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Abstract

In synthetic cohort models (cross-sectional data grouped at the cohort and year level), researchers often ignore

potential biases induced by sampling error because they have 100 or 200 observations per group. I investigate

small sample biases in the context of two synthetic cohort labor supply applications � a model of intertemporal

labor supply of men (similar to that of Browning, Deaton, and Irish, 1985) and a female labor supply model

(similar to that of Blundell, Duncan, and Meghir, 1998). My approach is to use the Current Population Survey

to compare the estimates when group sizes are extremely large to those that arise from randomly drawing

subsamples of observations from the large groups. This provides a natural framework for examining the extent

of small sample biases and the group sizes required so that small sample biases are negligible. I augment this

approach with Monte Carlo analysis so as to precisely quantify biases and coverage rates. I �nd that, in these

two applications, thousands of observations per group are required before small sample issues can be ignored

in estimation. In these applications, sampling error leads one to underestimate intertemporal labor supply

elasticities for men, and conclude that the income response of female labor supply is zero or tiny when in fact

it is quite large.



1 Introduction

Research on labor supply often uses panel data to control for unobserved individual effects. While this approach

has many advantages, panel data are not always available. An alternative approach uses synthetic cohorts

(cross-sectional data grouped at the cohort and year level) to control for time-invariant but unobserved effects.1

Because this synthetic cohort approach provides consistent estimates even if the individual effects are correlated

with the explanatory variables, it is widely used in labor supply estimation and in other areas of labor economics.

Unfortunately, these models are potentially biased because of sampling error when group sizes are small

(Deaton, 1985). Results in the theoretical literature suggest that sampling error is not a problem in practice

when there are at least 100 to 200 observations per group (Verbeek and Nijman 1992, 1993) and empirical

researchers have typically not corrected for sampling error with group sizes of this magnitude.2 In this paper, I

show that this conclusion is not necessarily correct.

I investigate small sample biases in the context of two synthetic cohort applications � a model of intertem-

poral labor supply of men, and a female labor supply model. These applications contribute to the empirical

literature by providing new estimates of labor supply elasticities using U.S. data from the Current Population

Survey (CPS). My approach is to compare the estimates when group sizes are extremely large to those that arise

from randomly drawing subsamples of observations from the large groups. This provides a natural framework

for examining the extent of small sample biases and the group sizes required so that small sample biases are

negligible. I augment this approach with Monte Carlo analysis so as to precisely quantify biases and coverage

rates. I �nd that, in these two applications, thousands of observations per group are required before small sam-

ple issues can be ignored in estimation. In these data, sampling error leads one to underestimate intertemporal

labor supply elasticities for men, and conclude that the income response of female labor supply is zero or tiny
1Even when panel data are available, sample sizes tend to be small, and they often suffer from serious attrition that leads to selection

problems. Also, measurement error can be a major problem in �xed effects models in true panels.
2Blundell, Duncan, and Meghir (1998) report an average group size of 142 individuals in their study of female labor supply in the

United Kingdom. Browning, Deaton, and Irish (1985) study male labor supply with an average group size of 190. Propper, Rees, and
Green (2001) study the demand for private medical insurance using a synthetic cohort approach and group sizes that average about 80
people. None of these studies use estimation methods that are robust to sampling error.
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when in fact it is quite large.

A further goal of the paper is to examine the performance of possible indicators of small sample bias in

synthetic cohort models. I �nd that �rst stage F statistics are of limited value as it is not clear how large

they need to be. I propose a related indicator that is closely related to the reliability ratio from the classical

measurement error literature but is based on small-sample bias calculations rather than asymptotics as the

number of groups goes to in�nity. I apply the bias indicator to the two labor supply applications and also to the

important female labor supply study of Blundell, Duncan, and Meghir (1998).

2 Model and Estimators

Consider the following linear model where i indexes individual, and t indexes time:

yi t D x 0i t� C �i C ui t i D 1; :::; N t D 1; :::; T (1)

where xi t is a k-dimensional column vector of exogenous variables, � is a k-dimensional parameter vector, and

�i is an individual effect. The error term, ui t , is assumed to be uncorrelated with xi t and �i . The available

data are a set of repeated cross-sections. Since the same individuals are not observed over time, one cannot use

standard �xed effects methods to allow �i to be correlated with xi t . Deaton (1985) proposed identifying � by

dividing the data into groups of cohorts indexed by c, e.g. men born between 1960 and 1965. In a �nite sample,

taking means by cohort-year gives the following:

yct D x 0ct� C �ct C uct (2)

The sample mean of x for group ct .xct/ is the mean of x over sample observations in cohort c at time t . The

standard synthetic cohort approach is to replace �ct with cohort dummies and estimate equation (2) by OLS or

weighted least squares (if there are different numbers of observations in different groups). This estimator has
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been called the ef�cient Wald estimator (Angrist, 1991). For brevity, I refer to it as the EWALD estimator in

this paper. This estimator provides consistent estimates as N goes to in�nity even if �i is correlated with xi t .

Deaton notes that the EWALD estimator yields biased estimates for �nite N because the cohort effect .�ct/ is

not constant over time due to different individuals being sampled in the cohort in different time periods. That

is, EWALD is biased in small samples because cov.�ct � �c; xct/ 6D 0, where �c is the true cohort effect.

Taking expectations of equation (1) conditional on cohort and year gives the cohort population version:

yct D x 0ct� C �c C uct (3)

Here yct and xct denote the population means of y and x , respectively, in cohort c at time t . Since the population

in each cohort is assumed �xed over time, the cohort effect (�c) is constant over time and can be replaced by

cohort dummies. Now, the small sample bias of EWALD can be interpreted as a measurement error problem as

xct and yct are error-ridden measures of xct and yct .3

To de�ne the estimators, I follow Deaton in stacking cohorts and surveys into a single index g (for cohort-

year groups), that runs from 1 to G (which equals CT ), and absorbing the cohort dummies into the x matrix.

So now, equation (2) becomes

yg D x 0g� C ug (4)

Assume that the sampling error has the following structure, where yg is the population mean of y in group g,

and xg is the equivalent population mean of x :

�
yg � yg
x g � xg

�
~i id

0BB@0; 1ng
2664 � 00 � 0

� 6

3775
1CCA (5)

3Ridder and Mof�tt (2003) provide a similar exposition of the source of EWALD bias.
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One can de�ne the EWALD estimator as:

�EW ALD D

 
GX
gD1
ngx gx 0g

!�1  GX
gD1
ngx g yg

!
(6)

Deaton (1985) shows that one can consistently estimate � as G goes to in�nity with ng �xed using the following

errors in variables estimator (EVE):4

�EV E D

 
GX
gD1
ngx gx 0g � Gb6

!�1  GX
gD1
ngx g yg � Gb�

!
(7)

Here, b6 andb� are sample estimates of the relevant population parameters.
Devereux (2006) shows that the EVE estimator is biased in �nite samples and suggests an alternative errors-

in-variables estimator (UEVE) that is approximately unbiased to order 1N :

�UEV E D

 
GX
gD1
ngx gx 0g � .G � K � 1/b6

!�1  GX
gD1
ngx g y0g � .G � K � 1/b�

!
(8)

In addition to the estimators discussed above, I also report estimates from a version of EVE suggested by

Verbeek and Nijman (1993). They show that EVE2 is consistent as the number of cohorts goes to in�nity:

�EV E2 D

 
GX
gD1
ngx gx 0g �

�
T � 1
T

�
Gb6!�1  GX

gD1
ngx g yg �

�
T � 1
T

�
Gb�! (9)

Additionally, I implement the Limited Information Maximum Likelihood Estimator (LIML). The LIML

estimator (Anderson and Rubin, 1949, 1950) is well known and provides a useful comparison to EWALD.
4Angrist and Krueger (1995), Bekker (1994), and Bekker and van der Ploeg (1999) also take a group asymptotic approach to

consistency.

4



3 Indicators of small sample bias in EWALD

It is useful to have indicators of the likely bias of EWALD that researchers can report in practical applications

and readers of applied work can calculate from published results. In this section, I suggest one such measure.

One approach to assessing the bias of EWALD is to compare the EWALD estimate to that of the bias-

corrected estimators. Of these, Deaton's EVE is biased in �nite samples (Verbeek and Nijman, 1993; Devereux,

2006), and LIML, as shall be seen in the applications, is sensitive to misspeci�cation. Thus, a natural compari-

son is to UEVE, which is approximately unbiased in �nite samples. However, when group sizes are small and

identi�cation is weak, UEVE estimates can be highly variable and any one estimate may give little indication

about the magnitude and direction of bias of EWALD.

My approach is to concentrate on the denominator of the UEVE and EWALD estimators. De�ne 3kk as

the element in the kth row and kth column of

 
GP
gD1
ngx gx 0g

!�1
, and 9kk as the element in the kth row and kth

column of

 
GP
gD1
ngx gx 0g � .G � K � 1/b6

!�1
. Then, for the kth element of x g consider

�k D
3kk

9kk
(10)

If �k equals one, it suggests that there is no bias in the EWALD estimator of �k coming through the denominator.

As sampling error in x g becomes more important, �k goes towards 0. In perverse cases where sampling error is

really severe and the relevant element of

 
GP
gD1
ngx gx 0g � .G � K � 1/b6

!�1
is negative, �k is negative.

To get a sense about how �k differs from an indicator based on the equivalent group-asymptotic approxima-

tion, consider an example where there is one right hand side variable plus a constant. In this situation,

�k D
3kk � .G � K � 1/b6kk

3kk
(11)

while the equivalent indicator based on group asymptotic formula is 3kk�Gb6kk
3kk

, the reliability ratio from the
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classical measurement error literature. That is, �k builds on the standard formulae by using a small sample

correction rather than the group-asymptotic approximation.

In addition, �k is closely related to the �rst stage F statistic from the instrumental variables literature. The

EWALD estimator has been shown (for example, by Durbin (1954) in the two-group case and Angrist (1991)

in the general case) to be identical to the two stage least squares estimator (2SLS) in the case where estimation

uses the microdata and group dummies are used as instruments. Thus, it is natural to report the F statistic

for the excluded instruments in the �rst stage (the regression of xi t on the group indicators) as a measure of

instrumental relevance (Staiger and Stock, 1997).

The �rst stage F statistic is closely related to the �k measure. For tractibility, consider the case where there

is only the constant term plus one additional right hand side variable (the kth variable) and there are the same

number of observations in each group. The F statistic for the excluded instruments in the �rst stage regression

is easily calculated as

Fk D
�

1
1� �k

��
G � K � 1
G � 1

�
(12)

The advantage of �k over the F statistic is that it provides an estimate of the degree of bias. Both the F statistic

and �k share the disadvantage that a weak value does not necessarily imply bias. In instrumental variables

estimation, if the true coef�cient and the OLS estimate are the same, 2SLS is not biased even if the F statistic

is very low. Analogously, in the synthetic cohort case, if the explanatory variables are uncorrelated with the

unobserved heterogeneity, EWALD is not biased even if �k is close to zero. That is, since we are only capturing

bias from the denominator and in general � 6D 0, �k does not provide an exact approximation to the degree of

bias in EWALD. However, a value of �k that is much smaller than one suggests that researchers should take

small sample issues seriously.
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4 Application 1: Intertemporal Male Labor Supply

MaCurdy (1981) shows that the intertemporal Frisch labor supply curve under certainty is approximated as

hi t D �wi t C �i C �t C ui t (13)

where hi t is log hours worked, wi t is the log real wage, �i is an individual effect that controls for the marginal

utility of wealth, and �t is a �xed time effect. MaCurdy (1981) and Altonji (1986) estimate this type of labor

supply equation for men using individual �xed effects approaches with panel data from the Panel Study of

Income Dynamics (PSID) but obtain somewhat imprecise estimates of the intertemporal elasticity (�/.5

Browning, Deaton, and Irish (1985) take the alternative approach of using repeated cross-sectional data

from the British Family Expenditure Survey (FES) to estimate the intertemporal wage elasticity for men. This

works in life-cycle models because a key source of omitted variables bias, the marginal utility of wealth, is

time-invariant and �xed within cohorts. I take a similar approach using the NBER extracts of the Merged

Outgoing Rotation Groups (MORG) from the Current Population Survey (CPS) over the period 1979-1993.

The sample consists of men who are aged 21 to 50 in 1979. Thus, the men are aged 36 to 65 in 1993. I include

all individuals who report being employed in the private or public sector and exclude the self-employed and

those who are not working for pay. The hours measure is �How many hours per week does ... USUALLY work

at this job?� The wage measure for salaried workers is usual weekly earnings divided by usual weekly hours.6

For hourly workers, the wage measure is the directly reported usual hourly wage. I exclude men who report

working more than 80 hours per week or having real hourly wages (in 1983 dollars) less than $1 or greater than

$100.

The men are divided into 6 evenly divided 5-year birth cohorts. Thus, there are 90 (6 by 15) cohort-year
5Angrist (1991) also uses the PSID but deals with measurement error by carrying out estimation using yearly means of the variables.
6The earnings measure is �How much does ... usually earn per week at this job before deductions?� This includes overtime, tips, and

commissions and is topcoded at $999 between 1979 and 1988, and at $1923 from 1989 to 1993. I impute earnings for these individuals
as 1.33 times the topcoded value.
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groups. The labor supply equation comes from taking expectations of (13) by cohort and year:

hct D �wct C �c C �t C uct (14)

Here, �c denotes indicator variables for the 6 cohorts, and the intertemporal wage elasticity equals �.

As described earlier, the analysis involves starting with very large group sizes. The estimates obtained

using the large group sizes are considered to be (approximately) free of small-sample bias. Then, I examine

the consequences for EWALD of drawing random subsamples of observations and carrying out the estimation.7

I report results for the following average number of observations per group: 100, 200, 500, 1000, and 2000.

These constitute approximately 1%, 2%, 5%, 10%, and 20% of the sample respectively. In each case, I carry

out 1000 replications and report features of the resulting distribution of estimates.

4.1 Results for Application 1 Using The Actual Data

There are 883,610 observations in total on 90 groups, an average of 9818 observations per group. With such

large groups, one would expect the sample means to be close to the population means and small sample bias to

be small. Note that the OLS estimate of the wage elasticity from the microdata is 0.0290.

The estimates and standard errors for the full sample are in table 1.8 The EWALD estimate of the wage

elasticity, �, is 0.351. The other estimators give similar estimates of the wage elasticity in the region of 0.35 -

0.37. The fact that these estimates are so similar suggests that there is very little small sample bias in EWALD

with these huge group sizes. Furthermore, the estimated value of � is 0.99 which is close enough to one as to

suggest that there is very little bias. The intertemporal wage elasticity is larger than that found by Browning et

al. (1985) for British data but somewhat smaller than the U.S. estimates of Angrist (1991) from the PSID.
7This strategy is similar to that used by Buchinsky (1995) in his analysis of quantile regression models. As in his paper, the sampling

is carried out with replacement.
8Because of the group structure of the data, the standard errors are based on the White �sandwich� variance estimator that al-

lows errors to be correlated within group. For example, the variance covariance matrix for the EWALD estimator is estimated as 
GP
gD1

ngxgx 0g

!�1
�

 
GP
gD1

ngxgx 0g

!�1
where � D

GP
gD1

ngxgegegx 0g and eg is the residual from the group-level regression.
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Table 2 contains the wage elasticity estimates for different sample sizes. The median and trimmed mean

of the EWALD estimates clearly increase with sample size from 0.18 with average group sizes of 100 to 0.33

with average group sizes of 2000. Thus, the EWALD estimates are very sensitive to sample size and the biases

appear sizeable in the smaller samples. In contrast, the other estimators are more robust to small sample bias �

the mean and median do not increase as the sample size increases. However, the EVE estimates tend to decrease

as the group sizes increase, re�ecting the fact that EVE is biased in �nite samples.

4.2 Monte Carlo Based on Application 1

While the results above are indicative, one is limited by the fact that the true wage elasticity is unknown.

Therefore, I now carry out a Monte Carlo simulation based on the above application. By construction, the

arti�cial data are designed to share the characteristics of the data in the CPS. I start by taking the 90 cell means

of the log wage from the full sample and treat these as the population means (wct ). The next step is to choose

population means for the dependent variable .hct/: Given wct , I �x the values of �, �c (the coef�cients on

the cohort indicators); and �t (the coef�cients on the year dummies) to equal the EWALD estimates from the

regression of hct on wct and the �xed cohort and year effects. Then, I construct hct as equal to �wct C �c C �t .

Once I have the population means for each group, the Monte Carlo simulations involve repeatedly drawing

values of uict and vict and estimating �.

hict D hct C uict (15)

wict D wct C vict (16)

The u; v errors are assumed to be bivariate normal and the covariance matrix of u; v used in the simulations is

estimated from the within-group variances in the data. Note that, with this setup, all the estimators considered

are consistent as group sizes go to in�nity with the number of groups �xed.

In all tables, I report quantiles (10%, 25%, 50%, 75%, 90%) of the distribution of the estimators around
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the true parameter vector. The 50% quantile is thus the median bias of the estimator. I also report the median

absolute error of the estimator. Mean biases and mean squared errors of the estimators are a bit more prob-

lematic. This is because the errors-in-variables type estimators are known not to have second moments. This

makes their means extremely sensitive to outliers and makes mean squared errors meaningless. To address this

issue, I trim the distributions of all the estimators (at the 5th and 95th percentiles) and report the mean bias and

mean absolute error for these trimmed distributions. Note that in all cases considered in this paper, the trimmed

mean of the EWALD estimator is extremely close to the untrimmed mean. The reported 90% coverage rates

are calculated using conventional asymptotic estimates of variance.9

4.3 Results from the Monte Carlos Based on Application 1

The results from the Monte Carlos are in table 3. The true value of the wage elasticity is 0.351. The means and

percentiles in table 3 are expressed as deviations from the true value. The �rst thing to notice is how similar the

Monte Carlo estimates are to the estimates from the empirical application in table 2. For example, the EWALD

mean bias of -0.166 in panel A implies an average coef�cient of 0.185 (0.351 - 0.166) that is very similar to

the equivalent value of 0.176 in panel A of table 2. This suggests that the Monte Carlo design has maintained

essential features of the data. The EWALD estimator is almost unbiased in the samples of 10,000, a result

that con�rms that group sizes of this magnitude are suf�cient to get approximately unbiased estimates in this

application. The estimates for the smaller samples imply average biases of 88% for the groups of 100, 47% for

the groups of 200, 19% for the groups of 500, 10% for the groups of 1000, and 5% for the groups of 2000.

In contrast to EWALD, LIML and UEVE perform quite well in terms of median and trimmed mean bias in
9To do so, I utilize the equivalence of EWALD to 2SLS where the instrument set, Z , is a set of group dummies. Thus, for

EWALD, I use conventional 2SLS standard errors. Likewise, for LIML, conventional asymptotic standard errors are used. Denote the
N by K matrix of right hand side variables in the microdata as X , and the vector of individual-level residuals as e (where e differs
across estimators). For the errors-in-variables estimators of �, Var.�/ is estimated by e

0e
N .X

0C 0X/�1 where C for EVE, UEVE, and
EVE2 equals .BX .X 0B0X/�1X 0B0/. Here BEV E D Pz � . G

N�G /.I .N / � PZ /, BUEV E D Pz � .G�K�1N�G /.I .N / � PZ /, and
BEV E2 D Pz � . T�1T /. G

N�G /.I .N / � PZ /. Note that the asymptotic variance of the EVE estimator is calculated using the fact that
each group has the same number of observations and that EVE in this context is equivalent to the Jackknife Instrumental Variables
Estimator (JIVE) estimator of Angrist, Imbens, and Krueger (AIK, 1999). The standard errors for EVE here are exactly those used for
JIVE by AIK.
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both small and large samples. The superiority of UEVE (based on �nite sample formulae) compared to EVE

(based on the group asymptotic approximation) is very clear in the table.

The �nal column of table 3 provides coverage rates for the various estimators. The coverage rates for the

EWALD estimator are very poor in the smaller samples. For example, the 90% con�dence intervals exclude

the truth in 98% of cases in the samples of 100, 93% of cases in the samples of 200, and 73% of cases in

the samples of 500. Not only are the EWALD estimates biased in small samples, researchers may be misled

because the standard asymptotic con�dence intervals generally exclude the truth. The coverage rates of the

non-EWALD estimators are quite close to the nominal size of 0.90, and (as expected) are especially good with

larger group sizes.

4.3.1 Diagnosing Small Sample Bias in the EWALD Estimator

The median value of the �rst stage F statistic, reported in table 3, increases as the sample size increases.

However, it is dif�cult to know what size F statistic should be required. In the groups of 1000, about 50%

of draws provide F statistics greater than 10. For these draws, the average value of the wage elasticity is

0.313 (approximately a 12% bias), and the coverage rate of the EWALD estimator is less than 0.5. Thus, even

requiring the F statistic to be greater than 10 would lead to incorrect inference.

The values for the attenuation bias indicator, �, do provide a warning that small sample bias may be present.

As expected, the median value of � for the log wage increases on average as group sizes fall. The median values

are also quite a bit less than one � 0.49 for the groups of 100, 0.65 for the groups of 200, and up to 0.99 for

the full sample. While the estimated � differs across draws, it does not vary enough to seriously mislead: For

example, the value of � lies between [-0.03, 0.70] for the groups of 100, [0.36, 0.78] for the groups of 200,

[0.71, 0.88] for the groups of 500, and [0.85, 0.93] for the groups of 1000. Thus, irrespective of which sample

a researcher draws, there is ample warning from these statistics that small sample bias is likely if the EWALD

estimator is used. Note also that � provides a good approximation of the exact amount of bias � the EWALD
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estimates are approximately equal to ��. This is the case in this application because the � term plays little role,

as indicated by the OLS estimate of the intertemporal elasticity being very close to zero.

5 Application 2: Female Labor Supply

Blundell and MaCurdy (1999) provide a summary of empirical work on the labor supply of married women.

There is a large cross-sectional literature that treats wages and other income as exogenous (Ransom 1987) or

uses age or education as instruments for wages (Kooreman and Kapteyn, 1986). However, if taste for work is

related to wages, other income, or education, cross-sectional estimation likely provides inconsistent estimates

of wage and income elasticities.

A natural approach to identi�cation in this context is to use exogenous shifts in average wages when in-

dividuals are grouped by cohort and year. Blundell, Duncan, and Meghir (BDM 1998) estimate labor supply

functions for married and cohabiting women in the United Kingdom over the period 1978-1992 using this

approach in the FES.10 Unlike cross-sectional approaches, they allow for differences in preferences across ed-

ucation and age groups that are assumed to remain constant over time. They identify labor supply elasticities

using changes in relative wages across groups of women de�ned by education and birth cohort. The idea is

that differential wage growth across birth cohorts by education group re�ects changes in the demand for labor,

possibly skill-biased technological change, and can be excluded from the labor supply equation.

I take a similar approach using the same 1979-1993 CPS �les as in the male application. I group married

working women aged between 20 and 50 by birth cohort and by education into 8 groups (4 10-year birth cohorts

and 2 education groups). The four birth cohorts consist of women born in 1931-1940, 1941-1950, 1951-1960,

and 1961-1970. For education groups, I split the sample between women with high school or less, and women

with more than high school (including those with some college). The wage and hours measures are the same

as in the male labor supply application and husband's weekly earnings is the measure of other income. I report
10They actually implement the estimator on the individual-level data using cohort-year indicators as instruments, a process that is

equivalent to grouping by cohort-year.
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results for the wage elasticity and the income elasticity (evaluated at the mean levels of wages, hours, and

income) from the following speci�cation:

Hct D � C �wct C �yct C fc C ft C �ct (17)

Here Hct is hours worked, wct is the log wage, yct is other income, fc represents cohort �xed effects, and ft

represents year �xed effects.

Note that the setup is quite similar to BDM who also group women aged between 20 and 50 by birth cohort

and by education into 8 groups (4 10-year birth cohorts and 2 education groups).11 BDM include some controls

for number of children that are not present in the CPS �les and use estimated after-tax wages rather than the

pre-tax wages utilized here.12

5.1 Results from Application 2 Using the Actual Data

There are 498,667 observations in total on 110 groups, an average of 4533 observations per group. I �rst assess

whether the group sizes are suf�ciently high so that there is no small sample bias in the EWALD estimator. The

OLS estimates of the wage elasticity and income elasticity from the microdata are 0.12 and -0.03 respectively.

The estimates for the full sample are in table 4. For brevity, I will concentrate on the results for the income

elasticity. The EWALD estimate of the income elasticity is -0.28 using the full sample. The EVE, EVE2, and

UEVE estimators all give estimates of the income elasticity between -0.36 and -0.40. Thus, it appears likely

that even with 4533 observations per group on average, there is substantial small sample bias in the EWALD

estimator. The value of the �y bias indicator for other income (0.72) is a lot less than one, also suggesting that

the EWALD estimate may be biased in the full sample. The LIML estimate is completely different from all the
11Their four cohorts consist of individuals born in 1930-1939, 1940-1949, 1950-1959, and 1960-1969. Their two education groups

are those who left school at the minimum legal age and those who continued beyond the minimum. Their measure of hours of work
is �usual weekly hours, including usual overtime� and the wage is constructed as �usual weekly earnings, including usual overtime
pay� divided by �usual weekly hours, including usual overtime�. Their measure of other income is usual weekly household nondurable
consumption less the woman's usual weekly earnings.
12BDM also include a selection correction for non-participation in some speci�cations. For simplicity, I report results without the

correction. Including a selection correction does not change any of my conclusions.
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others, suggesting that there are problems using LIML in this situation.

The magnitudes of the UEVE estimates are in keeping with much of the prior literature on female labor

supply. Evaluated at the mean female wage of $7.13, the mean hours worked of 35.40, and the mean weekly

other income of $414.26, the compensated wage elasticity for women is 0.55. Hyslop (2001) and Pencavel

(1998) �nd compensated wage elasticities of about 0.4 to 0.5; Ransom (1987) and Hausman and Ruud (1984)

�nd elasticities of about 0.75. In contrast, BDM �nd much lower compensated wage elasticities for the UK.

The results from randomly generating average group sizes of 200, 500, 1000, and 2000 are in tables 5 and

6. As in the male labor supply example, there is clear evidence of small sample bias in the EWALD estimator.

For example, the mean income elasticity is -0.28 for the full sample, -0.19 for the groups of 2000, -0.16 for the

groups of 1000, -0.12 for the groups of 500, and -0.09 for the groups of 200.

5.2 Monte Carlo Based on Application 2

I now carry out a Monte Carlo simulation based on the above application. By construction, the arti�cial data are

designed to share the characteristics of the CPS data. I start by taking the 110 cell means from the full sample.

Because there is reason to believe that these do not equal the population means, I adjust them as follows:

wct D 0:75wct C 0:25w (18)

yct D 0:75yct C 0:25y (19)

In this equation w and y refer to the means of w and y over the whole sample. The next step is to choose the

population means for the dependent variable .Hct/: Given wct , I �x the values of �; �; fc; and ft to equal the

EWALD estimates from the regression of Hct onwct and yct . Then I construct Hct as equal to �C�wctC�yctC

fc C ft .
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The Monte Carlo simulations involve repeatedly drawing values of uict , vict , eict and estimating �.

Hict D Hct C uict (20)

wict D wct C vict (21)

yict D yct C eict (22)

The u; v; e errors are assumed to be trivariate normal and the covariance matrix of u; v; e used in the simulations

is estimated from the within-group variances and covariances in the data.

When there is more than one explanatory variable, F statistics for each individual explanatory variable

can be misleading. It is important that the excluded instruments have explanatory power for each variable,

conditional on the predicted values of the other variables. Therefore, I report a test that the rank of the �rst

stage coef�cients of the excluded instruments is at least as great as the number of endogenous explanatory

variables. It is utilized by BDM and is one of the tests of rank proposed by Robin and Smith (1994).13

5.3 Results of the Monte Carlo Simulations

The results of the Monte Carlos are in tables 7 and 8 (for brevity, I just describe results for the income elasticity

in table 8). The values of � and � used to generate the data imply an income elasticity of -0.363 and an

uncompensated wage elasticity of 0.331. As in the previous monte carlo, the reported percentiles and trimmed

means are deviations from the true elasticity. One can see that the EWALD estimator is very biased with biases

of 0.28 when average group size is 200, 0.23 in the groups of 500, 0.18 in the groups of 1000, 0.13 in the groups

of 2000, 0.07 in the groups of 4500 (approximately the size of the full sample), and 0.04 when each group size
13This exposition follows closely that of BDM: Let b5 be a consistent and asymptotically normal estimator of a p by k reduced form

matrix of the �rst stage parameters on the excluded instruments (k endogenous variables and p excluded instruments). Let � be the
covariance matrix of

p
nV ec.b5/ where n is the sample size. Calculate the eigenvalues of b50b5. Under the null hypothesis that the

rank of the matrix is r, the test statistic is the sum of the k-r smallest eigenvalues of b50b5. This has for limiting distribution a mixture
of (p - r)(k - r) one-degree-of-freedom chi-square distributions. The weights are calculated as the characteristic roots of the matrix
.D0k�r 
 C

0
p�r /�.Dk�r 
 Cp�r / where Dk�r is a k by (k - r) matrix formed by the eigenvectors corresponding to the k - r lowest

eigenvalues of b50b5. Analogously, Cp�r is a p by (p - r) matrix formed by the eigenvectors corresponding to the p - r lowest eigenvalues
of b5b50.
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is 10,000. Given the true value of the income elasticity of -0.36, these biases are quite large. The coverage rates

of the EWALD estimator are also very poor even when the group sizes get very large.

As in the previous Monte Carlo, LIML and UEVE perform well in terms of median bias, with LIML being

clearly best in terms of median bias when the group sizes are very small.14 Once again, UEVE is clearly

superior to EVE and EVE2 in terms of trimmed mean and median bias as well as in terms of median absolute

error. UEVE is approximately median unbiased except in the groups of 200. In this case it appears that the

model is suf�ciently poorly identi�ed that the UEVE bias correction does not work. However, the coverage

rates of the UEVE estimator remain excellent so the lack of information in the sample about the value of the

income elasticity is conveyed to the researcher. In contrast, note that the EWALD coverage rate is zero and so

will tend to mislead the researcher into believing that the income elasticity is very small. The LIML coverage

rates are a little low in the smaller samples but become close to 0.9 as the sample sizes grow.15

The F statistics for the wage and other income increase with sample size. They are both substantial for the

groups of 4500 and the groups of 10000. Thus, as in the �rst application, sizeable �rst stage F statistics do not

ensure that there is no small sample bias. The proportion of times the p value from the rank test is less than 0.01

is also reported in table 8 (as Pr op.P < 0:01/). It also appears of limited usefulness as the p values are very

low in the larger samples despite sizeable biases. The values for the attenuation biases �, do provide a warning

that small sample bias may be present. The �s increase with sample size and are much less than one even for

the large samples, providing a useful warning to researchers about biases in the EWALD estimator despite the

large group sizes.16

14The strong peformance of LIML contrasts with its huge spread when the actual data are used in tables 5 and 6. My experimentation
suggests that the presence of a group-speci�c random effect ( �ct ) in the actual data causes LIML to behave strangely (when monte
carlos are carried out with a group random effect, LIML performs very poorly). It appears that LIML can be very sensitive to these
random effects and this is problematic as such error components are likely in synthetic cohort models. In contrast, it is easy to show
that EVE and UEVE are group-asymptotically consistent in the presence of a random group-speci�c error component.
15The poor LIML coverage in the smaller samples is consistent with the theoretical arguments of Bekker (1994). In the literature,

there is some Monte Carlo evidence of poor LIML coverage using asymptotic standard errors when there are many weak instruments
(for example, Flores-Lagunes, 2002, Table 18).
16Note that the EWALD bias is not as great as predicted by � because the � term offsets somewhat the bias coming through the

denominator in this application.
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5.4 Calculating � in BDM's Data

One nice feature of � is that it can be approximated even in cases when one does not have the micro-data; in

this section I calculate it using information from the paper by BDM.17 To do so, I take advantage of the fact that

BDM are extremely thorough in reporting the reduced forms in their paper. In particular, BDM provide the �rst

stage estimates from the regression of the wage and other income on the group indicators. Thus, one knows

the means of these variables for each group. It is then straightforward to calculate the cross-group variance

in the wage and other income. BDM do not give the number of observations in each individual group so I

calculate the cross-group variance under the assumption that there are the same number of observations in each

group. This assumption is counterfactual but given that they exclude groups with fewer than 50 observations

and there are on average only 142 observations per group, the variance of the group means is probably close to

the weighted variance. While BDM do not give information on the average within-group variance of log wages

and other income, they report the within-year variance for these variables. To calculate the �s, I assume that the

average within-group variance of the log wage and other income is 80% of the average within-year variance.

This assumption approximates what one �nds in the CPS. Further, I assume zero correlation between the log

wage and other income. Given these assumptions, I use the information in tables 9, 10, and 15 of BDM to

estimate that �w equals 0.63 and �y equals 0.30.18

BDM also report p values for rank tests for both the log wage and other income individually (i.e. testing

rank one against rank zero in each reduced form). The p value for the wage is 0%, and the p value for other

income is 0.038%. For comparison, the median p value for these rank tests for the CPS female labor supply

application are 0% and 0.05% for the wage and other income respectively in the groups of 500. This similarity

of the rank test statistics is consistent with the �nding that the BDM � statistics are fairly similar to those in

the groups of 500 in table 8. Given the relatively small group sizes used by BDM, it is not surprising that the �
17BDM could not provide me with their data extract for con�dentiality reasons, so I estimate � using the wealth of information

provided in their paper.
18The estimated � values are somewhat sensitive to the assumption about within-group variances. For example, if the within group

variance is assumed to be only 50% of the within-year variance, this implies that �w equals 0.77 and �y equals 0.56. On the other hand,
variation in the assumed covariance of wages and other income has very little effect on the estimated �s.
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values are quite a lot smaller than one in their application.

6 Conclusions

In this paper, I have shown using real world data and applications that having 100 or 200 observations per

group is not necessarily suf�cient for biases in the EWALD estimator to be small. In the male labor supply

application, biases are not terribly large once there are 500 or 1000 observations per group. In contrast, in

the female labor supply application considered, many thousands of observations per group are necessary for

the EWALD estimator to have small biases. Indeed, in the female labor supply application, the Monte Carlos

suggest that there are still biases of the order of 10% in the income elasticity when there are 10,000 observations

per group. These results re�ect the fact that the variance of wages over time within cohorts is much lower than

the variance of wages across cohorts in the cross-section. Thus, while reasonably small numbers of observations

may be suf�cient for precisely estimating group means, the presence of cohort and year �xed effects in synthetic

cohort models increases enormously the likelihood of serious small sample biases in EWALD and the number

of observations required to eliminate biases.19

The paper also suggests � as a diagnostic for small sample bias in the EWALD estimator and shows how it

is related to the �rst stage F statistic from the instrumental variables literature and the reliability ratio from the

classical measurement error model. A value of � that is much less than one suggests likely attenuation biases

in the EWALD estimator. On the other hand, there are many cases where the �rst-stage F statistic is quite

large and bias is sizeable. The bias diagnostic proves particularly useful when group sizes are very small as in

this case bias-corrected estimators such as UEVE can be extremely variable. In this situation, the � indicator

remains much less than one in every single draw of the data.

In some instances when group sizes are small, identi�cation may be suf�ciently poor that no estimator pro-

vides reliable estimates. In these cases, reseachers should consider obtaining more or better data or estimating
19For example, when the year indicators are omitted from the �rst Monte Carlo, the median bias of EWALD falls from -0.17 to -0.04

in the groups of 100 (compared to the true value of 0.351).
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a different model. One approach is to reduce the number of groups, so the number of observations per group

increases (see Verbeek and Nijman 1992 for an analysis of the choice of number of groups). As an alternative to

grouping, Mof�tt (1993) proposes projecting the individual-level explanatory variables onto continuous func-

tions of time invariant and time varying variables. Mof�tt does not discuss these estimators in a small sample

context but the small sample bene�ts of smoothing may be large in some contexts.
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Table 1: Male Labor Supply - Estimates of Wage Elasticity from Full Sample 
  EWALD EVE UEVE EVE2 LIML 

Estimate 0.351 0.356 0.355 0.356 0.368 
S.E. 0.018 0.018 0.018 0.018 0.018 

For the Full Sample (883,610 observations), F=82.066, λ=0.988. 
Also included are year and cohort fixed effects. 
 
 
Table 2: Male Labor Supply (Wage Elasticity) 

  10% 25% Median 
Estimate 

75% 90% Trimmed 
Mean 

   Panel A: 100 Observations per group 
EWALD 0.122 0.147 0.176 0.205 0.236 0.176 
EVE 0.280 0.374 0.508 0.749 1.219 0.597 
UEVE 0.216 0.271 0.338 0.433 0.559 0.358 
EVE2 0.263 0.342 0.447 0.637 0.916 0.509 
LIML 0.238 0.290 0.354 0.438 0.521 0.365 
F=1.866, λ=0.456       
   Panel B: 200 Observations per group 
EWALD 0.182 0.206 0.230 0.257 0.280 0.231 
EVE 0.312 0.359 0.423 0.498 0.587 0.432 
UEVE 0.264 0.303 0.348 0.398 0.451 0.351 
EVE2 0.296 0.342 0.400 0.465 0.541 0.406 
LIML 0.279 0.317 0.359 0.408 0.459 0.364 
F=2.722, λ=0.627       
   Panel C: 500 Observations per group 
EWALD 0.255 0.271 0.290 0.310 0.324 0.290 
EVE 0.327 0.350 0.378 0.409 0.435 0.380 
UEVE 0.306 0.326 0.351 0.379 0.399 0.352 
EVE2 0.321 0.343 0.370 0.400 0.424 0.372 
LIML 0.321 0.342 0.368 0.395 0.420 0.368 
F=5.204, λ=0.805       
   Panel D: 1000 Observations per group 
EWALD 0.288 0.301 0.317 0.332 0.344 0.317 
EVE 0.328 0.344 0.363 0.383 0.399 0.363 
UEVE 0.318 0.332 0.351 0.370 0.384 0.351 
EVE2 0.325 0.341 0.360 0.379 0.394 0.360 
LIML 0.334 0.348 0.366 0.386 0.403 0.367 
F=9.416, λ=0.892       
   Panel E: 2000 Observations per group 
EWALD 0.312 0.321 0.333 0.345 0.353 0.333 
EVE 0.334 0.344 0.357 0.370 0.380 0.357 
UEVE 0.328 0.338 0.350 0.364 0.373 0.351 
EVE2 0.332 0.342 0.355 0.368 0.378 0.355 
LIML 0.343 0.353 0.367 0.380 0.392 0.367 
F=17.732, λ=0.943           
Results from 1000 random draws (with replacement) from the Full sample. 
Also included are year and cohort fixed effects.



Table 3: Monte Carlo for Male Labor Supply (Wage Elasticity) 
  10% 25% Median 

Bias 
75% 90% Median 

Abs. 
Err. 

Trimmed 
Mean 
Bias 

Trimmed 
MAE 

90% C.I. 
Coverage 

     Panel A: 100 Observations per group   

EWALD -0.217 -0.193 -0.166 -0.140 -0.117 0.166 -0.166 0.166 0.017
EVE -0.066 0.024 0.138 0.336 0.673 0.154 0.202 0.219 0.968
UEVE -0.126 -0.071 -0.008 0.074 0.173 0.072 0.004 0.074 0.884
EVE2 -0.083 -0.007 0.087 0.236 0.463 0.115 0.128 0.153 0.955
LIML -0.107 -0.058 -0.001 0.064 0.131 0.061 0.004 0.060 0.804
F=1.901, λ=0.489          
     Panel B: 200 Observations per group   

EWALD -0.154 -0.135 -0.113 -0.090 -0.071 0.113 -0.112 0.112 0.069
EVE -0.036 0.007 0.060 0.128 0.207 0.069 0.070 0.080 0.838
UEVE -0.077 -0.044 -0.004 0.042 0.090 0.043 0.000 0.042 0.879
EVE2 -0.048 -0.009 0.039 0.101 0.169 0.057 0.048 0.064 0.866
LIML -0.067 -0.037 0.000 0.038 0.077 0.037 0.001 0.037 0.867
F=2.798, λ=0.653          
     Panel C: 500 Observations per group   

EWALD -0.088 -0.074 -0.057 -0.040 -0.025 0.057 -0.057 0.057 0.274
EVE -0.024 -0.003 0.021 0.050 0.077 0.029 0.024 0.031 0.835
UEVE -0.043 -0.023 -0.002 0.023 0.046 0.023 0.000 0.023 0.886
EVE2 -0.030 -0.009 0.014 0.042 0.068 0.027 0.017 0.028 0.858
LIML -0.039 -0.021 0.000 0.022 0.042 0.022 0.000 0.021 0.875
F=5.500, λ=0.823          
     Panel D: 1000 Observations per group   

EWALD -0.055 -0.044 -0.032 -0.018 -0.007 0.032 -0.031 0.031 0.521
EVE -0.019 -0.005 0.010 0.028 0.043 0.018 0.011 0.018 0.856
UEVE -0.028 -0.016 -0.001 0.015 0.030 0.016 0.000 0.015 0.891
EVE2 -0.021 -0.008 0.007 0.024 0.039 0.017 0.008 0.017 0.873
LIML -0.027 -0.015 0.000 0.015 0.028 0.015 0.000 0.014 0.891
F=9.989, λ=0.903          
     Panel E: 2000 Observations per group   

EWALD -0.034 -0.026 -0.017 -0.007 0.002 0.017 -0.016 0.017 0.678
EVE -0.014 -0.005 0.005 0.017 0.026 0.011 0.006 0.011 0.873
UEVE -0.019 -0.011 0.000 0.010 0.020 0.011 0.000 0.010 0.895
EVE2 -0.016 -0.007 0.004 0.015 0.025 0.011 0.004 0.011 0.884
LIML -0.019 -0.010 0.000 0.010 0.020 0.010 0.000 0.010 0.893
F=18.991, λ=0.949          
     Panel F: 10000 Observations per group   

EWALD -0.012 -0.008 -0.004 0.001 0.005 0.005 -0.003 0.005 0.852
EVE -0.007 -0.004 0.001 0.006 0.010 0.005 0.001 0.004 0.891
UEVE -0.008 -0.005 0.000 0.005 0.009 0.005 0.000 0.004 0.897
EVE2 -0.008 -0.004 0.001 0.005 0.010 0.005 0.001 0.004 0.895
LIML -0.008 -0.004 0.000 0.004 0.009 0.004 0.000 0.004 0.897
F=90.998, λ=0.989                 
True value of wage elasticity is 0.351.  
Also included are cohort and year fixed effects. Results are from 2000 Monte Carlo replications. 



Table 4: Female Labor Supply - Estimates from Full Sample 
  EWALD EVE UEVE EVE2 LIML 

Wage Elasticity      
Estimate 0.249 0.372 0.333 0.360 1.848 
S.E. 0.067 0.108 0.093 0.103 2.460 
Income Elasticity      
Estimate -0.276 -0.398 -0.359 -0.386 -1.826 
S.E. 0.068 0.111 0.096 0.106 2.368 

For the full sample (498,667 observations), Fw=33.728, Fy=18.062, λw=0.736, λy=0.717 
Also included are cohort and year fixed effects. 
 
Table 5: Female Labor Supply (Wage Elasticity) 

  10% 25% Median 
Estimate 

75% 90% Trimmed 
Mean 

   Panel A: 200 Observations per group 
EWALD 0.019 0.056 0.096 0.139 0.176 0.097 
EVE -0.859 -0.329 -0.066 0.188 0.703 -0.078 
UEVE -0.592 -0.079 0.141 0.444 1.088 0.185 
EVE2 -1.095 -0.358 -0.025 0.331 0.987 -0.034 
LIML -2.903 -0.569 0.665 1.521 3.506 0.517 
Fw=2.446, Fy=1.774, λw=0.183, λy=0.138     

         
   Panel B: 500 Observations per group 
EWALD 0.037 0.073 0.112 0.152 0.187 0.112 
EVE -1.247 -0.327 0.239 0.670 1.562 0.192 
UEVE -0.023 0.110 0.245 0.402 0.691 0.275 
EVE2 -0.870 -0.011 0.288 0.610 1.349 0.274 
LIML -2.072 0.859 1.401 2.430 5.103 1.601 
Fw=4.667, Fy=2.992, λw=0.345, λy=0.295     

         
   Panel C: 1000 Observations per group 
EWALD 0.068 0.101 0.139 0.175 0.211 0.139 
EVE 0.104 0.235 0.363 0.556 0.835 0.403 
UEVE 0.097 0.167 0.248 0.342 0.451 0.258 
EVE2 0.113 0.213 0.324 0.468 0.673 0.348 
LIML 0.934 1.217 1.670 2.624 4.551 2.104 
Fw=8.355, Fy=4.964, λw=0.497, λy=0.451     
         
   Panel D: 2000 Observations per group 
EWALD 0.106 0.138 0.173 0.208 0.236 0.173 
EVE 0.166 0.225 0.311 0.388 0.455 0.308 
UEVE 0.146 0.195 0.257 0.317 0.361 0.255 
EVE2 0.159 0.215 0.293 0.363 0.422 0.290 
LIML 1.213 1.416 1.752 2.417 3.204 1.952 
Fw=15.820, Fy=8.958, λw=0.648, λy=0.615       
Results from 1000 random draws (with replacement) from the Full sample. 
Also included are cohort and year fixed effects. 



Table 6: Female Labor Supply (Income Elasticity) 
  10% 25% Median 

Estimate 
75% 90% Trimmed 

Mean 
         

   Panel A: 200 Observations per group 
EWALD -0.149 -0.120 -0.086 -0.052 -0.021 -0.085 
EVE -0.770 -0.235 0.001 0.266 0.766 0.020 
UEVE -1.070 -0.466 -0.183 0.045 0.531 -0.220 
EVE2 -0.938 -0.350 -0.038 0.309 0.996 -0.019 
LIML -3.426 -1.487 -0.708 0.495 2.803 -0.549 
Fw=2.446, Fy=1.774, λw=0.183, λy=0.138     

         
   Panel B: 500 Observations per group 
EWALD -0.188 -0.153 -0.122 -0.088 -0.056 -0.121 
EVE -1.530 -0.679 -0.270 0.259 1.132 -0.229 
UEVE -0.706 -0.419 -0.267 -0.143 -0.013 -0.300 
EVE2 -1.332 -0.632 -0.319 -0.041 0.870 -0.303 
LIML -4.896 -2.349 -1.371 -0.872 1.966 -1.569 
Fw=4.667, Fy=2.992, λw=0.345, λy=0.295     

         
   Panel C: 1000 Observations per group 
EWALD -0.224 -0.188 -0.157 -0.122 -0.095 -0.157 
EVE -0.832 -0.574 -0.388 -0.257 -0.146 -0.428 
UEVE -0.464 -0.357 -0.278 -0.194 -0.132 -0.284 
EVE2 -0.689 -0.488 -0.347 -0.236 -0.152 -0.374 
LIML -4.394 -2.554 -1.657 -1.232 -0.949 -2.067 
Fw=8.355, Fy=4.964, λw=0.497, λy=0.451     
         
   Panel D: 2000 Observations per group 
EWALD -0.253 -0.227 -0.194 -0.162 -0.137 -0.195 
EVE -0.480 -0.407 -0.331 -0.256 -0.202 -0.333 
UEVE -0.386 -0.338 -0.279 -0.222 -0.179 -0.281 
EVE2 -0.445 -0.383 -0.313 -0.245 -0.195 -0.315 
LIML -3.197 -2.351 -1.759 -1.413 -1.209 -1.925 
Fw=15.820, Fy=8.958, λw=0.648, λy=0.615       
Results from 1000 random draws (with replacement) from the Full sample. 
Also included are cohort and year fixed effects



Table 7: Monte Carlo for Female Labor Supply (Wage Elasticity) 
  10% 25% Median 

Bias 
75% 90% Median 

Abs. 
Err. 

Trimmed 
Mean 
Bias 

Trimmed 
MAE 

90% C.I. 
Coverage 

        Panel A: 200 Observations per group   

EWALD -0.266 -0.237 -0.203 -0.170 -0.139 0.203 -0.203 0.203 0.010
EVE -1.103 -0.607 -0.367 -0.148 0.365 0.477 -0.374 0.477 0.671
UEVE -0.709 -0.306 -0.116 0.109 0.561 0.294 -0.098 0.294 0.868
EVE2 -1.214 -0.600 -0.314 0.014 0.667 0.496 -0.295 0.496 0.788
LIML -0.433 -0.201 -0.037 0.180 0.551 0.226 -0.001 0.226 0.690
Fw=2.454, Fy=1.528, λw=0.235, λy=0.140, Prop(p<0.01)=0.151      
     Panel B: 500 Observations per group   
EWALD -0.228 -0.204 -0.176 -0.148 -0.122 0.176 -0.176 0.176 0.008
EVE -1.669 -0.593 0.037 0.443 1.441 0.517 -0.031 0.657 0.893
UEVE -0.187 -0.108 -0.011 0.126 0.384 0.115 0.027 0.132 0.888
EVE2 -1.102 -0.154 0.066 0.396 1.183 0.292 0.080 0.444 0.930
LIML -0.152 -0.082 -0.002 0.105 0.245 0.090 0.017 0.097 0.767
Fw=4.648, Fy=2.325, λw=0.391, λy=0.287, Prop(p<0.01)=0.232      
     Panel C: 1000 Observations per group   
EWALD -0.184 -0.163 -0.140 -0.116 -0.094 0.140 -0.140 0.140 0.019
EVE -0.056 0.026 0.139 0.321 0.685 0.156 0.201 0.215 0.970
UEVE -0.104 -0.059 -0.001 0.070 0.163 0.064 0.010 0.066 0.897
EVE2 -0.066 -0.002 0.086 0.221 0.456 0.106 0.125 0.145 0.960
LIML -0.089 -0.047 0.001 0.058 0.121 0.052 0.007 0.053 0.805
Fw=8.309, Fy=3.664, λw=0.531, λy=0.442, Prop(p<0.01)=0.453      
     Panel D: 2000 Observations per group   
EWALD -0.135 -0.118 -0.099 -0.079 -0.061 0.099 -0.098 0.098 0.058
EVE -0.028 0.010 0.059 0.118 0.188 0.064 0.067 0.074 0.837
UEVE -0.065 -0.036 -0.001 0.038 0.081 0.037 0.003 0.037 0.879
EVE2 -0.040 -0.005 0.039 0.090 0.150 0.051 0.045 0.057 0.869
LIML -0.056 -0.030 0.000 0.035 0.069 0.032 0.003 0.032 0.833
Fw=15.623, Fy=6.344, λw=0.676, λy=0.611, Prop(p<0.01)=0.842      
     Panel E: 4500 Observations per group   
EWALD -0.084 -0.071 -0.056 -0.042 -0.027 0.056 -0.056 0.056 0.197
EVE -0.021 -0.001 0.024 0.049 0.074 0.029 0.025 0.031 0.828
UEVE -0.039 -0.021 0.000 0.021 0.042 0.021 0.001 0.021 0.884
EVE2 -0.027 -0.007 0.016 0.040 0.063 0.025 0.017 0.026 0.864
LIML -0.035 -0.019 0.000 0.020 0.041 0.020 0.001 0.019 0.893
Fw=33.924, Fy=13.029, λw=0.817, λy=0.778, Prop(p<0.01)=0.998      
     Panel F: 10000 Observations per group   
EWALD -0.050 -0.040 -0.029 -0.018 -0.008 0.029 -0.029 0.029 0.454
EVE -0.016 -0.004 0.010 0.024 0.038 0.015 0.010 0.016 0.860
UEVE -0.024 -0.013 0.000 0.013 0.026 0.013 0.000 0.013 0.892
EVE2 -0.018 -0.007 0.007 0.021 0.034 0.014 0.007 0.014 0.876
LIML -0.023 -0.012 0.000 0.013 0.026 0.013 0.001 0.012 0.900
Fw=74.142, Fy=27.756, λw=0.906, λy=0.886, Prop(p<0.01)=1.000     
True value of Wage Elasticity is 0.331. Also included are cohort and year fixed effects. 
The p statistic is from the rank test (tests rank 2 versus rank 1). Results are from 2000 Monte Carlo replications. 



Table 8: Monte Carlo for Female Labor Supply (Income Elasticity) 
  10% 25% Median 

Bias 
75% 90% Median 

Abs. 
Err. 

Trimmed 
Mean 
Bias 

Trimmed 
MAE 

90% C.I. 
Coverage 

        Panel A: 200 Observations per group   

EWALD 0.222 0.249 0.278 0.305 0.333 0.278 0.277 0.277 0.000
EVE -0.470 0.192 0.446 0.721 1.333 0.527 0.448 0.577 0.640
UEVE -0.672 -0.122 0.139 0.369 0.897 0.288 0.123 0.358 0.855
EVE2 -0.791 -0.027 0.383 0.724 1.455 0.532 0.352 0.603 0.770
LIML -0.666 -0.204 0.045 0.230 0.515 0.221 0.001 0.266 0.676
Fw=2.454, Fy=1.528, λw=0.235, λy=0.140, Prop(p<0.01)=0.151      
     Panel B: 500 Observations per group   
EWALD 0.180 0.204 0.230 0.256 0.281 0.230 0.230 0.230 0.001
EVE -1.762 -0.557 -0.049 0.743 2.060 0.637 0.036 0.807 0.894
UEVE -0.472 -0.150 0.018 0.129 0.220 0.136 -0.033 0.158 0.878
EVE2 -1.441 -0.490 -0.089 0.177 1.378 0.353 -0.100 0.545 0.929
LIML -0.295 -0.120 0.003 0.094 0.176 0.104 -0.021 0.113 0.750
Fw=4.648, Fy=2.325, λw=0.391, λy=0.287, Prop(p<0.01)=0.232      
     Panel C: 1000 Observations per group   
EWALD 0.134 0.157 0.180 0.203 0.224 0.180 0.180 0.180 0.003
EVE -0.845 -0.400 -0.171 -0.034 0.061 0.190 -0.249 0.265 0.969
UEVE -0.197 -0.083 0.005 0.070 0.121 0.075 -0.012 0.078 0.890
EVE2 -0.554 -0.271 -0.105 0.000 0.075 0.126 -0.155 0.177 0.963
LIML -0.144 -0.067 0.000 0.055 0.100 0.060 -0.008 0.061 0.793
Fw=8.309, Fy=3.664, λw=0.531, λy=0.442, Prop(p<0.01)=0.453      
     Panel D: 2000 Observations per group   
EWALD 0.087 0.105 0.125 0.146 0.163 0.125 0.125 0.125 0.014
EVE -0.233 -0.144 -0.071 -0.015 0.030 0.077 -0.083 0.090 0.821
UEVE -0.096 -0.045 0.002 0.042 0.075 0.043 -0.003 0.043 0.872
EVE2 -0.185 -0.109 -0.047 0.004 0.045 0.060 -0.055 0.069 0.861
LIML -0.081 -0.040 0.000 0.035 0.064 0.037 -0.003 0.037 0.827
Fw=15.623, Fy=6.344, λw=0.676, λy=0.611, Prop(p<0.01)=0.842      
     Panel E: 4500 Observations per group   
EWALD 0.040 0.055 0.071 0.087 0.101 0.071 0.071 0.071 0.112
EVE -0.090 -0.058 -0.029 -0.001 0.022 0.034 -0.031 0.037 0.811
UEVE -0.050 -0.024 0.001 0.024 0.044 0.024 -0.001 0.024 0.877
EVE2 -0.078 -0.047 -0.019 0.006 0.029 0.029 -0.021 0.031 0.851
LIML -0.046 -0.023 0.000 0.022 0.039 0.022 -0.001 0.022 0.891
Fw=33.924, Fy=13.029, λw=0.817, λy=0.778, Prop(p<0.01)=0.998      
     Panel F: 10000 Observations per group   
EWALD 0.013 0.024 0.036 0.048 0.059 0.036 0.036 0.036 0.358
EVE -0.044 -0.029 -0.012 0.003 0.017 0.018 -0.013 0.018 0.844
UEVE -0.029 -0.015 0.000 0.015 0.027 0.015 0.000 0.014 0.886
EVE2 -0.040 -0.024 -0.008 0.007 0.020 0.016 -0.009 0.017 0.870
LIML -0.029 -0.014 0.000 0.014 0.026 0.014 -0.001 0.014 0.892
Fw=74.142, Fy=27.756, λw=0.906, λy=0.886, Prop(p<0.01)=1.000     
True Value of Income Elasticity is -0.363. Also included are cohort and year fixed effects. 
The p statistic is from the rank test (tests rank 2 versus rank 1). Results are from 2000 Monte Carlo replications. 
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