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Technological Progress under Learning by
Imitation.

Morgan Kelly∗

University College Dublin and CEPR

Abstract

We analyse technological progress when knowledge has a large tacit
component so that transmission of knowledge takes place through direct per-
sonal imitation. It is shown that the rate of technological progress depends on
the number of innovators in the same knowledge network. Assuming the dif-
fusion of knowledge to mirror the geographical pattern of trade—the greater
the trade between two sites, the greater the probability that technical knowl-
edge flows between them—we show that a gradual expansion of trade causes
a sudden rise in the rate of technological progress.
JEL: O40

1 Introduction.

Underlying current models of technological progress is the assumption that re-
searchers stand on the shoulders of giants by having costless access to the entire
stock of human knowledge. Much of technology however, and technical skill in
particular, has a large tacit, “do it like this” element. To master a skill, it is not in
general sufficient to have access to blueprints, or textbooks and articles in a library:
you must also have contact with people who already possess the skill; and the ex-
tent of their mastery will determine, in part, the extent of yours. This paper looks
at how technology progresses when individuals learn by direct personal contact.
∗This paper is part of the International Trade and Investment Programme of the Geary Institute at

UCD.
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Learning through imitation takes place as a follow the leader process. The
skill of each individual equals the skill of the most able practitioner he knows in
the previous generation, minus an imitation error that reflects individual ability.
Innovators do not get to stand on the shoulders of giants, but only on the shoulders
of the tallest person they know.

In Section 2 we show that the rate of technological progress under learning by
imitation depends on the difficulty of imitation, and on the size of the population
of innovators N. The larger is a connected group of innovators, the greater the
chance that a highly able person in one generation will be matched to a highly able
person in the previous generation whose skills will serve as a foundation for further
progress in technology.

The influential analysis of scale effects in growth models of Jones (1995) as-
sumes that the growth of technology is an increasing function of the labour force
involved in R&D, and a diminishing function of the level of technology. The model
here gives microfoundations for this specification based on a concrete form of the
spillover from aggregate to individual human capital considered by Lucas (1988),
namely direct personal imitation.

What determines the size of population of imitators N? Rather than arbitrarily
equating N with the population of some political or geographical unit, we suppose
that the diffusion of technology mirrors the geographical pattern of trade: the larger
the volume of trade between two sites, the greater probability that innovators at one
site have access to technological knowledge at the other.

Trade follows a gravity model. In Sections 3 and 4 each site has the same
population, allowing a closed form solution for the volume of trade in terms of
distance, population, and transport cost. The flow of knowledge between cities
creates a network where knowledge can diffuse along a chain from one connected
city to another, where two cities that are not directly linked can still have knowledge
flow between them through a third city to which each is directly connected.

We show that the size of the knowledge network depends critically on the vol-
ume of trade. Below a critical level of trade, the economy is split into small, frag-
mented knowledge networks. As the critical trade volume is reached, these local
clusters coalesce into a large network that spans most sites in the economy. Con-
sequently, a gradual rise in trade, as a result of increasing population or reduced
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transport cost, gives rise to a sudden increase in the rate of technical progress, as
the critical number of knowledge links is reached, and the connected population
of innovators N suddenly rises.1 While our concern is with learning by imitation,
exactly the same takeoff can occur in standard growth models where trade gives
access to more intermediate goods (Rivera-Batiz and Romer, 1991).

In Section 5 we relax the assumption that there is a fixed number of cities
all with equal population, by allowing the number of cities, and the population
of each, to grow through time. We show that this simple mechanism gives rise
to an empirically realistic truncated Pareto distribution or power law for urban
population, and that knowledge networks continue to show threshold behaviour.

While our central concern is to understand the pattern of technological progress
when knowledge is tacit, the logic of learning by imitation implies that techno-
logical regress can occur if population falls. Section 6 considers technological
retrogression in the context of the collapse of historical societies, showing how a
self-reinforcing cycle of urban flight can cause knowledge networks to collapse.

This papers draws from several different literatures: tacit knowledge, endoge-
nous growth, interacting systems, trade and knowledge diffusion, and geography
and trade. The tacitness of technical skill is stressed by Nelson and Winter (1982).
The link to the endogenous growth literature, particularly Jones (1995) and Lucas
(1988), was mentioned above. The effect of market expansion on growth through
increased division of labour is examined by Becker and Murphy (1992), Goodfriend and McDermott
(1995), and Murphy, Shleifer and Vishny (1989); and the takeoff caused by thresh-
old effect in knowledge networks is analogous to the phase transitions surveyed by
Brock and Durlauf (2001). The connection between trade and technology diffusion
is reviewed by Keller (2004), while the modelling of geography and trade here fol-
lows Anderson and van Wincoop (2003) and Fujita, Krugman and Venables (1999).

1 This prediction that a fall in transportation costs can lead to a sudden spurt of innovation is
consistent with the rise in innovation in Sung Dynasty China after a national waterway network
was completed; in eighteenth century England with the extension of turnpikes and canals; and in
nineteenth century America where the completion of the Erie Canal led to a rise in patenting in
adjoining areas (Sokoloff, 1988).

3



2 Learning by Imitation.

There is a single general purpose technology that determines the quality of all
goods produced: multiple technologies do not change things materially but need
more notation. N producers use this technology. In Sections 3 and 4 we determine
N, but for now we treat it as given.

Individuals devote a fixed amount of effort to acquiring human capital. Ability
depends on the individual’s personal quality, and on the ability of the person he im-
itates. The ability ait of individual i in generation t reflects his success in imitating
the most able individual he knows in the previous generation whose ability is amax

t−1

ait = eit amax
t−1 (1)

where eit represents an imitation error: most agents will not be as able as their
exemplar (the average Delta guitarist was inferior to Charlie Patton, the average
MIT PhD was not as smart as Paul Samuelson) so in most cases eit < 1. Taking
logs, where αit = logait and εit = log eit,

αit = α
max
t−1 − εit. (2)

This log error is normally distributed across imitators with mean µt and variance
σ2

t , εit ∼ N(µt,σ
2
t ).

The distribution of log ability α in each generation is therefore normally dis-
tributed with mean

At = E(αmax
t−1 )−µt (3)

and variance σ2
t . Define the growth rate of average human capital or technology as

gt = E(at)/E(at−1)−1. For a given difficulty of imitation reflected in the parameters
µ and σ, the rate of technical progress depends on the size of the pool of innovators:

Proposition 1. If the variance of learning is constant, σ2
t−1 = σ

2
t , the rate of tech-

nical progress under learning by imitation is

gt =
(

−c1 + c2
√

log Nt−1
)

σt−1−µt. (4)
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Proof. If there were Nt−1 producers last period, the expected value of the first term
in (3), from Cramér (1946, 374–375), is

E(αmax
t−1 ) = At−1 +σt−1















√

2log Nt−1 −
log(log Nt−1)+ log4π+2E(v1)

2
√

2log Nt−1















(5)

where −v1 has log-gamma distribution with expected value E(v1)= 0.577 (Johnson, Kotz and Balakrishnan,
1995, 89–90).

The expression in brackets in (5) can be approximated to an accuracy of more
than 0.01 percent for N > 20 by (−c1 + c2

√

log Ns−1), where c1 = 0.624 and c2 =

1.482. It follows from (3) and (5) that the change in average log ability from one
generation to the next is At −At−1 =

(

−c1+ c2
√

log Nt−1
)

σt−1−µt.

Because log E(at) = At +
1
2σ

2
t , if σ2

t−1 = σ
2
t the change in expected log abil-

ity is approximately equal to the growth in the level of average skill At − At−1 =

log E(at)− log E(at−1) ≈ gt. �

Imitation difficulty, reflected in the parameters µt and σt−1, depends on the
characteristics of the technology, and on the characteristics of the population of
imitators. Imitation difficulty rises with the level of technology when technological
advance consists of refinements of existing techniques, with each advance demand-
ing greater exactitude: steel making requires more precise control of temperature
and selection of raw materials than iron smelting; and screws require more pre-
cise machining than nails. Alternatively, µ may rise and σ fall through what Jones
(1995) calls “fishing out”: the easiest innovations are made first, so that a constant
rate of innovation requires greater effort. By contrast, serendipitous technological
advances that result from a single clever insight, such as sewing needles, stirrups
or double-entry book keeping, are trivially imitated once invented.

Imitation difficulty also reflects the characteristics of producers: their skills,
needs, and cognitive patterns; and the social institutions they inhabit. The greater
is the skill of individual producers, through formal education, division of labour,
and the efficiency that individuals skills are matched with occupations; the lower
will be the difficulty of imitation for a given technology.2

2Mokyr (2002) emphasises the importance of the empirical method taken from science, which
Margolis (1987) traces back to Copernicus, for the development of European technology; while Huff
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If µ is increasing and σ diminishing in the level of technology A, the ba-
sic growth equation (4) implies that the rate of technological progress is increas-
ing in the number of innovators N and diminishing in the level of technology A,
g = f (N,A). This is the form of the technological progress function assumed by
Jones (1995). By taking a concrete form of the spillover from aggregate to indi-
vidual human capital considered by Lucas (1988), namely personal imitation, the
approach here delivers microfoundations for that analysis. The rate of technolog-
ical progress is slightly different: the change in average ability rather than in the
total stock of knowledge, reflecting personal transmission of skill instead of access
to the entire stock of human knowledge.

Following Romer (1990) we have treated knowledge as a public good by al-
lowing everyone to imitate the most able practitioner in the previous generation,
but nothing vital hinges on this. If imitators follow social prestige rather than tech-
nical ability and imitate the k-th most able individual in the previous generation
who happens to have the highest social status, equation (5) still holds, except that
now −E(v1) is replaced by −E(vk) = 0.577−∑k−1

j=1 1/ j so that equation (4) for the
change in average ability holds but with slightly different values of c1 and c2.

If individuals are assigned to mentors at random—for instance if ability has a
small heritable component and if skills are transmitted within families—(5) still
holds, averaging over E(νk) by the fraction assigned to mentors at each rank in
the distribution. Finally, if there is sorting of learners by ability, in the manner of
university admissions, with the top few percent assigned to the most able mentor,
the next few percent to the second most able, and so on; the analysis continues to
hold, focusing on each group of learners separately. There will be one version of
equation (4) for the top group; another, typically with different values of µ and σ2,
for the second group; and so on.

3 A gravity model of knowledge diffusion.

From (4) the growth of technical skill under imitation depends critically on the size
of the pool of innovators N. The larger is the connected network of innovators, the

(2003) argues that the development of autonomous intellectual institutions is what gave European
science a resilience lacking in Islam and China.
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greater the chance that a high ability individual in one generation will have the
opportunity to acquire the skills of a high ability person in the previous generation.
What determines N?

We assume that the diffusion of technical knowledge reflects the pattern of
trade, and model trade patterns in a standard gravity model with CES preferences
(Anderson and van Wincoop, 2003). To derive closed form solutions, we make
things symmetric across sites. There is a fixed number C of cities spread at random
on a plain of area A, each with the same population n. We show that the results
continue to hold with a more realistic distribution of population in Section 5.

Each city specializes in the production of a subset of goods that, by symmetry,
we can think of as one good. Each good comes in a range of qualities αik reflecting
the skill of worker k at site i that produced it. If xi jk is the amount of region i good
of quality k consumed in region j, region j consumers choose xi jk to maximize















∑

i
αik x(σ−1)/σ

i jk















σ/(σ−1)

(6)

subject to the budget constraint
∑

i pi jk xi jk = y j. We suppose that every location
j receives equal quantities of the output of each worker so that the price of each
unit of good i is proportional to its log quality pi jk/pi jl = αk/αl. Therefore we can
suppose that each region produces a homogeneous good of quality ᾱi = E(αi), the
average quality of producers at the site. Goods incur iceberg costs in transit: of one
unit of a good shipped from i to j, a fraction 1−1/ti j is lost in transit so pi j = ti j pi.

Expenditure on good i at site j is

ei j =

( piti j

ᾱiP j

)1−σ
y j (7)

where the price index

P j =















∑

i
(piti j/ᾱi)1−σ















1/(1−σ)

. (8)
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Market clearing requires that y j =
∑

i ei j. Assuming that transportation costs be-
tween sites are symmetric, Anderson and van Wincoop (2003) show that

P1−σ
j =

∑

i
Pσ−1

i ηiti j (9)

where ηi = yi/
∑

i yi, and derive the gravity equation for the value of goods shipped
from i to j

ei j =
yiy j
∑

i yi

( ti j

PiP j

)1−σ
. (10)

Following Fujita, Krugman and Venables (1999, Chapter 4) we suppose that
producing quantity q of a good requires l= f +cq workers, and that units are chosen
so that marginal cost c = (σ−1)/σ, making pi = wi and q = l; while the zero profit
condition implies that each site with population n produces n/ fσ varieties of good.

The C sites have identical populations n and differ only in their technology level
ᾱi and transportation costs ti j. Because our concern here is with the development of
technology through time rather than the distribution of economic activity through
space, we will assume that these spatial differences are negligible: each site has the
same technology level ᾱ ; and the same average transport cost

T j =















∑

i
t1−σ
i j















1/(1−σ)

. (11)

Equal transport costs require that cities on the edge of the surface face the same
costs as those in the centre. This can be achieved by allowing the the surface to
become unbounded so that every site is equally a central point or, by placing the
points to be on a sphere rather than a plain so that, again, no point is a central or
edge point.

In this symmetric case, from (9) every site has price level

P =C1/2(σ−1)T 1/2 (12)

and producer price and wage from (8) of

p = ᾱC1/2(σ−1)T−1/2. (13)
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Figure 1: A technological network in the case where each city, represented by a
dot, shares knowledge with all neighbours in a fixed radius.

Nominal income at each site is y = np and each site has a share η j = y j/
∑

i yi = 1/C
of world income. The quantity of goods shipped from i to j, xi j = ei j/piti j is
therefore

xi j =
n

T 1−σ t−σi j (14)

If sites i and j are a distance di j apart, we suppose that transport costs between
them are ti j = θdi j for j , i and tii = θd0 where d0 > 0, so that

xi j =
n

θD1−σ d−σi j (15)

where D j =
(

∑

i d1−σ
i j

)1/(1−σ)
.

4 Knowledge networks.

C cities are spread at random on a surface of area R giving a settlement density of
δ =C/R. The probability that technological knowledge flows directly between two
cities i and j is an increasing function of the volume of trade between them π i j =
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h(xi j), so from (15) πi j = g(n/θ,di j) which is increasing in the ratio of population
to transport cost n/θ and diminishing in distance di j.

Take an arbitrary site and label it as the origin. For any other site at location
y ∈ R2, the probability that they are connected is g(n/θ,d0y). The number of sites
connected directly to the origin is a Poisson process with parameter

ν = δ

∫

g(n/θ,d0y)dy. (16)

The probability that each site connects directly to k other sites is

pk =
e−ννk

k!
. (17)

To rule out trivial behaviour, we assume 0 < ν <∞.
For example, suppose each site shares knowledge directly with all other sites in

a circle of radius ρ: this network is illustrated in Figure 1 on page 9. Then h(xi j)= 1
for xi j ≥ x̄ and 0 otherwise; and g(n/θ,r) = 1 for r ≤ ρ where ρ =

(

n/(θx̄D1−σ)
)1/σ

,
and 0 otherwise. The average number of knowledge links per site is ν = δπρ2.
Alternatively, if h(xi j) =

(

1+ exp(x−1/σ
i j )

)−1
the probability of linkage depends lo-

gistically on distance

g(n/θ,di j) =
1

1+ exp(c−1/σdi j)
(18)

where c = n/θD1−σ is the volume of trade between sites that are a unit distance
apart. The average number of neighbours linked to each site is then ν = δc2/σ

π
3/6.

Each city is linked directly to other cities, that are linked in turn to other cities,
giving rise to a connected network of cities through which technical knowledge
can diffuse. It is obvious that the larger is the connectivity parameter ν, the larger
will be the resulting knowledge networks. What is less immediately obvious is that
the size of connected clusters rises discontinuously with ν (Meester and Roy, 1996,
Theorem 6.1):

Proposition 2. For the number of sites C large there is a critical value ν∗ for ν.
For ν < ν∗, an infinitely large connected cluster of sites exists with probability zero;
for ν > ν∗, an infinite cluster exists with probability one.

10



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

Co
nn

ec
te

d 
sit

es
.

Trade volume.

Figure 2: Proportion of sites in largest connected cluster versus trade volume.
Trade volume is measured between two sites at distance one apart, assuming an
elasticity of substitution σ = 1.

In consequence the size of networks of potential imitators N changes suddenly
as the volume of trade rises. In economies with low volumes of trade due to low
population n or high transport cost θ, the average number of knowledge links per
city ν is small, and the economy is split into small isolated clusters of communicat-
ing cities. This limits the possibility that highly talented individuals in one gener-
ation will be matched with highly talented individuals in the previous generation.
As the critical number of connections ν∗ is reached, these isolated knowledge net-
works rapidly coalesce into a single network that spans most sites in the economy,
increasing the pool of innovators who can learn from the most talented producer in
the previous generation.

It is not necessary to assume that knowledge diffuses without friction across
connected networks. The important point is that there is a sudden increase in net-
work size so that, even if information flows imperfectly, there are still many more
innovators in each generation being matched together.

Figure 2 show a simulation with C = 1024 sites spread at random on a 32×32
square so settlement density δ = R/C = 1. The connection probability declines
logistically with distance (18). Figure 2 plots the size of the largest connected
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Figure 3: Connections between 1024 cities, when trade between sites one unit apart
equals 0.55 and 0.6.

cluster, expressed as a proportion of all sites, against the volume of trade between
two sites a unit distance apart, assuming an elasticity of substitution σ = 1. As the
volume of trade rises from 0.5 to 0.7, the fraction of sites in the largest cluster rises
from 0.1 to 0.8. Figure 3 gives two snapshots of the system when trade between
sites one unit apart is 0.55 and 0.6. It can be seen that adding extra linkages causes
clusters of sites to link into a single cluster that goes right across the economy. As
the number of sites in the network rises, the takeoff becomes more sudden.

Market expansion does not limit economies to just one takeoff in human cap-
ital accumulation. Repeated takeoffs can be modelled in two ways. First, a new
round of development can occur where points that have connected into a large net-
work can be thought of as being fused together into a single, compound point, and
get to join with other compound points in a second round. The development of
internal markets through canals and railways in the first half of the nineteenth cen-
tury linked cities in individual countries into national networks, that can be treated
as individual economies. The development of steamships and electric telegraphs in
the second half of the nineteenth century joined these internally articulated national
economies into an international network.

Alternatively, different levels of technology may have different connectivity
functions h. Simple technologies can have high probabilities of connection h at
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low volumes of trade x allowing a global network to appear early; whereas more
advanced technologies have lower hs, and require higher populations and lower
transportation costs for a connected network to appear.

5 Distribution of settlements.

There are two, complementary approaches to analysing the role of cities in economies:
as nodes in commercial networks, and as central places supplying services to sur-
rounding areas (Hohenberg and Lees, 1995, 47–73). So far, to make the equations
of the gravity model tractable through symmetry, we have focused on cities as trade
nodes, assuming that there was a fixed number C of cities with an equal population
n. We now allow each city to function also as a central place in an urban hierarchy,
with its own satellite villages and towns. We suppose that existing settlements give
rise to new settlements at a constant rate, and that all settlements grow at a constant
rate. This simple process causes population to be distributed across settlements ac-
cording to a truncated power law.

In an interval of length dt each existing city gives rise to a new city with proba-
bility λdt. Starting with one settlement at time 0, there will be an expected number
expλT after time T has elapsed. The initial size of each city is n0 which we nor-
malize to unity.

Following Gibrat’s law (Gabaix, 1999; Mitzenmacher, 2002), settlements grow
at a constant multiplicative rate γ: settlements develop independently of each other,
and Malthusian pressures and overcrowding do not impede their growth. The Ap-
pendix generalizes the growth process to geometric Brownian motion. Integrating
the distribution function we have immediately

Proposition 3. At time T after the first settlement is established, the probability
distribution of population n across settlements is

F(n) = K(1−n−λ/γ) 1 ≤ n ≤ eλT (19)

where K = (1− exp(−λT ))−1.
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In other words, population follows a truncated Pareto distribution or power
law. When new cities emerge at the same rate that population grows we have an
exponent of minus one: Zipf’s law.

Proposition 3 generalizes the standard result that an exponentially growing pro-
cess observed at exponentially distributed times has a Pareto distribution (Johnson, Kotz and Balakrishnan
1994, 608; Reed 2001) by allowing time to have a finite beginning. This rules out
the usual tail of unboundedly large cities and gives expected city size a finite value

E(n) = Kλ
γ−λ

[

−1+ exp(λ−γ)T ]

. (20)

Trade is described by the same model of Section 3. Now that sites have differ-
ent populations ni the gravity equation for expenditure (10) continues to hold but
the price pi of each region’s output is weighted by the number of varieties ni/Fσ
it produces; and the price index in larger sites will be lower, reflecting the smaller
share of goods that incur transport costs. While closed form solutions are no longer
possible, the volume of trade between two sites will be increasing in their popula-
tions, and diminishing in the cost of transport. It follows that the probability that a
city at the origin with population i will communicate with a city of population j at
location y is πi j = g(θ,y, i, j) so the probability that a city at the origin communicates
with a city at location y is

g(θ,d0y) =
∫ expγT

1

∫ expγT

1
g(θ,d0y, i, j) f (i) f ( j)d jdi (21)

where f is the density of city sizes corresponding to the distribution function (19).
The analysis of network size then goes through as in Section 4

6 Technological retrogression.

The concern so far has been with explaining technological progress under learning
by imitation. However, our basic equation for the change in skill (4) also implies
that technology can regress if population falls.3

3The retrogression of technology to simpler forms, together with a fall in the quality and ho-
mogeneity of artifacts, are features common to the collapse of urban societies such as Harappa,
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From (4) there is a critical population needed to maintain the existing level of
technology

N∗ = exp














1
c2

2

(

µt
σt−1

+ c1

)2












(22)

This critical population increases rapidly with the difficulty of imitating the tech-
nology given by the inverse of the coefficient of variation µ/σ. For µ/σ = 3,
N∗ = 395; for µ/σ = 5, N∗ = 1.8 million. Consequently, if imitation difficulty
rises with the level of technology, a fall in population will cause technological ret-
rogression.4

6.1 Locational choice.

To understand societal collapse, we now allow each household the choice between
engaging in market activity, which allows the consumption of tradeable goods but
requires tax to be paid, and a rural, subsistence existence that gives reservation
utility Ū j. We suppose for concreteness that there is the same potential population
n at each of the C sites in the economy.

A household in a city divides expenditure to maximize utility

U = MβF1−β (23)

where M is a basket of manufactured goods with Dixit-Stiglitz utility given by (6)
and price index P (8); and F represents food and fuel coming from the agricultural
sector.

Agricultural goods cost pF and the household pays a fraction τ of its income in
tax to the government. Each unit of agricultural goods requires lF units of labour to
produce so pF = lFw and, from the zero profit condition, household income Y = w.

Mesopotamia, Mycenae, and the Western Roman empire in the Old World; and the Maya, Olmec,
Chacoans, and Hohokam in the New (Tainter, 1988, 20).

4Henrich (2002) argues that this process can explain the loss of basic technologies among the
aboriginal Tasmanians
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As before, quantities are normalized so that w= p. The household receives indirect
utility from (12) and (13)

U = ββ(1−β)1−β (1− τ)Y
Pβp1−β

F

= ββ(1−β)1−β 1− τ
l1−βF

(

ᾱ

θD

)β

. (24)

Welfare is increasing in technology ᾱ, and diminishing in tax rates τ, the labour
requirement of agriculture lF , and the cost of transportation θ.

Households will desert the city if utility falls below the autarky threshold Ū.
This threshold utility has a distribution function across households of H(Ū) with
associated density h(Ū). If a city has potential population of n, its actual population
reflects the fraction of households whose utility lies above the threshold for urban
living L = n

∫ U
0 h(Ū)dŪ. L now replaces n as the relevant population term for the

volume of trade and network size in Sections 3 and 4.
Any factor that reduces the return to market activity (24) can induce a civiliza-

tional collapse if it drives urban population L below the value needed to maintain
the critical number of knowledge linkages ν∗. Once the threshold is passed the
economy splits into local knowledge networks with small populations below N ∗,
causing technological knowledge to regress, and further reducing the utility of ur-
ban living U. We focus on two causes of urban collapse that have received partic-
ular attention: ecological decline, and increasing taxation in response to military
pressure.

Deteriorations in climate and ecology increase the labour requirement of agri-
culture lF , reducing the payoff to market activity (24).5 The impact will be more
immediate if utility (23) is generalized to a Geary-Stone form U = Mβ(F − F̄)1−β

where F̄ is the subsistence quantity of agricultural goods, so that a fall in agri-
cultural productivity that drives lF F̄ above households’ labour endowments causes
cities to be abandoned immediately.

5While there are few civilizations whose decline has not been attributed to climatic change
(Tainter, 1988, 44–51), strong evidence implicates prolonged drought in the collapse of the Akkadian
and classical Maya, states and the Chacoan pueblo culture (deMenocal, 2001); while salinization due
to irrigation has been blamed for the abandonment of Mesopotamian cities (Postgate, 1995, 181); and
deforestation appears central to the collapse of Easter Island (Brander and Taylor, 1998).
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6.2 Political factors.

When not a vector of epidemic disease, the destructive power of pre-industrial
armies was limited, and the effects of military conflict are principally through tax-
ation and geographical disunity. Military conquest can split knowledge networks,
causing regression in isolated clusters such as the cities of Western Europe after
the disintegration of the western Roman empire. Even without military collapse,
the taxes needed to maintain an effective army can lead to a flight of population
from cities, causing urban networks to collapse.

We suppose that the government uses tax revenue to recruit an army of size S .
Suppose that a force of S i directly engages an enemy force of size Ei. It inflicts
casualties on the enemy at a rate kS while the enemy inflicts casualties at rate kE:
Ṡ i = −kEEi, Ėi = −kS S i, so that the loss rate relative to the enemy is kEE2

i /kS S 2
i .

It follows that the effective forces on each side are kS S 2
i and kEE2

i : the Lanchester
square law.

While the outcome of an engagement on part of a battlefield from these equa-
tions is deterministic, the outcome of a campaign reflects additional factors such as
skill and luck in concentrating forces, disease, hunger, weather, and other fortunes
of war. In a campaign where an army of total size S faces a total enemy force
of size E, we suppose that the probability of victory is proportional to effective
forces πV = kS S 2/

(

kS S 2
+ kEE2

)

. The value of winning is V which will generally
be greater for a defensive war than an offensive one.

There are N taxpayers with income p. Each soldier costs cS > 1 so the di-
rect cost of the army is cS S . Given national income of N we suppose that the
perceived cost to the government of raising each denarius, in taxpayer discontent
and defections, is proportional to the share of military spending in national income
cτcS S/pN, so the cost of spending cS S on an army is C(S ) = cτc2

S S 2/pN.
The government’s problem is to choose S to maximize πvV −C(S ) which im-

plies that

S =












max












E
cS

√

kEkS pNV
cτ

− kEE2,0
























1/2

. (25)

This is positive and increasing in the number of enemies E, their effectiveness kE ,
population N, and the payoff to victory V , as long as the first term is positive which
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will be the case so long as the number of taxpayers is very much larger than the
effective enemy force.

The tax rate is τ = cS S/pN. From (25) it follows that the tax rate is of the order
N−3/4. Tax rates rise rapidly as population falls. As a consequence, an epidemic
induced decline in population accompanied by increased military pressure, such as
occurred in third century Rome and seventh century Byzantium, can set off a cycle
where rising taxes induce urban flight, increasing the tax burden on the remaining
population.

7 Conclusions.

Since Adam Smith’s observation that the division of labour is limited by the extent
of the market, economics has been aware of the close links between technologi-
cal skill and trade. The goal of this paper was to use this linkage to provide a set
of explicit microfoundations for the production function for technology. Whereas
existing models assume that all technical knowledge is available to all researchers
(requiring that technical knowledge can be stored, transmitted, and retrieved loss-
lessly and costlessly), this paper began with the premise that technical knowledge
has a large tacit component that must be transmitted by direct personal contact.

It showed that under such learning by imitation the rate of technological progress,
or regress, depended on the size of the population of innovators sharing the same
knowledge network. If knowledge networks reflect trade—the greater the volume
of trade between sites, the greater the probability that producers at one site have
knowledge of the technology at the other site—we demonstrated a threshold in the
size of knowledge networks. As the volume of trade rises to a critical volume be-
cause of rising population or lower transport costs, the size of knowledge networks
suddenly rise, leading to a jump in the rate of technical progress.
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Appendix: Population distribution under geometric Brow-
nian motion.

Suppose that settlement size evolves as geometric Brownian motion

dn(t) = γn(t)+ ςn(t)B(t)

so that the population of settlements of age t is lognormally distributed

log n(t) ∼ N
((

γ−
1
2ς

2
)

t, ς2t
)

.

The age of settlements is exponentially distributed with parameter 1/λ and maxi-
mum T so the density of settlement sizes is

f (n) =
∫ T

0
λe−λt 1

√

2πς2t
1
n exp−

(

log n−
(

γ− 1
2ς

2
)

t
)2

2ς2t
dt.

Substituting u2
= t

f (n) = λ
ς

√

2
π

na−λ−1
∫

√
T

0
exp

(

−au2−bu−2
)

du

where a ≡ λ+
(

γ− 1
2ς

2
)

/2ς2 and b ≡ (log n)2
/2ς2. Solving the integral

f (n) = λ

ς
√

2a
na−λ−1















e−2
√

ab
Φ















√
2aT −

√

2b
T















− e2
√

ab
Φ

c














√
2aT +

√

2b
T





























where Φ is the standard normal distribution and Φc
= 1−Φ. Expanding the e2

√
ab

terms

f (n) =























λ

ς
√

2a

{

na−λ−1−d
Φ

(√
2aT −

√

2b
T

)

−na−λ−1+d
Φ

c
(√

2aT +
√

2b
T

)}

n ≥ 1
λ

ς
√

2a

{

na−λ−1+d
Φ

(√
2aT −

√

2b
T

)

−na−λ−1−d
Φ

c
(√

2aT +
√

2b
T

)}

n < 1
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where d ≡
√

2a/ς. For T large and logn small relative to T , the Φ term is close to
1 and the Φc term is close to zero. This gives a density f (n) that is again close to a
power law, with different distributions on either side of the initial city size of 1.
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