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1. Introduction

In recent years an extensive theoretical literature has developed with important

implications for several policy debates, including the desirability of research joint ventures,

R&D subsidies, and strategic trade and environmental policy. This literature considers two-

stage oligopoly games in which first-stage actions affect second-stage profits, and has

frequently focused on symmetric equilibria where identical agents take identical actions. The

case where firms are identical ex anteis a natural starting point for exploring these issues,

since there is often no obvious way of justifying initial differences between firms. To many

authors it has seemed equally natural to focus on symmetric outcomes, in which firms are

identical ex post.

More recently, however, doubts have been expressed concerning the appropriateness of

ex postsymmetry in such models. Amir and Wooders (1999), following Henriques (1990),

show in a non-cooperative game with R&D followed by output competition that symmetric

equilibria may be unstable, and they interpret such instability as implying that the outcome

will be asymmetric. Van Long and Soubeyran (1999) explore the conditions under which

symmetric firms which engage in a research joint venture will choose an asymmetric pattern

of R&D. Most notably, Salant and Shaffer (1999) draw on the insight of Bergstrom and

Varian (1985) that a mean-preserving increase in the variance of marginal costs raises

industry profits in Cournot competition. Building on this, they show that firms may have an

incentive to deviate from a symmetric outcome. Referring in particular to the literature on

R&D cooperation stemming from d’Aspremont and Jacquemin (1988), they assert that “this

entire literature assumed (incorrectly) that it is joint-profit maximizing for the cartel to treat

identical members equally.” (Salant and Shaffer (1999, p. 586).) They also claim that there
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is a presumption that equilibria in such models will be asymmetric.1

Notwithstanding these contributions, there does not appear to be a precise statement in

the literature of the conditions under which cooperative equilibria will beex postsymmetric.

The principal objective of this paper is to derive the exact restrictions which imply that

symmetry is optimal, and to compare them with conditions previously derived by

d’Aspremont and Jacquemin and Salant and Shaffer. In order to do this, we introduce the

concept ofcooperative substitutes and complementsas a convenient way of summarising how

changes in one choice variable affect the marginal contribution of another to industry profits.

This concept is potentially applicable to any context in which profits are maximised by choice

of more than one variable. In this paper we use it to illuminate the conditions for a research

joint venture to choose equal levels of R&D by all member firms.

Section 2 defines cooperative substitutes and complements, derives the second-order

conditions for symmetric cooperative outcomes in a general model, and relates them to those

of d’Aspremont and Jacquemin and Salant and Shaffer. Section 3 applies our results to the

linear-quadratic model of d’Aspremont and Jacquemin, and considers their implications for

the desirability of allowing R&D cooperation.

2. Symmetric Cooperative Optima in a General R&D Model

Consider a two-stage game in which first-stage investment in R&D byn ex anteidentical

firms lowers their second-stage marginal costs of production. Letx = (x1, ... ,xn) denote the

vector of R&D investments. In this section we consider the cooperative case, where firms

agree to coordinate their investment levels in order to maximise industry profits. We denote

1 Salant and Shaffer expand on their criticism of the literature on research joint ventures
in their 1998 paper, and their analysis has already been quoted with approval in at least two
textbooks. See Martin (2002, p. 453) and Shy (1996, p. 233).
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total industry profit by a scalar functionΠ(x) = Σk πk(x).2 After the levels of R&D are chosen

cooperatively, firms compete in a standard non-cooperative fashion, choosing either outputs

or prices. The functionΠ(x) takes into account the effects of R&D levels on the profits that

will be earned in the subsequent stage.3

It turns out that understanding the conditions for maximisation of industry profits is

greatly helped by introducing a new concept which we callcooperative substitutability and

complementarity.We define this as follows:

DEFINITION: The levels of R&D of firms i and j are cooperative substitutes if and

only if the cross-derivativeΠ ij is negative, otherwise they are cooperative

complements.

This condition is reminiscent of but not the same as the standard definition of strategic

substitutes and complements due to Bulow et al. (1985). What is at issue here is the effect

of one firm’s R&D on the marginal contribution of another firm’s R&D to industryprofits.

By contrast, the concept of strategic substitutes refers to the cross-effect of one firm’s R&D

on the marginal profits of anotherfirm.4 Strategic substitutability and complementarity is the

natural concept to use in a non-cooperative context, and we show below that the concept of

cooperative substitutability and complementarity plays a similar role in the cooperative

context. Appendix 1 expands on the links between the two concepts and gives some special

2 Superscripts indicate the firm in question, and subscripts will subsequently be used to
denote partial derivatives. ThusΠ i is the partial derivative of the industry profit function with
respect toxi, andΠ ij is the partial derivative ofΠ i with respect toxj.

3 This general specification of second-stage competition follows Leahy and Neary (1997).
4 Following Bulow et al. (1985, p. 494),xi is a strategic substitute forxj if and only if πi

ij

is negative.
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cases where they coincide.

2.1 Case I: Ex Ante Equal Treatment

The simplest way to model a cooperative equilibrium betweenex anteidentical firms, and

the one considered by d’Aspremont and Jacquemin (1988), is to confine attention to cases

where all firms invest equally in R&D. This is the natural starting point for examining

cooperation on R&D when side-payments between firms cannot be made. Since the firms

remain independent entities, and engage in non-cooperative competition in the post-R&D

stage, it is stretching credulity to assume that any firm would enter a cooperative agreement

which gave it lower profits than anex anteidentical rival firm. Hence, in the absence of side

payments, we assume that all firms invest equally in R&D or, following Salant and Shaffer

(1999), that they are subject to "equal treatment".

Given the assumption ofex anteequal treatment, there is in effect only a single choice

variable: the level of R&D common to all firms. In other words, we confine attention to

R&D vectors in which all elements are equal, and seek that one which maximises industry

profits. The effect of an arbitrary change in all thexi on industry profits is given by

Sincexi=x anddxi=dx for all i, the first-order condition for an interior optimum (i.e., one with

(1)

xi > 0, ∀ i) is given by:

Clearly this is identical to settingΠ i equal to zero. The second-order condition is then that

(2)

no equiproportionate increase in the R&D levels of all firms (including firmi) can raiseΠ i.
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We state this formally as follows:

PROPOSITION 1: When firms are treated equally ex ante, the sufficient second-

order condition for a symmetric optimum is:

(3)

This generalises the second-order condition first derived by d’Aspremont and Jacquemin

(1988, p. 1134, footnote 7) in the two-firm linear-quadratic case. Provided (2) and (3) hold,

industry profits are maximised subject to the constraint that all firms have the same level of

R&D. Note that equation (3) gives the second-order condition in full. In particular, it isnot

necessary that the second derivative of industry profits with respect to the R&D of asingle

firm, Π ii, be negative.

2.2 Case II: Ex Post Equal Treatment

Although all firms have identical profit functions (reflecting the facts that they have

identical technology and face identical demands), the research joint venture need not treat all

members equally. As emphasised by Salant and Shaffer (1998), this could arise when side

payments between firms are allowed, either via direct transfers or market-swapping

agreements.5 However, the fact that unequal treatment is possible does not guarantee that it

is optimal. In this section, we seek conditions under which an unconstrained maximisation

will exhibit the same level of R&D by all firms. We call this situation equal treatmentex

post.

5 The precise conditions under which such market-swapping agreements are sustainable
have been investigated by Bernheim and Whinston (1990).
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As before, the first-order condition for maximisation of industry profitsΠ(x) by choice

of x at a symmetric interior optimum isΠ i = 0 for all i. The crucial difference from the last

section comes in the second-order conditions, since now all elements of the R&D vector can

be changed independently. LetΠxx(x
o) be the square matrix of second-order partial

derivatives evaluated at a symmetric interior optimum,xo. The second-order sufficient

condition is thatΠxx(x
o) is the matrix of a negative definite quadratic form. Therefore,

beginning with negative, the principal minors of the determinantΠxx(x
o) must alternate in

sign. Let them’th principal minor be obtained by deleting the lastn−m rows and columns of

Πxx(x
o) . Then the special structure of the matrix allows us to write the second-order

condition in a compact form:6

PROPOSITION 2:When firms are not treated equally ex ante, the sufficient second-

order condition for a symmetric optimum is:

(4)

This condition is not very transparent. However, its economic implications are much clearer

when it is restated as follows:

PROPOSITION 3: When firms are not treated equally ex ante, necessary and

sufficient conditions for the second-order condition, equation (4), to hold at a

symmetric optimum are given by:

6 See Dixit (1986), following Seade (1983).
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PROOF: To prove necessity, we need to show that (4) implies (5) and (6). Consider

(5)

(6)

therefore equation (4) for different values ofm. Settingm equal to one gives what we can

call the no-own-deviation condition, Πii < 0. Settingm equal to two implies thatΠ2
i i > Π2

i j,

which means that the absolute value ofΠii exceeds that ofΠij. Combined with the no-own-

deviation condition, this implies condition (6). Finally, settingm equal ton (n >_ 2), the first

part of condition (4) becomes (−1)n(Πii−Πij)
n−1, which from (6) is negative for alln. Hence,

condition (4) as a whole implies (5).

Next, we need to prove sufficiency. Multiplying (6) byn−1 and adding to (5) gives the

no-own-deviation condition,Πii < 0. This plus (5) implies thatΠii+(m−1)Πij is negative for

all m < n. Combining this with (6) implies condition (4).

Q.E.D.

Conditions (5) and (6) have a nice intuitive interpretation. For a symmetric choice of R&D

to maximise industry profits, it must not be possible for any one firm or any combination of

firms to deviate profitably. Proposition 3 shows that (5) and (6) are necessary and sufficient

for the second-order conditions to hold, implying that any small deviation from a symmetric

optimum can be expressed as a linear combination of only two primitive deviations.7

The first kind of deviation is a uniform increase in the R&D of all firms. This changes

the first-order condition for optimal cooperative choice of R&D by a typical firm,Πi=0, by

7 Note that the no-own-deviation condition,Πii < 0, is not part of the conditions in
Proposition 3, since it is implied both by (4) and by (5) and (6).
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an amount equal to Πii+(n−1)Πij. To ensure that this deviation is unprofitable requires that

condition (5) hold. We have already seen in Proposition 1 that this condition is sufficient for

a symmetric optimum when firms are treated equally ex ante, the case considered by

d’Aspremont and Jacquemin. A different interpretation can be given to this condition by

recalling our definition of cooperative substitutability and complementarity. Equation (5)

implies that Πij cannot exceed −Πii/(n−1). Since Πii must be negative at the optimum, this

means that Πij cannot be too positive, or, in words, that the optimum should not exhibit too

much cooperative complementarity. Henceforward we call equation (5) the Restricted

Cooperative Complementarity or RCC Condition.

The second kind of deviation is a reallocation of R&D between any group of firms,

holding their total R&D constant. Suppose, without loss of generality, that the group consists

of the first m firms, where m can take any value between 2 and n. Using ∆xi to denote the

change in the R&D of firm i we therefore have:

We can see immediately that this change does not affect the marginal profitability of the

(7)

R&D of a typical firm h outside the group:

Here we use the fact that, for small deviations from a symmetric equilibrium, all the cross-

(8)

derivatives are equal: Πhj = Πij, for all h, i and j. Next, consider the effect on the marginal

profitability of a typical firm i in the group. The first-order condition for the R&D of firm

i, Πi=0, changes by an amount equal to:
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where the final step uses (7). To ensure that this deviation is unprofitable requires that

(9)

condition (6) hold. This implies that Πij cannot be less than Πii. This means that Πij cannot

be too negative, or, in words, that the optimum should not exhibit too much cooperative

substitutability. Hence we refer to this as the Restricted Cooperative Substitutability or RCS

Condition.

2.3 The Salant-Shaffer Approach: No Two-Firm Deviations Allowed

We next want to explore how the second-order conditions derived in the last section relate

to the approach of Salant and Shaffer (1999). They do not explicitly discuss second-order

conditions for a symmetric optimum. Instead, they explore the conditions under which a

small deviation from a symmetric optimum by two firms, keeping their total R&D fixed, leads

to an increase in industry profits. In this section, we focus on Salant and Shaffer’s central

analytic contribution, a sufficient condition for optimal first-stage behaviour to be asymmetric

when asymmetries in marginal costs are costly to introduce, given by equation (7) in their

paper. We first derive the Salant-Shaffer condition and then relate it to the second-order

conditions for a symmetric optimum derived in the last section.8

Following Salant and Shaffer, we seek a condition for a reallocation of investment

8 Because of our Π(x) notation, which is not in Salant and Shaffer (1999), we are able
to present their condition in a more compact and general form than in their paper. Whereas
they restrict attention to homogeneous-product Cournot competition, our results also apply,
as already noted, when goods are symmetrically differentiated and when firms compete in
either a Cournot or Bertrand manner.
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between two firms, keeping the sum of marginal costs constant, to raise industry profits.

Consider what they call the "iso-sum locus", x2=g(x1; x*), which gives combinations of x1 and

x2 along which the sum of marginal costs is constant, when all n−2 other firms keep their

R&D levels at a symmetric level x*. When firm 1 invests x1, firm 2 invests x2 = g(x1; x*) and

the other n−2 firms invest x*, industry profits can be written as:

Differentiating (10) with respect to x1 and evaluating at the symmetric R&D vector x* gives:

(10)

The expression in (11) is zero since Π1(x
*) = Π2(x

*) (because x* is symmetric) and

(11)

g′ (x*; x*) = −1 (as shown by Salant and Shaffer). This is a local minimum when:

This expression can be simplified since Π11(x
*) = Π22(x

*) (because x* is symmetric) and

(12)

Π12(x
*) = Π21(x

*). As in Salant and Shaffer, denote by xΠ = (xΠ, ... , xΠ) the investment

combination that maximises industry profit subject to the ex ante equal-treatment constraint

that all firms must invest equally. Then the Salant and Shaffer condition can be written as:

When this condition holds, a deviation from symmetry raises industry profits.

(13)

We now show that the Salant-Shaffer condition is incompatible with the second-order

condition:

PROPOSITION 4: The Salant-Shaffer condition, equation (13), is the converse of

the RCS condition, equation (6), at a symmetric interior equilibrium.
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PROOF: The proof is immediate from inspection of (13). Since the choice of firms 1 and

2 was arbitrary, we can reexpress (13) in terms of any two firms i and j. At the optimum,

Π2 is zero, and so (13) can hold if and only if (6) does not hold.

Q.E.D.

It is straightforward to extend this analysis to the maximisation of social surplus which Salant

and Shaffer also consider in section II.B of their paper. Here too the Salant-Shaffer condition

and the second-order condition for a welfare maximum cannot both hold at a symmetric

interior equilibrium.

While we have shown that (13) and (4) are incompatible, it does not follow that a

violation of (13) implies that (4) holds. A violation of the Salant-Shaffer condition is

necessary but not sufficient for the second-order condition to hold, as our Proposition 3

shows. The Salant and Shaffer approach is to consider movements away from a symmetric

equilibrium on a path along which the investments of all but two firms are constant. But

there is no justification for restricting attention to such paths in an n-firm problem. What is

required instead is to consider all possible deviations from a candidate optimum, and this is

exactly what the standard second-order condition does.

3. The d’Aspremont and Jacquemin Case

In this section we show how the general results of the previous section specialise to the

linear-quadratic example first explored by d’Aspremont and Jacquemin.9 Focusing on an

9 In this section, we follow d’Aspremont and Jacquemin in using the terms "R&D
cooperation" and "research joint venture" interchangeably, to describe a situation where firms
first choose their R&D levels and then compete in the second stage, enjoying the same cost
spillovers per unit of rival R&D as they would in the absence of cooperation. Kamien,
Muller and Zang (1992) refer to this as an R&D cartel, and reserve the term "R&D
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explicit example allows us to relate the general results to underlying parameters in a more

transparent way. It also allows us to address the quantitative importance of the different

conditions. Our strategy is to derive the second-order conditions for a symmetric cooperative

equilibrium and then to show how they relate to the Salant-Shaffer condition and to the

stability condition for the non-cooperative equilibrium.

3.1 The Model

As in d’Aspremont and Jacquemin, Salant and Shaffer (1998) and many other papers, we

consider a homogeneous-product duopoly where firms first engage in cost-reducing R&D and

then in Cournot competition. With n firms, the model is most easily solved by working with

variables for a typical firm and for the industry as a whole: we denote these by xi and X ≡ Σkx
k

respectively for R&D, and by qi and Q ≡ Σkq
k for output. Otherwise the model is standard.

Costs of R&D are quadratic, equal to γ(xi)2/2 for firm i. Production costs are independent of

output and fall linearly in own and rival R&D. This in turn implies that they are decreasing

in a weighted average of own and industry R&D:

where β is the spillover coefficient. Finally, demand is linear: p = a−bQ. We assume that

(14)

A ≡ a−c0 > 0, 0 <_ β <_ 1 and γ> 0.

In the second stage, firms choose outputs independently to maximise operating profits

(p−ci)qi. This yields first-order conditions which equate marginal revenue to marginal cost

for each firm: p−bqi = ci. Summing over all firms we can solve for industry output as a

cooperation" for the case where spillovers between cooperating firms are complete. The
analysis of Section 2 applies to both cases.

12



function of industry R&D:

This in turn allows us to solve for the output of firm i, which is always increasing in own

(15)

R&D but increasing in rival R&D (i.e., industry R&D for given xi) only for high spillovers

(β > ½):

In the first stage, the RJV chooses the levels of R&D to maximise industry profits:

(16)

This yields the first-order conditions for R&D:

(17)

These can then be solved for the equilibrium values of R&D.

(18)

3.2 Second-Order Conditions at a Symmetric Equilibrium

If the RJV is to maximise profits, the second-order conditions with respect to R&D levels

must hold at the optimum. Let us assume now that the equilibrium is symmetric. To find

the second-order conditions, specialise the general expressions from the last section to the

linear-quadratic case and then evaluate them using the derivatives of (18). The detailed

derivations are given in Appendix B. We show there that Πij is negative, and so R&D levels

are cooperative substitutes, if and only if the spillover parameter is less than a half. As for
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the RCC condition (equation (5) specialised to the linear-quadratic case), it becomes:10

Here, following Leahy and Neary (1996), we use η to denote θ2/bγ, which can be interpreted

(19)

as the relative effectiveness of R&D. Finally, the RCS condition, equation (6), becomes:

Note that this is independent of n.

(20)

Figures 1 and 2 illustrate conditions (19) and (20) in {η,β} space, for the case of two

firms (n=2).11 Both conditions can be explained intuitively in terms of the trade-off between

the relative effectiveness of R&D and the degree of cooperative substitutability. An increase

in η makes it more likely that both parts of the second-order conditions will be violated. An

increase in β raises the degree to which R&D levels are cooperative complements. Hence,

starting from a point where the RCC condition just holds, an increase in η must be

compensated by a fall in β (i.e., a decrease in cooperative complementarity) to restore the

condition. Thus the locus corresponding to the RCC condition is downward sloping in Figure

1. By contrast, starting from a point where the RCS condition just holds, an increase in η

must be offset by an increase in β, and so the locus is upward-sloping.

Given the configuration of the loci in Figure 1, we can now consider the different regions

in Figure 2. In Region A, above the locus corresponding to the RCC condition, an

10 Because of the special functional forms used, both parts of the second-order conditions
depend on parameters only. Hence if they hold at one point they must hold at all. By
contrast, in the general model of Section 2, the local results need not hold globally.

11 Salant and Shaffer (1998) present similar diagrams drawn in {1/η,β} space. Our
perspective seems more natural since the vertical axis is bounded at zero, the case where
R&D is either prohibitively expensive or has no effect on production costs, and so its
equilibrium level is always zero.
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equiproportionate increase in R&D levels raises profits without bound. Hence this region of

parameter space is not economically meaningful. By contrast, regions B and C (the difference

between them to be considered in the next section) are consistent with a symmetric optimum

if the firms are treated equally ex ante. However, if they are not, then the symmetric

equilibrium does not satisfy the second-order conditions, since profits can be increased by

reallocating R&D between the two firms. In that case, as Salant and Shaffer have argued, the

pattern of R&D levels which maximises profits for the RJV is asymmetric. Finally, in Region

D the optimum is symmetric irrespective of whether or not firms are treated equally ex ante.

3.3 Comparison with the Non-Cooperative Equilibria

The preceding discussion might suggest that asymmetric RJV’s are important for a wide

range of parameters. However, we have to recall that this issue is of theoretical and policy

interest in the first place only because of the potential role of RJV’s in leading to improved

outcomes relative to non-cooperative equilibria. For the comparison to be meaningful, the

non-cooperative equilibrium itself must be a meaningful one. In particular, it should satisfy

the standard stability conditions for a non-cooperative Nash equilibrium.12

The stability conditions for this game have been derived in Leahy and Neary (1997,

Appendix), drawing on Dixit (1986) and Seade (1980). As shown there, for β less than a

half, stability of the non-cooperative game requires not too much strategic substitutability:13

12 An alternative interpretation, explored by Amir and Wooders (1998), is to assume that,
when the symmetric Nash equilibrium in R&D is unstable, the outcome will be an asymmetric
equilibrium.

13 These conditions are both necessary and sufficient when n is even. When n is odd,
condition (21) is only sufficient for stability.
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Conversely, for β greater than a half, stability requires not too much strategic

(21)

complementarity:

These conditions are illustrated for n equal to two in Figures 1 and 2.14 The small region

(22)

denoted by C in Figure 2 shows the parameter combinations which violate the RCS condition

but satisfy the non-cooperative stability condition. Only in region C can asymmetric

cooperative equilibria be compared with symmetric non-cooperation.

For higher values of n, the conclusions from Figure 2 are reinforced. As already noted,

the RCS condition, the boundary between regions C and D, is independent of n. By contrast,

as n rises the RCC condition becomes more demanding for β greater than a half. From (19),

an increase in n reduces the permissible level of cooperative complementarity, leading the

curve to pivot clockwise around the point where β equals a half. As a result region A

expands at the expense of region D. Finally, the curve representing the non-cooperative

stability condition (21) falls as n rises, squeezing region C. In the limit, as n becomes very

large, (21) coincides with (20) so this region vanishes, and there are no parameter

combinations where a symmetric non-cooperative equilibrium can be compared with an

asymmetric RJV.

14 Henriques (1990) was the first to explore the stability of non-cooperative equilibria in
this model. The case corresponding to the parameter values considered by her is denoted by
point H in Figure 1.
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4. Conclusion

In this paper we have considered the choice of R&D levels in an industry where firms

cooperate to form a research joint venture. We introduce the concept of cooperative

substitutes and complements, and use it to throw light on the conditions for a research joint

venture to choose equal levels of R&D for all member firms. Our principal result,

Proposition 3, shows that the second-order condition for a symmetric choice of R&D is

equivalent to requiring that only two kinds of deviation from the optimum are unprofitable.

First is a uniform increase in the R&D of all firms. This is the sole deviation which must

be unprofitable if firms are required to be treated equally ex ante, perhaps because side

payments are ruled out, the case considered by d’Aspremont and Jacquemin (1988). For this

deviation to be unprofitable requires a restriction on the degree of cooperative

complementarity. The second kind of deviation which must be unprofitable is a reallocation

of R&D between an arbitrary subset of firms, holding constant their total level of R&D. For

this deviation to be unprofitable requires a restriction on the degree of cooperative

substitutability, which we show is the converse of the condition derived by Salant and Shaffer

(1999) in the case of a two-firm deviation.

In addition to considering the conditions for a profit-maximising cooperative outcome to

be symmetric, we compare these conditions with those (already in the literature) for a non-

cooperative equilibrium to be stable. In so far as these models are relevant to policy, it is

because they throw light on the issue of whether cooperative research joint ventures should

be allowed in preference to a non-cooperative oligopolistic equilibrium. Hence it is also

necessary to consider the circumstances in which such an equilibrium makes sense, by

checking its second-order and stability conditions. (See Henriques (1990) and Amir and

Wooders (1998).) We show that, for a widely-used example, the comparison between an
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asymmetric cooperative outcome and a symmetric non-cooperative equilibrium is relevant for

a very small range of parameters.

How do our results relate to the critique of the literature on R&D cooperation presented

by Salant and Shaffer (1998, 1999)? Whereas they claim to find "error" in much of the

literature on two-stage investment games (including our 1997 paper), we do not assert that

their specific statements are false.15 In particular, the central Proposition 2 of their 1999

paper is correct as stated. However, our Propositions 3 and 4 throw a very different light on

their Proposition 2. Whereas they derived it as a sufficient condition for a two-firm deviation

from the optimum to be profitable, we show that all possible deviations from a candidate

symmetric optimum can be expressed as combinations of only two primitive deviations, one

of which is the Salant-Shaffer type.

Where we disagree with Salant and Shaffer is in the interpretation of their results, as for

example when they say of research joint ventures: “ there is a strong presumption that

nonidentical actions by identical agents in the first stage are required to maximize social

surplus and industry profit.” (Salant and Shaffer (1999 p. 586), emphasis in original). But

in models where asymmetries in marginal costs are costly, there is no presumption that

symmetric outcomes will fail to maximise profits or social welfare. On the contrary, they will

do so locally, provided the objective function is sufficiently concave in the neighbourhood of

the symmetric optimum, which in these models usually means, provided the investment or

R&D cost function is sufficiently convex. How much convexity is required depends on the

second-order condition, no more and no less. Of course, to determine whether any point is

15 Our criticisms do not apply to Salant and Shaffer’s Section II.A, which discusses games
where asymmetries in marginal costs are costless (such as learning by doing or resource
extraction with depletion effects). Clearly a symmetric equilibrium is not profit-maximising
in such models (since it violates the second-order condition), and Salant and Shaffer do not
present any examples from the literature which suggest otherwise.
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a global optimum requires information about the objective function everywhere, but the

Salant-Shaffer condition which (like the second-order condition) is evaluated locally has

nothing new to say on this. Hence, provided the appropriate second-order condition is

satisfied, all the conclusions in the extensive literature on research joint ventures are immune

to the criticisms of Salant and Shaffer.

In conclusion, the concept of cooperative substitutes which we have introduced is likely

to have other applications. Here we have considered only the case where cooperation occurs

in the first stage of a two-stage game. However, it is also relevant in cases where cooperation

is permanent, such as multi-plant or multi-product firms. For example, economies of scope

in production of two goods by a multi-product firm tends to make them cooperative

complements, although this effect may be offset if they are also substitutes in demand. In

addition, while we have considered only the case where the cooperative includes all firms in

the industry, it is also relevant to cooperation between a subset of firms. In that case the

concept of cooperative substitutes is relevant to allocation within the cooperative, whereas the

standard concept of strategic substitutes is relevant to external competition.
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Appendix A: Cooperative versus Strategic Substitutes and Complements

Unlike the definition of strategic substitutes and complements, the definition of

cooperative substitutes and complements is symmetric: if xi is a cooperative substitute for xj,

then the converse is also true. To determine the relationship between the two types of

substitutability and complementarity, recall that industry profits equal the sum of the profits

of all n firms: Π=Σkπk. Differentiating with respect to the R&D of firm i gives:

In a symmetric equilibrium, this simplifies to:

(23)

(where we use the fact that πj
i=πi

j). The own second derivative of industry profits therefore

(24)

becomes:

or with symmetry:

(25)

Finally, the cross derivative of industry profits, which is negative if and only if R&D levels

(26)

are cooperative substitutes, equals:

or with symmetry:

(27)

(where we use the fact that πi
ij = πj

ji = πj
ij).

(28)

Equation (28) shows that the two definitions are not synonymous, even when we consider
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only symmetric equilibria. They coincide in two special cases. The first, as we have seen,

is the linear-quadratic model of Section 3, where, for all n, R&D levels are both cooperative

and strategic substitutes if and only if β is less than one half. (See for example, equation

(30).) The second is where there are only two firms. In that case the final term in (28)

vanishes and the criterion for cooperative substitutes, Πij is proportional to that for strategic

substitutes πi
ij, irrespective of the functional forms and of the nature of competition.

Appendix B: Second-Order Conditions in the Linear-Quadratic Case

It turns out to be most convenient to derive the cross second derivative first. Inspecting

the first-order condition (18) and the expressions for industry and firm output (15) and (16),

we can see that the cross derivative is simply the partial derivative of Πi with respect to

industry R&D X. Thus differentiating (18) gives:

Calculating ∂qi/∂X and dQ/dX from (16) and (15) respectively and substituting into (29) gives

(29)

the criterion for cooperative substitutes:

This is clearly negative, and so R&D levels are cooperative substitutes, if and only if β is less

(30)

than a half, as stated in the text.

Next the own second derivative, which must be negative for the no-own-deviation

condition to hold, can be written as follows:

(31)
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Subtracting (29) from this and substituting for ∂qi/∂X gives the RCS condition:

Finally the RCC condition can be calculated in a similar way:

(32)

(33)
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Fig. 1:  Second-Order Conditions for a Symmetric RJV
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Fig. 2:  Admissible Regions for a Symmetric RJV
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