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1. Introduction

The estimation of dynamic processes using panel data with a large number of
individuals but with a fixed number of time periods, and allowing for linear un-
observed individual effects in the mean, are commonplace nowadays. The Gener-
alized Method of Moments (GMM) estimator, see Hansen (1982), has been devel-
oped for dynamic panel data models by Holtz-Eakin, Newey and Rosen (1988),
Arellano and Bond (1991), Arellano and Bover (1995), Ahn and Schmidt (1995),
Blundell and Bond (1998) and others.

In many applications it is important to model the higher order moments of
the dynamic process, like the variance. An example is a model for income dy-
namics and uncertainty where it is likely that persons at different levels of the
income distribution face a different variance of their time-income profile. As with
the mean, it is further likely that unobserved individual attributes are important
factors for the determination of this variance. One way of modelling this is to
specify the dynamic variance process as an ARCH type variance with multiplica-
tive individual effects. Arellano (1995) considered such processes, but restricted
the multiplicative effects in the variance to be the square of the linear individual
effects in the mean.

In this paper we relax this assumption and allow the multiplicative variance
effects to be different from the linear mean effects. We derive conditional moment
conditions for the parameters in the variance function for estimation by GMM.

In section 2 the basic dynamic autoregressive model with conditional het-
eroscedasticity is presented, and the moment conditions for the variance parame-
ters are derived. Section 3 extends the analysis for a model with an MA error
process, and section 4 considers the case where the individual mean effects are in-

teracted with time effects, as in Holtz-Eakin, Newey and Rosen (1982). In section



5 we present some Monte Carlo simulation results. Section 6 concludes.

2. Model and Moment Conditions

The panel consists of N individuals (denoted by i) and T time periods (denoted
by t). The number of time periods is fixed and consistent estimation relies on a
large cross sectional dimension N.

Consider the panel data AR(1) model with individual effects f;

Yie = QYi—1 + Vit (2.1)
Vit = fl + Ujz. (22)
The error process u; has conditional mean zero, but its variance is condition-

ally heteroscedastic, dependent on the past values of the dependent variable and

individual specific effects m;,

E(ualfi, miy;*) = 0 (2.3)
BE(ud|fi, miyi ") = oyl y)m; (2.4)
E(uituitfs‘fia mi, yfis*l) = 07 (25)
for s > 0, and where y/ ! = (Yi1, - -+, Yir—1) and m; > 0.

Since T is fixed, no consistent estimates of f; or m; can be obtained. To esti-
mate a and ~y consistently we can derive suitable orthogonality conditions. Such
conditions for the estimation of o have been derived by Holtz-Eakin, Newey and
Rosen (1988), Arellano and Bond (1991) and Ahn and Schmidt (1995) who apply
Hansen’s (1982) Generalised Method of Moments (GMM) estimator. Arellano
(1995) has shown how to estimate the coefficients v under the assumption that
m; = f, 1'2‘

In this and the next two sections, we will focus on the derivation of moment



conditions for the estimation of v, assuming that « is known. Joint estimation of

« and vy is considered in the Monte Carlo experiments as presented in section 5.
To derive the moment conditions for the estimation of 7, consider the differ-

enced disturbance vy 1 — v = w1 — Ui, which is independent of the linear effects

fi- The correlation of vy with v, — vy is given by

E |:Uz't(vit+1 — vi)| fi, m, yf_l] = K [(fz + i) (Wir1 — wit) | fi, miayf_l] (2.6)
= —L [u?t|fi7mi7y§_l}
= _Ug(yfilu V)i,
utilising the assumptions (2.3), (2.4) and (2.5). Let

(%7 (Uz't+1 - Uz't)

) = o)

Y

then it follows from (2.6) that

E [T‘it('y)|fi,mi,y§_1} = —m.

Next, define r;; 1 (7) as

Vit—1(Vit — Vig—1)
0-15271 (yf_Qa 7)

Tie-1(Y) =

b

and consider the conditional expectation of the first difference 7y (v) — 71 ()

conditional on information up to time ¢ — 2,

E |(ra(y) = riees O [97°] = Ep [E |(rie(y) = riema (1) 1 fimas ™) | (27)

using the law of iterated expectations, and further

B [(rie(7) = raa(0) [ i miy gt
= B[(Blrefemiyt ) =) famiy ] (28)

= —m;+m; =0,



using the fact that y! 2 C y! .
The combination of (2.7) and (2.8) gives the desired moment conditions, which

are summarised in the following lemma:

Lemma 2.1. In the model defined by (2.1) and (2.2) with assumptions (2.3),

(2.4) and (2.5), conditional moment restrictions for the estimation of y are given

by

E [(Uit(%‘tﬂ - 711'15) _ Uitfl(vit - Uz'tl)) ’95_21 —0. (2.9)

oyl ) o (2, 7)

Using these moment conditions, the coefficients v can be estimated by GMM

as in Hansen (1982). In principle, all moment conditions of the type

E [(7)it(7)it+s - Uz‘t) B 7)it71(7)z't71+l - Uz'tl)) |yf_2] —0

oyl ) ot (i)

are valid, for s = 1,....,T —t; | = 1,...,T —t + 1. However, the extra moment

conditions are not informative for v and are implied by
E [Uz’t (Uz't—l - Uz’t—z)] =0,
which together with the moment conditions
Eyis(vie —vig1)]=0; s=1,..,t—2,

form the set of moment conditions for the estimation of o under assumptions (2.3)
and (2.5), see Ahn and Schmidt (1995).
From (2.9), when multiplied through by o2 ,(y!2,7), it follows that the fol-

lowing moment conditions are also valid
ofa(yi %)
E || vi(vis1 — vig) =52 — vy (v — vig_1) ]yfﬂ =0, (2.10)
K ot (i ')
and (2.9) and (2.10) are similar in spirit to the moment conditions derived for
models with predetermined variables and multiplicative fixed effects in the mean

by Wooldridge (1997) and Chamberlain (1992) respectively.
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When m; = f?, the second moment of v; is given by

E}|fi i ] = (1+ o2t L) 2,
and the moment conditions for the estimation of v are

E

( Vit _ Vit—1 ) | y1;2] —0
(142w ) (4o 2y)) ’

see Arellano (1995).

There are various specifications possible for the variance function. For ex-
ample, exponential ARCH type specifications with asymmetric response can be

specified as

‘72'2:: = exp (70 + Y11 + ’727J2~2t_1) .
3. MA Errors

In the preceding section, the error process u;; was not correlated over time. In
this section we derive moment conditions for the estimation of v when the error
process has an MA error structure.!

The MA(q) error process is given by
Vit = fi + wi + O + Oou—o + ..+ Opui—_g, (3.1)
where the u;; satisfy the conditions (2.3), (2.4) and (2.5). As
E it (Vityq41 — Vitrq)] = —0gF [Uﬂ :

Lemma 2.1 is easily modified to deal with MA(q) errors. The result is stated in

the next lemma.

IThe case of autocorrelated errors can be more easily dealt with by adding lags of the
dependent variable.



Lemma 3.1. In the model defined by (2.1) and (3.1) with assumptions (2.3),

(2.4) and (2.5), conditional moment restrictions for the estimation of -y are given

by

2 2

Vit (Vitrq+1 = Vitrq)  Vit—1(Vitrqg — Vitrg—1) 2| _
E —1 - t—2 ’yi =0.
o (yi™ ) o 1(yi )

4. Individual Effects interacted with Time Effects

Holtz-Eakin, Newey and Rosen (1982) specified a dynamic model where the in-
dividual specific linear effects in the mean were allowed to have time specific

coefficients. The model is specified as

Yit = QYit—1 + e fi + Wi, (4.1)

and a set of moment conditions for the estimation of o are given by

E l(vit - %7%1) \yf‘Q] =0.
¢ 1

If the variance process is the same as specified in section 1, i.e. the individual
specific multiplicative effects are constant over time, then the moment conditions

(2.9) can be adjusted straightforwardly to allow for the time varying mean effects.
As
Pt
E [Uz‘t (gbt_ﬂvitﬂ —vy || =—F [Uzﬂ )
the moment conditions for v are:

Lemma 4.1. In the model defined by (4.1) with assumptions (2.3), (2.4) and

(2.5), conditional moment restrictions for the estimation of v are given by

(Pt gy oy . T R
I |:(7)zt(¢t+1vzt+l Uzt) B Uzt—l( b Vit Uzt—l)) |y§_2} —0.

o?(yi ) o (Y2 )




When the multiplicative variance effects are further also allowed to vary over

time, and the conditional variance function is specified as
E(ug|fi, mi, ™) = o (i~ v)mady, (4.2)
then the moment conditions are:

Lemma 4.2. In the model defined by (4.1) with assumptions (2.3), (4.2) and

(2.5), conditional moment restrictions for the estimation of v are given by

(Dt 2 4, (P=Ley gy
E |:(7)zt(¢t+17)zt+1 vzt) 615 7)21571( bu Vit 7)21“1)) |yf_2:| —0.

o (yi ) St o (Y )

5. Estimation and Monte Carlo

The parameters o and 7 in the model as defined by (2.1)-(2.5) can be jointly

estimated by (non-linear) GMM, combining the moment conditions

Elyis(vi —vg 1) = 0 5 t=3,..,T; s=1,....,t —2
(5.1)
Elvg (vig 1 —vie o) = 0 ;5 t=4,..T (5.2)
7)it(7)it+1 - 711'15) Uitfl(vz't - ”z’tl))]
Eyil< — — — =0; t=3,..,.T—-1;1l=1,..,t—2
[ O-tQ(yf 177) O-t2—1(yzt' 2a7)
(5.3)

which form a total of (T'— 1) (T —2) /24 (T'—3) + (T — 2) (T — 3) /2 moment

conditions.?

2The instruments for the moment conditions (5.3) can be any transformation of the v, see
the discussion in Wooldridge (1997).



Define

Vi3 — Us2

ViT — ViT-1
Vig (%‘3 - Uz'z)

S; = :
vir (Vir—1 — Vir—2)
vi3(Via—vi3) i (Viz—vig)
o3 (y7) o5 (y}.r)
Vir—1(Vir—ViT—1) _ Vir—2(ViT—1—ViT—2)
oz (y; ) o2 oy )
and
00 0 0 0 0 0 0 0 0
0 0 O 0 0 0 0 0 O 0 0
0 0 0 Ya yrs 0 0 0 0 0 0
Z;i=10 0 O 0 0 Ir 3 0 0 O 0 0
0 0 0 0 0 0 51 0 0 0 0
0 0 O 0 0 0 0 0 O 0 0
L0 0 O 0 0 0 0 0 O Yil YiT—3 |

where I7_3 is the identity matrix of order 7' — 3.* Further, let § = (o, )" and
fi(0) = Zis;.
The GMM estimator 6 for § minimises
1Y ’ 1Y
<2 fi (9)] Wy l— > fi (9)] :
[N i=1 NiH
with respect to 0; where Wy is a positive semidefinite weight matrix which satisfies

plimy_, . Wx = W, with W a positive definite matrix. Regularity conditions are

in place such that limy_.o + XN, fi () = E(f(0)) and ﬁfz () — N(0,¥).

3In the Monte Carlo study reported below, (T — 3) time specific constants are added to the
instrument set for v. Although the efficiency gain is small, the estimated standard errors are
better behaved when these dummies are included.




Let F () = E (9f; () /90), then VN (5 — 9) has a limiting normal distribution,
VN (5 - 0) — N (0, Vi), where

Viw = (FWF) " FWSWF (FWF)™".

In order to investigate the performance of this GMM estimator, we consider

the following data generating process:

Yie = Y1+ fi+ug
fi ~ N(0,0%)
(witlyiz—1) ~ N (0,exp (yo + YYir—1 + m;))
m; ~ N ((),(751) .

Data is generated for T'= 5 and 10, and N = 100, 500, and 1000. The process is
started at y;0 = 0, then four periods are generated before the sample is generated.
The value of the fixed effect variances are 07 = 02, = 0.25. The values for « are
0.5, 0.7 and 0.9, with values for v equal to 0 and 0.2. The value of v is set in
such a way that the sample variance of u;; is approximately equal to 30?.

A one-step GMM estimator for 6, 0, is obtained by using the weight matrix
Wt = (% > Z;Zi)_l. Given 5, the efficient two-step GMM estimator uses as
weight matrix Wy, = <% VALY (5) S (5)' Zi>_1

Results for the Monte Carlo experiments are given in Table 1A and 1B for
T =5 and T = 10 respectively.* The estimator for a is upward biased for o = 0.7
and a = 0.9. There is no systematic bias in the estimator for . The standard
deviation of v is relatively large when T' = 5, but ~ is estimated quite precisely
when 7" = 10. For the estimator of 7, there is hardly any efficiency gain in using

the optimal weight matrix, whereas there is quite a substantial gain in efficiency

4For the minimisation of the GMM criterion function, we used the MAXLIK 4.0 routine in
Gauss.
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for the estimator for a. The estimated standard errors for the estimator of «
are downward biased, especially for the two-step GMM estimator when T" = 10.
This is a similar result as in Arellano and Bond (1991). The one-step estimated
standard errors of the estimator of + are upward biased, whereas the two-step
estimated standard errors are quite close to the true values when 7' = 5, whereas

they are downward biased when 7" = 10.
Tables 1A and 1B here.

Table 2 presents results for the Sargan/Hansen test statistic for the overiden-
tifying restrictions. Under the null, the test statistic is y? distributed with 11
and 76 degrees of freedom for 7" = 5 and T' = 10 respectively. For T = 5, the
size performance of the test statistic is reasonable. For T' = 10, however, the
test underrejects when N = 100. It overrejects for larger N with the size of the
test improving with increasing sample size, apart from when a = 0.9. The size is
reasonable when o = 0.5 for large N. The problem of doing inference when there
are many overidentifying instruments is apparent and due to the estimation of the
efficient weight matrix. A possible solution is to select a subset of the instruments,
thus improving inference at the cost of efficiency loss. Alternatively, bootstrap
methods may be used in order to perform better small sample inference (see Hall

and Horowitz (1996) and Brown, Newey and May (1998)).
Table 2 here.

Although the use of the combined moment conditions for the joint estimation
of a and ~ is more efficient, in practice it may be a better idea to estimate «
and v in stages. First,a can be estimated utilising moment conditions (5.1) and
(5.2). Subsequently, v can be estimated from (5.3) substituting in the consistent

estimate for . Advantages of this method are that the moment conditions for

11



«a and vy can be tested separately, and that the estimate for o will be consistent
even if (5.3) is not valid. A slight disadvantage is that the asymptotic standard
error for the estimator for v has to be adjusted for the separate estimation of «,
as in Newey (1984). Simulation results for this two-stage estimation procedure
are presented in Table 3 for T'= 5 and o = 0.7. The estimator for « is conditional
on the value of the two-step GMM estimator for . Apart from the estimate for
« when N = 100, which is downward biased, the two-step procedure performs
better than the estimator that combines all moment conditions in terms of bias

and mean squared error.

Table 3 here.

6. Summary

We have derived orthogonality conditions for estimating the coefficients of the
conditional variance of a simple linear autoregressive process with unobserved in-
dividual effects. The distinguishing characteristic of our model is that we allow for
individual effects both in the conditional mean function and the conditional vari-
ance function. The relationship between these effects is left unconstrained. Mo-
ment conditions are derived for non-autocorrelated error processes, error processes
with an MA(q) structure, and for models that allow for time varying individual
effects. A Monte Carlo study shows that the estimation of the parameters of the
conditional variance function is feasible, but that large sample sizes are needed

for precision.
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Table 1A. Monte Carlo Results for T' =5

a=0.> a=0.7 a=20.9

mean se est se mean se est se mean se est se
v=0
N =100
o 0.4897 0.1969 0.1643 | 0.7168 0.2178 0.1793 | 0.9313 0.1538 0.1356
Qi 0.5015 0.1457 0.0841 | 0.7265 0.1743 0.0946 | 0.9292 0.1425 0.0759
" 0.0037 0.2326 0.3092 | -0.0007 0.1969 0.2793 | -0.0022 0.1367 0.1958
Yo 0.0073 0.2426 0.2018 | -0.0012 0.2084 0.1840 | -0.0051 0.1488 0.1279
N =500
o 0.5105 0.1030 0.0899 | 0.7357 0.1521 0.1353 | 0.9436 0.1281 0.1218
Qi 0.5019 0.0567 0.0486 | 0.7279 0.1048 0.0698 | 0.9364 0.1072 0.0677
" -0.0047 0.1523 0.2039 | -0.0010 0.1554 0.2188 | 0.0087 0.1133 0.1676
Yo -0.0055 0.1448 0.1535 | -0.0066 0.1542 0.1651 | 0.0041 0.1187 0.1263
N =1000
o 0.5040 0.0637 0.0613 | 0.7259 0.1227 0.1075 | 0.9472 0.1082 0.1072
Qg 0.5029 0.0387 0.0355 | 0.7134 0.0734 0.0527 | 0.9350 0.0912 0.0570
" 0.0030 0.1168 0.1526 | 0.0007 0.1345 0.1994 | -0.0007 0.1008 0.1596
Yo 0.0032 0.1102 0.1214 | 0.0022 0.1306 0.1475 | 0.0005 0.1046 0.1255
v=0.2
N =100
o 0.4918 0.2040 0.1599 | 0.7159 0.2129 0.1773 | 0.9531 0.1488 0.1242
Qi 0.5032 0.1576 0.0833 | 0.7236 0.1806 0.0937 | 0.9566 0.1360 0.0709
" 0.2165 0.2346 0.3052 | 0.2038 0.2023 0.2675 | 0.2147 0.1473 0.2107
Y2 0.1909 0.2476 0.1928 | 0.1812 0.2085 0.1677 | 0.1906 0.1616 0.1322
N =500
o 0.5044 0.0992 0.0888 | 0.7306 0.1461 0.1327 | 0.9576 0.1188 0.1052
Qi 0.4990 0.0594 0.0493 | 0.7208 0.1075 0.0711 | 0.9498 0.1076 0.0665
" 0.1966 0.1482 0.1992 | 0.2060 0.1500 0.2250 | 0.2197 0.1178 0.1755
Yo 0.1824 0.1497 0.1475| 0.1895 0.1528 0.1620 | 0.2007 0.1216 0.1214
N = 1000
o 0.5042 0.0646 0.0625 | 0.7311 0.1237 0.1053 | 0.9542 0.1125 0.0923
Qi 0.5001 0.0387 0.0366 | 0.7153 0.0771 0.0563 | 0.9449 0.0917 0.0593
" 0.1909 0.1270 0.1552 | 0.2054 0.1318 0.1919 | 0.2230 0.1036 0.1679
Yo 0.1834 0.1200 0.1209 | 0.1917 0.1326 0.1402 | 0.2071 0.1077 0.1179

a1,71 are one-step GMM, asg,vs are two-step GMM. Mean of 1000 replications
se: sample standard deviation; est se: mean of estimated standard errors
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Table 1B. Monte Carlo Results for 7' = 10

a=0.> a=0.7 a=20.9

mean se est se mean se est se mean se est se
v=0
N =100
o 0.4442 0.1582 0.0919 | 0.7078 0.1444 0.0882 | 0.9564 0.0709 0.0541
Q9 0.4493 0.1505 0.0113 | 0.7098 0.1385 0.0109 | 0.9563 0.0698 0.0076
" 0.0033 0.1098 0.1412 | 0.0018 0.0835 0.1151 | -0.0017 0.0480 0.0714
Yo 0.0030 0.1087 0.0193 | 0.0015 0.0820 0.0179 | -0.0007 0.0474 0.0124
N =500
o 0.4820 0.0668 0.0543 | 0.7269 0.0930 0.0710 | 0.9538 0.0617 0.0529
Qi 0.4959 0.0307 0.0166 | 0.7160 0.0508 0.0192 | 0.9462 0.0581 0.0174
" -0.0009 0.0659 0.0903 | -0.0027 0.0545 0.0851 | -0.0002 0.0332 0.0560
Yo -0.0011 0.0552 0.0371 | -0.0009 0.0515 0.0391 | 0.0002 0.0347 0.0302
N =1000
o 0.4897 0.0432 0.0380 | 0.7179 0.0733 0.0587 | 0.9578 0.0587 0.0511
Qg 0.5000 0.0171 0.0130 | 0.7052 0.0251 0.0153 | 0.9403 0.0577 0.0153
" -0.0024 0.0522 0.0685 | 0.0013 0.0488 0.0733 | -0.0011 0.0301 0.0518
Yo -0.0006 0.0395 0.0324 | 0.0023 0.0426 0.0368 | -0.0007 0.0316 0.0318
v=0.2
N =100
o 0.4493 0.1453 0.0912 | 0.7224 0.1416 0.0862 | 0.9765 0.0641 0.0465
Qo 0.4538 0.1382 0.0110 | 0.7252 0.1371 0.0101 | 0.9768 0.0631 0.0060
" 0.1912 0.1095 0.1396 | 0.2064 0.0869 0.1147 | 0.2249 0.0534 0.0760
Y2 0.1890 0.1094 0.0180 | 0.2020 0.0878 0.0161 | 0.2220 0.0538 0.0106
N =500
o 0.4813 0.0686 0.0541 | 0.7274 0.0937 0.0694 | 0.9748 0.0649 0.0463
Qi 0.4952 0.0339 0.0168 | 0.7138 0.0527 0.0194 | 0.9715 0.0602 0.0158
" 0.1992 0.0669 0.0899 | 0.2122 0.0571 0.0846 | 0.2274 0.0367 0.0577
Yo 0.1922 0.0568 0.0357 | 0.2012 0.0551 0.0361 | 0.2145 0.0381 0.0260
N = 1000
o 0.4909 0.0439 0.0381 | 0.7210 0.0732 0.0577 | 0.9694 0.0685 0.0452
Qi 0.4991 0.0183 0.0134 | 0.7055 0.0277 0.0159 | 0.9557 0.0628 0.0159
" 0.1992 0.0522 0.0699 | 0.2087 0.0483 0.0741 | 0.2270 0.0334 0.0524
Yo 0.1942 0.0411 0.0314 | 0.1992 0.0427 0.0345 | 0.2133 0.0345 0.0275

a1,71 are one-step GMM, asg,vs are two-step GMM. Mean of 1000 replications
se: sample standard deviation; est se: mean of estimated standard errors

15



Table 2. Sargan Test Results

T =5, DoF = 11

T = 10, DoF =76

v=0

N =100
mean
variance
p<0.10
p<0.05
p<0.01
N =500
mean
variance
p<0.10
p<0.05
p<0.01
N = 1000
mean
variance
p<0.10
p<0.05
p<0.01

v=0.2

N =100
mean
variance
p<0.10
p<0.05
p<0.01
N =500
mean
variance
p<0.10
p<0.05
p<0.01
N = 1000
mean
variance
p<0.10
p<0.05
p<0.01

a=0>5 a=07 a=0.9

11.7435
19.5180
0.1110
0.0520
0.0050

11.3870
22.1283
0.1120
0.0540
0.0130

11.1570
21.5606
0.1110
0.0410
0.0060

11.7876
19.4657
0.1100
0.0430
0.0090

11.6560
23.1530
0.1260
0.0690
0.0140

11.1499
22.2237
0.1120
0.0470
0.0120

11.6874
19.1204
0.1020
0.0400
0.0060

11.4920
22.2584
0.1220
0.0580
0.0100

11.6251
26.3616
0.1220
0.0720
0.0210

11.6715
20.7590
0.1200
0.0570
0.0060

11.4762
23.7077
0.1190
0.0530
0.0130

11.3486
23.4938
0.1170
0.0540
0.0130

11.6853
18.2304
0.1040
0.0480
0.0040

11.3501
22.0550
0.1140
0.0540
0.0090

11.4034
24.3043
0.1240
0.0580
0.0140

11.5384
17.0209
0.0900
0.0310
0.0040

11.1035
21.4205
0.1010
0.0530
0.0060

11.4782
24.5737
0.1200
0.0560
0.0140

a=0.>5

78.6737
25.3295
0.0010
0.0000
0.0000

80.1720
124.2624
0.1340
0.0710
0.0150

78.4569
131.3792
0.1190
0.0570
0.0130

78.4791
24.9107
0.0000
0.0000
0.0000

79.7600
126.3555
0.1340
0.0540
0.0110

78.4394
127.9988
0.1140
0.0530
0.0090

a=07

78.5495
24.8881
0.0010
0.0000
0.0000

81.4084
152.3446
0.1800
0.1030
0.0210

79.4141
183.3694
0.1470
0.0850
0.0240

78.3221
25.3591
0.0000
0.0000
0.0000

81.1115
152.1419
0.1770
0.0960
0.0300

79.7112
153.3866
0.1370
0.0680
0.0160

a=209

78.3087
24.1394
0.0000
0.0000
0.0000

80.3298
131.3430
0.1590
0.0800
0.0090

81.8165
176.8718
0.2150
0.1250
0.0350

78.0095
26.4413
0.0000
0.0000
0.0000

81.7547
121.1384
0.1670
0.0780
0.0130

84.4989
198.1512
0.2640
0.1590
0.0560
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Table 3. Monte Carlo Results for estimation of o and ~
in two stages, T'=15, a = 0.7

N =100 N =500 N = 1000

mean se | mean se | mean se
v=20
o 0.6172 0.1724 | 0.6848 0.1100 | 0.6935 0.0825
Q9 0.6601 0.1572 | 0.7052 0.0923 | 0.7017 0.0634
Y 0.0036 0.1491 | -0.0029 0.1206 | -0.0031 0.1130
Y2 0.0039 0.1692 | -0.0033 0.1344 | -0.0008 0.1225
v=0.2
o 0.6017 0.1863 | 0.6773 0.1141 | 0.6912 0.0927
o 0.6502 0.1632 | 0.6958 0.0949 | 0.7004 0.0704
Y 0.1847 0.1520 | 0.1867 0.1162 | 0.1974 0.1103
Y2 0.1915 0.1730 | 0.1940 0.1336 | 0.2011 0.1197

a1,y are one-step GMM, as,v, are two-step GMM.
Mean of 1000 replications. se: sample standard deviation
~v1 and v, are estimated conditional on ay
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