
 
 

 
 
 

 
UCD CENTRE  FOR  ECONOMIC  RESEARCH 

 
 
 

WORKING  PAPER  SERIES  
 

 2006 
 
 
 

                     Improved Errors-in-Variables Estimators for Grouped Data 
 

    
            Paul J Devereux, University College Dublin  

 
 

 
WP06/02 

 
January 2006 

 
 

 
 
 
 

UCD SCHOOL OF ECONOMICS 
UNIVERSITY COLLEGE DUBLIN 

BELFIELD  DUBLIN  4 
 
 
 
 
 
 
 

 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7108918?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Improved Errors-in-Variables Estimators for Grouped Data

Paul J. Devereux

School of Economics

UCD Dublin

Bel�eld, Dublin 4

devereux@ucd.ie

January 10, 2006



Abstract

Grouping models are widely used in economics but are subject to �nite sample bias. I show that the standard

errors-in-variables estimator (EVE) is exactly equivalent to the Jackknife Instrumental Variables Estimator

(JIVE), and use this relationship to develop an estimator which, unlike EVE, is unbiased in �nite samples.

The theoretical results are demonstrated using Monte Carlo experiments. Finally, I implement a model of

intertemporal male labor supply using microdata from the United States Census. There are sizeable differences

in the wage elasticity across estimators, showing the practical importance of the theoretical issues even when

the sample size is quite large.

Keywords: psuedo-panel, small sample bias, labor supply



1 Introduction

In many economic applications, observations are naturally categorized into mutually exclusive and exhaustive

groups. For example, individuals can be classi�ed into cohorts and workers are employees of a particular �rm.

The simplest grouping estimator involves taking the means of all variables for each group and then carrying

out a group-level regression by OLS or weighted least squares (if there are different numbers of observations

in different groups). This estimator has been called the ef�cient Wald estimator (Angrist 1991). For brevity, I

refer to it as the EWALD estimator in this paper. Grouping estimators have been used in recent years to study

labor supply (Angrist 1991; Blundell, Duncan and Meghir 1998; Devereux 2004), consumption (Mckenzie

2001), wage inequality (Card and Lemieux 1996), intergenerational transfers of human capital (Acemoglu and

Pischke 2001), and many other topics.

Deaton (1985) points out that EWALD is biased in �nite samples and proposes an errors-in-variables esti-

mator (EVE) to correct for the effects of sampling error. The �rst contribution of this paper is to analyze the

relationship between errors-in-variables estimators and bias-corrected instrumental variables estimators. These

two types of estimators have been developed in separate literatures and, to my knowledge, the relationships

between them have not been studied in either literature. I show that, in the grouping context, EVE is exactly

equivalent to the Jackknife Instrumental Variables Estimator (JIVE) of Phillips and Hale (1977), Angrist, Im-

bens and Krueger (1995, 1999) and Blomquist and Dahlberg (1994, 1999). The relationship between EVE and

the k-class of instrumental variables estimators is also developed.

The second contribution of this paper is to use the equivalence of EVE and JIVE to examine the small

sample bias of EVE and to develop an errors-in-variables estimator (UEVE) that is approximately unbiased.

Unlike many instrumental variables estimators, the UEVE estimator can be implemented in situations where

the microdata are unavailable provided estimates of the variance of sampling errors can be obtained. The

theoretical results are supported by Monte Carlo evidence that EVE often has substantial biases but UEVE is

close to unbiased and tends to have lower �nite sample variance than EVE. In the �nal section of the paper,
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I estimate a model of intertemporal labor supply using a cohort approach in repeated cross-sectional data.

There are sizeable differences in the wage elasticity across estimators, showing the practical importance of the

theoretical issues discussed in this paper even in circumstances where the sample size is quite large.

2 The Grouping Model

Assume that there are G groups and ng is the number of observations in group g. The sample mean of x for

group g, x g, is the mean of x over all members of group g included in the sample. The population mean of x

for that group .� g/ relates to the mean of x for all members of the underlying population who are in that group.

Consider the following model:

ygi D � 0g� C ugi i D 1; :::::::; ng; g D 1; :::::::::;G (1)

xgi D � g C vgi (2)

Here � g and � are Kx1 vectors where K is the number of right hand side variables, and
GP
gD1
ng D N .

Taking means within groups,

yg D � 0g� C ug (3)

x g D � g C vg (4)

Assume that the sampling error has the following structure:

�
ug
vg

�
~i id

0BB@0; 1ng
2664 % � 0

� 6

3775
1CCA (5)
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2.1 The Application: Intertemporal Male Labor Supply

Browning, Deaton, and Irish (1985) use repeated cross-sectional data from the British Family Expenditure

Survey (FES) to estimate the intertemporal wage elasticity for men. As described below, in section 5, I take a

similar approach to estimation using the Integrated Public Use Files from the United States Census (IPUMS)

from years 1980, 1990, and 2000 (Ruggles et al. 2004).

MaCurdy (1981) shows that the intertemporal Frisch labor supply curve under certainty takes the form

yi t D x 0i t� C �i C ui t i D 1; :::; N t D 1; :::; T (6)

where i indexes individual, t indexes time, yi t is the log of hours worked, xi t is a k-dimensional column vector

of exogenous variables (including the log wage), � is a k-dimensional parameter vector, and �i is an individual

effect that controls for the marginal utility of wealth. The error term, ui t , is assumed to be uncorrelated with

xi t and �i , but xi t may be correlated with �i . MaCurdy (1981) and Altonji (1986) estimate this type of labor

supply equation for men using individual �xed effects approaches with panel data from the Panel Study of

Income Dynamics (PSID).

Assume that the available data are a set of repeated cross-sections. Since the same individuals are not

observed over time, it is impossible to use standard �xed effects methods to allow �i to be correlated with xi t .

Deaton (1985) proposed identifying � by dividing the data into groups of cohorts indexed by c, e.g. men born

in 1965. The intertemporal labor supply model can be estimated after grouping observations in each period at

the cohort level, because the distribution of the marginal utility of wealth is time invariant at the cohort level.

In a �nite sample, taking means by cohort-year gives the following:

yct D x 0ct� C �ct C uct (7)

The sample mean of x for group ct .xct/ is the mean of x over sample observations in cohort c at time t .
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The standard cohort approach is to use the EWALD estimator � replace �ct with cohort dummies and estimate

equation (7) by OLS or weighted least squares (if there are different numbers of observations in different

groups). This estimator provides consistent estimates as N goes to in�nity even if �i is correlated with xi t .

Deaton notes that the EWALD estimator yields biased estimates for �nite N because the cohort effect .�ct/ is

not constant over time due to different individuals being sampled in the cohort in different time periods. That

is, EWALD is biased in small samples because cov.�ct � �c; xct/ 6D 0, where �c is the true cohort effect.

Taking expectations of equation (6) conditional on cohort and year gives the cohort population version:

yct D x 0ct� C �c C uct (8)

xict D xct C vict (9)

Here yct and xct denote the population means of y and x , respectively, in cohort c at time t . Note that equations

(8) and (9) take the same form as equations (1) and (2) above. Since the population in each cohort is assumed

�xed over time, the cohort effect (�c) is constant over time and can be replaced by cohort dummies. Now, the

small sample bias of EWALD can be interpreted as a measurement error problem as xct and yct are error-ridden

measures of xct and yct .

While the application in this paper is a cohort model, one should note that other models �t in this frame-

work. For example, �rm-level regressions in which some or all of the right hand side variables are averages

across a sample of workers within the �rm (see Mairesse and Greenan (1999) for an explicit description of

how �rm-level regressions using matched �rm-worker data �t in this framework). Finally, there are many con-

texts in which instruments naturally take a binary or categorical form such as quarter of birth (Angrist and

Krueger 1991), or lottery numbers (Angrist 1990). Models with dichotomous instruments will tend to �t into

the framework used here.
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2.2 Existing Grouping Estimators

De�ne the EWALD estimator:

�EW ALD D

 
GX
gD1
ngx gx 0g

!�1  GX
gD1
ngx g yg

!
(10)

The EWALD estimator has been shown (for example, by Angrist (1991)) to be identical to the two stage least

squares estimator where group indicators are used as instruments for xgi :

 
GX
gD1
ngx gx 0g

!�1  GX
gD1
ngx g yg

!
D

 
GX
gD1
x 0gPgxg

!�1  GX
gD1
x 0gPg yg

!

Here

x 0g D
�
xg;1; ::::::::; xg;ng

�
(11)

y0g D
�
yg;1; ::::::::; yg;ng

�
(12)

Pg D
1
ng
lgl 0g (13)

lg denotes the ng dimensional vector of ones, and xg is an ng � K matrix.

Deaton (1985) shows that the EWALD estimator is inconsistent when the number of groups is taken to

in�nity with the number of observations per group held �xed:

p lim�EW ALD D p lim

 
1
G

GX
gD1
ng� g� 0g C6

!�1
p lim

 
1
G

GX
gD1
ng� g� 0g� C �

!
(14)

The bias here that arises from estimating � g is somewhat analogous to the incidental parameters problem in

panel data (Neyman and Scott 1948). Given equation (14), Deaton shows that one can consistently estimate �
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as G goes to in�nity with ng �xed using the following errors in variables estimator (EVE):

�EV E D

 
GX
gD1
ngx gx 0g � Gb6

!�1  GX
gD1
ngx g yg � Gb�

!
(15)

b6 andb� are sample estimates of the relevant population parameters. Here, Mg D Ig � Pg.
b6 D

1
G

GX
gD1

b6g (16)

b6g D
1

ng � 1

ngX
iD1

�
xgi � x g

� �
xgi � x g

�0
D

1
ng � 1

x 0gMgxg (17)

b� D
1
G

GX
gD1

b� g (18)

b� g D
1

ng � 1

ngX
iD1

�
xgi � x g

� �
ygi � yg

�
D

1
ng � 1

x 0gMg yg (19)

McClellan and Staiger (1999) implement a similar estimator using GMM.

3 Errors-in-Variables Estimators and Bias-Corrected Instrumental Variables

In the next sections, I show that, like EWALD, the EVE estimator can be understood as an instrumental vari-

ables estimator. In fact, the EVE estimator can be shown to be exactly identical to the Jackknife Instrumental

Variables Estimator (JIVE) and to be closely related to the k-class estimators. Then, results from the instrumen-

tal variables literature are used to calculate the small-sample bias of EVE and develop an errors-in-variables

estimator that is approximately unbiased in �nite samples (UEVE).
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3.1 The JIVE Estimator

Consider a standard instrumental variables model:

Y D X� C � (20)

X D Z5C � (21)

X is an N by K matrix that may include endogenous variables, and Z is an N by G matrix of instruments.

Assume that � and � are homoskedastic with K C1 by K C1 variance matrix6��. Denote the probability limits

of Z 0Z=N and X 0X=N as 6z and 6x respectively. De�ne Pz D Z.Z 0Z/�1Z 0. The 2SLS estimator is

�2SLS D .X 0PzX/�1.X 0PzY / (22)

While �2SLS is consistent as N goes to in�nity, it is now well known (see Nagar 1959; Phillips and Hale

1977; Bound, Jaeger, Baker 1995; Staiger and Stock 1997; and others) that it is biased in �nite samples when

there are many instruments Z relative to the dimension of X . The JIVE and k-class estimators have been

proposed as alternatives to 2SLS with better bias properties in �nite samples.

Phillips and Hale (1977, henceforth PH), Angrist, Imbens, and Krueger (1995, 1999, henceforth AIK),

and Blomquist and Dahlberg's (1994, 1999, henceforth BD) JIVE estimator works as follows: Let Z.i/ and

X .i/ denote matrices equal to Z and X with the ith row removed. Consider the following estimate of 5 for

observation i:

e5.i/ D .Z.i/0Z.i//�1.Z.i/0X .i//
De�ne bX J I V E to be the N x K dimensional matrix with ith row Z ie5.i/: The JIVE estimator is

� J I V E D .bX 0J I V E X/�1.bX 0J I V EY /
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Note the intuition behind the JIVE estimator: In forming the �predicted value� of X for observation i , one uses

a5 coef�cient estimated on all observations other than i . This eliminates over�tting problems in the �rst stage.

The following lemma is adapted from AIK (it is proved in Appendix A).

Lemma 1 : For the model in equations (20) and (21), assume that we can write an estimatorb� in the form
b� D .X 0C 0X/�1.X 0C 0Y / (23)

where C is an NxN matrix such that the elements of C are of stochastic order Op.1=
p
N / and

CX D Z5C C� (24)

Then, with 6z D p lim.Z 0Z=N /, the approximate bias ofb� to order 1
N equals

� ��.5
06z5/

�1

N
[trace.C/� K � 1]

3.2 Relationship of EVE to JIVE

De�ne x g.i/ as the mean of x over all observations in group g except observation i . In the grouping context,

the JIVE estimator can be written as

� J I V E D

 
GX
gD1

ngX
iD1
x g.i/x 0gi

!�1  GX
gD1

ngX
iD1
x g.i/ygi

!
(25)
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That is, the instrument for x for any observation i equals the mean value of x in the group where the mean is

calculated over all observations except observation i . Mechanically, x g.i/ D .ngx g � xgi /=.ng � 1/. Note that

ngX
iD1

ngx g � xgi
ng � 1

x 0gi D
ng

ng � 1

ngX
iD1
x gx 0gi �

1
ng � 1

ngX
iD1
xgi x 0gi (26)

D
ng

ng � 1
x g
�
ngx g

�0
�

1
ng � 1

 ngX
iD1

�
xgi � x g

� �
xgi � x g

�0
C ngx gx 0g

!
(27)

D
n2g � ng
ng � 1

x gx 0g �
1

ng � 1

ngX
iD1

�
xgi � x g

� �
xgi � x g

�0 (28)

D ngx gx 0g �
1

ng � 1

ngX
iD1

�
xgi � x g

� �
xgi � x g

�0 (29)

D ngx gx 0g �
1

ng � 1
x 0gMgxg (30)

D ngx gx 0g � b6g (31)

It follows that
GX
gD1

ngX
iD1
x g.i/x 0gi D

GX
gD1
ngx gx 0g �

GX
gD1

b6g (32)

Likewise, we have
GX
gD1

ngX
iD1
x g.i/ygi D

GX
gD1
ngx g yg �

GX
gD1

b� g (33)

Using equations (16) - (19), one can write the JIVE estimator of � as

 
GX
gD1

ngX
iD1
x g.i/x 0gi

!�1  GX
gD1

ngX
iD1
x g.i/ygi

!
D

 
GX
gD1
ngx gx 0g � Gb6

!�1  GX
gD1
ngx g yg � Gb�

!
(34)

showing the exact equivalence of the EVE and JIVE estimators.

EVE is also closely related to the k-class estimators which take the form

.X 0PzX �  X 0MzX/�1.X 0PzY �  X 0MzY /
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For example, Nagar's estimator (Nagar 1959) has  D .G � K C 1/=.N � G C K � 1/. Donald and Newey

(2001) suggest the Bias-Adjusted 2SLS (B2SLS) estimator in which  D .G � K � 1/=.N � G C K C 1/.

With grouped data, the k-class estimators become

 
GX
gD1
x 0gPgxg � 

GX
gD1
x 0gMgxg

!�1  GX
gD1
x 0gPg yg � 

GX
gD1
x 0gMg yg

!

Using equations (16) - (19), this can be written as

 
GX
gD1
ngx gx 0g � 

GX
gD1

�
ng � 1

� b6g!�1  GX
gD1
ngx g yg � 

GX
gD1

�
ng � 1

�b� g! (35)

Note that if ng is constant across groups, EVE takes the form of a k-class estimator with  D G=.
GP
gD1
ng � G/.

3.3 Developing An Unbiased EVE Estimator (UEVE)

PH and AIK show that the approximate bias of JIVE to order 1N is proportional to

trace.C J I V E/� K � 1 (36)

where K is the number of right hand side variables. In the grouping context, C J I V E is block diagonal with each

block equal to

Pg �
1

ng � 1
Mg (37)

It follows that

trace.C J I V E/ D
GX
gD1
trace

�
Pg �

1
ng � 1

Mg
�

(38)

D 0 (39)
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Thus, the approximate bias of JIVE, and hence EVE, is proportional to �K � 1.

Consider a generalized EVE estimator (GEVE) that has the following form:

�GEV E D

 
GX
gD1
ngx gx 0g � �Gb6

!�1  GX
gD1
ngx g yg � �Gb�

!
(40)

Using relationships developed above, this estimator equals

 
GX
gD1

�
x 0gPgxg �

�

ng � 1
x 0gMgxg

�!�1  GX
gD1

�
x 0gPg yg �

�

ng � 1
x 0gMg yg

�!
(41)

D

 
GX
gD1

�
x 0gC

GEV E
g xg

�!�1  GX
gD1

�
x 0gC

GEV E
g yg

�!
(42)

Here CGEV Eg equals Pg � �
ng�1Mg. Thus C

GEV E is block diagonal with typical block equal to CGEV Eg . I

now show that the GEVE estimator satis�es the conditions of the lemma in section 3.1. To satisfy the lemma,

CGEV E Z5 must equal Z5. In the grouping context, Z5 is a block diagonal matrix with typical block equal to

lg� 0g where lg is a ng � 1 vector of ones. Given the block diagonal structure of CGEV E and of Z5, CGEV E Z5

equals Z5 if, in each block, CGEV Eg lg� 0g equals lg� 0g.

CGEV Eg lg� 0g D

�
Pg �

�

ng � 1
Mg
�
lg� 0g

D

�
.ng � 1/Pglg� 0g � � lg� 0g C � Pglg� 0g

ng � 1

�
D

�
.ng � 1/lg� 0g � � lg� 0g C � lg� 0g

ng � 1

�
D lg� 0g

The penultimate step uses the fact that Pglg D lg. Given that GEVE satis�es the conditions of the lemma,
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the approximate bias of GEVE is proportional to

GX
gD1
trace

�
Pg �

�

ng � 1
Mg
�
� K � 1 (43)

D G �
GX
gD1

�

ng � 1
�
ng � 1

�
� K � 1 (44)

D G � G� � K � 1 (45)

Setting this equal to zero, one obtains

� D
G � K � 1

G
(46)

This implies that the estimator

�UEV E D

 
GX
gD1
ngx gx 0g � .G � K � 1/b6

!�1  GX
gD1
ngx g y0g � .G � K � 1/b�

!
(47)

is approximately unbiased to order 1N . Comparing UEVE (unbiased EVE) to EVE, we can see that they differ

in that EVE subtracts off too much of the sampling variance of x g in the denominator and so overcorrects for

the sampling error. Thus EVE will typically be biased away from EWALD and the bias of EVE will tend to

increase with K (the number of right hand side variables).

When there are the same number of observations in each group, UEVE takes the k-class form with  D

.G � K � 1/=.
GP
gD1
ng � G/. Comparing this to B2SLS (where  D .G � K � 1/ =.

GP
gD1
ng � G C K C 1/), the

only difference is an additional K C 1 in the B2SLS denominator and this term becomes unimportant when N

gets reasonably large.

Papers in the cohort literature have typically done asymptotics as the number of cohorts goes to in�nity

(Collado 1997; Verbeek and Nijman 1993) or the number of groups goes to in�nity (Deaton 1985). Having an

estimator (UEVE) that is approximately unbiased when there are a small number of groups may be important

as in many practical applications there are limits on the number of birth-year or birth-decade cohorts that can
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be used.

In Appendix B, I verify that UEVE is consistent as the number of groups goes to in�nity and derive its

variance under the group-asymptotic sequence. While I only consider the homoskedastic case, it is easy to

verify that UEVE is group-asymptotically consistent if 6g differs across groups. In contrast, k-class estimators

are not group-asymptotically consistent in the presence of heteroskedasticity (see Ackerberg and Devereux

2003). Bekker and van der Ploeg (1999) also show that LIML is not consistent in the heteroskedastic case.

4 Monte Carlo Simulations

In this section, I present results from Monte Carlo simulations that provide some insight about the performance

of the estimators. The data are divided into a set of mutually exclusive and exhaustive groups indexed by g.

These groups are allocated into mutually exclusive and exhaustive cohorts indexed by c that are supersets of

these groups: The model includes a constant, a continuous variable (x), and �xed cohort effects. The model is

as follows with the xigc referring to the value of x for person i in group g in cohort c:

xigc D fc C fg C vigc (48)

yigc D �o C �1. fc C fg/C hc C uigc (49)

All the error terms
�
fc; fg; hc; uigc

�
are distributed N .0; 1/. The error term, vigc, that determines the degree of

sampling error in x gc is distributed N .0; 2/. All errors are drawn independently (so � D 0). The value of �0 is

set to 0, and �1 is set equal to 1. The model is estimated using 50 groups with 5 observations per group.

I report quantiles (10%, 25%, 50%, 75%, 90%) of the distribution of the estimator around the true parameter

vector. The 50% quantile is thus the median bias of the estimator. I also report the median absolute error of the

estimator. Mean biases and mean squared errors of the estimators are a bit more problematic. This is because

JIVE and Nagar type estimators are known not to have second moments. This makes their means extremely

13



sensitive to outliers and makes mean squared errors meaningless. To address this issue, I trim the distributions

of all the estimators (at the 5th and 95th percentiles) and report mean bias and mean absolute error for these

trimmed distributions. I also report 90% coverage rates for the estimators using the group-asymptotic standard

errors derived in Appendix B. In addition to the EWALD, EVE, and UEVE estimators, I report results for

B2SLS which has the same �nite sample properties as UEVE under homoskedasticity.

The results are in Table 1. The results, in panels A-C, show how increasing the number of cohorts affects

the performance of the estimators. Since cohort �xed effects are included in the speci�cation, increasing the

number of cohorts increases the number of control variables. The main result from panels A-C is that, as

suggested by the bias formulae, the bias of EVE increases as the number of cohorts increases: The trimmed

mean bias goes from 0.04 with 2 cohorts, to 0.15 with 10 cohorts, to 0.92 with 25 cohorts. Indeed, with 25

cohorts, the bias of EVE is much larger than the bias from EWALD. Also, the spread of EVE increases as the

number of cohorts increases. On the other hand, the UEVE estimator remains approximately unbiased as the

number of cohorts is increased.

In panels D-F, the sampling error problem is increased by increasing the variance of vigc to 5. As expected,

the bias of EWALD is greater than before, but the clear advantage of UEVE over EVE is still evident.

In all panels, the 90% coverage rates of UEVE are quite close to 0.90, suggesting that the group-asymptotic

standard errors work quite well even though there are only 50 groups. Overall, it is clear from the Monte Carlos

that UEVE is a signi�cant improvement over EVE in terms of both bias and variance.

5 An Application to Intertemporal Male Labor Supply

I apply the estimators to the labor supply model from section 2.1, using U.S. Census microdata from 1980,

1990, and 2000 (Ruggles et al. 2004). The sample consists of men who are aged 25 to 40 in 1980. Thus, the

men are aged 35 to 50 in 1990, and 45 to 60 in 2000. The hours measure used is annual hours worked in the

preceding calendar year, and the wage measure is average hourly earnings in that year. Earnings are topcoded in
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all three Census �les (at $75,000 in 1980, $140,000 in 1990, and $175,000 dollars in 2000). I impute earnings

for topcoded values as 1.33 times the topcoded value. I exclude individuals who did not work any hours in the

preceding calendar year or who report working more than 80 hours per week.

Because the Census samples are large, I de�ne a cohort by birth year and by region of birth. Thus, there

are 144 cohorts (16 birth years times 9 Census regions), and 432 (144 cohorts by 3 years) groups. As described

in section 2.1, the labor supply equation is a log-linear hours-wage equation: The log of weekly hours in each

group is a function of the log wage, indicator variables for the 144 cohorts, and indicator variables for the 3

years. In addition, I include controls for marital status (a dummy that equals one if the individual is currently

married and living with their spouse), number of children in the household aged less than �ve, and number of

children in the household aged �ve or more. The estimating sample is composed of 2,915,397 men. I carry out

separate analyses by education level, and by race. Descriptive statistics for the sample are in Table 2.

The estimated coef�cients and standard errors by education group are in Table 3. First consider the EWALD

results in the �rst column: These suggest a wage elasticity of about 0.4 for all four education groups. The

presence of young children in the household leads to lower hours worked, with the effects being larger for the

less educated groups. The presence of older children reduces hours for the lowest two education groups, but

there is no evidence of this effect for the higher educated. In all four samples, married men work signi�cantly

longer hours than other men. These results are all consistent with expectations.

The EVE estimates, in the second column, are much less precisely estimated than their EWALD equiva-

lents. For all but the lowest education group, the coef�cient estimates are generally bigger in absolute terms

than EWALD, suggesting the EWALD bias is an attenuation bias for these samples. EVE seems particulary

problematic in the high school dropout sample in that the number of children coef�cients and the married

coef�cient have perverse signs. However, these coef�cients are very imprecisely estimated.

The UEVE estimates in the third column are quantitatively quite different from both EWALD and EVE.

The wage elasticity is uniformly higher than EWALD across education groups, and is estimated to be about 0.6
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for the high school dropouts and for college graduates, with values about 0.45 for the other groups. Likewise,

the negative effects of children on labor supply (and the positive effects of marriage) are estimated to be larger

using UEVE than using EWALD, with the effects of both old and young children being negative and statistically

signi�cant for all four education groups. As expected, the UEVE estimates are less precisely estimated than

EWALD but more precisely estimated than EVE. The B2SLS estimates and standard errors are generally very

close to UEVE, suggesting that heteroskedasticity is not a serious problem in this application.

In Table 4, I estimate the speci�cation by race. Based on the EWALD estimates, one would conclude that

the wage elasticity is signi�cantly higher for whites than non-whites. In contrast, the UEVE estimates are very

similar for both racial groups. Thus, the particularly low EWALD elasticity for non-whites appears to be a

symptom of �nite sample bias in this relatively small sample. Note that the EVE estimates are very imprecise

and generally have the wrong sign in the non-whites sample. In contrast, EWALD, UEVE, and EVE are all

quite similar in the sample of whites, re�ecting the fact that the sample is very large.

The preferred estimates in Tables 3 and 4 are the UEVE estimates as the theory and Monte Carlo evidence

suggests that these are approximately unbiased. These suggest an intertemporal wage elasticity of approxi-

mately 0.4 - 0.6 for all groups of men. This elasticity is larger than that found by Browning et al. (1985) for

British data but somewhat smaller than the estimates of Angrist (1991) using U.S. data from the Panel Study of

Income Dynamics. The variation in the estimated elasticities and standard errors across estimators in Tables 3

and 4 implies that the choice of estimator may be of great importance in empirical practice.

One interesting feature of the application is that EWALD and UEVE estimates are quite different despite

the fact that the sample size is large relative to the number of groups. There are two features of the speci�cation

that help explain why �nite sample issues are relevant to these seemingly large samples. The �rst is that there

are four endogenous variables (wages, children aged less than 5, children aged 5 or more, and marital status)

and the group-means of these variables are correlated. The second is that both cohort and year �xed effects

are included and conditioning on these reduces the cross-group variance of wages substantially because the
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variance of wages over time within cohorts is much lower than the variance of wages across cohorts in the

cross-section.

While reasonably small numbers of observations may be suf�cient for precisely estimating group means,

the presence of cohort and year �xed effects in cohort models increases enormously the likelihood of serious

small sample biases in EWALD and the number of observations required to eliminate biases. Thus, even if

the variance of x g is low because there are many observations per group, it may still be sizeable relative to

the cross-group variance in � g. Given the equivalence of EWALD to the 2SLS estimator using the microdata

and group indicators as instruments, the �nding here is similar to that of Bound et al. (1995) that 2SLS can be

very biased in overidenti�ed linear models even if the number of observations is very large. Devereux (2005)

provides another example where EWALD suffers from small sample bias even with very large sample sizes.

6 Conclusions

This paper has two main results: The �rst �nding is that, with grouped data, the EVE estimator is identical to

JIVE and therefore is biased in �nite samples. Second, I show that one can use results from the instrumental

variables literature to construct an unbiased EVE estimator (UEVE) that is approximately unbiased in �nite

samples. Monte Carlo experiments support the theoretical results and show that the UEVE estimator has both

lower bias and variance than EVE. In the intertemporal labor supply application, the EWALD, EVE, and UEVE

estimates of the intertemporal wage elasticity are often quite different. This suggests that the choice of grouping

estimator is very relevant in practice.

While the UEVE estimator is closely related to instrumental variables estimators, there are situations where

the instrumental variables estimators are infeasible but the UEVE estimator can be implemented using esti-

mates of the group means and sampling variances. For example, Angrist (1990), used restricted Social Security

Administration (SSA) data to examine the effects of Vietnam draft eligibility on earnings. For con�dential-

ity reasons, the SSA would not provide individual-level data but did provide information on �rst and second
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moments of the variables by group. In this type of situation, the UEVE estimator could be implemented but

conventional instrumental variables estimators are not feasible.

School of Economics, UCD, Bel�eld, Dublin 4, Ireland (devereux@ucd.ie) and IZA. I thank Dan Acker-

berg, Joshua Angrist, Sandy Black, Janet Currie, Jin Hahn, Katerina Kyriazidou, Robert Mof�tt, Donal O'Neill,

Olive Sweetman, and Gautam Tripathi for helpful comments.
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7 Appendix A: Proof of Lemma 1

Following AIK, �rst I derive the bias ofb� D .X 0C 0X/�1.X 0C 0Y / relative to the bias ofb�.Z5/whereb�.Z5/ D
.50Z 0X/�1.50Z 0Y /

b� �b�.Z5/ D .X 0C 0X/�1.X 0C 0Y /�b�.Z5/
D .50Z 0X C �0C 0X/�1.50Z 0Y C �0C 0Y /�b�.Z5/

De�ning R D .50Z 0X/�1, this can be written as

b� �b�.Z5/ D .R�1.I C R�0C 0X//�1.50Z 0Y C �0C 0Y /�b�.Z5/
D .I C R�0C 0X/�1.R50Z 0Y C R�0C 0Y /�b�.Z5/

Expanding .I C R�0C 0X/�1 around R�0C 0X D 0 and ignoring terms of order less than 1=N gives

b� �b�.Z5/ D .I � R�0C 0X/.R50Z 0Y C R�0C 0Y /�b�.Z5/C op.1=N /
D R50Z 0Y C R�0C 0Y � R�0C 0XR50Z 0Y � R�0C 0XR�0C 0Y � .50Z 0X/�1.50Z 0Y /C Op.1=N /

D R50Z 0Y C R�0C 0Y � R�0C 0XR50Z 0Y � R�0C 0XR�0C 0Y � R50Z 0Y C Op.1=N /

D R�0C 0Y � R�0C 0Xb�.Z5/� R�0C 0XR�0C 0Y C Op.1=N /
D R�0C 0� � R�0C 0X .b�.Z5/� �/� R�0C 0XR�0C 0Y C Op.1=N /

The term R�0C 0XR�0C 0Y is of order lower than 1=N . Expanding the i th row of X .b�.Z5/� �/, one gets
X i .b�.Z5/� �/ D X i .50Z 0X/�1.50Z 0�/ D Z i5.50Z 0Z5/�1.50Z 0�/C Op.1=pN /
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Then, expanding N R around R0 D p lim.50Z 0Z5=N /�1 D .506z5/�1, one can write

R�0C 0� � R�0C 0X .b�.Z5/� �/ D 1
N
.R0�0C 0� � R0�0C 0PZ5�/C Op.1=N /

where PZ5 D Z5.50Z 0Z5/�150Z 0. E.b� � �/ D E.b� �b�.Z5// C E.b�.Z5/ � �/. The approximate bias
ofb�.Z5/ equals �� ��.506z5/�1=N . Hence

E.b� � �/ D
� ��.5

06z5/
�1

N
E.C 0 � C 0PZ5 � 1/

D
� ��.5

06z5/
�1

N
trace.C � C 0PZ5 � 1/

Then, because CZ5 D Z5, C 0PZ5 D PZ5. Also, since trace.PZ5/ D K ,

E.b� � �/ D � ��.5
06z5/

�1

N
.trace.C/� K � 1/

Note that if the homoskedasticity assumption is violated, trace.��0C 0PZ5/ now depends on the exact form

of heteroskedasticity so the bias formula no longer has this simple form.

8 Appendix B: Group-Asymptotic Properties of UEVE

8.1 Consistency of UEVE as G!1

Deaton (1985) shows that EVE is consistent as G goes to in�nity. In this section, I show the consistency

of UEVE. Assume that p lim 1
G

 
GP
gD1
ng� g� 0g

!
D �, a positive de�nite matrix. The probability limit of
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1
G

 
GP
gD1
ngx gx 0g � .G � K � 1/b6

!
as G goes to in�nity is as follows:

p lim
1
G

 
GX
gD1
ngx gx 0g � .G � K � 1/b6

!

D p lim
1
G

 
GX
gD1
ng
�
� g C vg

� �
� g C vg

�0!
� p lim

G � K � 1
G

p lim
1
G

GX
gD1

b6g
D p lim

1
G

 
GX
gD1
ng� g� 0g

!
C p lim

1
G

 
GX
gD1
ngvgv0g

!
� p lim

1
G

GX
gD1

b6g C p lim .K C 1/G
1
G

GX
gD1

b6g
D p lim

1
G

 
GX
gD1
ng� g� 0g

!
C p lim

1
G

 
GX
gD1
ng
6

ng

!
� p lim

1
G

GX
gD1
6

D p lim
1
G

 
GX
gD1
ng� g� 0g

!
(50)

Likewise,

p lim
1
G

 
GX
gD1
ngx g y0g � .G � K � 1/b�

!
D p lim

1
G

 
GX
gD1
ng� g� 0g�

!
(51)

Together, (50) and (51) establish the consistency of the UEVE estimator as G goes to in�nity.

8.2 Group-Asymptotic Variance of UEVE

To simplify notation, de�ne

p lim.Mxx/� �6 D �

p lim.Mxy/� �� D ��

p lim.Myy/� % D � 0��
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where Mxx D .1=G/
GP
gD1
ngx gx 0g , Mxy D .1=G/

GP
gD1
ngx g yg, Myy D .1=G/

GP
gD1
ng yg yg,� D p lim 1

G

 
GP
gD1
ng� g� 0g

!
and the probability limits are taken as G goes to in�nity. De�ne the UEVE estimator as

e� D �
Mxx � �b6��1 �Mxy � �b� � (52)

where � equals .G � K � 1/ =G. Assume that the sampling error is normally distributed:

�
ug
vg

�
~N

0BB@0; 1ng
2664 % � 0

� 6

3775
1CCA (53)

The exposition here closely follows Deaton (1985). Expanding (52) around � gives

e� � � D ��1[.Mxy � Mxx�/� �.� �6�/]� ���1[.b� � b6�/� .� �6�/]C Op.G�1/ (54)

The assumption of sampling under normality ensures that the second term is asymptotically independent of the

�rst. Since the terms in equation (54) are sample averages centered around their means, by using a Central

Limit Theorem for independent but not identically distributed random variables one can show that
p
G.e� � �/

is asymptotically normally distributed.

The asymptotic variance of e� depends on the asymptotic variance of ��1[.Mxy � Mxx�/ � �.b� � b6�/].
Deaton shows that

GV fMxy � Mxx�g D p lim.Mxx/.% C � 06� � 2� 0�/C .� �6�/.� �6�/0

Given that b6 D 1
G

GP
gD1

b6g andb� D 1
G

GP
gD1

b� g,

V fb� � b6�g D 1
G2
V f

GX
gD1
.b� g � b6g�/g D 1

G2
GX
gD1
V fb� g � b6g�g (55)
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Then, following Deaton, sampling under normality implies that the asymptotic variance ofb� g � b6g� is
ngV fb� g � b6g�g D 6[.% C � 06� � 2� 0�/C .� �6�/.� �6�/0] (56)

Because .Mxy�Mxx�/ and .b��b6�/ are asymptotically independently distributed, the asymptotic variance-
covariance matrix ofe� is given by

GV fe�g D ��1[A C �2B]��1 (57)

where

A D p lim.Mxx/.% C � 06� � 2� 0�/C .� �6�/.� �6�/0

B D
1
G

GX
gD1

1
ng
6[.% C � 06� � 2� 0�/C .� �6�/.� �6�/0]

To evaluate the variance-covariance matrix in practice requires estimates of � and %. These can be estimated

as follows:

e� D Mxx � �b6
e% D Myy �e� 0e�e�

Thus, the variance-covariance matrix can be estimated as

V fe�g D 1
G
e��1[eA C �2eB]e��1 (58)
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where

eA D Mxx.Myy �e� 0e�e� Ce� 0b6e� � 2b� 0e�/C .b� � b6e�/.b� � b6e�/0 (59)

eB D
1
G

GX
gD1

1
ng
b6[.e% Ce� 0b6e� � 2b� 0e�/C .b� � b6e�/.b� � b6e�/0] (60)

Note that the analogous variance-covariance matrices for the EWALD, EVE, and B2SLS estimators are calcu-

lated by evaluating (58) using values of � equal 0 for EWALD, 1 for EVE, and (.N � G/=.N � G C K C

1// .G � K � 1/ =G for B2SLS.
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Table 1: Monte Carlo Experiments 

 
  10% 25% Median 

Bias 
75% 90% Median 

Abs. Err. 
Trimmed 

Mean 
Bias 

Trimmed 
MAE 

90% C.I. 
Coverage 

          
    Panel A: 2 Cohorts    
EWALD -0.40 -0.34 -0.29 -0.23 -0.18 0.29 -0.29 0.29 0.13 
EVE -0.16 -0.08 0.02 0.14 0.28 0.11 0.04 0.11 0.91 
UEVE -0.18 -0.11 -0.01 0.10 0.22 0.10 -0.00 0.10 0.90 
B2SLS -0.19 -0.11 -0.02 0.09 0.21 0.10 -0.01 0.10 0.90 
          
    Panel E: 10 Cohorts    
EWALD -0.41 -0.35 -0.29 -0.22 -0.17 0.29 -0.29 0.29 0.16 
EVE -0.11 -0.01 0.12 0.29 0.51 0.15 0.15 0.18 0.92 
UEVE -0.20 -0.11 -0.01 0.10 0.24 0.11 -0.00 0.11 0.90 
B2SLS -0.21 -0.13 -0.04 0.08 0.20 0.11 -0.02 0.11 0.88 
          
    Panel C: 25 Cohorts    
EWALD -0.44 -0.37 -0.28 -0.21 -0.13 0.28 -0.29 0.29 0.30 
EVE 0.01 0.26 0.62 1.31 2.89 0.71 0.92 0.93 0.91 
UEVE -0.24 -0.14 -0.02 0.13 0.32 0.14 0.00 0.14 0.89 
B2SLS -0.27 -0.17 -0.06 0.07 0.23 0.14 -0.05 0.13 0.86 
          
    Panel D: 2 Cohorts, Greater Sampling Error  
EWALD -0.61 -0.56 -0.50 -0.44 -0.39 0.50 -0.50 0.50 0.01 
EVE -0.26 -0.13 0.05 0.32 0.79 0.20 0.13 0.25 0.93 
UEVE -0.30 -0.19 -0.03 0.18 0.52 0.19 0.02 0.20 0.89 
B2SLS -0.30 -0.20 -0.05 0.16 0.48 0.19 -0.00 0.19 0.87 

          
    Panel E: 10 Cohorts, Greater Sampling Error  
EWALD -0.62 -0.56 -0.50 -0.44 -0.38 0.50 -0.50 0.50 0.01 
EVE -0.21 -0.01 0.30 0.86 2.03 0.37 0.52 0.58 0.97 
UEVE -0.32 -0.20 -0.04 0.20 0.56 0.20 0.02 0.21 0.88 
B2SLS -0.34 -0.23 -0.09 0.13 0.42 0.20 -0.04 0.20 0.84 

          
    Panel F: 25 Cohorts, Greater Sampling Error  
EWALD -0.65 -0.58 -0.50 -0.42 -0.35 0.50 -0.50 0.50 0.05 
EVE -7.04 -3.10 -1.39 1.66 5.85 2.55 -0.72 3.09 0.78 
UEVE -0.39 -0.25 -0.07 0.24 0.72 0.25 0.02 0.27 0.87 
B2SLS -0.43 -0.30 -0.15 0.08 0.42 0.24 -0.09 0.24 0.81 
 
NOTE: Results for 10000 Monte Carlo replications. 



Table 2: Means of Variables (Standard Deviations in Parentheses) 
 
Census year 1980  .36    (.48) 
Census year 1990  .34    (.47) 
Census year 2000  .30    (.46) 
Number of Children Under Age 5  .21    (.52) 
Number of Children Aged 5+  .91  (1.13) 
Log(wage) 2.57   (.65) 
Log(hours) 7.59   (.49) 
Education<12  .11    (.31) 
Education=12  .33    (.47) 
Education 13-15  .27    (.45) 
Education>15  .29    (.46) 
White  .89    (.31) 
Married  .75    (.43) 
 
NOTE: The sample includes 2,915,397 observations. 
 



Table 3: Labor Supply Estimates by Education Level 
 
Education Less than 12 Years (N = 309,862) 
 EWALD EVE UEVE B2SLS 
Log Wage .37* 

(.04) 
.67* 
(.14) 

.60* 
(.08) 

.61* 
(.08) 

Children >5 -.04* 
(.01) 

.19 
(.13) 

-.18* 
(.06) 

-.16* 
(.05) 

Children <5 -.34* 
(.06) 

.53 
(.51) 

-.89* 
(.25) 

-.85* 
(.21) 

Married .54* 
(.10) 

-2.72 
(1.44) 

1.90* 
(.69) 

1.68* 
(.56) 

 
12 Years of Education (N = 948,523) 
 EWALD EVE UEVE B2SLS 
Log Wage .37* 

(.03) 
.55* 
(.05) 

.46* 
(.04) 

.45* 
(.03) 

Children >5 -.05* 
(.01) 

-.22* 
(.05) 

-.11* 
(.02) 

-.11* 
(.02) 

Children <5 -.36* 
(.04) 

-.92* 
(.15) 

-.56* 
(.06) 

-.56* 
(.06) 

Married .70* 
(.09) 

2.31* 
(.45) 

1.27* 
(.18) 

1.26* 
(.18) 

 
Education of 13 – 15 Years (N = 800,969) 
 EWALD EVE UEVE B2SLS 
Log Wage .40* 

(.04) 
.31* 
(.15) 

.44* 
(.05) 

.43* 
(.05) 

Children >5 .00 
(.01) 

-.22 
(.12) 

-.05* 
(.02) 

-.06* 
(.02) 

Children <5 -.17* 
(.04) 

-.97* 
(.44) 

-.34* 
(.08) 

-.35* 
(.08) 

Married .55* 
(.10) 

2.96* 
(1.38) 

1.04* 
(.25) 

1.08* 
(.25) 

 
16 or More Years of Education (N = 856,043) 
 EWALD EVE UEVE B2SLS 
Log Wage .46* 

(.05) 
.72* 
(.14) 

.59* 
(.08) 

.58* 
(.08) 

Children >5 -.01 
(.01) 

-.06* 
(.02) 

-.04* 
(.01) 

-.04* 
(.01) 

Children <5 -.12* 
(.03) 

-.19* 
(.08) 

-.17* 
(.05) 

-.17* 
(.05) 

Married .54* 
(.11) 

.57 
(.36) 

.60* 
(.19) 

.62* 
(.19) 

 
NOTE: Also included in the regressions are cohort dummies, and year dummies. Standard errors in parentheses. 

* indicates significant at the 5% level 



Table 4: Labor Supply Estimates by Race 
 
Non-Whites (N = 307,846) 
 EWALD EVE UEVE B2SLS 
Log Wage .20* 

(.04) 
.36* 
(.15) 

.35* 
(.07) 

.37* 
(.07) 

Children >5 .03* 
(.01) 

.33 
(.19) 

-.09 
(.06) 

-.09 
(.06) 

Children <5 -.18* 
(.05) 

.89 
(.64) 

-.58* 
(.20) 

-.57* 
(.19) 

Married .41* 
(.09) 

-2.37 
(1.52) 

1.28* 
(.47) 

1.24* 
(.44) 

 
Whites (N = 2,607,551) 
 EWALD EVE UEVE B2SLS 
Log Wage .36* 

(.03) 
.38* 
(.03) 

.37* 
(.03) 

.37* 
(.03) 

Children >5 -.04* 
(.01) 

-.08* 
(.01) 

-.06* 
(.01) 

-.06* 
(.01) 

Children <5 -.27* 
(.04) 

-.41* 
(.05) 

-.35* 
(.04) 

-.35* 
(.04) 

Married .87* 
(.11) 

1.29* 
(.16) 

1.10* 
(.14) 

1.10* 
(.14) 

 
NOTE: Also included in the regressions are cohort dummies, and year dummies. Standard errors in parentheses. 

* indicates significant at the 5% level 
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