measured 

with error, there will be some attenuation bias. We will return to these estimation issues in more 

detail below.  

 
2.2 The heterogeneous returns model 
Despite the preponderance of the homogeneous returns model in the early literature, the recent 

focus has been on models allowing for heterogeneous returns (examples include Card (2001), 

Heckman, Smith and Clements (1997), Dearden (1999a and 1999b) and Blundell, Dearden, 

Goodman and Reed (2000)). Once the return is allowed to vary across individuals, the 

immediate question concerns the parameter of interest. Is it the average of the individual 

returns? If so, what average? Is it the average in the population whether or not the educational 

level under consideration is achieved – the average treatment effect (ATE) – or the average 

among those individuals actually observed to achieve the educational level – the average effect 

of treatment on the treated (ATT) – or the average among those who have not achieved that 

educational level – the average effect of treatment on the non-treated (ATNT)? In some cases, a 

policy change can be used to recover a local average treatment effect, measuring the return for 

an even smaller subgroup of individuals: those induced to take the educational level by the 

policy change. We discuss all these in greater detail in the next section.  

In the general framework (3), the return to schooling level j is allowed to be heterogeneous 

across individuals in both observable and unobservable dimensions. It is straightforward to 

generalise models such as (4) or (5) to allow for the observable heterogeneity bj(Xi). What is 

more difficult is how we deal with unobserved heterogeneity across individuals in the response 

parameter β. This person-specific component of the return may be observed by the individual 

but is unobserved by the analyst.  

Consider first the single treatment model. A general relationship between the level of 

education under examination and earnings is then written as  
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0 1( )i i i i i iy m X Sβ α ε= + + +         (6) 

= 0 0 1 0 1( ) ( ( ) ) ( )i i i i i i im X b X b S b b S α ε+ + + − + +  

where bi can be thought of as random coefficients representing the heterogeneous relationship 

between educational qualification S1i and earnings, conditional on observables Xi ( 0 [ ]ib E b≡  

denoting its population mean).  

The parameter of interest will be some average of b(Xi)+bi, with the average taken over the 

sub-population of interest; the resulting parameter will thus measure the average return to 

achieving education level S1 for this group. Examples are the average effect of treatment on the 

treated, 1[ ( ) 1]ATT i i iE b X b Sβ ≡ + | = , the average treatment effect in the population, 

0[ ( )]ATE iE b X bβ ≡ + , and the average effect on the non-treated, 1[ ( ) 0]ATNT i i iE b X b Sβ ≡ + | = .  

As we mentioned in the homogeneous models above, the dependence of the schooling 

level(s) on the unobserved ‘ability’ component αi is critical in understanding the bias from the 

direct comparison of groups with and without education level S1. A further key issue in 

determining the properties of standard econometric estimators in the heterogeneous effects 

model is whether or not schooling choices S1i depend on the unobservable determinants of the 

individual’s marginal return from schooling bi, conditional on observables Xi. If, given the 

information in Xi, there is some gain bi still unobserved by the econometrician but known in 

advance (or predictable) by the individual when making his or her educational choices, then it 

would seem sensible to assume that choices will, in part at least, reflect the return to earnings of 

that choice. Since, however, bi is likely to vary over time and will depend on the relative levels 

of demand and supply, the dependence of schooling choices on marginal returns is not clear-cut. 

Some persistence in returns is, however, likely, and so some correlation would seem plausible.  

The discussion of heterogeneous returns extends easily to the multiple treatment model (4):  

0 1 1 2 2( )i i i i i i Ji Ji i iy m X S S Sβ β β α ε= + + + ..+ + +      (7) 

In fact, the three basic specifications (6), (4) and (7) will form the main alternatives considered 

in the paper, the single discrete treatment case (6) being the baseline specification.  

 
3. Estimation methods  
The aim of this section is to investigate the properties of alternative non-experimental estimation 

methods for each of the model specifications considered above. We begin by considering a 

naive estimator in the general framework (3) of the returns to educational level j (relative to 

level 0) for individuals reaching this level: the simple difference between the observed average 

earnings of individuals with Sji=1 and the observed average earnings of individuals with S0i=1.  
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This observed difference in conditional means can be rewritten in terms of the average effect 

of treatment on the treated parameter (what we are after) and the bias potentially arising when 

the earnings of the observed group with S0i=1 ( 0
iy | S0i=1) are used to represent the 

counterfactual ( 0
iy  | Sji=1):  

Naive estimator  ≡ E[yi | Sji=1] – E[yi | S0i=1] 

= E[ j
iy – 0

iy | Sji=1] – {E[ 0
iy | Sji=1] – E[ 0

iy | S0i=1]} 

=                    ATT – {bias}. 

The key issue is that since educational choices are likely to be the result of systematic decisions, 

the sample of individuals who make each choice will not be random. If this is ignored and 

individuals who make the choice are simply compared with those who did not, the estimates will 

suffer from bias.  

Using experimental data, Heckman, Ichimura, Smith and Todd (1998) provide a very useful 

breakdown of this bias term:  

bias ≡ E[ 0
iy | Sji=1] – E[ 0

iy | S0i=1] = B1 + B2 + B3 .    (8) 

The first two components in (8) arise from differences in the distribution of observed 

characteristics X between the two groups: B1 represents the bias component due to non-

overlapping support of the observables and B2 is the error part due to mis-weighting on the 

common support, as the resulting empirical distributions of observables are not necessarily the 

same even when restricted to the same support. The last component, B3, is the true econometric 

selection bias resulting from ‘selection on unobservables’ – in our notation, αi, bji and εi.  

Of course, a properly designed randomised experiment would eliminate the bias discussed 

above, but pure education or schooling experiments are very rare. We must instead rely on non-

experimental methods, each of which uses observed data together with some appropriate 

identifying assumptions to recover the missing counterfactual. Depending on the richness and 

nature of the available data and the postulated model for the outcome and selection processes, 

the researcher can thus choose from among the alternative methods the one most likely to avoid 

or correct the sources of bias outlined above. We now look at these methods in turn. The initial 

setting for the discussion of the three broad classes of alternative methods we consider – 

instrumental variable, control function and matching – will be based on biases that occur from 

the simple application of ordinary least squares to the different models described in the previous 

section. 
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3.1 Least squares 
Consider the single treatment model examining the impact of a given educational level S1. The 

model is to be estimated for a given population (defined, for instance, as all those individuals 

entering schooling at a particular date). In the heterogeneous case, specification (6) is  

0 1 1( ) ( ) .i i i i i i i iy m X b X S b S α ε= + + + +  

There are several potential sources of bias in the least squares regression of log earnings on 

schooling to recover average treatment effects. The following borrows from the bias 

decomposition highlighted in (8):  

3.1.1 Bias due to observables: mis-specification 

First of all, note that to implement (6) parametrically, the functional forms for both (i) 
0

0[ ] ( )i i iE y X m X| ≡  and (ii) 0[ ] ( )j
i i i iE y y X b X− | ≡  need to be specified. A standard least 

squares specification would generally control linearly for the set of observables 

{ 1 1[  ...  ] 'i i i MiS X X X, ≡ } – that is, it would be of the form 

1'i i i iy X bSγ η= + +  
and thus suffer from two potential sources of bias from observables: 

(i) Mis-specification of the no-treatment outcome m0(Xi). If the true model contains higher-

order terms of the Xs, or interactions between the various Xs, the OLS estimate of b 

would in general be biased due to omitted variables. 

(ii) Heterogeneous returns b(Xi). Simple OLS constrains the returns to be homogeneous. If, 

by contrast, the effect of schooling varies according to some of the Xs, the OLS estimate 

of b will not in general recover the ATT. To illustrate this point, focus on one X variable 

and suppose the true model is yi = a + b0 S1i + bx Xi S1i + dXi + ei. If one estimates the 

simple model above, which ignores Xi S1i, the estimated coefficient on S1i will have 

expectation E( b̂ ) = b0 + bx φ, with φ defined in XiS1i = π + τ Xi + φS1i + vi. OLS will not 

in general recover the ATT ≡ E(Y1 – Y0 | S1=1) = b0 + bx E(X | S1=1), since in general φ is 

different from E(X | S1=1): 

1
1 2 1

1 1

( ) Cov( , )( | 1)
( ) Cov( , ) ( )

V X X SE X S
V X X S V S

φ −

−
= =

−
. 

These mis-specification issues are linked to the source of bias B2 – not appropriately 

reweighting the observations to control fully for the difference in the distribution of X over the 

common region – as well as to source B1 – lack of sufficient overlap in the two groups’ densities 

of X. The OLS approximation of the regression function m0(Xi) over the non-overlapping region 
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is purely based on the chosen (in our example, linear) functional form; in other words, for 

treated individuals outside the common support, the OLS identification of the counterfactual 

crucially relies on being based on the correctly specified model.  

3.1.2 Bias due to unobservables 

Gathering the unobservables together in equation (6), we have  

0 1 0 1( ) ( )     with  ( )i i ATE i i i i i i i iy m X X S e e b b Sβ α ε= + + ≡ + − +    (9) 

0 1 1 1( ) ( )    with  ( [ 1])i i ATT i i i i i i i i i i iy m X X S w w b E b X S Sβ α ε= + + ≡ + − | , = +  (10) 

where 0( ) ( )ATE i iX b X bβ ≡ +  and 1( ) ( ) [ 1]ATT i i i i iX b X E b X Sβ ≡ + | , = .  

Running a correctly specified OLS regression will produce a biased estimator of either 

parameter of interest if there is correlation between S1i and the error term ei or wi, i.e. 

1[ ]i i iE e X S| ,  and 1[ ]i i iE w X S| ,  may be non-zero. Such correlation may arise from different 

sources:  

(i) Ability bias. This arises due to the likely correlation between the αi intercept term 

(absolute advantage) and S1i. If higher-ability or inherently more productive individuals 

tend to acquire more education, the two terms will be positively correlated, inducing an 

upward bias in the estimated average return ATEβ  or ATTβ .  

(ii) Returns bias. This occurs when the individual returns component bi (comparative 

advantage) is itself correlated with the schooling decision S1i. The direction of this bias is 

less clear and will depend on the average returns among the sub-population of those with 

schooling level S1i=1. Indeed, if (a) ability bias is negligible (i.e. 1[ ] 0i i iE X Sα | , = ), (b) 

the ability heterogeneity is unrelated to the unobserved return and (c) the returns bias is 

the only remaining bias present (i.e. 1 0[ 1]i i iE b X S b| , = ≠ ), then (9) and (10) show how 

the least squares coefficient on S1i will be biased for the average treatment effect ATEβ  

but will recover the average effect of treatment on the treated ATTβ . 

(iii) Measurement error bias. One can think of εi as including measurement error in the 

schooling variable S1i. Note that since the educational variable is a dummy or categorical 

variable, measurement error will be non-classical (in particular, it will vary with the level 

of education reported). Kane, Rouse and Staiger (1999) show that both OLS and 

instrumental variables estimates may be biased and that it is not possible to place any a-

priori general restrictions on the direction or magnitude of the bias of either estimator. 

By contrast, in the case of a continuous variable affected by (classical) measurement 

error, OLS estimates of the return would be downward biased and instrumental variables 
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estimates consistent. 

In the homogeneous returns model, the second source of bias is, by definition, absent. This is 

the case that is much discussed in the literature (especially in the one-factor ‘years of schooling’ 

model (5)), where the upward ability bias may be partially offset by the attenuation 

measurement-error bias; this trade-off was at the heart of the early studies on measuring gross 

private returns (for a review see in particular Griliches (1977) and Card (1999)).  

Much of the practical discussion of the properties of least squares bias depends on the 

richness of other control variables that may be entered to capture the omitted factors. Indeed, the 

method of matching takes this further by trying to control directly and flexibly for all those 

variables at the root of selection bias. 

 
3.2 Matching methods 
The general matching method is a non-parametric approach to the problem of identifying the 

treatment impact on outcomes. To recover the average treatment effect on the treated, the 

matching method tries to mimic ex post an experiment by choosing a comparison group from 

among the non-treated such that the selected group is as similar as possible to the treatment 

group in terms of their observable characteristics. Under the matching assumption, all the 

outcome-relevant differences between treated and non-treated individuals are captured in their 

observable attributes, the only remaining difference between the two groups being their 

treatment status. In this case, the average outcome of the matched non-treated individuals 

constitutes the correct sample counterpart for the missing information on the outcomes the 

treated would have experienced, on average, had they not been treated. 

The central issue in the matching method is choosing the appropriate matching variables. 

This is a knife-edge decision as there can be too many as well as too few to satisfy the 

identifying assumption for recovering a consistent estimate of the treatment effect. In some 

ways, this mirrors the issue of choosing an appropriate excluded instrument in the IV and 

control function approaches discussed below. However, instruments do not make appropriate 

matching variables and vice versa. Instruments should satisfy an exclusion condition in the 

outcome equation conditional on the treatment, whereas matching variables should affect both 

the outcome and treatment equations. 

3.2.1 General matching methods 

To illustrate the matching solution for the average impact of treatment on the treated in a more 

formal way, consider the completely general specification of the earnings outcomes (2) – i.e. the 

one not even requiring additive separability – in the single discrete treatment case (J=1). Among 
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the set of variables X in the earnings equations, we distinguish those affecting both potential no-

treatment outcomes y0 and schooling choices S from those affecting outcomes y0 alone. We 

denote the former subset of X by .X  

The solution to the missing counterfactual advanced by matching is based on a fundamental 

assumption of conditional independence between non-treatment outcomes and the schooling 

variable S1i: 

MM:A1 0
1 .i i iy S X⊥ |   

This assumption of selection on observables requires that, conditional on an appropriate set 

of observed attributes, the distribution of the (counterfactual) outcome y0 in the treated group is 

the same as the (observed) distribution of y0 in the non-treated group. For each treated 

observation (yi : i∈{S1i=1}), we can look for a non-treated (set of) observation(s) (yi : i∈{S1i=0}) 

with the same X  realisation. Under the matching assumption that the chosen group of matched 

comparisons (i.e. conditional on the X s used to select them) does not differ from the treatment 

group by any variable that is systematically linked to the non-participation outcome y0, this 

matched comparison group constitutes the required counterfactual.  

As should be clear, the matching method avoids defining a specific form for the outcome 

equation, decision process or either unobservable term. Still, translated into the more specialised 

framework of equation (6), MM:A1 becomes: 1( )i i i iS Xα ε, ⊥ | . Note that the individual-specific 

return to education bi is allowed to be correlated with the schooling decision S1i, provided in this 

case ( )i i i ib Xα ε, ⊥ |  also holds. In particular, individuals may decide to acquire schooling on 

the basis of their individual gain from it (unobserved by the analyst), as long as this individual 

gain is not correlated to their non-treatment outcome 0
iy  conditional on X .  

For the matching procedure to have empirical content, it is also required that  

MM:A2 1( 1| ) 1i iP S X= <   for  X ∈ C*, 

which prevents X  from being a perfect predictor of treatment status, guaranteeing that all 

treated individuals have a counterpart in the non-treated population for the set of X  values over 

which we seek to make a comparison. Depending on the sample in use, this can be quite a strong 

requirement (for example, when the education level under consideration is directed to a well-

specified group). If there are regions where the support of X does not overlap for the treated and 

non-treated groups, matching has in fact to be performed over the common support region C*; 

the estimated treatment effect has then to be redefined as the mean treatment effect for those 

treated falling within the common support.  
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Note that to identify the average treatment effect on the treated over C*, this weaker version 

in terms of conditional mean independence, implied by MM:A1 and MM:A2, would actually 

suffice:  

MM:A1' 0 0
1 1( 1) ( 0)E y X S E y X S| , = = | , =   for  X ∈ C*. 

Based on these conditions, a subset of comparable observations is formed from the original 

sample, and with those a consistent estimator for the treatment impact on the treated (within the 

common support C*) is, simply, the mean conditional difference in earnings over C*, appropri-

ately weighted by the distribution of X  in the treated group.  

The preceding discussion has referred to the estimation of the average treatment effect on the 

treated. If we are also interested in using matching to recover an estimate of the effect of 

treatment on the non-treated, as we do in our application to the NCDS data, a symmetric 

procedure applies, where MM:A2 needs to be extended to 10 ( 1| )i iP S X< =  for X ∈ C* and 

MM:A1 to include y1. In terms of the framework of equation (6), the strengthened MM:A1 thus 

becomes 1( )i i i i ib S Xα ε, , ⊥ | , highlighting how now possibly heterogeneous returns bi are 

prevented from affecting educational choices by observably identical agents. Under these 

strengthened assumptions, the average treatment effect E[y1–y0] can then be simply calculated as 

a weighted average of the effect on the treated and the effect on the non-treated.  

As to the potential sources of bias highlighted by the decomposition in (8), matching corrects 

for the first two, B1 and B2, through the process of choosing and reweighting observations within 

the common support. In fact, in the general non-parametric matching method, a quite general 

form of m0(X) and of interactions b(X)S1i is allowed (note the use of X rather than X  – matching 

would balance also the variables affecting outcomes alone, since by construction they would not 

differ between treatment groups), avoiding the potential mis-specification bias highlighted for 

OLS. Arguing the importance of the remaining source of bias – the one due to unobservables – 

amounts to arguing the inadequacy of the conditional independence assumption (MM:A1) in the 

specific problem at hand, which should be done in relation to the richness of the available 

observables (i.e. the data X ) in connection with the selection and outcome processes.  

Turning now to the implementation of matching estimators, consider the ATT (similar 

procedures obviously apply for the ATNT). Based on MM:A1’ but without invoking any 

functional form assumption, the ATT can be estimated by performing any type of non-

parametric estimation of the conditional expectation function in the non-treated group, E(yi | 

S1i=0, X ), and averaging it over the distribution of X  in the treated group (within the common 

support). Matching, like for instance stratification on X , is one possible way of performing 
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such a non-parametric regression. The main idea of matching is to pair to each treated individual 

i some group of ‘comparable’ non-treated individuals and to then associate to the outcome yi of 

treated i a matched outcome ˆiy  given by the (weighted) outcomes of his or her ‘neighbours’ in 

the comparison group.  

The general form of the matching estimator for the average effect of treatment on the treated 

(within the common support) is then given by 

{ }
{ 1

*
{ 1 }1

1ˆ ˆ ˆ
i

i iMM ATT
i S C

y y
Nβ β

∗∈ = ∩

= = −∑  

where 1N ∗  is the number of treated individuals falling within the common support C*. In 

particular,  *
1 ˆ1 iN y∑  is the estimate of the average no-treatment counterfactual for the treated, 

0
1( 1)E y S| = .  

The general form for the outcome to be paired to treated i’s outcome is 

0 ( )

ˆ
i

i ij j
j C X

y W y
∈

= ∑          (11) 

where  

• 0 ( )iC X  defines treated observation i’s neighbours in the comparison group (where 

proximity is in terms of their characteristics to i’s characteristics iX ); and  

• ijW  is the weight placed on non-treated observation j in forming a comparison with treated 

observation i ( [0 1]ijW ∈ ,  with 0 ( )
1

i
ijj C X

W
∈

=∑ ).  

Although the various matching estimators are all consistent; in finite samples they may 

produce different estimates as they differ in the way they construct the matched outcome ŷ . 

Specifically, differences will depend on how they define the neighbourhood in the non-treated 

group for each treated observation, and, related to this, in how they choose the weights.  

The traditional and most intuitive form of matching is nearest-neighbour (or one-to-one) 

matching, which associates to the outcome of treated unit i a ‘matched’ outcome given by the 

outcome of the most observably similar non-treated unit. A variant of nearest-neighbour 

matching is caliper matching (see Cochran and Rubin (1973) and, for a recent application, 

Dehejia and Wahba (1999)). The ‘caliper’ is used to exclude observations for which there is no 

close match, thus enforcing common support. A different class of matching estimators has 

recently been proposed by Heckman, Ichimura and Todd (1997 and 1998) and Heckman, 

Ichimura, Smith and Todd (1998). In kernel-based matching, the outcome yi of treated unit i is 

matched to a weighted average of the outcomes of more (possibly all) non-treated units, where 
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the weight given to non-treated unit j is in proportion to the closeness of the characteristics of i 

and j. The weight in equation (11) above is set to 

( )
( )0 ( )

i j

i j

i

X X
h

ij X X
hj C X

K
W

K

−

−

∈

=
∑

. 

where K(⋅) is a non-negative, symmetric and unimodal function, such as the Gaussian kernel 
2( ) exp( / 2)K u u∝ −  or the Epanechnikov kernel 2( ) (1 ) 1( 1)K u u u∝ − ⋅ | |< .  

3.2.2 High dimensionality and the propensity score  

It is clear that when a wide range of X  variables is in use, finding exact matches can be 

extremely difficult. One possibility to reduce the high dimensionality of the problem is to use 

some metric to combine all the matching variables into a scalar measuring the distance between 

any two observations. An attractive, unit-free metric is the Mahalanobis metric, which assigns 

weight to each co-ordinate of X  in proportion to the inverse of the variance of that co-ordinate. 

The distance between observations i and j is thus defined as d(i,j)= 1( ) ' ( )i j i jX X V X X−− − , 

with V being the covariance matrix of X  in the sample (see Abadie and Imbens (2002) and 

Zhao (2004) for alternative matching metrics).  

Following Rosenbaum and Rubin (1983), distance can also be measured in terms of a 

balancing score q( X ), defined as a function of the observables such that 1 | ( )X S q X⊥ . One 

such balancing score is the propensity score, the probability to receive treatment given the set of 

observed characteristics jointly affecting treatment status and outcomes: 1( ) ( 1| )i i ip X P S X≡ = . 

By definition, treatment and non-treatment observations with the same value of the propensity 

score have the same distribution of the full vector of regressors X . Rosenbaum and Rubin have 

further shown that under MM:A1 and MM:A2 (i.e. when 1 0
1( )   and  0 ( ) 1y y S X p X, ⊥ | < < ), 

then 1 0
1( ) ( )y y S p X, ⊥ | . In other words, the conditional independence assumption remains 

valid if ( )p X  – a scalar variable – is used for matching rather than the complete vector of X .  

Propensity score matching thus reduces the high-dimensional non-parametric estimation 

problem to a one-dimensional one: the estimation of the mean outcome in the non-treated group 

as a function of the propensity score. Again, there are a number of ways to perform this one-

dimensional non-parametric regression, such as stratification on the propensity score, weighting 

on the propensity score, or the matching estimators outlined above, where in the formulae for 

Wij and 0 (.)C  the vector iX  is simply replaced by the scalar ( )i ip p X≡ . 

It should however be noted that in empirical applications the propensity score first needs to 
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be estimated. Since a fully non-parametric estimation of the propensity score would be liable to 

suffer from the same curse of dimensionality as the standard matching estimator, the estimation 

task is generally accomplished parametrically, for example via a logit or probit specification. 

The validity of the chosen specification for the propensity score can then be tested against a 

non-parametric alternative. Propensity score matching thus becomes a semi-parametric approach 

to the evaluation problem (see Imbens (2004) for a review of fully non-parametric estimators 

based on MM:A1). The estimated propensity score is used only in a first step to correct 

(parametrically) for the selection bias (on observables) by selecting that subset of the non-

treated group to act as comparison group or, more generally, by appropriately reweighing the 

non-treated. All that is required is in fact its ability to balance the relevant observables in the 

two matched groups ( 1 ˆ| ( )X S p X⊥ ). Simple parametric specifications for the propensity score 

have indeed often been found to be quite effective in achieving the required balancing (see e.g. 

Zhao (2004)). The second step, the estimation of the treatment effect, can then be accomplished 

in a fully non-parametric way, in particular without imposing any functional form restriction on 

how the treatment effect or the no-treatment outcome can vary according to X . The curse of 

dimensionality is thus sidestepped by parametrically estimating the propensity score only, while 

the specification of 1 0[ | ]E y y X−  and of 0[ | ]E y X  is left completely unrestricted. 

The estimation of the standard errors of the treatment effects should ideally adjust for the 

additional sources of variability introduced by the estimation of the propensity score as well as 

by the matching process itself. For kernel-based matching, analytical asymptotic results have 

been derived by Heckman, Ichimura and Todd (1998), while for one-to-one matching, the 

common solution is to resort to bootstrapped confidence intervals. (For a comparison of the 

small-sample properties of different matching estimators, see Abadie and Imbens (2002), 

Angrist and Han (2004), Frölich (2004) and Zhao (2004)).  

Before concluding this overview of the implementation of propensity score matching 

estimators, we briefly consider how the various types actually implement the common support 

requirement. Simple nearest-neighbour matching does not impose any a-priori common support 

restriction. In fact, the nearest neighbour could at times turn out to be quite apart. By contrast, its 

caliper variant, provided it is not too ‘tolerant’ (as perceived by the researcher), automatically 

uses the observations within the common support of the propensity score. As to kernel-based 

matching estimators, two factors automatically affect the imposition of common support: the 

choice of bandwidth (a small bandwidth amounts to being very strict in terms of the distance 

between a non-treated unit and the treated unit under consideration, de facto using – i.e. placing 

weight on – only those comparisons in a close neighbourhood of the treated unit’s propensity 
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score) and, to a lesser extent, the choice of kernel (for example, to smooth at a given pi, the 

Gaussian kernel uses all the non-treated units, i.e. 0
1( ) { : 0}i jC p j S= = , while the Epanechnikov 

only those non-treated units whose propensity score falls within a fixed radius h from pi, i.e. 
0

1( ) { { 0}:| | }i j i jC p j S p p h= ∈ = − < ). Typically in kernel-based matching the common support 

is additionally imposed on treated individuals at the boundaries: those treated whose propensity 

score is larger than the largest propensity score in the non-treated pool are left unmatched. A 

more refined procedure is suggested by Heckman, Ichimura and Todd (1997), who ‘trim’ the 

common support region of those treated falling where the comparison group density, albeit 

strictly positive, is still considered too thin to produce reliable estimates. 

In our empirical application, we use the publicly available Stata command developed by 

Leuven and Sianesi (2003) that performs various types of Mahalanobis-metric and propensity 

score matching, allows to impose common support in the ways described above as well as to test 

the resulting matching quality in terms of covariate balance in the matched groups. 

3.2.3 The multiple treatment model 

Rosenbaum and Rubin’s (1983) potential outcome approach for the case of a single treatment 

has recently been generalised to the case where a whole range of treatments are available by 

Imbens (2000) and Lechner (2001a). With assumptions MM:A1 and MM:A2 appropriately 

extended, all the required effects are identified. As with the single-treatment case, it is easy to 

show that a one-dimensional (generalised) propensity score can be derived, which ensures the 

balancing of the observables in the two groups being compared at a time.  

3.2.4 Some drawbacks to matching 

The most obvious criticism that may be directed to the matching approach is the fact that its 

identifying conditional independence assumption (MM:A1) is in general a very strong one. 

Despite the fact that compared with OLS, matching is implemented in a more flexible way (in 

particular not imposing linearity or a homogeneous additive treatment effect), both matching 

and OLS estimates depend on this same crucial assumption of selection on observables, and 

both are thus as good as the control variables X they use (cf. also Smith and Todd (2004)). As 

mentioned above, the plausibility of such an assumption should always be discussed on a case-

by-case basis, with account being taken of the informational richness of the available dataset 

( X ) in relation to a detailed understanding of the institutional set-up by which selection into the 

treatment takes place (see Sianesi (2004) for an example of such a discussion in the context of 

training programmes).  
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Furthermore, the common support requirement implicit in MM:A2 may at times prove quite 

restrictive. In the case of social experiments, randomisation generates a comparison group for 

each X  in the population of the treated, so that the average effect on the treated can be 

estimated over the entire support of the treated. By contrast, under the conditional independence 

assumption, matching generates a comparison group, but only for those X  values that satisfy 

MM:A2. In some cases, matching may not succeed in finding a non-treated observation with a 

similar propensity score for all of the participants. If MM:A2 fails for some subgroup(s) of the 

participants, the estimated treatment effect has then to be redefined as the mean treatment effect 

for those treated falling within the common support.  

If the impact of treatment is homogeneous, at least within the treated group, no additional 

problem arises besides the loss of information. Note though that the setting is general enough to 

include the heterogeneous case. If the impact of participation differs across treated individuals, 

restricting to the common support may actually change the parameter being estimated; in other 

words, it is possible that the estimated impact does not represent the mean treatment effect on 

the treated. This is certainly a drawback of matching in respect to randomised experiments; 

when compared with standard parametric methods, though, it can be viewed as the price to pay 

for not resorting to the specification of a functional relationship that would allow one to 

extrapolate outside the common support. In fact, the absence of good overlap may in general 

cast doubt on the robustness of traditional methods relying on functional form (in the schooling 

context, see Heckman and Vytlacil (2000), Dearden, Ferri and Meghir (2002) and Black and 

Smith (2004)). Lechner (2001b) derives non-parametric bounds for the treatment effect to check 

the robustness of the results to the problem of a lack of common support.  

 
3.3 Instrumental variable methods  
The instrumental variable (IV) estimator seems a natural method to turn to in estimating returns 

– at least in the homogeneous returns model. The third source of bias in (8) – and the most 

difficult to avoid in the case of least squares and matching – arises from the correlation of 

observable schooling measures with the unobservables in the earnings regression. If an 

instrument can be found that is correlated with the true measure of schooling and uncorrelated 

with the unobservables in the outcome equation, then a consistent estimator of the returns is 

achievable in the homogeneous returns model but only in some special cases for the 

heterogeneous returns model. Even in the homogeneous returns model, though, finding a 

suitable instrument is no easy task, since it must satisfy the criteria of being correlated with the 

schooling choice while being correctly excluded from the earnings equation.  
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To investigate the properties of the IV estimator more formally, consider the general 

heterogeneous model (6), which also allows for b(Xi). Note that without loss of generality, this 

observably heterogeneous return b(Xi) can be assumed to be linear in the X variables, so that 

b(Xi) S1i = bX Xi S1i, where bX is the vector of the additional returns for individuals with 

characteristics X. Note again that in this framework, bi captures the individual idiosyncratic gain 

(or loss) and has population mean of b0. The model can thus be written as 

0 1 0 1( )i i X i i i iy m X b X S b S e= + + +   with  0 1( )i i i i ie b b Sα ε= + + − .   (12) 

Define an instrumental variable Zi and assume that it satisfies the orthogonality conditions:  

IV:A1 [ ] [ ] 0i i i i iE Z X E Xα α| , = | =  

IV:A2 [ ] [ ] 0i i i i iE Z X E Xε ε| , = | =  

With a valid instrument Zi, one may envisage two ways of applying the IV method to estimate 

model (12): 

(i) IV method (A) uses the extended set of instruments Zi and Zi Xi to instrument S1i and Xi 

S1i. It needs sufficient variation in the covariance of the interactions of Xi and S1i and the 

interactions of Xi and Zi. Note, however, that this approach does not fully exploit the 

mean independence assumptions IV:A1 and IV:A2. 

(ii) IV method (B), by contrast, recognises that under the conditional mean independence 

assumptions, application of IV is equivalent to replacing S1i with its prediction in both its 

linear and its interactions terms. To see this, assume 

IV:A3 1[ ]i i iE S Z X| ,  is a non-trivial function of Z for any X.  

Taking the conditional expectation of (12) under assumptions IV:A1, A2 and A3 and 

noting that 1 1[ ] [ ]i i i i i i i iE X S Z X X E S Z X| , = | ,  yields 

0 0 1 0 1[ ] ( ) ( ) [ ] [( ) ]i i i i X i i i i i i i iE y Z X m X b X b E S Z X E b b S Z X| , = + + | , + − | , . (13) 

Note first of all that in the absence of interactions b(Xi), the two IV methods are identical. 

Secondly, irrespective of the method chosen, there is nothing in assumptions IV:A1–A3 that 

makes the final term in (13) disappear. Since the error term ei in (12) contains the interaction 

between the endogenous schooling dummy and the unobserved individual return, neither way of 

applying IV would produce consistent estimates. In fact, even assuming that the instrument is 

uncorrelated also with the unobservable return component would not help further on its own. 

Two alternative paths can now be followed: considering some special cases based on further and 

stronger assumptions or redefining the parameter to be identified (specifically, as a local average 

treatment effect). 

As to the first identifying strategy, one obvious possibility consists in assuming that returns 
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are homogeneous, at least conditional on Xi, i.e. that bi is constant for all i and equal to its 

average value, b0. Consequently, the problematic last term in (13) is zero by definition and 

under IV:A1, A2 and A3, IV estimation can produce a consistent estimator of 0( )ib X b+ . Note, 

however, how, in general, the IV estimator needs to deal with the specification of m0(Xi) and 

b(Xi) and, just like least squares, is thus subject to the potential mis-specification bias that the 

matching method avoids.  

Special cases allowing for heterogeneous individual returns bi and based on appropriate 

assumptions (for example, homoskedastic returns) have been highlighted by Wooldridge (1997) 

for the one-factor ‘years of schooling’ specification. We now, however, focus on the general 

heterogeneous returns model with a single binary treatment (6). 

3.3.1 IV in the heterogeneous single treatment model 

As seen above, assumptions IV:A1–A3 are not enough to ensure consistency in the general case 

of heterogeneous returns. Note that IV:A3 requires 1 1[ ] [ 1 ]E S Z X P S Z X| , = = | ,  to be a non-

trivial function of Z for each X – in particular, it requires the instrument to take on at least two 

distinct values, say 0 and 1, which affect the schooling participation probability differently. Add 

now the additional property that for the treated, the instrument Z is not correlated with the 

individual-specific component of the return bi (conditional on X). Formally:  

IV:A4 1 1[ 1] [ 1]i i i i i i iE b Z X S E b X S| , , = = | , = . 

Under IV:A1, A2, A3 and A4, taking expectations, we get 

( )0 1 1[ ] ( ) ( ) [ | , 1] ( 1| , )i i i i i i i i i i iE y Z X m X b X E b X S P S Z X| , = + + = = , 

from which we can recover the conditional effect of treatment on the treated:  

1 1

1
1 0

1

[ 1] [ 0]ˆ ( )
[ 1 1] [ 1 0]

( ) [ 1]
ˆ[ 1]  ( )

i i i i i i
IV

i i i i i i

i i i i

i i i i ATT

E y X Z E y X ZX
P S X Z P S X Z

b X E b X S

E y y X S X

β

β

| , = − | , =
≡

= | , = − = | , =
= + | , =

= − | , = ≡

    (14) 

Assumption IV:A4 is strong: while allowing for heterogeneous returns bi, it requires 

schooling decisions to be unrelated to these individual gains. In particular, since IV:A3 requires 

the schooling participation probability to depend on Z, IV:A4 rules out that this probability 

depends on bi as well. 

Before turning to the issues that emerge when schooling choices are allowed to depend on bi, 

it is worth noting the issues of efficiency and of weak instruments. Efficiency concerns the 

imprecision induced in IV estimation when the instrument has a low correlation with the 

schooling variable. The weak instrument case is an extreme version of this where the sample 
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correlation is very weak and the true correlation is near to zero. In this case, IV will tend to the 

biased OLS estimator even in very large samples (see Bound, Jaeger and Baker (1995) and 

Staiger and Stock (1997)).  

 
The local average treatment effect 

In the general heterogeneous returns model with a single treatment (6), even when individuals 

do partly base their education choices on their individual-specific gain bi, it is still possible to 

provide a potentially interesting interpretation of the IV estimator – although it does not estimate 

the average effect of treatment on the treated or the average treatment effect parameters. The 

interpretation of IV in this model specification was precisely the motivation for the local 

average treatment effect of Imbens and Angrist (1994).  

Suppose there is a single discrete binary instrument Zi∈{0,1} – for example, a discrete 

change in some educational ruling that is positively correlated with the schooling level S1i in the 

population. There will be four subgroups of individuals: those who do not take the education 

level under consideration whatever the value of the instrument (the ‘never-takers’), those who 

always choose to acquire it (the ‘always-takers’) and those who are induced by the instrument to 

change their behaviour, either in a perverse way (the ‘defiers’) or in line with the instrument (the 

‘compliers’). This last group is of particular interest: it is made up of those individuals who are 

seen with education level S1i=1 after the rule change (Zi=1) but who would not have had this 

level of schooling in the absence of the rule change (Zi=0). To be more precise, we define the 

events 

1 1

0 1

{ | 1}
{ | 0}

i i i

i i i

D S Z
D S Z

≡ =
≡ =

 

and assume, in addition to the exclusion restrictions concerning the unobservables in the base 

state (IV:A1 and A2) and to the non-zero causal effect of Z on S1i (IV:A3 – i.e. the instrument 

must actually change the behaviour of some individuals):  

LATE:A1 For all i, either 1 0[ ]i iD D≥  or 1 0[ ]i iD D≤  (note that due to IV:A3, strict 

inequality must hold for at least some i).  

This ‘monotonicity’ assumption requires the instrument to have the same directional effect on 

all those whose behaviour it changes, de facto ruling out the possibility of either defiers or 

compliers. Assume in particular that 1 0i iD D≥  (Z makes it more likely to take S1 and there are 

no defiers); in this case, the standard IV estimator (14) 

1 1

[ 1] [ 0]
[ 1 1] [ 1 0]

i i i i i i

i i i i i i

E y X Z E y X Z
P S X Z P S X Z

| , = − | , =
= | , = − = | , =
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reduces to 1 0
1 0 1 0( ) [ | , ] [ | , ]i i i i i i i i i ib X E b X D D E y y X D D+ > = − > . This provides a useful 

interpretation for IV: it estimates the average returns among those individuals (with 

characteristics X) who are induced to change behaviour because of a change in the instrument – 

the local average treatment effect (LATE). 

More generally, the IV (two-stage-least-squares) estimator with regressors is a variance-

weighted average of the LATEs conditional on the covariates. The IV estimator exploiting more 

than one instrument is an average of the various single-instrument LATE estimators with 

weights proportional to the effect of each instrument on the treatment dummy (see Angrist and 

Imbens (1995)).  

LATE avoids invoking the strong assumption IV:A4. Indeed, as Angrist, Imbens and Rubin 

(1996) note, assumption IV:A4 would amount to assuming that the return is the same for 

always-takers and compliers – in other words, that it is the same for all the treated, which 

comprise these two groups. However, if one is not willing to make this assumption, which 

would identify the ATT parameter as in (14), then the only causal effect to be identified by IV is 

LATE, that is the effect for compliers.  

3.3.2 Some drawbacks to IV 

The first requirement of IV estimation is the availability of a suitable and credible instrument. 

Although ingenious instruments have often been put forward (from selected parental 

background variables, to birth order, to smoking behaviour when young, to distance to college, 

etc.), they have all been subject to some criticism, since it is hard to justify fully the untestable 

exclusion restriction they must satisfy. Policy reforms have also been used as instruments. For 

example, researchers have compared the outcomes among two groups that have a similar 

distribution of abilities but who, from some exogenous reform, experience different schooling 

outcomes (for example, see the papers by Angrist and Krueger (1991 and 1992), Butcher and 

Case (1994), Harmon and Walker (1995) and Meghir and Palme (2000)). As we have seen, in 

the homogeneous treatment effects model, this can be used to estimate the average treatment 

effect, but in the heterogeneous model where individuals act on their heterogeneous returns, it 

will estimate the average of returns among those induced to take more schooling by the reform – 

the local average treatment effect. The LATE discussion highlights the point that the IV estimate 

will typically vary depending on which instrument is used. Moreover, it could vary widely, 

when heterogeneity is important, according to the local average it recovers, since the compliers 

could be a group with very high (or very low) returns.  

In any case, the lesson to be learned from the discussion of IV in the heterogeneous returns 
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model is that the nature of the incidence of the instrument within the distribution of returns bi is 

critical in understanding the estimated coefficient, and may at times prove useful in bounding 

the returns in the population. A potentially promising approach in such a context (see, for 

example, Ichino and Winter-Ebmer (1999)) is to look for different instruments that are likely to 

affect different subgroups in the population, while having a theoretical framework to assess to 

which part of the returns distribution these complier groups belong. We provide some further 

discussion of this in relation to our application to the UK NCDS data in Section 4.2. 

 
3.4 Control function methods 
If individuals make educational choices on the basis of their unobserved characteristics, the 

error in the earnings equation will have a non-zero expectation (see equations (9) and (10)). In 

particular, if individuals who select into schooling have higher average unobserved ability 

and/or if individuals with higher unobserved idiosyncratic returns from schooling invest more in 

education, the residual in the earnings equation of high-education individuals will have a 

positive mean. The basis of the control function approach is to recover the average treatment 

effect by controlling directly for the correlation of the error term in the outcome equation with 

the schooling variable (ei in equation (9)). For this, an explicit model of the schooling selection 

process is required. More precisely, the control function method augments the earnings 

regression with an additional equation determining educational choice.  

3.4.1 The single treatment model 

Suppose that in the heterogeneous single treatment model (6), 

0 0 1 0 1( ) ( ( ) ) ( )i i i i i i i iy m X b X b S b b S α ε= + + + − + +  

assignment to schooling S1i is determined according to the binary response model 

CF:A1 1 1( ( ) 0)i S i i iS m Z X v= , + ≥   where iv  is distributed independently of Z and X. 

In addition to specifying this assignment rule, the control function approach requires that, 

conditional on some function of Sm , the unobservable heterogeneity in the outcome equation, 

iα  and bi, is distributed independently of the schooling variable 1iS . One way of achieving this, 

in the single treatment specification (6), is to assume that the unobserved productivity or ability 

term αi and the unobserved individual residual return bi relate to S1i according to 

CF:A2  0i v i ir vα αα α ξ− = +  with i iv αξ⊥   

CF:A3  0i bv i bib b r v ξ− = +  with i biv ξ⊥ . 

Note that generally – and as we do in our application below – joint normality of the 

unobservables in the assignment and outcome equations is assumed, from which CF:A2 and 
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CF:A3 directly follow, with rαv = ραv⋅σα  and rβv = ρβv⋅σβ . 

Given CF:A1–A3, we can write the conditional means of the unobservables as 

0 1 1[( ) 1] ( )i i i i v i i iE Z X S r X Zαα α λ− | , , = = ,  

0 1 0[( ) 0] ( )i i i i v i i iE Z X S r X Zαα α λ− | , , = = ,  

0 1 1[( ) 1] ( )i i i i bv i i iE b b Z X S r X Zλ− | , , = = ,       (15) 

where 0 1 and i iλ λ  are the conditional mean terms or ‘control functions’ that fully account for the 

dependence of the unobservable determinants of the outcome variable y on the schooling 

assignment. Consequently, the outcome model can be written as 

0 0 0 1 1 0 1 1( ) ( ( ) ) (1 ) ( )i i i i v i i v bv i i iy m X b X b S r S r r Sα αα λ λ ω= + + + + − + + +   (16) 

with  1 1 0 1 1[ (1 ) ] 0i i i i i i iE X S S Sω λ λ| , , − , = .  

If 0 1 and i iλ λ  were known, then the least squares estimation of the augmented log earnings 

regression, which includes the additional terms 1 0(1 )i iS λ−  and 1 1i iS λ , would produce a 

consistent estimator of the average treatment effect b(Xi)+b0 and thus of βATE = b0 + E[b(Xi)]. 

These additional control function terms thus eliminate the bias induced by the endogeneity of 

schooling.  

The control function terms depend on the unknown reduced form ( )Sm ⋅  and the distribution 

of the unobservables. Under joint normality, the control functions take the form 

0
( ( ))

1 ( ( ))
S i i

i
S i i

m Z X
m Z X

φλ ,
≡ −

− Φ ,
  and  1

( ( ))
( ( ))

S i i
i

S i i

m Z X
m Z X

φλ ,
≡

Φ ,
 

and are the standard inverse Mills ratios from the normal selection model (Heckman, 1979). 

These can be consistently estimated from a first-stage binary response regression, analogous to 

the standard selection model. Once these terms are included in the outcome equation (6) and 

implicitly subtracted from its error term 0 1( )i i i ib b S α ε− + + , the purged disturbance will be 

orthogonal to all of the regressors in the new equation (see Heckman and Robb (1985)). For an 

early analysis of the heterogeneous one-factor ‘years of schooling’ model, see, for example, 

Garen (1984). In general, an exclusion restriction on Z will allow semi-parametric estimation of 

this model (see Powell (1994) for a review of semi-parametric selection model estimation).  

It is interesting to observe that under the structure imposed on the model, the estimated r 

coefficients are informative on the presence and direction of the selection process ( vrα  for 

selection on unobserved ‘ability’ and bvr  for selection on unobserved returns). Specifically, if an 

exclusion restriction can be found and the control function assumptions invoked, then the null of 

no selection on the unobservables can be tested directly. In the framework above, this simply 
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amounts to a joint test of the null hypothesis that vrα and vrβ  are zero.  

Not only does the model readily estimate the average treatment effect for a random 

individual even when individuals select into education based on their unobserved individual gain 

from it (compare (15) with IV:A4), but the distributional assumptions made allow us to recover 

the other parameters of interest too:  

0 1 1 1[ ( ) 1] [ 1]ATT i i v i ib E b X S r E Sββ λ= + | = + | =  

0 1 0 1[ ( ) 0] [ 0]ATNT i i bv i ib E b X S r E Sβ λ= + | = + | =  

where vβρ  is identified from the difference of the coefficients on 1 1i iS λ  and on 1 0(1 )i iS λ− . Note 

that in the special case where bi is constant for all i or where individuals do not select on the 

basis of their unobserved gain (bi and vi are uncorrelated, so that 0bvr = ), the control function 

terms reduce to a single term 1 0 1 1[(1 ) ]v i i i ir S Sα λ λ− + . 

In summary, although in general an exclusion restriction is required (see also 3.4.3 below), 

the structure imposed by the control function approach yields a number of gains compared to 

IV. First, it allows one to recover the average treatment effect even when individuals select on 

the basis of unobserved heterogeneous returns; in such a context IV would by contrast be able to 

only recover a LATE for the specific and instrument-related sub-population of compliers.  

Second, while IV only allows one to test the joint null hypothesis of no selection on either 

unobserved components of levels or gains, the control function structure allows one to test 

separately for the presence of selection on unobserved characteristics affecting the no-treatment 

outcome and for selection on unobserved heterogeneity in returns. These tests can be very 

informative in themselves. The former test can also give guidance as to the reliability of the 

conditional independence assumption on included covariates that underpins the matching 

specification. The latter test can also assist in the interpretation of IV estimates.  

Finally, at times it may be important to allow for observably heterogeneous returns in 

addition to selection on unobservables. The available instruments may turn out to be too weak to 

predict all interactions properly. If X-heterogeneous returns are ignored, IV would again retrieve 

a local effect, while the control function would recover the ATE, ATT and ATNT, and would do 

so in a considerably more efficient way – at the obvious price of being much less robust than IV. 

These issues are further explored and discussed in our empirical application in Section 4.2. 

3.4.2 The multiple treatment model 

The extension to the multiple treatment case is reasonably straightforward. As in (7), write the 

exhaustive set of J treatments (schooling levels) under examination as S1i, S2i, ..., SJi. Then 
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extend the control function assumptions to obtain (where now a bar rather than a zero subscript 

denotes means to avoid confusion) 

[( ) 1] ( )     for  0 1i i i ji v ji i iE Z X S r X Z j Jαα α λ− | , , = = , = , ,...,  

[( ) 1] ( )   for  1
jji j i i ji b v ji i iE b b Z X S r X Z j Jλ− | , , = = , = ,..., . 

The heterogeneous returns model specification is then given by  

0 1 0
( ) ( ( ) )J J

i i j i j ji j ji ji ij j
y m X b X b S r Sα λ ω

= =
= + + + + +∑ ∑  

with 0 1
1 J

i jij
S S

=
= − ∑ , 

jj v b vr r rα= +  for all j  (with 
0

0b vr = ) 

and 1 1 1[ ] 0i i i Ji i i Ji JiE X S S S Sω λ λ| , ,..., , , ..., = . 

To avoid multicollinearity problems, the λji terms will need to have independent variation, 

suggesting that at least J–1 excluded instruments will be required for identification. Typically, 

finding such a large set of ‘good’ excluded instruments is difficult. An alternative identification 

strategy is to link the λji terms together. For example, if the schooling outcomes follow an 

ordered sequence, then it may be that a single ordered probit model could be used to generate all 

the λji terms, but requiring only one instrument.  

Within this multiple treatment structure, all of the treatment effects of interest can be 

obtained. For example, the generic average return to schooling level j compared with schooling 

level 0 (the return to which is normalised to zero) for those individuals with highest achieved 

schooling qualification k is 

{ }
0[ 1] ( ) [ 1]

( ) [ 1].
j

j

ji i ki j i b v ki ki

j i j b v ki ki

E X S ATE X r E S

b X b r E S

β λ

λ

| , = = + | =

= + + | =
 

3.4.3 Some drawbacks to the control function approach 

In general, like the IV approach, the control function approach rests on an exclusion restriction. 

More precisely, although in a parametric specification identification can be achieved even if 

X=Z through functional form restrictions, in practice the estimator is found to perform poorly in 

the absence of an exclusion restriction. 

In contrast to IV, the control function approach also requires a full specification of the 

assignment rule. These assumptions then allow the range of treatment effect parameters to be 

recovered even where there is heterogeneity in returns. The full relationship between control 

function and IV approaches for general simultaneous models is reviewed in Blundell and Powell 

(2003). In the multiple treatment model, a full set of assignment rules is required as well as the 

ability to construct a set of control functions – one for each treatment – that have independent 
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variation.  

 
3.5 The relationship between OLS, matching, instrumental variables and 

control function methods 

This final subsection outlines the relationship between the estimators we have considered. The 

emphasis of the matching approach is on the careful construction of a comparison group. The 

control function method aims at putting enough structure to completely model the selection 

decision, while IV focuses on the search for a source of independent variation affecting the 

schooling choices of a section of the population.  

To simplify the discussion, assume that 

(i) the issue of common support can be ignored (either by assuming that there is sufficient 

overlap in the distribution of X in the treated and non-treated subsamples, or by 

assuming that all estimators condition on observations falling within the common 

support); 

(ii) there are no mis-specification issues as to the no-treatment outcome m0(X). 

Of course when these conditions fail, matching always dominates OLS. To further consider 

the relationship between standard OLS and matching, assume for the moment also that MM:A1 

holds (i.e. no selection on unobservables). As shown in Section 3.1, under these conditions and 

in contrast to matching, standard OLS will still not recover the ATT, although at times it might 

provide a close approximation, as shown by Angrist (1998). In particular, both matching and 

OLS produce weighted averages of the covariate-specific treatment effects E(y1–y0|X) ≡ b(X), 

but the ways the two estimators weight these heterogeneous effects differ. Matching recovers 

the ATT by weighting the X-heterogeneous effects according to the proportion of treated at each 

value of X – that is, proportionally to the propensity score at X, P(S1=1 | X=x) ≡ p(x): 

1 0
1

( ) ( ) ( )
( | 1)

( ) ( )
x

x

b x p x P X x
ATT E Y Y S

p x P X x
=

≡ − = =
=

∑
∑

, 

By contrast, simple OLS weights the X-heterogeneous effects proportionally to the variance of 

treatment status at X – that is, proportionally to p(x)⋅(1 – p(x)): 

( )
( )

( ) ( ) 1 ( ) ( )
( ) 1 ( ) ( )

x
OLS

x

b x p x p x P X x
p x p x P X x

β
− =

=
− =

∑
∑

. 

In general, then, simple OLS will not recover the ATT even under the CIA and the 

conditions stated above. It will nonetheless provide a close approximation to the ATT if there is 

no large heterogeneity in treatment impacts by X or, alternatively, if the values of the propensity 

score are smaller than 0.5 (hence p and p(1–p) are positively correlated). 
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For the remainder of the discussion, assume further that: 

(iii) the OLS, IV and control function estimators are properly specified, also in terms of b(Xi) 

(a not-so-weak proviso, as we shall see in the empirical section below). 

The three assumptions (i)–(iii) rule out the two sources of bias due to observables B1 and B2. 

Note first of all that OLS and matching now coincide. Secondly, once we have thus brought all 

estimators onto an equal footing, matching (equal to OLS), IV and control function would 

produce the same estimates in the absence of selection on unobservables. In what follows, we 

therefore look at a situation characterised by bias due to unobservables only (B3). 

To focus on the relative performance of matching compared with IV and control function 

estimators when the basic conditions for the applicability of the latter are met, let us further 

assume that the exclusion restriction E[αi | Xi, Zi]=0 for the instrument used by IV as well as the 

decomposition required by the control function estimator (including postulated structure 

between the error terms and exclusion restriction) is verified. 

In the presence of ability bias, arising from the correlation between αi and S1i, both the IV 

and control function estimators should correctly recover the average effect of treatment on the 

treated (IV directly, the control function exploiting the assumed structure). The effect of 

treatment on the treated recovered by matching would, however, be upward biased (assuming 

more able individuals are more likely to choose S1i=1); the effect of treatment on the non-treated 

would be similarly upward biased, and thus so would the average treatment effect. 

When selection into schooling is driven by individuals’ idiosyncratic gain, bi, the control 

function estimator would directly recover the average treatment effect, while IV would pick out 

an instrument-related margin (LATE), which could be much higher or much lower than the 

average effect for a random individual in the population. Provided the individual-specific gain is 

unrelated to ability (αi), both the matching and control function estimators could recover an 

unbiased estimate of the average treatment effect on the treated. However, in contrast to the 

control function estimate, the effect of treatment on the non-treated – and thus the average 

treatment effect – obtained with matching would be upward biased (assuming that those with the 

higher gains select into education). 

Finally, it is worth noting how we might use additional information on a credible exclusion 

restriction (conditional on the included conditioning variables X ). Together with the control 

function assumptions, this additional information can be used to ‘test’ the null hypothesis of no 

selection on unobservables. This relies on the truth of the exclusion restriction and would test 

for the significance of the additional control function terms conditional on the exogenous ( X ) 

variables. We pursue this approach in our empirical analysis in the next section. 
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4. Education and earnings in Britain: results from the NCDS 
4.1 Introduction 
The availability of birth cohort data in Britain presents an ideal basis for examining the issues 

involved in estimating the returns to education. Here, we use data from the National Child 

Development Survey, which keeps detailed longitudinal records on all children born in a single 

week in March 1958. These data have been used extensively in the analysis of health, family 

and economic outcomes (see Fogelman (1983) and McCulloch and Joshi (2002), for example). 

The main surveys we use were undertaken in 1965, 1969, 1974, 1981 and 1991. These include: 

information on parents’ education and social class; financial problems in the family in 1969 and 

1974; maths and reading ability at ages 7 and 11; school type and detailed qualifications; 

teachers’ assessments; and earnings, employment and training since leaving education. We use 

data from the waves up to the 1991 survey in which the individuals were aged 33. Summary 

statistics are presented in Appendix A.  

We begin by looking at a simple single treatment model and consider the returns to college 

versus no college, which in the UK context is the return from undertaking some form of higher 

education (HE). We subsequently consider a sequence of multiple treatments starting with no 

(or extremely low-level) qualifications, O levels or vocational equivalent, A levels or vocational 

equivalent, or some type of HE qualification (see Appendix B for details of our educational 

classification).  

The outcome of interest is individual wages at age 33 in 1991. In order to focus fully on the 

returns to education and to avoid issues associated with selection into employment, we restrict 

our attention to males. We do not expect substantive bias arising from measurement error in 

schooling due to the relative accuracy of the NCDS education measure. Contrary to standard 

cross-sectional datasets relying on recall information, individuals in the NCDS are followed 

since birth and throughout their schooling period, with exams files being collected from schools 

and interviews being carried out very close to the dates of completion of education. A US 

finding relevant to our single treatment analysis is by Kane, Rouse and Staiger (1999). Using the 

National Longitudinal Study of the High School Class of 1972, they find that self-reported 

schooling measures are fairly accurate – in fact, more accurate than transcript measures – in 

discriminating between those who have not attended college and those who have completed 

their degree. Abstracting from additional concerns potentially arising from (non-classical) 

measurement error allows us in the following application to devote full attention to the issues we 

have discussed at length in the methodological section: selection, heterogeneous returns, mis-

specification and comparability of groups. 
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4.2 Single treatment models: higher education 
The estimated returns to undertaking some form of higher education are shown in Table 4.1. In 

this model, the ‘non-treated’ are a heterogeneous group made up of those leaving school with no 

formal qualifications, those stopping at O levels and those finishing with A levels.  

Some comments on the choice and interpretation of the control variables X may be useful at 

this stage. As described in Section 2, the Xs need to be ‘attributes’ of the assignment rule and of 

the earnings process unaffected by the treatment itself. Suitable regressors are thus pre-treatment 

variables, as well as all time-invariant individual characteristics. All such variables that are 

thought to influence both the educational decision of interest and wage outcomes should ideally 

be included as regressors. Instrumental variables would not make good conditioning regressors. 

Finally, note that since our conditioning X variables, say X0, are measured before (or at the time 

of) the educational choice, the treatment effects we estimate will include the effect of schooling 

on some subsequent X which would also affect measured outcomes (examples include on-the-

job training, tenure, experience and type of occupation found). The treatment effect will thus 

consist of all channels through which education affects wages, both directly (for example, 

through productivity) and indirectly (via some of the Xs). 

4.2.1 Selection on observables: OLS and matching 

We begin by comparing the two methods that rely on the selection on observables assumptions 

– namely, OLS and matching. We focus on the standard form of OLS, the linear and common 

coefficient specification, of which non- (or semi-)parametric matching represents a flexible 

version. The choice of kernel-based matching over other types of matching estimators has been 

guided by indicators of the resulting balancing of X presented in summary form in Appendix C. 

(The results were, in any case, very close.) Our comparison of the two methods also includes an 

assessment of their sensitivity to the richness of the conditioning data. Given their common 

identifying assumption, the nature of the available observables is crucial for the credibility of the 

estimates. In particular, we compare estimates based on the detailed information in the NCDS 

with those obtained from the standard pre-treatment information in commonly available 

datasets. These are presented in Table 4.1. 

Specification (i) in Table 4.1 gives the OLS estimate when we only use minimal controls 

(region and ethnicity). The corresponding matching estimate is shown in row (iv). We see that 

the estimated return to HE for men is around 40% for both estimators, with the matching point 

estimate very close to the one from OLS. 

When we include a richer set of controls – ability measures at both 7 and 11, school type and 
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Table 4.1. The returns to higher education compared with less-than higher education  

Average treatment effect (ATE), average effect of treatment on the treated (ATT) and average 
effect of treatment on the non-treated (ATNT), % wage gain 
 ATT ATE ATNT 
OLS 

(i) basic specification  
 

39.8 
(37.1; 42.5) 

 
39.8 

(37.1; 42.5) 

 
39.8 

(37.1; 42.5) 
(ii) full specification  
 

       (iii) fully interacted 

28.7 
(25.7; 31.8) 

26.5 
(23.0; 30.1) 

28.7 
(25.7; 31.8) 

30.8 
(27.6; 34.1) 

28.7 
(25.7; 31.8) 

32.5 
(28.9; 36.2) 

MATCHING 
(iv) basic specification 

 
40.1 

(37.5; 43.1) 

 
40.1 

(37.5; 42.8) 

 
40.2 

(37.5; 42.8) 
(v) full specification  26.8 

(23.5; 31.1) 
31.3 

(28.7; 34.9) 
33.1 

(30.0; 36.7) 
CONTROL FUNCTION (heterog. returns)

(vi) full specification 
  
(vii) fully interacted  
  

 
51.6 

(27.9; 85.7) 
29.4 

(9.8; 47.9) 

 
37.4 

(19.2; 61.9) 
22.0 

(1.6; 36.6) 

 
31.7 

(14.0; 54.5) 
19.1 

(–10.7; 38.2) 
INSTRUMENTAL VARIABLES 

(viii) bad financial shock 
 

(ix) parental interest 
 
(x) presence of older siblings 

 
117.1 

(41.9; 192.3) 
60.6 

(15.1; 106.1) 
5.2 

(–70.8; 60.4) 

 
 

 

Notes to Table 4.1: 
Basic specification: ethnicity and region. 
Full specification: ethnicity, region, standard family background information, tests at 7 and 11, school variables. 
Family background variables are mother’s and father’s education, age, father’s social class when the child was 16, 
mother’s employment status when the child was 16 and the number of siblings the child had at 16. 
Control function: parental interest as instrument, for (vii) interacted with X in the first-step probit. 
Sample size N = 3,639, except for matching: ATE (3,414), ATT (1,019) and ATNT (2,395). 
Numbers in parentheses are the 95% confidence intervals are based on White-corrected robust standard errors for 
all specifications except for (iv), (v) and (vii), for which the bootstrapped 95% bias-corrected percentile confidence 
intervals (500 repetitions) are reported. 

 
standard family background variables (specifications (ii) and (v)) – both these estimates fall to 

between 27 and 33%. In particular, the OLS coefficient – constrained to be homogeneous – 

shows a 28.7% average wage gain from taking some form of HE.  

Matching is more informative, showing that the higher-educated enjoy a 26.8% average gain 

from having taken HE (ATT), while the estimated return for those who stopped (at any stage) 

before HE would have been 33.1% (ATNT).  

As seen in Section 3.1, if there are heterogeneous returns to HE, standard OLS regression 

would, in general, produce biased estimates of the ATT. To check this issue, in specification (iii) 

we run a regression that models the (observably) heterogeneous returns b(Xi) in a flexible way, 

namely it allows all interactions between the Xs and the treatment indicator S1. These 

interactions XS1 – particularly in terms of later ability, family background and region – are in 
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fact significant (overall F=1.80, p=0.0019), and allowing for them makes the OLS estimates of 

the ATT, ATNT and ATE almost identical to the matching ones (compare (iii) with (v)). 

This first set of results highlights several issues. At least in our application, the standard pre-

education information available in common datasets would not have been enough to identify 

gains in a reliable way; in our case, generally unobserved ability and family background 

variables would have led to an upward bias of around 48%.  

Secondly, allowing for an (observably) heterogeneous gain from HE via matching or fully 

interacted OLS can, in principle, provide additional information as to the average gains for the 

subgroups of treated and non-treated. The statistical significance of the interaction terms 

provides evidence of the presence of heterogeneous returns b(Xi). Furthermore, such 

heterogeneity seems to be sizeable; both the interacted OLS and matching estimates of the ATT 

are significantly different from the corresponding ATNT ones. (The bootstrapped 95% bias-

corrected percentile confidence interval for the –6.3 difference in matching estimates is [–9.9; –

2.6] and that for the –6.0 difference in interacted OLS estimates is [–10.4; –2.1].) The results 

appear to imply that if those who did not continue to HE had instead undertaken it, they would 

have enjoyed a substantially higher benefit than the group who effectively went on to HE.  

Before taking these results on the average effect on the non-treated at face value, important 

caveats need, however, to be considered, all of which point to a likely upward bias of this 

estimate. As seen in Section 3.2.1, identification of the ATNT requires more restrictive 

assumptions – in particular, no selection based on unobserved returns. If this assumption is 

violated, and assuming that those with the higher gains select into HE, the matching estimate of 

the ATNT would be upward biased. However, leaving selection on unobservables aside until the 

next subsection, it can easily be checked that matching does not perform well in balancing the 

Xs. Appendix C, column 3, shows that, in sharp contrast to the case of ATT, for the ATNT a test 

of the hypothesis that the Xs are well balanced in the two matched groups is rejected at any 

significance level (experimenting with a more flexible specification of the propensity score did 

not improve balancing, nor did it change the point estimate). Note that the non-treated group – a 

much larger group than the HE group of potential comparisons – also contains all those 

individuals who dropped out at 16 without any qualifications. To calculate the ATNT, these 

drop-outs need all to be matched to the most ‘similar’ HE individuals. By contrast, when 

estimating the ATT for those with HE, the matching algorithm was free not to use those no-

qualifications individuals who were not the best matches for the HE individuals; indeed, in the 

one-to-one version of the estimator, individuals with A levels make up 53.6% of the matched 

comparisons, individuals with O levels 37% and individuals with no qualifications only 9.4%. 
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Considerable initial differences between these two groups would make it hard to obtain 

reasonably good matches. In fact, one can easily verify how test scores remain badly unbalanced 

– in particular, there are far fewer low-scoring matched HE individuals than there are no-HE 

treated. Matching did thus not succeed in choosing an HE subgroup that looked as ‘low 

performing’ as the full no-HE group; hence, we know that the ATNT from matching is upward 

biased just from considering the observables. (Note, incidentally, that since the average 

treatment effect is an average of the ATT and ATNT parameters, it will be affected by a poorly 

estimated ATNT.) 

Fully interacted OLS produced very similar point estimates as well as confidence intervals to 

those produced by matching. However, a flexible but parametric method such as our fully 

interacted OLS would have hidden from the analyst the fact that observationally different 

individuals were de facto being compared on the basis of extrapolations purely based on the 

imposed functional form.  

This discussion draws attention to how matching estimators can, by contrast, appropriately 

highlight the problem of common support and thus the actual comparability of groups of 

individuals (see also Heckman, LaLonde and Smith (1999)). Both matching and OLS deal with 

observables only; matching, however, also offers simple and effective ways of assessing ex post 

the quality of a matched comparison group in terms of the observables of interest. Non- (or 

semi-)parametric methods such as matching thus force the researcher to compare only 

comparable individuals. If, on the other hand, treated and non-treated are too different in terms 

of the observables, the researcher needs to accept the fact that there simply is not enough 

information in the available data to achieve sufficiently close – and thus reliable – matches. 

This, in fact, turned out to be the case for our ATNT estimate. 

As for the ATT, note that the matching and simple OLS estimates are very close (and in fact 

not significantly different). As we discussed in Section 3.5, in a given application one would 

expect little bias for ATT from simple OLS vis-à-vis matching if there is: 

(i) no common support problem; 

(ii) little heterogeneity in treatment effects according to X or, alternatively, all the propensity 

scores are ‘small’ (in particular, less than 0.5, which would make the weighting scheme 

of OLS proportional to the one for the matching estimator of ATT – see Angrist (1998)); 

(iii) no serious mis-specification in the no-treatment outcome. 

In fact, in our data, the common support restriction is not binding for the ATT (see Appendix 

C, column 6), and only around 10% of the propensity scores in our sample are larger than 0.5. 

Hence if our specification of m0(X) is reasonably correct, we would expect matching and simple 
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OLS to produce comparable estimates of the ATT. Note, however, that matching dominates 

simple OLS a priori. Matching can quickly reveal the extent to which the treated and non-treated 

groups overlap in terms of pre-treatment variables, it offers easy diagnostic tools to assess the 

achieved balancing and it relieves the researcher from the choice of the specification of m0(X). 

For the ATT in our data, it just turned out that these issues did not pose any serious problem; a 

priori, however, one could not have known how informative the data were. 

4.2.2 Selection on unobservables: control function and instrumental variables 

Both the OLS and matching methods rely on the assumption of selection on observables. 

However rich our dataset may seem, this is a strong assumption. Instrumental variables and 

control function approaches attempt to control for selection on unobservables by exploiting 

some ‘exogenous’ variation in schooling by way of an excluded instrument. The choice of an 

appropriate instrument Z, like the choice of the appropriate conditioning set X for matching or 

OLS, boils down to an untestable prior judgement. In fact, although there might be widespread 

consensus in including test score variables as ability measures among the Xs or in viewing an 

exogenous change in some educational rule or qualification level for one group but not another 

as an appropriate instrument, ultimately the validity of the instrumental variable is untestable.  

Our data contain a number of potential excluded variables that may determine assignment to 

schooling but, conditional on the Xs, be excluded from the earnings equation, in particular birth 

order, father’s, mother’s and parents’ interest in the child’s education at age 7 and adverse 

financial shocks hitting the child’s family at age 11 and 16. All of these ‘instruments’ are highly 

significant determinants of the choice to undertake higher education (conditional on the full set 

of controls X), with individual F-values ranging from 8.3 to 18. However, one could of course 

still argue that in addition to educational attainment, these ‘instruments’ could affect other 

individual traits (for example, motivation or self-esteem) that could in turn affect earnings. Note 

that in our X set we include ability (measured at 7 and 11) and standard family background 

controls; thus we require the instrument to be excluded from potential earnings for given ability, 

early school performance, family background and school type. 

Interestingly the control function, using these excluded instruments, cannot reject the 

hypothesis of no selection bias on unobserved ability (ραv) conditional on the inclusion of the 

test score variables. A second informative result concerns the possibility of individuals selecting 

into higher education on the basis of their idiosyncratic gains. In the richest specification, in 

addition to selection on unobserved ability, we allow for selection on observable heterogeneity 

in returns via the interactions XS1 as well as on unobservable heterogeneity in returns via a 

second control function term (an illustration with parental interest as the instrument is presented 
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in row (vii) in Table 4.1). F-tests on the interaction terms indicate that there is indeed 

heterogeneity in returns according to X (F=1.47, p=0.016), while ρβv is not statistically 

significant. In contrast, when we do not control for (potentially) observable heterogeneity in 

returns (e.g. row (vi)), we can reject the hypothesis of no selection on unobserved returns. When 

ρβv is significant, it is thus picking up some mis-specification in terms of the Xs; once we control 

for heterogeneous returns in terms of our (rich) observables, from the control function 

specification there no longer appears to be any remaining selection on unobserved returns. 

The control function estimates in Table 4.1 yield a point estimate of the ATNT substantially 

lower than the one of the ATT. We have already argued that the ATNT estimated by matching 

and interacted OLS should not be regarded as a reliable measure of what non-graduates would 

have gained from taking HE. The structure imposed by the control function seems, by contrast, 

to yield results that are more consistent with individual maximising behaviour, albeit much less 

precisely estimated. 

If we have additional information in the form of an exclusion restriction we can utilise the 

instrumental variables estimator to construct an alternative check on the conditional 

independence assumption. Under the further assumption of no selection on unobserved 

individual gains, IV on the fully interacted model should recover the average effect of treatment 

on the treated. 

To see how this works consider a factor M – say parental education – which is related to 

unobserved productivity and to the returns to HE, and which also enters the HE participation 

decision. In other words, M affects HE participation, the outcome y directly (conditional on X) 

and the returns from HE in terms of y. 

(i) M is unobserved. Provided the instrument is uncorrelated with M given X (i.e. it satisfies 

exclusion restriction IV:A1 with respect to the unobservable M), IV identifies an 

instrument-determined local effect, LATE. If, however, the instrument is correlated with 

M, violating IV:A1, even LATE would not be consistently estimated. 

(ii) M is observed and we condition on it linearly in both the participation and the outcome 

equations. Since we do not control for the interaction, IV is inconsistent: M⋅S1 is omitted 

from the outcome equation, giving rise to an omitted endogenous variable bias. 

(iii) M is observed, we control for it linearly in the participation equation and interacted with 

S1 in the outcome equation. Since there is now an additional M⋅S1 endogenous term in 

the outcome equation, we would need the additional instrument M⋅Z. The potential 

problem in this case is that our instruments Z and M⋅Z may not predict the interactions S1 
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and M⋅S1 very well, resulting in a loss of precision. The alternative of exploiting the 

schooling prediction both linearly and interacted with M may add some efficiency, but 

would still require the instrument Z to provide sufficient variation in 1̂S  and 1̂M S⋅  so as 

to allow b0 and bm to be independently identified. Either IV method would place strong 

demands on the instrument, particularly when there are many interaction terms.  

Our previous findings that the return to HE does indeed depend on the Xs and that these Xs 

also impact on the schooling decision would require our IV estimation to control for these 

endogenous interaction terms as well, i.e. according to case (iii) outlined above. By allowing 

observable heterogeneity in returns in a fully interacted model with all the XS1 terms, however, 

the estimates (not shown) are extremely imprecise. This severe lack of precision points to the 

fact that while this IV estimation requires us to instrument every one of the endogenous XS1 

terms, our corresponding instruments do not have enough power to predict all the interactions 

well, resulting in a poor performance of our interacted IV model. In fact, when we try to allow 

for X-heterogeneous returns, it is clear that our interacted instruments simply do not have 

enough power to identify our model (from the first-stage regressions and in particular from their 

‘partial R-squared’ Shea (1997) measure of instrument relevance that takes intercorrelations 

among instruments into account). We also experimented with controlling for the interactions 

using IV method B, i.e. fully exploiting the conditional mean independence assumption and 

using the schooling prediction to replace both schooling and its interaction terms in the outcome 

equation (not reported). However, although this does shrink the confidence interval, there still 

remains insufficient variation in 1̂iS  and 1̂i iX S to recover a precise and statistically significant 

estimate of the average effect on the treated.  

However, from our control function results, we also know that if we do not allow for 

heterogeneity in returns in terms of our Xs, there will be selection on uncontrolled-for returns. 

As discussed in Section 3.3.1, in such a context of heterogeneous and acted-upon returns, our 

simple IV estimates should be interpreted as estimates of local average treatment effects: the 

average return to HE for those who go on to HE because of the change in the instrument. To this 

regard, we present results based on three different instruments likely to affect distinct subgroups 

of the population. Card (1999) provides us with the theoretical framework for gauging where in 

the returns distributions these groups are likely to belong.  

In Card’s model of endogenous schooling, individuals invest in education until the marginal 

return to schooling is equal to their marginal cost and where both marginal returns and costs are 

allowed to depend on schooling and to be heterogeneous. The causal effect of education on 
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individual earnings (defined, for each individual, as the marginal return to schooling at that 

individual’s optimal schooling choice) is given in this model by 

 (1 )i i ib rβ θ θ= + −   (17) 

where bi captures differences in individuals’ returns due to ability (comparative advantage), ri 

reflects differences in the opportunity costs that individuals face (for example, taste for 

schooling, individual discount rates and liquidity constraints) and θ is a constant in [0,1].  

Assume for simplicity that there are only two values for each heterogeneity parameter, bH > 

bL and rH > rL; the population is thus made up of the four types g of individuals {LH, HH, LL, 

HL}. Then, from (17), we have the following (imperfect) ordering of the four returns: 

βHH > {βLH, βHL} > βLL. 

We consider three alternative instruments, observed variables that affect schooling choices 

but are uncorrelated with the ability factors in the earnings function and in the individual 

marginal return (thus effectively having to affect only the individual marginal cost ri). Along the 

lines if Ichino and Winter-Ebmer (1999), we ask who the switchers for each instrument are. All 

the IV estimates in Table 4.1 are highly imprecise. But we still might ask what kind of 

interpretation would lead to the ranking of estimated local average returns indicated by the point 

estimates.  

Adverse financial shock experienced by the family when the child was 11 or 16 

The rich dynasties LL and HL suffer limited liquidity constraints; they always go on to higher 

education irrespective of the shock. The poor dynasty LH is subject to liquidity constraints and 

in addition is of low ability; they never take higher education. By contrast, suffering a bad 

financial shock affects the schooling for individuals in group HH, the high-ability but liquidity-

constrained individuals who choose to undertake higher education only in the absence of the 

shock. We therefore expect our IV estimate based on financial shock to reflect the highest 

returns in the population, βHH (117% – row (viii)). 

Parental interest in the child’s education at age 7 (as perceived by the child’s teacher) 

The rich HL and LL dynasties would undertake higher education independently of parental 

interest; similarly, the HH individuals, though poor, are of high ability and would go on to 

higher education quite irrespective of their parents’ interest in their education. By contrast, 

having parents very interested in one’s education causes an increase in schooling for the LH 

individuals: they are of low ability and liquidity constrained and would never continue to higher 

education unless they were pushed by their eager parents, who attach high value to education. 

The IV estimate based on parental interest would thus reflect some intermediate returns in the 
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population, βLH (60.6% – row (ix)). 

Older siblings 

The HL and HH dynasties have high ability and would continue into higher education 

independently of the presence of older siblings. The LH group is of low ability and severely 

liquidity constrained, and would thus never continue into higher education. By contrast, the rich 

but low-ability individuals LL would be the ones pushed by their rich family to get a degree 

only if they are the only (or the first-born) children in their family. Under this interpretation, the 

IV estimate based on the presence of older siblings would thus reflect the lowest returns in the 

population, βLL (an insignificant 5.2% – row (x)). 

By considering different instruments believed to affect subgroups in given ranges of returns, 

we can thus gauge some (albeit quite imprecisely estimated) information concerning the extent 

of variability in HE returns in the population; we cannot, by contrast, retrieve information on 

average treatment effects due to the lack of power of our instruments in predicting all the 

heterogeneous returns XS1. By contrast, our control function with interactions model allows us 

to settle on the intermediate case, where all the XS1 interactions are included in the outcome 

equation and the XZ terms are exploited in the first-step probit, from which, however, still only 

two predictions (λ1 and λ0) need to be computed. All this is only possible by making stronger 

assumptions – in particular, we require the heterogeneity in bi to be additive in the observables 

and unobservables. Placing a much heavier structure on the problem than does IV, the control 

function method thus allows one to recover the ATE, ATT and ATNT parameters directly (as 

opposed to the more local parameters arising from IV) and to do so in a considerably more 

efficient way – at the obvious price of being much less robust than IV. 

 
4.2.3 Lessons and results from the single treatment estimates 

In the NCDS, there appears to be some evidence suggesting that there are enough variables to be 

able to control directly for selection on unobservables – both unobservable individual traits and 

unobservable returns. In other words, we could not find any strong evidence that OLS and 

matching with the available set of Xs are subject to selection bias; nor do individuals seem to 

select into higher education on the basis of returns still unobserved by the econometrician. 

Connected to the latter point, we have found some evidence that interactions matter. More 

precisely, there is significant heterogeneity in returns to HE (especially in terms of parental 

education and region). In practice, though, the way the heterogeneous returns are weighted by 

matching and by simple OLS turned out to be proportional in this application, resulting in 

simple OLS to fortuitously recover the average effect on a treated individual (cf. Section 3.5).  
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Both matching and fully interacted OLS resulted in an estimate of the ATNT that is 

significantly higher than the estimate of the ATT. However, we argued that such methods were 

most likely to yield upward-biased estimates of the ATNT in this case.  

 

4.3 Multiple treatment models  
We now turn to a more disaggregated analysis that focuses on the sequential nature of 

educational qualifications. We separate the qualifications variable into those who dropped out of 

school with no qualifications, those who stopped education after completing O levels or 

equivalent, those who stopped after completing A levels or equivalent and those who completed 

O levels, A levels and higher education.  

Since now we have four treatments, IV estimation would require at least three credible 

instruments. As to the control function approach, in the first stage one could exploit the 

sequential nature of the treatments and estimate an ordered probit model for the various levels of 

education based on one instrument only. This would, however, unduly rely on the (arbitrarily) 

imposed structure of the problem, since the model would be purely identified from the 

postulated treatment choice model. Instead in this section, we follow the conclusion of the 

previous discussion of the single treatment model and assume that there are enough variables to 

be able to control directly for selection through matching.  

Our approach involves estimating the incremental return to each of the three qualifications by 

actual qualification. For those with no qualifications, we estimate the returns they would have 

got if they had undertaken each of the three qualifications (ATNT). For those with O-level 

qualifications, we estimate the return they obtained for taking that qualification (ATT) and the 

returns they would have obtained if they had progressed to A levels or HE (ATNT). For those 

with A levels, we estimate the returns they obtained for undertaking O- and A-level 

qualifications (ATT) and the returns they would have obtained if they had progressed to HE 

(ATNT). For those with HE, all estimates are ATTs.  

Our matching estimator adapts the estimation of the propensity score to the case of multiple 

sequential treatments (see Sianesi (2002) for more details). Outcomes across each of the four 

groups, matched on the appropriate  propensity score for the particular transition in question, are 

then compared. Again we let the choice between various types of matching estimators be guided 

by how well they balanced the observed characteristics (see Appendix C; in most cases 

Epanechnicov-kernel matching performed best, though dominated for some comparisons by 

Mahalanobis-metric matching). 

The multiple treatment results are shown in Table 4.2, where the estimates are those obtained  
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Table 4.2. Incremental treatment effects by highest qualification achieved: matching and OLS estimates (% wage gain) 

O-level A-level HE N Educational 
group ∞ versus None versus O-level versus None versus A-level versus O-level versus None 

None 13.2 
(9.1; 17.3) 

5.5 
(0.1; 10.1) 

18.7 
(13.6; 23.2) 

24.8 
(17.7; 31.6) 

30.3 
(23.2; 36.3) 

43.5 
(36.8; 49.7) 

624 

O-level 17.8 
(12.9; 22.1) 

5.9 
(2.3; 9.9) 

23.7 
(19.1; 29.4) 

24.6 
(20.5; 29.3) 

30.5 
(26.6; 34.4) 

48.2 
(43.4; 53.3) 

963 

A-level 18.1 
(13.2; 22.6) 

5.7 
(2.0; 9.8) 

23.8 
(18.5; 28.7) 

25.6 
(21.7; 30.2) 

31.3 
(27.5; 35.5) 

49.4 
(43.5; 54.0) 

911 

HE 21.6 
(14.1; 29.6) 

8.0 
(3.9; 12.6) 

29.6 
(22.0; 37.5) 

21.7 
(17.4; 25.6) 

29.7 
(25.8; 33.7) 

51.3 
(43.8; 58.7) 

871 

any: ATE 18.0 
(13.3; 22.4) 

6.3 
(2.9; 10.1) 

24.2 
(19.7; 28.7) 

24.2 
(20.6; 28.2) 

30.5 
(27.1; 34.2) 

48.4 
(43.2; 52.7) 

3,251

 
OLS 14.8 

(11.2; 18.4) 
6.4 

(3.1; 9.7) 

 
21.2 

(17.3; 25.1) 
23.5 

(20.0; 27.1) 
29.9 

(26.5; 33.4) 

 
44.7 

(40.1; 48.9) 
3,639

 
Basic 21.1 

(17.4; 24.7) 
9.0 

(5.6; 12.4) 

 
30.0 

(26.2; 33.8) 
28.9 

(25.6; 32.3) 
37.9 

(34.7; 41.1) 

 
59.0 

(55.3; 62.6) 
3,639

Notes to Table 4.2: 
Controlling for ethnicity, region, standard family background information, tests at 7 and at 11, school variables.  
OLS basic: controlling for ethnicity and region only. 
Matching estimates: based on ‘best’ specification, always imposing common support at the boundaries. Common support is also imposed throughout all transitions. See 
Appendix C for the share of the treated group falling outside of the common support in each comparison. 
Numbers in parentheses are: 95% bias-corrected percentile confidence intervals obtained by bootstrapping for the matching estimates (500 repetitions); for OLS, 95% 
confidence intervals based on robust standard errors. 
In bold: most reliable effects (based on balancing of the Xs between the groups – see Appendix C). In italics: least reliable effects. 



from the ‘best’ specification (i.e. the one resulting in the ‘best’ balancing of our Xs in the 

matched subsamples) and after imposing the common support. Indeed, in estimating the effects 

and in calculating the probabilities for the average treatment effects, common support was 

imposed also in terms of only including individuals who are matched for every possible 

transition (so that we can make comparisons across the same sets of individuals). On the basis of 

the balancing of the observables within the matched samples, (summarised in Appendix C) we 

have highlighted the most (and the least) reliable results in Table 4.2. 

As was the case in the single treatment model, our first result is that controlling for ability 

and school type is important and reduces the return to education at all levels (compare the two 

OLS specifications; to save space, only the results for the full set of controls X are presented for 

matching). Nevertheless, the findings show significant overall returns to educational 

qualifications at each stage of the educational process, even after correcting for detailed 

background variables and ability differences, as well as allowing for (observed) heterogeneity in 

the education response parameters. 

OLS and the average treatment effect obtained via matching are rather close, although OLS 

estimates are typically on the lower side. Matching shows an average wage return of 18% from 

obtaining O levels compared with leaving school with no qualifications, a further 6% return 

from completing A levels and a further 24% wage premium for then achieving higher education. 

Compared with leaving school at 16 without qualifications, then, the average return to O levels 

is 18% and to A levels is 24%, which doubles to 48% for HE. On an annualised basis, given that 

most individuals complete HE at 21, the average return is therefore 9.5%. If, by contrast, we just 

make the comparison with those who left at 16 regardless of qualifications, the average total 

return would fall to 33.3% (result not shown), or 6.6% per annum. Similarly, the return per 

annum for A levels (the achievement of which generally takes place at 18) compared with 

leaving at 16 without qualifications would be 12%, but only 3% if compared with stopping with 

O levels at 16. A more adequate yearly measure is probably the one obtained when the baseline 

comparison is with leaving school at 16 irrespective of qualifications, which points to a 5.6% 

yearly return to completing A levels. 

The set of results just discussed highlights the potential shortcomings of the one-factor ‘years 

of schooling’ model (5) when applied to the UK educational system, in which individuals with 

the same number of years of schooling have quite different educational outcomes (no 

qualifications or O levels) and in which, irrespective of the comparison state chosen, imposing 

equality of yearly returns across educational stages proves too restrictive. 

From the disaggregated results in Table 4.2, it appears that for the O levels and A levels 
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groups, (observable) heterogeneity in impacts does not seem to be a particularly important 

feature of the data, so that the point estimates for the two groups are extremely close and 

basically coincide with the corresponding estimates of the average treatment effects. By 

contrast, noteworthy new information arises for the (baseline) group of individuals who left 

school without any qualifications. For this group, the average returns to each educational 

investment (O levels, A levels and HE) compared with none would have been consistently the 

lowest among all educational groups (cf. Appendix D), which might contribute to explaining 

their decision not to take any formal qualifications. Nonetheless, if we focus on the returns to O 

levels by educational group (first column), our disaggregated analysis shows that at that stage, 

even if those who do acquire some qualification at 16 have the greatest returns from this initial 

investment, those who drop out at 16 without any qualifications would still have had a hefty 

average pay-off of over 13% from obtaining O levels or equivalent before leaving education. 

Note that this result is obtained after controlling for detailed ability and family background. 

Furthermore, work by Harmon and Walker based on a natural experiment is consistent with this 

finding. In their original paper (1995) exploiting changes in the minimum school-leaving age in 

the UK, they find a 15–16% return to schooling, while in later work (Chevalier, Harmon and 

Walker, 2002) they show that for men born ±5 years around our NCDS cohort, the impact of the 

reform was solely in terms of a movement from no to low qualifications. 

Individuals undertaking some form of higher education are the second educational group to 

show considerable heterogeneity in returns, which thus visibly differ from the average treatment 

effects. In particular, at 51.3%, they enjoy the highest overall return to HE (vis-à-vis no 

qualifications). The disaggregated results show that this higher average effect of HE for the HE 

treated actually stems from HE individuals enjoying a higher return from their initial O-level 

investment (21.6% compared with 13–18% for the other groups). In fact, their incremental 

return from A levels to HE is lower than for those who did not undertake HE.  

The results arising from comparing HE graduates with individuals without any qualifications 

(average returns to HE compared with no qualifications for the HE group, as well as returns 

derived from such an estimate) have, however, to be viewed with great care. As summarised in 

Appendix C, the HE and no-qualifications groups are radically different groups. In particular, 

20% of the HE group are simply not comparable to anyone in the no-qualifications group and 

are dropped from the matching analysis. But even once we perform matching restricted to the 

common support, the remaining HE treated are still so different from the no-qualifications group 

that the relevant observables characterising them cannot be adequately controlled for. A 

considerable degree of imbalance in the Xs remains even in the ‘best’ matching specification (in 
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particular, joint balancing of the control variables is rejected at any significance level – see 

Appendix C), revealing how the data simply do not contain enough information for non-

parametric identification. Interestingly, when the no-qualifications group is viewed as the treated 

group to be matched to the larger pool of potential HE comparisons, we obtain a better (though 

still not acceptable) balancing. 

In general, we have found that the larger the educational gap between the two groups being 

compared, the harder it becomes to balance their characteristics X adequately, this difficulty 

being further worsened when the potential comparison group is smaller than the treated group. 

While an OLS specification would have hidden the fundamental non-comparability of these 

groups, a carefully performed matching estimation could once again highlight the issue of their 

true comparability and hence the issue of the reliability of the results concerning them. 

 
5. Summary and conclusions 
The aim of this paper has been to review alternative methods and models for the estimation of 

the effect of education on earnings, and to apply these to a high-quality common data source. 

We have highlighted the importance of the model specification – in particular, the distinction 

between single treatment and multiple treatment models – as well as the importance of allowing 

for heterogeneous returns – that is, returns that vary across individuals for the same educational 

qualification. We have considered four main estimation methods which rely on different 

identifying assumptions – least squares, instrumental variable methods, control function 

methods and propensity score matching methods. The properties of the estimators were 

analysed, distinguishing between a single treatment model and a model where there is a 

sequence of possible treatments. We argued that the sequential multiple treatment model is well 

suited to the education returns formulation, since educational qualification levels in formal 

schooling tend to be cumulative.  

With heterogeneous returns, defining the ‘parameter of interest’ is central. We distinguished 

four of them: the effect of treatment on the treated, the average treatment effect, the impact of 

treatment on the non-treated and the local average treatment effect. In the homogeneous effects 

model, these would all be equal, but in the heterogeneous effects model, they can differ 

substantially. Which one is of interest depends on the policy question.  

Our application aimed to estimate the wage returns to different educational investments using 

the NCDS 1958 birth cohort study for Britain. We argue that this dataset is ideally suited for 

evaluating the impact of education on earnings. There are extensive and commonly administered 

ability tests at early ages, as well as accurately measured family background and school type 
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variables, all ideal for methods relying on the assumption of selection on observables, notably 

least squares and matching. 

This application has highlighted the following key points: 

1) Correcting for detailed background variables and ability differences is important and reduces 

the return to education at all levels; the basic pre-education information available in common 

datasets would not have been enough to identify gains in an unbiased way. 

2) The overall returns to educational qualifications at each stage of the educational process 

remain sizeable and significant, even after allowing for heterogeneity in the education 

response parameters. In particular, we estimate an average return of about 27% for those 

completing some form of higher education versus anything less. Compared with leaving 

school at 16 without qualifications, we find that in the population the average return to O 

levels is around 18%, to A levels 24% and to higher education 48%. 

3) We find evidence of heterogeneity in the returns to higher education in terms of observables. 

Furthermore, when we do not allow for such observable heterogeneity in returns, the control 

function specification points to significant selection on unobserved returns. When we do 

allow for these interactions, from the control function specification there no longer appears 

to be any remaining selection on unobserved returns.  

4) Given the above finding that interactions do matter, an IV approach aimed at recovering the 

average return for the treated calls for a fully interacted IV model, which cannot be 

estimated precisely with our data. Instead, we recover instrument-related local average 

treatment effects. We exploit three instruments to glean some information as to the extent of 

variability in returns in the population. 

5) Overall, matching on detailed early test scores and family background variables appears to 

perform well for the average return for the treated in our application to the NCDS data. 
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Appendix A. Summary statistics 
Variable Mean Std dev.  Variable Mean Std dev. 
Real log hourly wage 1991  2.040 (0.433) Mother’s education missing  0.159 (0.366) 
Qualifications:    Father’s age 1974  43.17 (13.74) 
 O levels or equivalent  0.821 (0.383) Father’s age missing  0.075 (0.263) 
 A levels or equivalent  0.548 (0.498) Mother’s age 1974  41.48 (10.86) 
 Higher education  0.283 (0.451) Mother’s age missing  0.049 (0.216) 
White  0.969 (0.173) Father’s social class 1974:    
Maths ability at 7:     Professional  0.044 (0.205) 
 5th quintile (highest)  0.212 (0.408)  Intermediate  0.145 (0.352) 
 4th quintile  0.190 (0.392)  Skilled non-manual  0.076 (0.265) 
 3rd quintile  0.185 (0.389)  Skilled manual  0.297 (0.457) 
 2nd quintile  0.158 (0.365)  Semi-skilled non-manual  0.010 (0.098) 
 1st quintile (lowest)  0.141 (0.348)  Semi-skilled manual  0.095 (0.293) 
Reading ability at 7:     Unskilled 0.029 (0.167) 
 5th quintile (highest)  0.165 (0.371)  Missing/unempl/no father 0.306 (0.461) 
 4th quintile  0.187 (0.390) Mother employed 1974  0.513 (0.500) 
 3rd quintile  0.188 (0.391) Number of siblings  1.692 (1.789) 
 2nd quintile  0.179 (0.383) Number of siblings missing  0.106 (0.308) 
 1st quintile (lowest)  0.166 (0.372) Number of older siblings  0.821 (1.275) 
Ability at 7 missing  0.115 (0.319) Father’s interest in education:    
Maths ability at 11:     Expects too much  0.013 (0.114) 
 5th quintile (highest)  0.199 (0.399)  Very interested  0.252 (0.434) 
 4th quintile  0.179 (0.384)  Some interest  0.215 (0.411) 
 3rd quintile  0.157 (0.364) Mother’s interest in education:    
 2nd quintile  0.152 (0.359)  Expects too much  0.032 (0.175) 
 1st quintile (lowest)  0.122 (0.328)  Very interested  0.344 (0.475) 
Reading ability at 11:     Some interest  0.354 (0.478) 
 5th quintile (highest)  0.176 (0.381) Bad finances 1969 or 1974  0.159 (0.365) 
 4th quintile  0.176 (0.381) Region 1974:    
 3rd quintile  0.163 (0.369)  North Western  0.100 (0.300) 
 2nd quintile  0.163 (0.369)  North  0.070 (0.256) 
 1st quintile (lowest)  0.132 (0.338)  East and West Riding 0.079 (0.270) 
Ability at 11 missing  0.191 (0.393)  North Midlands  0.072 (0.258) 
Comprehensive school 1974  0.468 (0.499)  Eastern  0.073 (0.261) 
Secondary modern school 1974  0.162 (0.368)  London and South East 0.143 (0.350) 
Grammar school 1974  0.099 (0.299)  Southern  0.057 (0.232) 
Private school 1974  0.052 (0.222)  South Western  0.061 (0.240) 
Other school 1974  0.018 (0.134)  Midlands  0.088 (0.283) 
Missing school information  0.201 (0.401)  Wales  0.054 (0.227) 
Father’s years of education  7.270 (4.827)  Scotland  0.096 (0.295) 
Father’s education missing  0.172 (0.377)  Other 0.107 (0.308) 
Mother’s years of education  7.342 (4.606) Number of observations 3,639  

 
Sample sizes  in the NCDS 

Sweep Year Age No. 
0 1958 0 17,419 
1 1965 7 15,496 
2 1969 11 18,285 
3 1974 16 14,761 
4 1981 23 12,538 
5 1991 33 11,363 
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Appendix B. Classification of educational qualifications 
The British educational system 
Progression at school beyond the minimum leaving age of 16 is based on a series of nationally assessed examina-
tions. The wide range of academic and vocational qualifications have been classified into equivalent National Voca-
tional Qualification (NVQ) levels, ranging from level 1 to level 5. 
Until 1986, students at 16 had to decide whether to go for the lower-level Certificates of Secondary Education 
(CSE) option or for the more academically demanding Ordinary level (O level) route (the top grade (grade 1) 
achieved on a CSE was considered equivalent to O level grade C). While most CSE students tended to leave school 
at the minimum, students who took O levels were much more likely to stay on in school. (In 1986 CSEs and O 
levels were replaced by General Certificates of Secondary Education, GCSEs). Those staying on in school can then 
take Advanced Levels (A levels) at the end of secondary school (age 18). A levels are still the primary route into 
higher education. 

No qualifications  
Also includes very low-level qualifications at NVQ level 1 or less, i.e. CSE grade 2 to 5 qualifications, other 
business qualifications, other qualifications not specified and Royal Society of Arts (RSA) level 1 qualifications. 

O levels or equivalent  
O levels or CSE grade 1 (generally obtained by the age of 16 if undertaken at school), but also a range of vocational 
equivalents to these academic school-based qualifications: RSA level 2 and 3; City and Guild 
operative/craft/intermediate/ordinary/part1; Joint Industry Board/NJC or other craft/technician certificate. 

A levels or equivalent  
At least one A level, but also a range of vocationally equivalent qualifications: City and Guild advanced/final/part2 
or 3/full technological certificate (FTC); insignia award in technology (CGIA); Ordinary National 
Certificate/Diploma (ONC/OND), SNC/SND; TEC/BEC or SCOTEC/SCOTBEC certificate or diploma. 

Higher education  
Higher National Certificate/Diploma (HNC/HND), SHNC/SHND; TEC/BEC or SCOTEC/SCOTBEC higher or 
higher national certificate or diploma; professional qualification; nursing qualification including NNEB; 
polytechnic qualification; university certificate or diploma; first degree; postgraduate diploma; higher degree. 

Adjustments to guarantee the sequential nature of the educational variable 
Our multiple treatment estimation method requires sequential educational outcomes; it is thus essential that those 
who have an A level or equivalent qualification or HE qualification also have the preceding lower qualifications. 
This is almost universally true of people who have undertaken an academic route and we impose this in our model. 
It is, however, not necessarily true for individuals who have undertaken vocational routes; if this is the case, we 
downgrade their qualification by one level to maintain our sequential structure. Specifically: if someone has a first 
degree or a postgraduate qualification, we assume they have all the lower qualifications; if someone has one of the 
other (i.e. vocational) HE qualifications but not an A-level or equivalent qualification, we downgrade their 
qualification to A level or equivalent and assign them all the lower qualifications; if someone has an A-level 
qualification but no O-level qualification, we assign them an O-level qualification; if they have any other A-level 
equivalent but no O-level equivalent, we downgrade them by one. 
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Appendix C. Covariate balancing indicators before and after matching (best 
specification) 

Treatment N1 Comparison N0 Probit 
pseudo R2

Probit 
pseudo R2 

P>χ2 Median 
bias 

Median 
bias 

% lost to 
common 
support 

 Before  Before Before After After Before After After 

    (1) (2) (3) (4) (5) (6) 

HE 1,030 no-HE 2,609 0.209 0.006 0.9963 9.1 1.4 0.0 
no-HE 2,609 HE 1,030 0.209 0.037 0.0000 9.1 3.4 0.8 
none 651 O-level 993 0.150 0.005 1.0000 9.0 1.1 0.0 

  A-level 965 0.248 0.012 0.9985 13.4 1.7 3.0 
  HE 1,030 0.512 0.091 0.0000 15.1 6.0 5.5 

O-level 993 none 651 0.150 0.016 0.9491 9.0 2.7 1.2 
  A-level 965 0.045 0.002 1.0000 6.5 0.6 1.3 
  HE 1,030 0.227 0.019 0.4570 11.4 2.9 0.3 

A-level 965 none 651 0.248 0.041 0.0005 13.4 4.1 7.7 
  O-level 993 0.045 0.002 1.0000 6.5 0.7 1.1 
  HE 1,030 0.127 0.008 0.9999 7.6 1.5 0.5 

HE 1,030 none 651 0.512 0.162 0.0000 15.1 10.3 20.2 
  O-level 993 0.227 0.022 0.1906 11.4 2.9 5.9 
  A-level 965 0.127 0.005 1.0000 7.6 1.4 0.5 

 
Notes: 

(1) Pseudo R2 from probit estimation of the conditional treatment probability, giving an indication of how 
well the 52 regressors X explain the relevant educational choice. 

(2) Pseudo R2 from a probit of D on X on the matched samples, to be compared with (1). 

(3) P-value of the likelihood-ratio test after matching, testing the hypothesis that the regressors are jointly 
insignificant, i.e. well balanced in the two matched groups. 

(4) 
and 
(5) 

Median absolute standardised bias before and after matching, median taken over all the 52 regressors. 
Following Rosenbaum and Rubin (1985), for a given covariate X, the standardised difference before 
matching is the difference of the sample means in the full treated and non-treated subsamples as a 
percentage of the square root of the average of the sample variances in the full treated and non-treated 
groups. The standardised difference after matching is the difference of the sample means in the matched 
treated (i.e. falling within the common support) and matched non-treated subsamples as a percentage of 
the square root of the average of the sample variances in the full treated and non-treated groups. 

( )
1 0

1 0

( ) 100
( ) ( ) / 2

before
X X

B X
V X V X

−
≡

+
 

( )
1 0

1 0

( ) 100
( ) ( ) / 2

M M
after

X X
B X

V X V X
−

≡
+

 

Note that the standardisation allows comparisons between variables X and for a given variable X, 
comparisons before and after matching. 

(6) Share of the treated group falling outside of the common support, imposed at the boundaries and, in the 
multiple treatment case, across all transitions. 
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Appendix D. Difference in returns for the no-qualifications group  
Difference in returns to O-levels, A-levels and HE versus none for the no-qualifications group compared to a) those 
who stopped at O-levels, b) those who stopped at A-levels, c) those who obtained HE and d) the average treatment 
effect (i.e. across all four educational groups) 

 Difference  95% conf interval 
Returns to O-level vs none:   

a) for none vs for O-level -4.5** [-9.3; -0.6] 
b) for none vs for A-level -4.9** [-10.0; -0.2] 
c) for none vs for HE -8.4** [-16.6; -0.2] 
d) for none vs for all (ATE) -4.7*** [-9.2; -1.4] 

Returns to A-level vs none:   
a) for none vs for O-level -5.0** [-9.9; -1.2] 
b) for none vs for A-level -5.1** [-11.4; -0.4] 
c) for none vs for HE -10.9*** [-20.8; -3.8] 
d) for none vs for all (ATE) -5.5*** [-10.3; -1.8] 

Returns to HE vs none:   
a) for none vs for O-level -4.7** [-11.0; -0.3] 
b) for none vs for A-level -5.9* [-13.0; 0.1] 
c) for none vs for HE -7.8* [-17.2; 1.1] 
d) for none vs for all (ATE) -4.9* [-10.4; 0.1] 

Notes:  
95% bias-corrected percentile confidence intervals obtained by bootstrapping;  
***: significant at the 1% level, ** at 5%, * at 10%. 
 




