
 
 

 
 

 
 

UCD CENTRE  FOR  ECONOMIC  RESEARCH 
 

 
 

WORKING  PAPER  SERIES  
 

 2006 
 
 

  Social Learning in Continuous Time: 
When are Informational Cascades 

More Likely to be Inefficient?  
                    

                      Ivan Pastine, University College Dublin and  
              Tuvana Pastine, National University of Ireland Maynooth 

 
 

WP06/21 
 

November 2006 
 

 
 
 
 
 

UCD SCHOOL OF ECONOMICS 
UNIVERSITY COLLEGE DUBLIN 

BELFIELD  DUBLIN  4 
 
 
 
 
 
 
 

 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7108962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Social Learning in Continuous Time:
When are Informational Cascades 

More Likely to be Inefficient?

by

Ivan Pastine
University College Dublin

and CEPR

Tuvana Pastine*
National University of Ireland, Maynooth

 and CEPR

July 22, 2006

 
Abstract

In an observational learning environment rational agents may mimic the actions of the predecessors
even when their own signal suggests the opposite. In case early movers’ signals happen to be
incorrect society may settle on a common inefficient action, resulting in an inefficient informational
cascade. This paper models observational learning in continuous time with endogenous timing of
moves. This permits the analysis of comparative statics results. The effect of an increase in  signal
quality on the likelihood of an inefficient cascade is shown to be nonmonotonic.  If agents do not
have strong priors, an increase in signal quality may lead to a higher probability of inefficient
herding. The analysis also suggests that markets with quick response to investment decisions, such
as financial markets, may be more prone to inefficient collapses.
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1An informational cascade implies herding behavior. See Smith and Sørensen (2000) for the
distinction.

2There are a wide variety of markets where herding may arise. For instance, see Scharfstein
and Stein(1990), Welch(1992), Devenow and Welch (1996), Avery and Zemsky(1998), Welch
(2000), Chari and Kehoe (2003), Chamley (2003) for analysis of herd behavior in financial markets,
Neeman and Orosel (1999) for analysis in auctions, Morton and Williams (1999) for herding in a
political economy framework and Bose, Orosel and Vesterlund (2002), Choi, Dassiou and Gettings
(2000), Kennedy (2002) and Levin and Peck (2005) for herding among firms. 
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1. Introduction

Individuals with limited information often observe other people’s actions before making their own

decisions. The predecessors’ actions tend to contain information about their private signals

concerning the state of nature. In this social learning process the individual aggregates his own

private signal with information collected from his observations of others’ actions. This process may

lead to herd behavior where the agent follows the crowd even when his private information suggests

the opposite.1 In case early movers’ signals happen to be incorrect, agents may settle on a common

inefficient action, resulting in an inefficient informational cascade. Gale (1996), Chamley (2004)

and Bikhchandani, Hirshleifer and Welch (1998) give extensive lists of empirical phenomena that

herding behavior may explain in both financial and real markets. Examples include balance-of-

payments crises, R&D investment decisions, analysts’ recommendation of stocks, bank runs and

managers decisions to pay dividends.2 It is often argued that conformist behavior in financial and

real markets may lead to sudden booms and crashes.

In seminal herding papers by Banerjee (1992) and Bikhchandani, Hirshleifer and Welch (1992)

and Welch (1992) there is an exogenously determined sequence in the moves. Chamley and Gale (1994)

extend the literature to allow for endogenous timing of moves. Each agent has an incentive to wait in

order to observe the actions of other players. However if everyone were to wait, the agent would rather

move early in order to avoid costs of delay. Hence the timing decision is strategic. Chamley and Gale

prove the existence of herd behavior with endogenous timing and characterize the equilibrium.



3See Chamley (2004) for a review of theoretical advances in the study of informational
cascades.
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There is a vast literature that examines the conditions under which informational cascades occur

and analyzes the speed of cascade formation and the fragility of cascades.3 There are however no studies

that focus on the factors that affect the likelihood of erroneous mass behaviour. This paper studies the

factors that influence the likelihood of inefficient cascades, either when there is an investment boom

even though the true value of the project is low (an inefficient positive cascade), or when there is an

investment collapse even though the true value is high (an inefficient negative cascade). The question

the paper analyzes is not whether or not there will be cascade formation but the likelihood that the

cascade outcome is inefficient. 

Chamley and Gale offer an ex-ante welfare analysis on the inefficiency induced by delay and

observational learning. The additional advantage of analyzing the likelihood of inefficient cascades

arises when there are externalities from the market to society at large. The ex-ante welfare approach

includes the expected discounted payoffs of the players directly involved in the game. However, bank

panics, capital flight and stock market crashes have external consequences which may induce a social

planner to place a greater weight on inefficient negative cascades than an individual investor. In other

markets the party designing the structure of the market may not have an incentive to weigh all market

participants equally. In the IPO market, for example, the features of the market are not controlled by

a central planner, but rather by the firms offering companies for public sale. These companies may try

to increase the probability of a positive cascade. Results on the probabilities of inefficient outcomes are

a potentially useful building block for welfare and policy analysis in markets with such external effects.

The analysis of factors that influence the likelihood of inefficient herding – the discount rate,

the signal quality, the prior, the expected value of the investment project – may be important for

manipulating the outcome of the social learning game. For instance, the Securities Act of 1933 and the

Securities Exchange Act of 1934 were formed in hopes of preventing catastrophic crashes like Black



4Among other regulations, the act requires that investors receive financial and other
significant information concerning securities being offered for public sale.

5In our paper, in equilibrium agents follow a critical mass. In Zhang’s (1997) model with
heterogenous signal quality, all imitate the one leader with the most precise signal. The probability
of an inefficient cascade is then just equal to the probability of the most precise signal being
incorrect.

6Chamley and Gale show that at *=1 only negative cascades will be inefficient. This paper
extends their result to comparative statics over the full range of *.
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Thursday in 1929.4 We would like to be able to analyse the implications of an improvement in

accounting standards (signal quality) on the probability of an inefficient collapse. Likewise, we would

like to know the effect of an improvement in trading technology on the probability of an inefficient

outcome. This paper is the first to focus on comparative statics results for all key variables in an

endogenous-timing framework.5 Other than the directional effects of the factors that influence the

probability of inefficient herding, the magnitude of the effect may be of importance as well. For

instance, in an IPO decision reducing the price decreases the probability of collapse where the IPO fails.

But we would like to know what the optimal price would be. 

 We find that the probability of an inefficient negative cascade goes up as agents get more

patient.6 Agents with a low rate of time preference are more inclined to wait to collect more information

about the true value of the project. This conservative attitude makes inefficient negative cascades more

likely. In the leading herding model of  Bikhchandani, Hirshleifer and Welch (1992),  inefficient

negative and positive cascade probabilities go down as signal quality goes up, since early movers are

more likely to take the correct action. We find that this not the case in general. While an increase in

signal quality does unambiguously improve the expected utility of buyers in the market, if agents do

not have strong priors an increase in the signal quality may lead to a higher probability of inefficient

herding.

Our paper adapts the Chamley and Gale (1994) endogenous-timing information-revelation

model of investment. The equilibrium is in the same spirit as in Chamley and Gale. However our agents
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observe others’ actions in continuos time. The learning process can be approximated by a series of

Brownian Motions and the familiar boundary crossing probabilities are employed to find the

probabilities of inefficient positive and negative cascades. The merit of a continuous-time framework

is that it enables us to approximate a closed-form solution to the probability of inefficient cascades. The

cost is a number of ad-hoc assumptions on the market that will allow the model to be technically

tractable.

2. Overview

In the Chamley-Gale model the higher the value of the project the more people there are with an option

to invest. The project value and number of people with an option are unknown to the agents. Each agent

with an investment option faces a tradeoff between investing and waiting. If the agent invests he

collects the undiscounted payoff, but faces the risk of making a loss in case the true value of the project

is low. If the agent waits he collects only the discounted payoff, but he can learn from others’ actions.

In equilibrium the agent is just indifferent and randomizes between waiting and investing. Therefore,

the rate of investment each period is stochastic. The agent tries to deduce from the rate of investment

each period the number of people with an option and hence the value of the project. If the expected

value of the project turns negative the agent strictly prefers to wait, as does everyone else, and so the

game ends with an investment collapse. If the expected value of the project becomes so high that agents

strictly prefer to invest, the game ends with a sudden investment boom. Since the learning process is

stochastic, the outcome may be inefficient. Even when the true value of the project is high (low), there

might be an investment collapse (boom).

Here we adapt a special case of the model in which there are only two possible values of the

project allowing agents’ beliefs to be summarized in a single variable, the probability that the project

value is high. It will be shown that a monotonic transformation of the subjective probability yields a
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learning process characterized by a simple Lévy process: wt =wt-1-a+bkt where wt denotes the

transformed subjective probability and  kt is the stochastic number of buyers observed in the period and

it is given by the Poisson approximation to the binomial distribution. The problem is to determine the

probability that wt crosses the upper bound (where the agent strictly prefers to invest) before the lower

bound (where the agent strictly prefers to wait) resulting in an investment boom and the probability that

wt crosses the lower bound before the upper bound, resulting in an investment collapse. This is a

mathematical problem that arises in a number of contexts from psychology to queuing theory and hence

has been extensively studied. Nevertheless, despite its seeming simplicity no closed-form solution has

been found. Hence we depart from the Chamley and Gale framework and move to a continuous-time

learning setting. 

For the continuous-time adaptation, we make some institutional restrictions on the market to

make the model technically tractable. We have an agency which takes state-contingent orders in

discrete time and processes them in continuos time. Agents are allowed to make their invest and wait

orders (placed in discrete time) contingent on the continuously evolving flow of order processing. The

payoffs are received at the end of the period. If the expected level of investment were constant in all

periods this would result in a continuous-time process for the transformed beliefs that is identical to

the evolution of queue lengths in a standard M/D/1 queue. The standard approximation for this is

Brownian motion. Our learning process is then a series of one-period Brownian motions.

For  tractability it is also assumed that the processing agency has a capacity limit to the number

of  contingent orders it can accommodate. The capacity limit helps us keep the same basic incentives

as in Chamley and Gale while ensuring that information transmission stops as soon as one of the

boundaries is hit. Hence we can make use of the boundary crossing probabilities for Brownian Motion

to find the probability of an inefficient informational cascade.



7This paper adapts the r-fold replica game of Chamley and Gale (1994), Section 6.

8In order to compare this signal quality measure to the signal quality measure in
Banerjee(1992) and Bikhchandani, Hirshleifer and Welch (1992), suppose that each of the rN
potential investors receive a signal about the value of the project. The signal is correct with
probability p>0.5. If V=VH then prN=rnH get a positive signal. If V=VL then (1-p)rN=rnL get the
positive signal. Then . One could easily formulate the problem in this way and the(1 ) /p pψ = −
equilibrium would mirror that found here, with the agents who received a negative signal simply
waiting to observe a positive cascade and then investing if and only if the true value is revealed to
be VH. Here we keep the Chamley and Gale structure in order to facilitate direct comparison.
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3. Framework

The true value of the investment project is denoted by V0{VH,VL} where VH>0 and VL<0. V=VH with

prior probability q*0(0,1). The number of rational players rN is unboundedly large, r64.7 Players are

risk neutral. They are ex-ante identical. However, only rn of them receive an investment option.

Options are identical and indivisible. If the true value of the project is high, there are more agents with

an investment option:

 

(1)
H H

L L
n  when V =V

n =
n  when V =V

⎧⎪
⎨
⎪⎩

Denote  R is a measure for signal quality. The further apart nL and nH, the more
L

H

nψ < 1.
n

≡

information the agent has about the true value of the project from the fact that he has observed the

investment option in the first place. If nL were equal to nH, the agent who receives the investment option

would not update his prior. The agent will update his prior belief more heavily as R goes down.8 

Each agent with  an investment option can give an invest order at any date T=0,1,2,... of his

choice. Payoffs from the exercised options are received at the end of the time period. * 0(0,1) is the

common discount factor. Investment is irreversible. If the player never invests, the payoff is 0.

Whether or not the player has an option is private information. Only if the option is exercised is



9See Gossner and Melissas (2006) for a framework with cheap talk among agents.
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information revealed.9 Each player with an option chooses to either invest now or delay. When making

their decisions, players can observe the history of other players’ investments.

Here the value of the project is either high or low and there is a one-to-one mapping between

V and n. The restriction to only two possible project values will allow us to summarize agents’ beliefs

at time t about the true state of nature via the probability that the project value is high, denoted by qt.

This mapping will prove to be very convenient in eventually formulating the learning process in a

linear fashion.  

3.1. Trading Technology

Agents place discrete-time state-contingent orders which get processed in continuous time. Orders are

placed at the beginning of each period. They are processed randomly during the period.  The exact time

that an individual order is processed is distributed uniformly in the period. Payoffs on all orders

processed in a period are received at the end of the period. Since information on others’ actions will

be arriving during the period, learning is continuous. Players are permitted to make their orders (both

invest and wait orders) contingent on the flow of information. Each invest order comes with a state-

contingent wait order. Investment cannot be reversed in case the invest order is already processed.

Likewise each wait order comes with a state-contingent invest order.

 We will eventually approximate the agents’ learning process as a series of one-period

Brownian Motions with absorbing boundaries. We can make use of the familiar boundary crossing

probabilities only if the equilibrium is such that learning stops the first time the learning process hits

either of the bounds. We introduce a limit on the capacity of the agency to process contingent orders

so that the information flow ceases as soon as one of the boundaries are hit. During the interval

[T,T+1), if the state-contingent wait order is triggered then at most M invest orders are canceled. M is



10The capacity to accommodate state-contingent wait orders M does not need to be the same
M as in the capacity to accommodate state-contingent invest orders M-6. They just need to be very
large finite numbers.  One could make the limit on contingencies dependent on how busy the agency
will be in the remainder of the period: A limit of M)t where )t is the amount of time remaining in
the period. This would necessitate keeping track of more notation but would not change the results.

-8-

a very large but finite number. During the interval [T,T+1), if the state of the state-contingent invest

order is triggered, then at most M-6 of the newly triggered invest orders are processed randomly during

the remainder of the period where 6 is the number of invest orders placed at the beginning of the

period.10 After the description of the equilibrium strategies, the advantage of allowing for state-

contingent orders and limiting the maximum capacity of the processing agency will become clear. It

is discussed at the end of section 4.3.  

3.2. Copycat Traders 

The quality of the analytic approximation to the cascade probabilities will be improved if we will also

include copycat traders. There are K=NrnH people who are randomly assigned to this market and they

simply imitate the probability of investment of rational traders with an investment option. The copycats

are not needed for the equilibrium of model derived here. However it will be shown that the K people

add noise to the information to be collected from the market. So they make it harder for the market

participants to deduce the true value of the project from the observed purchases – resulting in a higher

expected number of invest orders per period. In equilibrium, this will not alter the amount of

information transmitted by observational learning, but it leads to a larger number of buyers required

in equilibrium to transmit the same amount of information (to be discussed in Section 5.2). The larger

the expected number of invest orders the better is the approximation, hence the existence of copycats

improves the quality of the approximation to Brownian Motion.



-9-

4. Equilibrium

The focus is restricted to symmetric Perfect Bayesian Equilibria. Before describing the equilibrium

strategies, let us first introduce some critical values.

4.1. Critical Values 

Since orders are processed in continuous time, qt evolves in continuous time. The index of time for

discrete-time decision nodes is denoted by T.  While t 0 ú+, the index T 0ù. So, at time nodes when

t=T, qt=qT. Bayes’ rule is assumed to describe the agents’ method of updating the probabilities. At the

beginning of the game, the probability that the project has a high value qT=0, conditional on having

received an investment opportunity, is given by: 

(2)

H

0 H L

rn q*
rNq =

rn rnq* + (1- q*)
rN rN

Since , (2) can be rewritten as,
L

H

nψ
n

≡

(3)0
q*q =

q* +ψ(1 - q*)

The game is of interest if initially the expected value of the project is positive: 

(4)H L
0 0q V +(1 - q )V > 0

Otherwise each agent would strictly prefer to wait and the game would end immediately with an

investment collapse.

It will be useful to introduce two critical values for the subjective probability. Define q_ as the

probability where the expected value of the project is zero:

q_ VH +(1- q_ ) VL =0 (5)
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If qt falls below q_, the agent strictly prefers to wait since the expected value of investment is negative.

Since everyone who has not yet invested is identical they all prefer to wait and investment stops for

good.

Define q
_
 as the probability where the agent is just indifferent between investing now and

waiting when information about the true value of the project is to be fully revealed with certainty next

period:

q
_
 VH +(1- q

_
 ) VL = * q

_
 VH (6)

If qt rises above q
_
, the agent will strictly prefer to invest now. And so will all the identical players and

the game ends with an investment boom where all players with an option invest. The game will be said

to be active when q_< qt <q
_
. 

4.2. Endogenous Information Revelation and Learning

Let 8T denote the probability that a player who has not yet exercised his option puts in an invest order

at the decision node T. In the active phase of the game, it must be that 0<8 T<1. Assume for a moment

that an agent expects all people with an investment opportunity to invest this period. Then he would

strictly prefer to wait to be able to learn the value of the project for sure. But so would everyone else.

Hence 8T…1. Let us now consider the case where nobody invests this period, 8T=0. If nobody is

expected to ever invest then no information will be revealed in the future so an individual would strictly

prefer to invest since  q_< qt, a contradiction. If investment will resume sometime in the future then an

individual contemplating being the first future investor would strictly prefer to invest now rather than

wait since then he would have the same expected value of the game as in this period, but discounted.

Hence he would strictly prefer to invest now, so 8T…0, by contradiction. Hence in the active phase of

the game, there can be no pure-strategy equilibrium, 0<8T<1. Players are just indifferent between

waiting and investing now. 
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Notice that 8T  is the endogenous rate of information flow. If 8T were zero, no information would

be revealed. If 8T were equal to one, the number of people who invest would fully reveal information

about the value of the project.

In equilibrium, the history of the game will affect players’ strategies only through the subjective

probability qt and therefore 8T=8(qT). While players’ actions depend on the publicly observed history

of the game, history could be payoff relevant for two reasons: i) It influences players’ beliefs about the

probability that the project has a high value, ii) As more and more people invest, the number of

potential investors with unexercised options goes down and hence history could potentially alter the

future flow of information. However the second argument cannot apply in equilibrium. Notice that the

expected number of invest orders, either 8T(R+N)rnH when V=VL or  8T(1+N)rnH when V=VH, must be

finite. If it were infinite, the observation of the rate of investment in one period would reveal the true

value of n, and hence V by the law of large numbers. In such a case all players would strictly prefer to

wait, implying 8T=0, a contradiction. As r64, the population of potential investors is very large so

players are essentially sampling with replacement. For any finite number of exercised options there is

still an infinitely large number of potential investors. Hence the history of the game is payoff relevant

only because it influences the agents’ belief that the project has a high value. In order to save on

notation, we will denote 8(qT) as 8T.

Since agents randomize with 0<8T<1, the level of investment each period is stochastic. As r64,

the number of people putting in invest orders at a decision node is given by the Poisson approximation

to the binomial distribution. The parameter of the Poisson distribution is (rn8T +N8T rnH), the mean

number of invest orders by the investors 8Trn  plus the expected number of invest orders by the

copycats N8TrnH. During the period these investors’ orders will be processed randomly. Assuming no

contingencies are triggered, the time between completed orders has the exponential distribution and

the number of orders processed in any time interval )t0(0,1) is distributed Poisson with parameter

(rn8T+N8T rnH))t. The possibility of contingencies being triggered is discussed in Section 4.3.
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Take any x0[0,1) and any )t0(0,1-x). When V=VH, the probability that k players’ investments

are processed during the time )t given 8T is denoted by f H(k;8T ,)t): 

(7)

t
T

T
for [ ]

,

elsewhere

) t
 t

H  
T-(1+ )λ rn H k

H
H    k   0,(1 + )rn 

f (k; ) =

        0                     

e [(1+ rn ]
k!

φ ∆

∈ ∩ φ
λ

⎧ φ λ ∆
⎪∆ ⎨
⎪⎩

Z

and the p.d.f. is denoted by f L(k;8T ,)t) when V=VL: 

(8)

t
T

T

H
]for [0, ( )rn

,

elsewhere

) t
 t

H  
T-( + )λ rn H k

L    k    
f (k; ) =

        0                     

e [( + rn ]
k!

ψ φ ∆

∈ ∩ ψ + φ
λ

⎧ ψ φ λ ∆
⎪∆ ⎨
⎪⎩

Z

If nL were equal to nH, then R=1 and the two probability density functions would collapse together. In

such an extreme case the quality of the information k contains would be nil and the observation of the

rate of investment would not reveal any information.

The agent tries to deduce from the number of people who invest in each period which

distribution the observation comes from. Define k)t as the number of invest orders processed during the

time )t. Bayesian learning implies that at time T+x+)t, when the agent observes k)t people investing,

the subjective probability will evolve following:

(9)
H

T+x t T
T+x+ t H L

T+x t T T+x t T

q f (k ; , t)q =
q f (k ; , t)+(1- q )f (k ; , t)

λ
λ λ

∆
∆

∆ ∆

∆
∆ ∆
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4.3. Equilibrium Strategies

Let us first assume that the institutional environment restricts the agents to only use q_ and q
_
 as their

triggers for the contingent orders. In Appendix B, this assumption is relaxed. The equilibrium of the

game with any finite set of possible trigger points which contains and is shown to yield the sameq q

cascade probabilities as this baseline model.

PROPOSITION 1: The following equilibrium strategies support a Symmetric Perfect Bayesian
Equilibrium:   

a) If the subjective probability is sufficiently low qT#q_, put in a wait order with a state-
contingent invest order. If in the time interval [T,T+1), qt $q,

_
 the state-contingent invest order

is triggered. 
b) If the subjective probability is sufficiently high qT$q

_
, put in an invest order with a state-

contingent wait order. If in the time interval [T,T+1), qt#q_, the state-contingent wait order is
triggered.
c) If the subjective probability is q_<qT<q

_
 , with probability 8T, put in an invest order with a

state-contingent wait order. If in the time interval [T,T+1), qt#q_, the state-contingent wait order
is triggered. With probability (1-8T ) put in a wait order with a state-contingent invest order.
If in the time interval [T,T+1), qt$q

_
 the state-contingent invest order is triggered.

PROOF: a) By equation (5), when the subjective probability is q_, the expected value of the project is just

equal to zero. All agents prefer to wait when qT #q_. Hence the state qT #q_ is absorbing. Investment stops

for good. Information transmission terminates. There is no possible deviation from the equilibrium

strategy that would make the agent better off. Off the equilibrium path, if in the time interval [T,T+1)

new information arriving leads to an updated belief qt$q
_
, the agent prefers to invest and the state-

contingent invest order is triggered. Since r64, and only M-6 invest orders can be processed, the

probability of an individual agent’s state-contingent invest order being processed is zero.  

b) When qT$q
_
, by equation (6) the agent strictly prefers to invest now even if this period the true

value of the project is to be revealed for sure. When qT$q
_
, all with an option give invest orders. Since

r64, during the time interval [T,T+1) the true value of n and hence V is revealed at once. If V=VH the



11Because M is a large but finite number, the probability of an individual agent’s state-
contingent wait order being processed is zero.
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subjective probability would remain above q
_
 . If V=VL, the subjective probability would drop below

q_. All agents’ state contingent wait orders would be triggered at once but only M of them would be able

to stop investment.11 The game would end with all investing except of those lucky M . Therefore, qT$q
_

is an absorbing state as well. 

 When qT$q
_
, an individual agent could consider the following deviation from the equilibrium

strategy: Giving a wait order with a state contingent invest order. If all follow the above described

equilibrium strategy, information about the true value of the project would be revealed at once, and the

agent’s state contingent invest order would be triggered at once. However his order would be not served

in the period, since at most M-6 of the newly triggered orders are processed during the period. In

equilibrium, when qT$q
_

 all give invest orders, since r64 so does 6. Hence the probability of a newly

triggered invest order being processed is goes to zero. Therefore a deviation would lead to one period

of discounting. By equation (6) the agent would strictly prefer to follow the equilibrium strategy.     

      

c) If the subjective probability is q_<qT<q
_
 , the expected value from investment is positive but

the agent will also consider waiting in order to learn about the true value of the project. In equilibrium,

the agent is just indifferent between investing now and waiting. See the beginning of Section 4.2 for

the discussion of the non-existence of pure-strategy equilibrium.

i) The agent with an investment option who has not yet exercised his option will put an invest

order at time T with probability 8T.  If in the time interval [T,T+1), qt falls below q_, the agent

would prefer to wait by equation (5). All unprocessed invest orders would convert into wait

orders. Since M is a very large number, investment would stop for good.

ii) The agent with an investment option who has not yet exercised her option will put a wait

order at time T with probability (1-8T). If however in the time interval [T,T+1), qt rises above
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q
_
 the agent would prefer to invest. M is very large but finite. M-6 newly arrived invest orders

would be processed this period. All the rest would be processed next period. At time T, the

agent realizes that there is an infinitely small probability that his invest order would be

processed if the state is triggered.

~

At this point the advantage of allowing for contingent orders should be clear: In the active phase

of the game, the subjective probability evolves in continuous time within the bounds q_ and q
_
.  Because

we let potential investors put in contingent orders, the game stops the first time q t hits either of the

bounds. Once either of the bounds is hit, information transmission stops. Without contingencies, within

the time interval [T,T+1), the subjective probability could potentially cross one the bounds and then

bounce back depending on the flow of the invest order processing since the exact timing of the

processing of the individual order is a random variable. In the active phase of the game, if the process

hits q
_
, all state-contingent invest orders are triggered.

If the processing agency did not have a capacity constraint, the true value of the project would

be revealed at once and potentially the subjective probability could drop below q_. However the agency

can process only M-6 newly triggered invest orders. So, no matter whether the true n is nH or nL the

same number of invest orders will be processed.  Therefore in the remainder of the period, the agent

cannot gain further information about the true value of the project. Information flow stops the moment

the subjective probability hits the upper bound. If the process hits q_, state-contingent wait orders are

triggered and they get served since M is a very large number. Therefore information flow would stop.



-16-

5. Information Cascades

Agents’ beliefs about the true value of the project evolve as a result of observational learning.  If the

subjective probability hits q_ before q
_
, the game ends with an investment collapse. If the subjective

probability hits q
_
 before q_, the game ends with an investment boom. We are particularly interested in

the probability of inefficient cascades. The measures of interest are then the probability that the process

hits q_ before q
_
 when V= VH, and the probability that the process hits q

_
 before q_ when V= VL. The first

is an inefficient negative cascade and the latter is an inefficient positive cascade. 

While the paper will discuss both types of inefficient outcomes, notice that only inefficient

negative cascades would be categorized as inefficient herding. Here agents that receive an investment

option would invest if learning were not permitted, by (4). Since by definition herding is acting against

one’s own signal, we can talk about inefficient herding only when the crowd chooses not to invest.  

  

5.1. Transformation 

In order to obtain the boundary crossing  probabilities, we need to transform the problem into an

equivalent problem that is tractable. Subjective probabilities evolve following (9), substitute f H(k;8T,)t)

and f L(k;8T,)t) from (7) and (8) into (9). Cancel out k factorial from the numerator and denominator.

Take the inverse of both the left and right hand side of the equality and subtract one from each side.

Now plugging in R for  yields,
L

H

n

n

(10)
1

t

T
H tt+ t t

t+ t t

k
(1-ψ)λ rn1 - q 1- q

q q
= e ψ φ

φ

∆

∆∆

∆

⎛ ⎞+
⎜ ⎟+⎝ ⎠

Taking the natural logarithm of both sides and multiplying both sides by minus one yields:

(11)1
Ht+ t t

T t
t+ t t

1 - q 1- q-ln = -ln - (1 -ψ)λ rn t - k ln
q q

ψ φ
φ

∆
∆

∆

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+
∆⎜ ⎟ ⎜ ⎟ ⎜ ⎟+⎝ ⎠⎝ ⎠ ⎝ ⎠



12See Luce (1986) for an introduction to this literature.
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where kªt  is distributed Poisson with the parameter 8T(1+N)rnH)t when the true value of the project is

high and it is distributed Poisson with the parameter 8T(R+N)rnH)t when the true value of the project

is low. Define a transformation wt as:

 (12)t
t

t

w -
1 - qln

q
⎛ ⎞

≡ ⎜ ⎟
⎝ ⎠

Notice that wt is an increasing monotonic transformation of qt.  We can rewrite (11) as:

(13)
1t+ t

H
T t tw = (ψ - 1)λ rn t + w - ln  kψ φ

φ∆ ∆

⎛ ⎞+
∆ ⎜ ⎟+⎝ ⎠

The transformed subjective probabilities evolve following (13), where k)t is investment in )t.

In this model individual learning follows a stochastic process with independent  increments. It

is interesting to note that this process is a well-known description of individual learning in cognitive

psychology. That literature looks, for example, at how people identify objects looking at pictures. In

much of the literature individuals are modeled as learning through random sampling. This

characterization of the learning process is then used to explain laboratory evidence on individual

response times and error rates. The present paper shows that even with fully rational agents, group

behavior will resemble the individual behavior of boundedly rational agents of the type used in

cognitive psychology.12

The transformation (12) of the lower bound given by (5), of the upper bound given by (6) and

of the starting point given by (3) yield :

The lower bound: q_ Y w_ w_ =  (14)L Hln(-V ) - lnV

The upper bound: q
_
  Y w

_
  w

_
 = (15)L Hln(-V ) - lnV - ln(1 - δ)



13See Kleinrock (1976) for a textbook derivation and Gaver (1968) for the original
contribution. This is known as the “heavy-traffic diffusion approximation.”A heavy-traffic queue
is one in which the average arrival rate of customers is close to the capacity of the server. In queuing
theory this is important for the approximation because otherwise the queue length would have a
mass point at zero length. This issue does not arise here because the game will effectively end when
either of the boundaries are hit. Here we have absorbing boundaries rather than the reflective
boundary of a queue.
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The starting point: q0 Y w0 w0 = (16)* *lnq - ln(1 - q ) - lnψ

Since initially the expected value of the project is positive (4), w_ <w0. And w0 <w
_
 examining (6) and

(3) together.

5.2. Boundary Crossing Probabilities with constant 8

The transformed subjective probabilities follow equation (13) where the error term k)t is distributed

Poisson with the parameter  (rn8T +N8T rnH))t.  Both the mean and the variance of the process depend

on 8T and hence they depend on the history of the game. They are not constant. 

Now we are going to examine a different process. In this modified problem we will examine

the processes described by equations (13) and (7) and (8) yet with a constant 80(0,1), implying a

constant Poisson parameter. Section 5.3 will prove that the process with the endogenously-determined

non-constant 8 will yield identical boundary crossing probabilities as in this modified problem with

fixed 8. 

With a constant 8, equation (13) implies that wt evolves in the same way as the queue length

in a standard M/D/1 queue. An M/D/1 queue has exponential arrivals, so the distribution of new

customers over an interval )t is Poisson, and one server who takes a deterministic amount of time to

serve a customer. Here we will make use of the standard results for the queue length for heavy-traffic

M/D/1 queues and approximate the evolution of wt as a Brownian Motion13:

(17)*
t+ t t tw w + k∆ ∆≈
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where k)t
* is distributed normal with mean :ªt and variance F2ªt:

  (18) 
1

1

H H

2

2 H H

H *
t

    µ = ψ - 1 - (1+ )ln λrn       

     (σ ) = (1+ ) ln λ rn

,
when V = V        k ~ N∆

+

+

+

+

⎛ ⎞⎧
⎜ ⎟⎪ ⎝ ⎠⎪

⎨
⎛ ⎞⎪
⎜ ⎟⎪⎩ ⎝ ⎠

ψ φ
φ

φ

ψ φ
φ

φ

(19)
1

)
1

,L H

2

2 L H

L *
t

    µ = ψ - 1 - (ψ+ )ln λ rn

    (σ = (ψ+ ) ln λrn   

when V = V        k ~ N

ψ φ
φ

φ

ψ φ
φ

φ

∆

+

+

+

+

⎛ ⎞⎧
⎜ ⎟⎪ ⎝ ⎠⎪

⎨
⎛ ⎞⎪
⎜ ⎟⎪⎩ ⎝ ⎠

:H>0 by Claim A1, and :L<0 by Claim A2 in the Appendix.

It is important to emphasize the limitations of this approximation. It is a good approximation

for a high expected rate of investment. This will happen with a high N (high numbers of noise traders).

Keeping the rate of information flow 8 constant, an increase in N leads to a weaker drift. That is the

positive drift :H declines and the negative drift :L increases. The higher N the less informative a single

observation is about the true value of the project.  Both (F2)H and (F2)L go down with an increase in N,

keeping 8 constant. Each observation has less informational content, hence beliefs don’t get updated

as much. Therefore keeping 8 constant, an increase in N would make agents strictly prefer to wait.

Since in equilibrium agents are just indifferent between investing and waiting, a higher N must be

associated with a higher 8. Moreover as  Hence for a given )t and qT, there is a,Tq q→ .T rnλ → ∞

N that will yield a high enough Poisson parameter (rn8T +N8T rnH))t so that the normal approximation

is reasonable. For any finite N there will be a range where the approximation is not( , ]Tq q q∈ %

reasonable. Notice however that 8 only changes at , so by increasing N and hence decreasing wet∈Z q%



14See for example Karlin and Taylor (1975) for the derivation.
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can make the probability of ever encountering  small. Brownian Motion also requires that( , ]Tq q q∈ %

the normal approximation holds as )t60. Just as in queuing theory there is no set of parameters where

this is the case, hence as in queuing theory it will always be an approximation.

The standard boundary crossing probabilities for Brownian motion yield the following results.14

i) Probability of hitting w_ before w
_
 when V=VH:

(20) ( ) ( ) ( ) ( )

HH H H
0

2 H 2 H 2 H 2 H
-2µ w-2µ w -2µ w -2µ w

=HProb( w before w V =V ) 1- e - e e - eσ σ σ σ
⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎣ ⎦

Multiply the numerator and the denominator of (20) by . Plug in Equations (18), (14),2  (

H

H
2µ wexp

)σ

⎛ ⎞
⎜ ⎟
⎝ ⎠

(15) and(16) for w_, w
_
, w0 , :H and (F2)H:

(21)
H * * H L

H

2 (ln(1-q )-lnq +lnψ-lnV +ln(-V )

2 ln(1-δ)
=HProb( w before w V =V ) 1- e1-

1- e

ϕ

ϕ

⎡ ⎤
⎢ ⎥⎣ ⎦⎛ ⎞

⎜ ⎟
⎜ ⎟
⎝ ⎠

where . By Claim A1 in Appendix A, :H >0. So nH>0.
H

H
2 H

µ
(σ )

ϕ ≡

ii) Probability of hitting w_ before w
_
 when V=VL:

(22)( ) ( ) ( ) ( )

LL L L
0

2 L 2 L 2 L 2 L
-2µ w-2µ w -2µ w -2µ w

= e - e e - eLProb( w before w V =V ) /σ σ σ σ
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

Plug in (19), (14), (15), (16) into (22):

(23)
L * * H L

L

2 (ln(1-q )-lnq +lnψ -ln(V )+ln(-V )

2 ln(1-δ)
LProb( w before w V = V )

1 - e
=

1 - e

ϕ

ϕ

⎡ ⎤
⎣ ⎦
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where . By Claim A2 in Appendix A, :L <0. So nL <0.
L

L
2 L

µ
(σ )

ϕ ≡

Before proceeding to the next subsection it is crucial to notice that nH and nL are independent

of 8, from (18) and (19). While an increase in 8 leads to an increase in :, it also leads to an increase

in F2. And these two effects counterbalance each other in the determination of the boundary crossing

probabilities. Hence these probabilities are independent of 8.

5.3.  Inefficient Cascade Probabilities for the Original Problem

PROPOSITION 2: The boundary crossing probabilities of the original problem are equal to the
boundary crossing probabilities found using a Brownian Motion, (21) and (23) of the modified
problem.

Proof: 

In the actual learning process, the 8 is updated at each decision node. The process is a series of one

period Brownian Motions. The boundary crossing probabilities for this process can be reconstructed

iteratively using Lemma B1 in Appendix B. Starting with the Brownian Motion with absorbing

boundaries defined in  (14) and (15) and the starting point given by (16), create a process where the

parameter changes to (which is stochastic) at T=1 and stays constant thereafter. From Lemma B1,λ λ′

this new process has the same transition probabilities as the original process. Iterating this argument

yields the result.

~

Denote the probability of an inefficient negative cascade by Prob(INC) which is equal to the

probability that the process hits q_ before q
_
 when V= VH. By Propostion 2, Prob(INC) is given by

equation (21). 



15 In an exogenous-timing herding framework Welch (1992) shows that as the prior expected
value from investment goes up, there is a greater chance that society ends up in a positive cascade
since early movers are more likely to invest.
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Prob(IPC) denotes the probability of an inefficient positive cascade and it is the probability that

the process hits q
_
 before q_ when V= VL. By Proposition 2, Prob(INC) is given by equation (23).

6. Comparative Statics

6.1. The Prior Expected Value:

When there is potentially a lot to gain (VH8) or little to loose (VL8), much would be lost in expectation

due to discounting while waiting. So the agent would be more prone to investing before he is certain

it is a good project (hence q
_
9). And the belief about the odds of the project being a high value project

does not need to be as high for the agent to strictly prefer to wait (so q_9). Therefore the probability of

hitting the upper bound before hitting the lower bound increases. The likelihood of an inefficient

positive cascade goes up and the likelihood of an inefficient negative cascade goes down.15

As the prior expected value of the project goes up due to an increase in q*, the upper bound q
_

and the lower bound q_ are unaffected, by (6) and (5). Being closer to the upper bound to begin with,

the agents require less evidence in their learning process to strictly prefer investment. Hence they are

more likely to invest when the prior improves.

 

PROPOSITION 3: As the prior expected value increases (q*8or VH8 or VL8), it becomes more likely that
all agents with an option undertake the project. It becomes less likely that there is an investment
collapse when the true value is high, Prob(INC)9. It becomes more likely that there is an investment
boom when the true value is low, Prob(IPC)8. 

Proof: Appendix C.
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6.2. Discounting:

Discounting doesn’t play a role in exogenous-timing models. Examination of this issue requires an

endogenous-timing model. The agent makes a choice between investing now or later. If the agent waits,

he can learn by observing other people’s actions, however the payoff gets discounted.  All else

constant, as people get more patient (* 8), they will be more willing to wait. Since waiting induces

learning, one might be tempted to conclude that higher * would be associated with a smaller probability

of an erroneous mass behavior. However this is not the case. In fact the probability of an inefficient

negative cascade goes up. Chamley and Gale (1994) show that for *=1there is a weakness of the

investment process in the direction of underinvestment. Proposition 4 extends this result to comparative

statics over the whole range of *.

PROPOSITION 4: As agents become more patient (*8), it becomes more likely that agents do not
undertake the investment project. It becomes more likely that there is an investment collapse,
Prob(INC)8, when the true value is high. It becomes less likely that there is an investment boom,
Prob(IPC)9, when the true value is low.

Proof: 

The probability of an inefficient negative cascade goes up as * goes up,

(24)( )
( )

H2 ln(1-δ)H2 e
- Prob(INC) 0H2 ln(1-δ)(1 - δ) 1 - e

 1 >
dProb(INC)

=
dδ

ϕϕ

ϕ

On the other hand, the probability of an inefficient positive cascade goes down as * goes up.

(25) ~( )
L2 ln(1-δ)L2 e

- Prob(IPC) < 0L2 ln(1-δ)(1 - δ) 1 - e
 

dProb(IPC)
=

dδ

ϕϕ

ϕ



16See Chamley (2004) for a simple two period two agent example. If V=VH, both people have
an option. If the V=VL, only one agent has an option. In equilibrium, the agent if not invested in the
first period would invest in the second period only if he observes investment in the first period.
When * goes up, the equilibrium probability if investment in the first period goes down, making an
investment collapse more likely even if the true value is high. 
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An increase in *  has a two effects. The first effect is through the rate of information flow 8.

As agents get more patient, at the ongoing information flow, they would strictly prefer to wait. So the

rate of information flow goes down such that people are just indifferent between waiting and

investing.16 

However this first effect has no influence on the probability of inefficient cascades in this

framework. When the true value of the project is high V=VH, a weaker information flow implies a

weaker drift velocity :H which simply increases the likelihood of a negative cascade. However at the

same time the weaker information flow decreases the noise (F2)H in the learning process. Each

observation will have a smaller influence on the updating process. This reduces the likelihood of a

negative cascade. And these two opposing effects exactly counterbalance each other. 8 cancels out from

the probability of inefficient cascade (see equations (21) and (23)). The indirect effect through the

information flow is therefore nullified. The spirit of the story is the same for the case when V=VL.

The second effect of an increase in * is through the upper bound. A higher * yields a higher

upper bound q
_
, leaving the starting point and the lower bound unchanged. Since investors are more

patient, they are willing to wait until they are almost certain about the project before they buy. This

makes an inefficient negative cascade more likely, and an inefficient positive cascade less likely.  

This comparative statics result suggests that financial markets might be more prone to

inefficient collapses than real markets. Once an investment order is given, the payoff can be collected

only at the end of the period. Keeping the rate of time preference constant, as the time to process

investment decisions increases so does the distance between the time periods in the model, leading to

a lower *. In financial markets, the administrative and technological systems may be faster to react to



17See equations (3) and (4).
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agents investment decisions than in real markets. Hence in financial markets the relevant * would be

larger than in real markets leading to a higher likelihood of an inefficient collapse. 

6.3. Quality of Information:

The leading model of Bikhchandani, Hirshleifer and Welch (1992) shows that as signal quality goes

up, inefficient negative and positive cascade probabilities go down. The effect is monotonic. Here, this

not the case. An increase in the signal quality does of course unambiguously improve the expected

value of the game to the market participants.17 But the probabilities of inefficient cascades may go up

or down depending on the parameter values. Result 1 in Bikhchandani, Hirshleifer and Welch (1992)

is closely related. It shows that all agents after the second are better off when the first agent’s signal

quality (expertise) is slightly decreased. This results in more information  for later individuals as it

decreases the probability that a cascade forms after just two individuals. A related issue arises here

when the starting belief is close to one of the boundaries.

To understand the role of signal quality in this framework, first notice that agents who receive

an investment option would all undertake the investment if there were no social learning. It is through

social learning that the possibility of an investment collapse arises. The increase in signal quality

affects the outcome of the game through two channels; i) Self-confidence: It increases the confidence

of the agent in his own signal. Keeping the level of signal quality of the rest of the people constant, as

the signal quality of the agent goes up, the agent is more likely to undertake the project, hence

Prob(INC)9 and Prob(IPC)8. ii) Confidence in observational learning: It increases the confidence of

the agent in observational learning since each individual has a high quality signal. Now keeping the

signal quality of the agent constant, as the signal quality of the rest of the players increases the agent



18This is consistent with the discussion in the previous paragraph since an increase in R
represents a deterioration in signal quality.
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becomes more likely not to undertake the project, hence Prob(INC)8 and Prob(IPC)9. These two

channels with opposing forces can be examined below. 

Let us first examine the probability of an inefficient negative cascade. Equation (20) can  be

rewritten as:  

(26)
)

)
1

H
0

H

2 ( w-w

2 ( w-w

1 - eProb(INC)=
1- e

ϕ

ϕ
−

From (14) and (15) notice that w_ and w
_
 are independent of R. So,

(27)0

0

Pr ( ) Pr ( ) Pr ( ) H

H
wd ob INC ob INC ob INC

d w
ϕ

ψ ψ ϕ ψ
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∂∂ ∂ ∂= +
∂ ∂ ∂ ∂

The first term relates to the first channel; self-confidence. It is the effect of R on the probability of an

inefficient negative cascade through the agents’s belief before the observational learning starts (w0).

It is positive by Claim C3 in Appendix C.18 The second term relates to the second channel; confidence

in observational learning. It is negative by Claim C1 and C4 in Appendix C. Therefore there are two

forces working in opposite directions.

Let us now examine the probability of an inefficient positive cascade. Rewrite (22) as,

(28)
)

)

L
0

L

2 ( w-w

2 ( w-w
Prob(IPC)

1- e=
1- e

ϕ

ϕ
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So,

(29)0

0

Pr ( ) Pr ( ) Pr ( ) L

L

wd ob IPC ob IPC ob IPC
d w

⎛ ⎞ ⎛ ⎞∂∂ ∂ ∂
= +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

ϕ
ψ ψ ϕ ψ

The first term is negative by Claim C5 in Appendix C. It relates to the first channel. The second term

relates to the second channel. It is positive by Claim C2 and Claim C6 in Appendix C. Hence there are

two opposing effects.

PROPOSITION 5: As the signal quality improves , the likelihood of an inefficient positive cascade1
ψ
⎛ ⎞

↑⎜ ⎟
⎝ ⎠and the likelihood of an inefficient negative cascade might go up or down depending on the parameter

values. 

Proof: Appendix C

Proposition 5 is proven in two steps. The first step proves that >0, when w06w_ andPr ( )d ob INC
dψ

 <0 when w0 is not to close to either of the bounds, w_<<w0<<w
_
. The second step provesPr ( )d ob INC

dψ
that <0, when w06w

_
 .  when w0 is not to close to either of the bounds,Pr ( )d ob IPC

dψ
Pr ( ) 0d ob IPC

dψ
>

w_<<w0<<w
_
. Depending on the initial belief of the agent with an option, the effect of an increase in

signal quality through confidence in observational learning can dominate the effect through self-

confidence. If the agent does not have a strong initial belief (such that w0 is not too close to either of

the bounds) the social learning channel becomes more important in determining the direction of the

effect of signal quality on the outcome of the game. An increase in signal quality can lead to an increase

in the probability of inefficient herding. Investment is stochastic by the very nature of the game. Even

when the true value of the project is high, it is possible to get a few bad draws in a row. In such a case,

when the signal quality is high, the agent will heavily update his beliefs possibly leading to an



19On the other hand, naturally if signal quality is high, it would be less likely to have bad
draws when the true value is high. 

20As the signal quality goes up, it is more likely that the first movers pick the correct choice
and the confidence in observational learning increases. But this implies that the agent will be more
likely to go with the “trustworthy” crowd which is bad news if the early movers happen to have
picked the incorrect choice. If some agents’ signal quality is unboundedly high then there is no
chance of this occurring, see Rogers (2005). Also see De Vany and Lee (2001). Nelson (2002) looks
at a related but different aspect of signal quality. The simulation results indicate that in a changing
environment, the  frequency of herding is non-monotone in signal quality.

21Avery and Zemsky (1998) show that herd behavior can lead to a significant short-run
mispricing of financial assets. See Dremann, Oechssler and Roider (2005) for an experimental
analysis of Avery and Zemsky (1998).
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investment collapse.19 If however the signal quality were lower, the agent would need to collect more

evidence before he strictly preferred to wait.20

7. Conclusion

Knowledge of the direction and the magnitude of comparative statics results on the probability of a

collapse is essential in herd manipulation. The pricing decision of a firm introducing a new technology,

the advertising policy affecting the signal quality may be some of the key elements in manipulating the

outcome of the social learning game. In financial markets, one of the objectives of regulatory bodies

may be to reduce the probability of sudden crashes.21 While the tools available to the regulatory body

for herd manipulation are typically restricted there is some room for relevant regulation. Accounting

standards affect the signal quality, transaction taxes affect the expected value, the closing and opening

times as well as the time of delay for payments of the payoffs affect discounting.

The advantage of analyzing the likelihood of inefficient cascades arises when there are

externalities from the market to society at large. In these cases looking at the ex-ante utility of the

players directly involved in the game insufficient for welfare analysis. For example, bank panics,

capital flight and stock market crashes have external consequences which may induce a social planner
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to place a greater weight on inefficient negative cascades than an individual investor. In other markets

the party designing the structure of the market may not have an incentive to weigh all market

participants equally. In the IPO market, for example, the features of the market are not controlled by

a central planner, but rather by the firms offering companies for public sale. These companies may try

to increase the probability of a positive cascade. Results on the probabilities of inefficient outcomes

are a potentially useful building block for welfare and policy analysis in markets with such external

effects. 
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APPENDIX

Appendix A: 

Claim A1: .)
1

H H H= ψ - 1 - (1+ lnµ > 0 where µ rnφ
⎛ ⎞ψ + φ

λ⎜ ⎟+ φ⎝ ⎠

Proof: Define .  Note that f(1)=0. )( )
1

ψ - 1 - (1+ lnf φ
ψ φψ

φ
⎛ ⎞+

= ⎜ ⎟+⎝ ⎠

Since Y f(R)>0 for 0<R<1. So, . ~
- 1f  ' (ψ)= < 0

ψ+
ψ

φ
H > 0µ

Claim A2: .0
1

L L Hµ where µ = ψ - 1 - (ψ+ )ln rn⎛ ⎞ψ + φ
< φ λ⎜ ⎟+ φ⎝ ⎠

Proof: Define . Note that f(1)=0. ( )
1

f ψ - 1 - (ψ+ )lnψ φψ φ
φ

⎛ ⎞+
= ⎜ ⎟+⎝ ⎠

Since Y f(R) <0 for 0<R<1. So, . ~'( ) ln 0
1

f ψ φψ
φ
+

= − >
+

L < 0µ

Appendix B:

Lemma B1: Let be a Brownian Motion with absorbing boundaries as defined in (14) and (15),( )tw λ
: and F2 as defined in (18) and (19) and with starting point . Let  be another process( , )Tw w w∈ tw%
with the same form and parameters as wt up to some possibly stochastic time at which time theTτ >
parameter  is replaced by  which may also be stochastic. Both and yield the sameλ ,λ′ ( )tw λ tw%
probabilities of hitting the boundaries (21) and (23). 

Proof: Define  as the joint p.d.f. of and conditional on not hitting either boundaryb( , , )wττ λ ′ ,τ wτ λ ′
in Define as the probability starting from that process hits the boundary before.t τ≤ ( )Tw wP λ → Tw w

Since is a standard Brownian Motion is given by .w ( )tw λ
0 ( )w wP →λ

(30)2 2 2 2

( )0

0

w w

-2µw-2µw -2µ w -2µ w

P = 1 - e - e e - e/λ
σ σ σ σ

→

⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

and  These depend on 8 only through the ratio Hence the probabilities( ) ( )1 .
t tw w w wP Pλ λ→ →= − 2/ .µ σ

of hitting the boundaries do not depend on 8.  Although the date as no special relevance to( )tw λ τ
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this process we can still decomposed this probability into the probability that it transitions before or
at and the probability it transitions after   τ :τ

 (31)
0 0

0 0

( ) ( )

( )( ) ( )1 b( , , )

w w w wt

w ww wt w wt
w

P P

P P P w d dw d
τ

τ

λ λ τ

τ τλλ τ λ τ
τ λ

τ λ τ λ

→ → ≤

→→ ≤ → ≤
′

⎡ ⎤
⎢ ⎥⎣ ⎦

=

+ − − ⋅ ⋅ ⋅′ ′∫ ∫ ∫

While we know the left-hand side of this, the formulas for the conditional probabilities and p.d.f.s on
the right-hand side are unknown. However, since starts off as the same process we can similarlytw%
decompose its probability as:

(32)
0 0

0 0

( )

( )( ) ( )1 b( , , )

w w w w t

w ww w t w w t
w

P P

P P P w d dw d
τ

τ

λ τ

λ τ τλ τ λ τ
τ λ

τ λ τ λ

→ → ≤

′ →→ ≤ → ≤
′

=

⎡ ⎤ ′ ′+ − − ⋅ ⋅ ⋅⎣ ⎦ ∫ ∫ ∫
%

Here both the left and right-hand side probabilities are unknown. Nevertheless, since it is the same
process up to these conditional probabilities and p.d.f.s are the same as in (31) with the exceptionτ
of the continuation probabilities in the integrals. Note however these are simply the probabilities for
Brownian Motion starting from with parameter and hence for each potential realization of wτ λ ′ wτ

and the probability can be found from (30) by substituting  for As before cancels out fromλ′ wτ 0.w λ′
these probabilities. Therefore each in equation (32) is equal to the corresponding ( )w wP

τ λ ′ → ( )w wP
τ λ →

in (31) and hence The same argument shows that which completes
0 0( ) .w w w wP Pλ → →= % 0 0( ) ,w w w wP Pλ → →= %

the proof of the lemma.
~

Proposition B1: The equilibrium of the game with any finite set ' of possible contingency trigger
points  which contains and , will yield the same transition probabilities as the baseline model. q q

Proof: From the baseline model where  add one contingency trigger point  If q'> q
_
 or q'<{ },q qΓ = .q′

q_  then the state would never be reached in the baseline equilibrium. We can construct a parallelq′
equilibrium where no agent chooses to have a contingency triggered at Hence the edition of will.q′ q′
not change the transition probabilities. 

If then some agents may choose to set contingency triggers there. Let( , )q q q′∈
henceforth B, be the probability that an individual agent chooses to set a contingency trigger( , ),Tq tπ

at This may be either to buy or to cancel an impending order. Note that may depend on t since.q′ π
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for a given number of impending orders the time remaining in the period will determine the rate of
information flow during the rest of the period which in tern influences the expected value of waiting.
The same argument used for implies that B<1.  If is a buy trigger and B=1 then each individualλ q′
would prefer to wait since If it is a wait trigger and B=1 then each individual would prefer to.q q′ <
buy since  .q q′ >

Moreover if the agents are using as a buy trigger then rBnH must be finite for allq′
contingencies which may be hit with non-negligible probability. If not then if the contingency is
triggered at any t<T+1-g  the true value of n, and hence V, would be revealed with certainty by the end
of the period. Since each individual would prefer to wait when the state will be revealed withq q′ <
certainty.

So either the addition of has no effect on the outcome in the period (B=0) or in equilibriumq′
each individual will be indifferent between using it as a trigger or not and the number of agents with
outstanding buy orders at each contingency trigger point will be drawn from a Poisson distribution
with finite mean. So the addition of the contingency will cause 8 to change when it is triggered. But by
Lemma C1 this new process has the same transition probabilities as the original process. Iterating the
argument allows us to add any finite number of contingency trigger points to the set '  without altering
the transition probabilities.

~

Appendix C:

Claim C1:  where   0
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+

= − + + + +
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+ + +
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+ +

'(1) 0f =
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1''( ) 0
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ψ φ
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+
'( ) 0f ψ > 0
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d
ϕ
ψ

>
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Ld
d

ψ φψ ψ φ
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Proof: have the same numerator.  In Lemma A3, it is shown that the numerator is
L Hd dand

d d
ϕ ϕ
ψ ψ

negative. Since the denominator is negative as well, . ~ 0
Ld

d
ϕ
ψ

>

Claim C3: The first term of (27) is positive, .0

0

Pr ( ) 0ob INC w
w ψ

∂ ∂
>
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Proof:   , since . And . ~
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2 ( )
0

Pr ( ) 2 0
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w w
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w e

ϕ

ϕ
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−

∂
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∂
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< =− −⎢ ⎥∂ ∂ − −⎢ ⎥⎣ ⎦

Proof: The term inside the brackets is positive. Examine the properties of the following function:

Let where x>w_ . Then notice that the term inside the brackets is equal to( )g x =
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2 ( w x
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w x e
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ϕ

ϕ
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Claim C6: 
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Proof of Proposition 3 (Prior Expected Value): 
The prior expected value increases due to q*8or VH 8 or VL 8.

First notice that since nH>0 and since nL<0.( )H2 ln(1-δ)1 - e > 0ϕ ( )L2 ln(1-δ)1 - e < 0ϕ

The comparative statics are as follows:

  Pr ( ) 0
*

d ob INC and
dq

<
Pr ( ) 0
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dq
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Pr ( ) 0H
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Pr ( ) 0H
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Pr ( ) 0L
d ob IPC

dV
>
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Comparative statics with respect to q*:
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Proof of Proposition 5 (Signal Quality):

Step 1:  >0, when w06w_ .  when w0 is not to close to either of the bounds,Pr ( )d ob INC
dψ

Pr ( ) 0d ob INC
dψ

<

w_<<w0<< w
_
. 

Proof:

i) >0, when w06w_ .Pr ( )d ob INC
dψ

w0 is a function of q*. All other terms, w_, w
_
, :H and (F2)H in (20) are invariant of q*. w06 w_ is

equivalent to . When w06w_ the second term of (27), goes to zero. The*ln ln( ) ln( ) ln
1 *

L Hq V V
q

→ − − +
−

ψ

first term remains positive. Hence  when w06w_ .Pr ( ) 0d ob INC
dψ

>
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ii) when w0 is not to close to either of the bounds, w_<<w0<< w
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From Claim C1 and C3:
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The multiplicative term outside the parenthesis is positive. Inside the parentheses nH>0 and   0
H∂ϕ
>

∂ψ

by Claim C1. By picking q* we can have w0 as big as we like and we can still maintain g(w
_
)= 0
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