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1 Introduction

Recent research has established that economies with fully rational agents and
market clearing can be subject to endogenous fluctuations (see the surveys
by Baumol and Benhabib (1989), Day and Panigiani (1991), Boldrin and
Woodford (1990)). Equilibrium trajectories in dynamic general equilibrium
models can exhibit not only deterministic cycles but also chaotic behavior.
This line of research provides an explanation of business cycle fluctuations
that is fully self-contained in the style of the axiomatic tradition of general
equilibrium theory as all fluctuations are equilibrium consequences of fully
specified general equilibrium models. However, an issue with this literature
is that chaotic trajectories emerge for parametric values that do not con-
form with the calibrated values that are usually used in the macroeconomic
literature.

In this paper we show that chaotic dynamics can arise in a model of
economic growth for a wider class of productions functions than the ones
used in the literature so far. Secondly, chaotic dynamics (ergodic chaos and
geometric sensitivity1) can occur for low levels of impatience in general two-
sector economic growth models. Thirdly, ergodic chaos can occur for different
configuration of the factor intensity. We show that ergodic chaos can occur
when there is factor intensity reversal, and in addition in the case of non-
linear utility if the consumption good sector is capital intensive for all values
of the growth factor.

The model we study is a two sector growth model with Harrod-Neutral
technical change or labour augmenting externalities. This is the same frame-
work used by Drugeon and Venditti (1998), Drugeon, Poulsen and Venditti
(2003) and Goenka and Poulsen (2004) to study indeterminacy. In the two-
sector model, sector 1 produces a pure consumption good while sector 2
produces a pure investment good. In addition to the labor and capital in-
puts provided by the representative consumer, each sectors’ productivity is
affected by the aggregate capital stock. This provides a positive externality
in the production of both sectors through learning by doing. The class of
utility functions is the CES family. This specification is consistent with the
existence of a balanced growth path.

To establish ergodic chaos we show that a suitably defined map of the

1In our model there is ergodic chaos if and only if there is geometric sensitivity. Thus,
for brevity, we refer to the chaotic dynamics as ergodic chaos.
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growth factor of capital (growth rate minus 1) can be unimodal and expan-
sive. Different sufficient conditions are obtained depending on whether the
utility function is non-linear or non-linear. A sufficient condition in the first
case for unimodality is that either there is factor intensity reversal or the
consumption good sector is capital intensive. We show that a necessary and
sufficient condition for the law of motion to be expansive is that the rate of
impatience of the representative consumer is not too low. In the second case,
the sufficient condition for unimodality holds only if there is factor intensity
reversal.

Our results extend what is known in the literature as we work with general
functional forms. Nishimura and Yano (1995, 2000) and Nishimura et.al.
(1994) also establish ergodic chaos in a two-sector growth model but the
production functions in both sectors are Leontief; in Boldrin et.al. (2001)
the production function in the consumption good sector is Cobb-Douglas and
the production function in the investment good sector is linear. All we need
to assume is that the production functions in both sectors are homogenous of
degree one with respect to private inputs and that external effects are labor
augmenting.

The result that ergodic chaos is compatible with low impatience is similar
to the results obtained by Nishimura and Yano (1995, 2000) and Nishimura
et al. (1994). (This work moves away from the so-called “minimum im-
patience theorems” (Mitra (1996) and Nishimura and Yano (1996), Sorger
(1992, 1994)) which show that topological chaos is not feasible in optimal
growth models unless the representative consumer discounts future utilities
very heavily.) They derive sufficient conditions on the parameters of a family
of optimal growth models that give rise to an ergodic chaotic optimal pol-
icy function for all discount factor inside the unit interval. Nishimura and
Yano’s (2000) have a constructive example establishing chaos. Nishimura,
Sorger and Yano (1994) have a more general approach which relies on wealth
effects. The utility of the representative consumer depends on the consump-
tion good as well as current stock. This is similar to Majumdar and Mitra
(1994) who have a general result based on wealth effects. In our model we do
not have wealth effects but have the classical learning by doing externality
which is Harrod Neutral or labour augmenting. There are some other differ-
ences in the nature of results. First, we derive an upper bound on the rate
of impatience of the representative consumer. The Transversality Condition
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(TVC) imposes a restriction on the discount factor2 relating to the maximum
feasible growth factor, the depreciation rate, and the exponent of the util-
ity function. If growth is bounded and there is full depreciation, the model
exhibits ergodic chaos for all discount factors arbitrarily close to unity. If
growth is unbounded, there exists, as in Boldrin et al. (2001), an inverse re-
lationship between discounting and growth. As long as the discount factor is
inside the range of values allowed by the TVC, ergodic chaos can be obtained
without further restrictions on the level of impatience of the representative
consumer. In Boldrin et al. (2001) the upper bound on the discount rate
can be lower than the bound derived in our paper for certain range of the
external effects. Second, we derive a lower bound on the rate of impatience
that is related to the underlying economic fundamentals.

The result on capital intensity configurations allows us to establish a link
between the results of Boldrin et al. (2001), Nishimura and Yano (1995,
2000), Nishimura et al. (1994) and the earlier literature on chaos in two-
sector neoclassical growth models. In all these papers the capital intensity
in both sectors are arbitrarily chosen. The unimodal map is also derived
from specific functional forms when no factor intensity reversal takes place
between sectors. In the earlier literature on neoclassical growth, factor in-
tensity reversal is a necessary condition for the emergence of topological
chaos, as shown by Deneckere and Pelikan (1986), Boldrin (1989), Boldrin
and Deneckere (1990). In our model when utility is nonlinear, unless the
consumption sector is always capital intensive, capital intensity reversal is
necessary for the emergence of chaos. If utility is linear capital intensity
reversal is necessary for chaos. Furthermore, unlike the earlier literature on
neoclassical growth models which had topological chaos, we have ergodic
chaos in our model. In Nishimura and Yano (1995, 2000) and Nishimura et
al. (1994) the consumption goods sector is always capital intensive and there
is ergodic chaos.

It is worth noting that the work of Nishimura and Yano (1995, 2000) and
Nishimura et al. (1994) uses corner solutions to establish a non-monotonic
map that is essential for chaos. In our model the boundary behaviour is not
the driving force to generate the non-monotonic dynamics.

We study the backward dynamics of the model as the map describing the
dynamics is non-invertible in the forward dynamics. This problem also arises

2The discount factor can be rewritten as β = 1/(1 + ρ), where ρ > 0 is the rate of time
preference or the rate of impatience of the representative consumer.
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in overlapping generations models (see e.g. Grandmont (1985), and Goenka,
Kelly and Spear (1998) which has a discussion of this issue).

The rest of the paper is organized as follows. In Section 2 we present the
model and do some preliminary analysis. Section 3 collects some results on
chaos to make the discussion self-contained. Then we study the case of linear
utility in section 4. Section 5 contains the results for non-linear utility. The
intuition of the results and further discussion of the results are in section 6.

2 The Model

The model is a discrete time, two–sector growth model with Harrod-Neutral
technical change. Consumers are indexed by h and are distributed along the
unit interval. The utility function of the representative consumer is of the
CES class.

Assumption 1 :

u(ct) =
cα
t

α
, 0 < α ≤ 1

where ct is per capita consumption at time t.

Consumers discount lifetime utility by the discount factor β, where, 0 <
β < 1. Each consumer h ∈ [0, 1] is initially endowed with an equal fraction
of the aggregate capital stock k. Consumers also supply a single unit of labor
inelastically. This labor is allocated between the two productive sectors of
the economy. The aggregate labor supply in the economy is unity.

There are two productive sectors in the economy. Sector 1 produces the
consumption good, ct. Sector 2 produces the investment good, yt. Inputs,
capital, k, and labor, l, are freely mobile between sectors. Capital is assumed
to depreciate at rate δ ∈ (0, 1]. Thus, kt+1 = yt + (1− δ)kt. Market clearing
in the two sectors is given by:

kt = k1
t + k2

t ,

1 = l1t + l2t ,
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where ki
t and lit denotes the amount of private inputs used in sector, i = 1, 2.

We will omit the time subscripts whenever they are not necessary. The
stationary production functions in the two sectors are given by:

c = F 1(k1, l1, X), y = F 2(k2, l2, X). (1)

The productivity of the private inputs is affected by the aggregate capital
stock X, where X =

∫ 1

0
k(h)dh. Thus, it is a two-sector version of the

learning-by-doing model (Arrow (1961), Sheshinski (1967), Romer (1986)).
We make the standard assumption that for a given level of the aggregate
capital stock the marginal productivities of both inputs are positive and
there are diminishing marginal productivities in private inputs.

Assumption 2: For i = 1, 2, F i : <3
+ → <+, are continuous functions. For

a given X ∈ <+:

1. F i(., ., .) is C3 on <++ ×<++ ×<+;

2. F i(., ., X) is homogenous of degree one and strictly increasing over
<++ ×<++;

3. F i
11(., l

i, X) < 0, for all ki ∈ <++ and lim
ki→0

F i
1(k

i, li, X) = ∞;

4. F i
22(k

i, ., X) < 0, for all li ∈ (0, 1] and lim
li→0

F i
2(k

i, li, X) = ∞.

While we work with general production functions, the key restriction in
our model is the nature of the externality.

Assumption 3 (Harrod − Neutrality) : External effects in sector i are
Harrod-Neutral (labor augmenting):

F i(ki, li, X) = F i(ki, liX), where i = 1, 2,

where F i(., .) is homogenous of degree 1 in ki and liX.

We define the growth factor of capital γt as γt = kt+1/kt. Under As-
sumption 3, it follows that the maximum feasible growth factor γ is equal
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to F2(1, 1) + (1 − δ). As capital may not depreciate fully in every period,
the minimum feasible growth factor γ is (1 − δ). Hence for all feasible se-
quences of capital {kt, kt+1} given by (1−δ)kt ≤ kt+1 ≤ F2(kt, Xt)+(1−δ)kt,
γt ∈ [(1− δ),F2(1, 1) + (1− δ)] ≡ Γ.

The representative consumer’s behavior is described by the following op-
timization problem:

max
{ct,k1

t ,l1t ,k2
t ,l2t ,}

∞∑
t=0

βt c
α
t

α
(2)

subject to

ct = F1(k1
t , l

1
t Xt),

yt = F2(k2
t , l

2
t Xt),

kt+1 = yt + (1− δ)kt,

kt = k1
t + k2

t ,

1 = l1t + l2t ,

ki
t ≥ 0, lit ≥ 0, {Xt}∞t=0, k0 given.

The constraints can be collapsed using the production possibility frontier
(PPF from here on), T (k, y, X), given by ct = F1(kt − k2(k, y,X), Xt(1 −
l2(k, y, X))). The above maximization problem reduces to:

max
{kt}

∞∑
t=0

βt

[
T (kt, kt+1, Xt)

α

α

]
(3)

subject to

(1− δ)kt ≤ kt+1 ≤ F2(kt, Xt) + (1− δ)kt,

{Xt}∞t=0, k0 given.

Let kt{Xt}∞t=0 denote the solution to this problem. If {kt}∞t=0 satisfies
kt{Xt}∞t=0 = Xt for all t ≥ 0, then the path {kt}∞t=0 will be referred to as an
equilibrium path. This fixed point problem is solved in a different framework
in detail by Romer (1983) and Mitra (1998). We do not address this issue
here. We assume for simplicity that there exists an equilibrium path {kt}∞t=0

such that kt{Xt}∞t=0 = Xt for all t ≥ 0.
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As we are working with general technologies, we make the following reg-
ularity assumption3

Assumption 4 : T (kt, yt, Xt) is C3 on <++ ×<++ ×<+.

On defining the indirect utility function as V (kt, kt+1, Xt) = [T (kt, kt+1, Xt)
α/α] ,

the maximization problem of the representative agent reduces to:

max
{kt}

∞∑
t=0

βtV (kt, kt+1, Xt) (4)

subject to

(kt, kt+1) ∈ D(Xt),

{Xt}∞t=0, k0 given.

The set of feasible solutions to (4) D (Xt) is defined as follows:

D (Xt) = {(kt,kt+1) ∈ <+ ×<+ : (1− δ)kt ≤ kt+1 ≤ F2(kt, Xt) + (1− δ)kt}.

This set is non-empty and convex. Following Boldrin et. al (2001), {kt}∞t=0

is an interior solution to Problem 4 if the following conditions are satisfied:

V2(kt, kt+1, Xt) + βV1(kt+1, kt+2, Xt+1) = 0, (5)

lim
t→∞

βtktV1(kt, kt+1, Xt) = 0, (6)

t=∞∑
t=0

βtV (kt, kt+1, Xt) < ∞. (7)

Equation (5) is the Euler equation. Equation (6) is the transversality
condition. Equation (7) is the summability condition. Conditions (5) to (7)
are the same as conditions (3.1)-(3.3) given in Boldrin et. al (2001) with the
exception that u(ct) is non-linear. To insure that the transversality condition
(TVC) is satisfied we impose the following restriction

3It is satisfied in the case of Cobb-Douglas production functions, among others.
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Assumption 5: β(F2(1, 1) + (1− δ))α ≡ βγα < 1.

For unbounded growth we need to assume that γ > 1. In that case we
see that the TVC will be satisfied for all β ∈ (0, 1/γα). For bounded growth
γ < 1, and if there is full depreciation, then TVC holds for all β ∈ (0, 1). If
α is small enough then the TVC will also hold for all β even if there isn’t full
depreciation. For a fixed γ, there is a inverse relationship between α and the
upper-bound on β for the TVC to be satisfied.

The simplest dynamics in the model arise in when there is a balanced
growth path or when capital grows at a constant rate.

Definition 1 An equilibrium path {kt} is a balanced growth path (BGP) if
there exists a growth factor γ ∈ [0, γ] such that for all t ≥ 0, kt = γtk0, where
k0 6= 0.

The issue is whether there exists an interior solution with such a property.
If F2

1 (k2(1, 1), l2(1, 1)) < 1, i.e., there is bounded growth, there exists a BGP.
For the case of unbounded growth is the following additional assumption has
to be made :

Assumption 6 : β [F2
1 (k2(1, δ, 1), l2(1, δ, 1)) + 1− δ] > 1.

Proposition 1 Let Assumptions 1-6 be satisfied. Then there exists an inte-
rior BGP with unbounded growth, γ̃ ∈ (1, γ).

Proof. See Goenka and Poulsen (2004).

We are interested in the dynamics of the model. These are given by (5)
- (7). To study general dynamics in the model, instead of working with this
system of equations, we want to transform these to obtain a one dimensional
difference equation which will be more amenable to analysis.

In order to do so, it is helpful to investigate properties of the Production
Possibility Frontier. Under Harrod-Neutrality, Drugeon and Venditti (1998)
show that the input demand functions ki(kt, yt, Xt) and li(kt, yt, Xt), i =
1, 2, are homogenous of degree 1 and 0 respectively and that T (kt, yt, Xt)
is homogenous of degree 1. Then using the homogeneity properties of the
production functions, Drugeon, Poulsen and Venditti (2003) establish the
following:
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Lemma 1 Let Assumptions 2-3 be satisfied. Then, function of T (k, y, X),
is homogenous of degree one. Furthermore if Assumption 5 holds then,

T21 =
F1

12F2
12qF2l1

Ωk2k1

(
k1

l1
− k2

l2

)
, (8)

T23 = −T21
k1

l1X
+

2l2

F2
1

(F1
12 + qF2

12

)
, (9)

T22 =
l2

F2

(
k1

l1
− k2

l2

)
T21, (10)

where

Ω = −F
1
12(F1)2(F2

1 )2

(F1
1 )2k1l1X

− F2
12(F2)2F1

1

F2
1k2l2X

< 0.

Proof. See Drugeon and Venditti (1998) and Drugeon, Poulsen and Venditti
(2003).

We also see from this result that the sign of T21 depends on the factor
intensity. With factor intensity reversal, T21 will change sign. A similar result
can also be found in Benhabib and Nishimura (1985) in a two-sector optimal
growth model without externalities.

Under Harrod -Neutrality, the Euler equation can now be represented in
terms of the growth factor, γt as the homogeneity properties of the PPF
imply that the indirect utility function is homogenous of degree α.

Lemma 2 Let Assumptions 1-3 be satisfied. Then V (kt, kt+1, Xt) is homoge-
nous of degree α. Furthermore, the Euler equation (5) reduces to:

γ1−α
t V2(1, γt, 1) + βV1(1, γt+1, 1) = 0. (11)

Proof. See Drugeon and Venditti (1998).

Recall that the set of feasible growth factors is Γ = [(1−δ),F2(1, 1)+(1−
δ)]. We want to represent the general forward dynamics as map τ : Γ → Γ,

γt+1 = τ(γt) (12)

or, in backward dynamics as a map, θ : Γ → Γ:

γt = θ(γt+1). (13)
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From (11) we can define the following two functions:

f(γt+1) = βV1(1, γt+1, 1), (14)

g(γt) = −γ1−α
t V2(1, γt, 1),

and so (11) can be written as

−g(γt) + f(γt+1) = 0.

To obtain a first order difference equation like (12) or (13), we need to show
that either g or f has a well defined inverse on [γ, γ]. This is taken up in
section 4 for the linear utility and in section 5 for non-linear utility.

3 Results on chaos

To make the discussion self contained, some standard results and definitions
on the theory of chaos in dynamical systems are collected here (see Collet
and Eckmann (1980), Day (1994) and Eckmann and Ruelle (1985) for more
details). We focus on chaos in the sense of ergodic oscillations and geometric
sensitivity (GS). In other words, the law of motion is generated by a nonlinear
difference equation with no random terms such that (i) the long run behavior
of the system is characterized by extremely complicated aperiodic dynamics,
(ii) small differences in the initial conditions are magnified at a geometric
rate for arbitrary finite lengths of time (GS) and (iii) the time average of the
orbit can be replaced by the space average (ergodic chaos).

A dynamical system is a pair (I, θ) where I is a compact interval on the
real line and is called the state space and θ a function describing the law of
motion of the state variable x ∈ I. Thus, if xt is the state of the system in
period t, then xt+1 = θ(xt) is the state of the system in period t + 1. If we
denote by x0 the initial state of the system, and θ0(x) = x for all x ∈ I then
θt+1(x) = θ(θt(x)) for all t ≥ 0 and all x ∈ I where θt is the t− th iterate of
θ, t = 0, 1, 2, ...

The notion of chaos that is often used in the economics literature is that of
topological chaos. In many models this is easy to establish using the theorem
of Li and Yorke (1975) that a “cycle of period 3 implies chaos.” (also see
Mitra (2001) for a different set of conditions to establish topological chaos).

Definition 2 Let θ : I → I define a dynamical system. We say that θ
exhibits topological chaos if:
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1. For every period N , there exist points xN ∈ I such that θN(xN) = xN .

2. There exists an uncountable set S ⊂ I and an ε > 0 such that every
pair x, y in S with x 6= y:

(a) limn→∞ sup |θn(x)− θn(y)| ≥ ε.

(b) limn→∞ inf |θn(x)− θn(y)| = 0.

(c) For every periodic point z and x ∈ S: limn→∞ sup |θn(x)− θn(z)| ≥
ε.

While topological chaos can often be easy to show, S may have Lebesgue
measure zero. For example, for the quadratic map θ(x) = µx(1 − x) with
µ ∈ [1, 4], there is topological chaos if µ = 3.828427, but almost all initial
conditions lead to a cycle of period 3. A different notion of chaos is the
following.

Definition 3 (Nishimura and Yano (2000)). The dynamical system (I, θ),
exhibits Geometric Sensitivity (GS) if there exists a constant h > 1 such
that for any τ ≥ 0 there exists ε > 0 such that for all x and x′ ∈ I with
|xt − x′t| < ε and for all t ∈ {0, 1, ..., τ}

∣∣θt(x)− θt(x′)
∣∣ ≥ ht |x− x′| .

In this case small differences in initial conditions magnify geometrically
over time. As I is bounded, the geometric magnification of the effects of
a small perturbation cannot last indefinitely. Furthermore, the dynamical
system (I, θ) has no locally stable cyclical path.

There is also the notion of ergodic chaos. Ergodic chaos is a stronger
property than topological chaos in the sense that it is “observable chaos”.

Let Υ be a σ-algebra on I. 4 Define a probability measure µ : Υ → <+

such that (i) µ(∅) = 0 and (ii) µ(∪∞n=0Yn) = Σ∞
n=0µ(Yn), (iii) µ(I) = 1,

where {Yt}∞n=0 is a countable collection of disjoint sets in Υ. The probability
measure µ is said to be invariant with respect to θ if µ(θ−1(Y )) = µ(Y ) for
all Y ∈ Υ. Invariant measures have an important property.

4A σ−algebra is a collection of subsets Υ of I such that (i) I is inside Υ, (ii) the
complement of any set Y included in Υ is also in Υ, (iii) the union of any countable
collection of subsets in Υ is inside Υ.
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Theorem 1 (Poincaré Recurrence Theorem:) Let {I, Υ, µ} be a prob-
ability space and let µ be invariant under θ. Let Y be any measurable set of
positive measure. Then all points of Y return to Y infinitely often.

Consider x ∈ Y . Then, x ∈ θ−1(x) ⇒ θ(x) ∈ Y . Thus, the trajectory will
stay in Y forever. The invariant probability measure µ is said to be ergodic
if for some Y ∈ Υ then θ−1(Y ) = Y implies either µ(Y ) = 0 or µ(Y ) = 1.
In other words, the system cannot split into non-trivial parts. For ergodic
measures, a fundamental result is:

Theorem 2 (The Birkhoff-von Neuman Mean Ergodic Theorem:)
Let (I, θ) be a dynamical system. If µ is an invariant and ergodic probability
measure then, for any µ−integrable function g,

lim
t→∞

1

t

t−1∑
τ=0

g(θτ (x)) =

∫

I

gdµ (15)

for almost all x ∈ I.

The left hand side of (15) is the average value of g along the orbit
{x, θ(x), ...} . The right hand side of (15) is the expected value of g eval-
uated on I. In other words, the time averages along an orbit {x, θ(x), ...}
can be replaced by space averages. Furthermore, for almost all x ∈ I, an
orbit {x, θ(x), ...} will visit every measurable set proportionally to its mea-
sure. The system is “chaotic” if the support of the measure is a “large set.”
However, the measure could be concentrated on a point as in the case of a
fixed point, or on a finite subset of points in the case of a cycle. Absolute
continuity of a measure avoids this problem.

Definition 4 The probability measure µ is absolutely continuous with respect
to the Lebesgue measure L on I if there exists an integrable function f such
that

µ(Y ) =

∫

Y

fdm

for all measurable sets Y in σ−algebra Υ.

Absolute continuity implies that for all Y ∈ Υ, if L(Y ) = 0 then µ(Y ) = 0.
Thus, the support of µ cannot be a set of measure zero.

We can now define the concepts of ergodic chaos in the following way:
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Definition 5 The dynamical system (I, θ) exhibits ergodic chaos if there ex-
ists a probability measure µ on I which is absolutely continuous, invariant
and ergodic.

Lasota and Yorke (1973) establish that if θ is a piecewise C2 and expansive
mapping then there exists an absolutely continuous invariant measure

Definition 6 A mapping θ defined on [a, b] is piecewise C2 and expansive if:

1. There exists a finite set x0 = a < x1 < x2 < ... < xn = b,

2. For all j = 0, 1, ..., n, θ is C2 on (xj,xj+1) and can be extended as a C2

function to [xj,xj+1],

3. |θ′(x)| ≥ h > 1 for all x ∈ (xj,xj+1).

Li and Yorke (1978) show that if θ is also a unimodal map then this
measure is ergodic.

Definition 7 Assume there exits a constant c ∈ [a, b], a < c < b. Then a
mapping θ, defined on [a, b] is unimodal if

1. θ is continuous on [a, b],

2. θ is strictly increasing on (a, c) and strictly deceasing on (c, b).

Nishimura and Yano (2000) establish that a map that is expansive is also
chaotic in the sense of GS. Thus, we have:

Theorem 3 (Lasota and Yorke (1973), Li and Yorke (1978), Nishimura and
Yano (2000)):
Let (I, θ) be a dynamical system. If θ : I → I is expansive and unimodal
then θ is chaotic in the sense of ergodic oscillations and GS.

4 Linear Utility

We first study the case where α = 1 or utility is linear and there is full
depreciation, i.e. δ = 1. In this case charaterizing the dynamics simplifies
considerably and factor intensity reversal is necessary for the occurrence of
chaos. Full depreciation will imply that [γ, γ] = [0,F2(1, 1)].
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In the model, there can in general be several capital intensities where
factor intensity reversal takes place. We make the simplifying assumption
that there exists a unique value of the growth factor γ̂, where 0 < γ̂ < γ, at
which factor reversal takes place. 5

Assumption 7: (Unicity of factor intensity reversal) There exists a
unique γ̂ ∈ (0, γ) such that

k1(1, γ̂, 1)

l1(1, γ̂, 1)
=

k2(1, γ̂, 1)

l2(1, γ̂, 1)
.

Under linear utility, {kt}∞t=0 is an equilibrium path if and only if the
following conditions are satisfied

T2(kt, kt+1, kt) + βT1(kt+1, kt+2, kt+1) = 0, (16)

lim
t→∞

βtktT1(kt, kt+1, kt) = 0, (17)

t∑
t=0

βtT (kt, kt+1, kt) < ∞. (18)

Conditions (16) to (18) are identical to conditions (3.1)-(3.3) given in
Boldrin et. al (2001). Given assumptions 2 and 3, these can be satisfied only
for an interior trajectory, i.e., with k1

t > 0, k2
t > 0.

The homogeneity properties of the PPF imply that the left hand side of
equation (16) can be rewritten as

ψ(γt, γt+1) ≡ T2(1, γt, 1) + βT1(1, γt+1, 1) (19)

or, as
ψ(γt, γt+1) = 0. (20)

5One can relax this assumption and still show that θ is chaotic in the sense of ergodic
oscillations and GS. To do so, one would need to (i) establish that θ is piecewise strictly
monotonic, piecewise C2 and expansive on the following intervals (0, γ̂1), (γ̂1, γ̂2), ...and
(γ̂n, γ), where γ̂j , j = 1, ...n, denotes a growth factor at which the ith factor reversal
occurs. (ii) Show that θ(γ̂j), , j = 1, ...n, is a turning point and that γ̂j−1 < γ̂j < γ̂j+1.
For more details for this case, see Theorem 8.5 and Corollaries 8.3 and 8.4 in Day (1994) .
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From (19), we can define the following two functions:

f(γt+1) = βT1(1, γt+1, 1), (21)

g(γt) = −T2(1, γt, 1)

and hence, (19) can be written as

−g(γt) + f(γt+1) = 0. (22)

To obtain a first order difference equation such as (12) or (13) either g or f
has to have a well defined one-to-one inverse on [0, γ]. As we can see from
(8) in Lemma 1, T12 changes sign if factor intensity reversal takes place at
γ̂. Hence f does not have a well defined one-to-one inverse. The same is not
true for the existence of g−1.

Proposition 2 Let Assumptions 1-5 and 7 be satisfied. Then there exists a
1− 1 map θ : [0, γ] → [0, γ] such that

γt = θ(γt+1). (23)

Proof.
Define

f(γt+1) = βT1(1, γt+1, 1), (24)

g(γt) = −T2(1, γt, 1), (25)

where f : [0, γ] → J v <∗+ and g : [0, γ] → I v <∗+.
Using (24) and (25), the Euler equation (19) can be written as −g(γt) +
f(γt+1) = 0. Assumptions 2, 3 and the unicity of factor intensity reversal
(Assumption 7) imply that g′ > 0 for all γt ∈ (0, γ̂) ∪ (γ̂, γ). Furthermore,
Assumption 7 implies there is a unique γ̂, 0 < γ̂ < γ such that g′(γ̂) = 0.
Hence g is one to one. From the definition of g we see that range(g) = I. So
g has a well defined inverse g−1. We can rewrite (20) as γt = θ(γt+1), where
g−1 [f(γt+1)] . From this definition, it follows that θ : [0, γ] → [0, γ].

Grandmont (1985), Goenka, Kelly and Spear (1998), amongst others, also
study backward foresight dynamics. In Grandmont (1985) the same problem
about the non-existence of the inverse of f . In his overlapping generations
model, the excess demand function of the young consumers is a unimodal
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function if the Arrow-Pratt relative degree of risk aversion of the old is a
non-decreasing function of their wealth. See Goenka, Kelly and Spear (1998)
for a discussion of forward and backward dynamics.

The issue of showing chaos in the model thus reduces to showing that the
map θ derived in section 4 is unimodal and expansive.

4.1 Unimodality of θ

To establish the unimodality of θ we need to show θ is continuous on [0, γ],
strictly monotonically increasing on (0, γ̂) and strictly monotonically decreas-
ing on (γ̂, γ). It can be shown that the sign of θ

′
(γt) depends on the sign of

T12. As T12 changes sign at the point of factor intensity reversal, under unic-
ity of factor intensity reversal θ

′
(γt) changes sign only once at γ̂. Hence θ is

either strictly monotonically increasing on (0, γ̂) and strictly monotonically
decreasing on (γ̂, γ) or strictly monotonically decreasing on (0, γ̂) and strictly
monotonically increasing on (γ̂, γ). Which of these two cases prevails depends
on which sector is the most capital intensive on (0, γ̂). Given the definition
of unimodality we need the capital good sector to be more capital intensive
for all γt+1 ∈ [0, γ̂). In other words:

Assumption 8 :

k1(1, γt+1, 1)

l1(1, γt+1, 1)
<

k2(1, γt+1, 1)

l2(1, γt+1, 1)
,

for all γt+1 ∈ [0, γ̂).

Proposition 3 Let Assumptions 1-5 and 8 be satisfied. Let θ : [0, γ] → [0, γ]
be defined as in (23). Then, unicity of factor intensity reversal (Assumption
7) is a necessary and sufficient condition for θ to be unimodal.

Proof.
(i) Continuity of θ. From the definition of θ given in Proposition 2, θ is

continuous as the composite function of two continuous functions.
(ii) Monotonicity of θ. Let Assumptions 1-8 be satisfied. Then using the
inverse function theorem we can derive θ

′
(γt+1) on (0, γ̂) and (γ̂, γ) as

θ
′
(γt+1) = −βT21(1, γt+1, 1)

T22(1, γt, 1)
. (26)
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Upon inspection of (26) we see that the sign of the denominator depends on
the sign of −T22. Looking at (10), we see that under Assumption 7 −T22 > 0
for all γt ∈ (1, γ̂)∪ (γ̂, γ). Hence θ

′
(γt+1) ≷ 0 if and only if T12(1, γt+1, 1) ≷ 0.

Assumptions 7 and 8, together with the results of Lemma 1, imply that

θ
′
(γt+1) > 0 for all γt+1 ∈ (0, γ̂)and θ

′
(γt+1) < 0 for all γt+1 ∈ (γ̂, γ).

The result that factor intensity reversal is a necessary condition for the
occurrence of cycle or chaotic dynamics is not new. Benhabib and Nishimura
(1985) establish that factor intensity reversal is a necessary condition for the
emergence of a cycle of period two in an optimal growth model. Deneckere
and Pelikan (1986), Boldrin (1989) and Boldrin and Deneckere (1990) show
that intensity factor reversal is a necessary condition for the occurrence of
topological chaos. However, to our knowledge, no such result has yet been
established in models with endogenous growth or in model of optimal growth
in which ergodic oscillations occur for low levels of impatience.

4.2 Expansiveness of θ and chaos

In the next Proposition we show that a necessary and sufficient condition
for θ to be expansive is that the discount factor lies within a given interval.
As explained above, the lower bound on the discount factor means that the
representative consumer must not be too impatient. The upper bound on
the discount factor imposed by the TVC is only binding if one assumes that
growth is unbounded.

Proposition 4 Let Assumptions 1-5, 7, and 8 be satisfied.
Then a necessary condition for θ : [0, γ] → [0, γ] to be expansive is

∣∣∣∣−
T22(1, θ(γt+1), 1)

T21(1, γt+1, 1)

∣∣∣∣ < 1 for all γt+1 ∈ (0, γ̂) ∪ (γ̂, γ). (27)

A necessary and sufficient condition for θ : [0, γ] → [0, γ] to be expansive is
that β ∈ (βmin, βmax), where

βmin = max
γt+1∈(0,bγ)∪(bγ,γ)

∣∣∣∣−
l2

F2

(
k1

l1
− k2

l2

)
T21(1, θ(γt+1), 1)

T21(1, γt+1, 1)

∣∣∣∣ ,

βmax =
1

F2(1, 1)
.
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Proof.
From the definition of θ it follows that θ is twice continuously differen-

tiable on both (0, γ̂) and (γ̂, γ). Then, θ is expansive if
∣∣θ′(γt+1)

∣∣ > 1 for all
γt+1 ∈ (1, γ̂) ∪ (γ̂, γ). Or, equivalently, using (10) if

∣∣∣∣−
l2

F2

(
k1

l1
− k2

l2

)
T21(1, θ(γt+1), 1)

T21(1, γt+1, 1)

∣∣∣∣ < β for all γt+1 ∈ (1, γ̂) ∪ (γ̂, γ).

It follows that

βmin = max
γt+1∈(1,bγ)∪(bγ,γ)

∣∣∣∣−
l2

F2

(
k1

l1
− k2

l2

)
T21(1, θ(γt+1), 1)

T21(1, γt+1, 1)

∣∣∣∣
Since, by assumption, we have β < 1, a necessary condition for expansiveness
is ∣∣∣∣−

T22(1, θ(γt+1), 1)

T21(1, γt+1, 1)

∣∣∣∣ < 1.

For the transversality condition to be satisfied, βγ < 1. As γ = F2(1, 1),

we have βmax =
1

F2(1, 1)
.

Condition (27) can be interpreted as follows. Applying the envelope the-
orem to the first order conditions of Problem (3) we obtain T2 = −q. Hence
T21 = −∂q/∂k and T22 = −∂q/∂y. So, (27) states that the rate of change
of the shadow price of investment with respect to the current capital cap-
ital stock must be greater than the rate of change of the shadow price of
investment with respect to last period’s stock of investment.

Collecting the previous two propositions we have the main result.

Proposition 5 Let Assumptions 1-5, 7, and 8 be satisfied. θ : [0, γ] → [0, γ]
is chaotic both in the sense of ergodic oscillations and geometric sensitivity
if

(i)
∣∣∣−T22(1,θ(γt+1),1)

T21(1,γt+1,1)

∣∣∣ < 1 for all γt+1 ∈ (0, γ̂) ∪ (γ̂, γ) holds.

(ii) The discount factor β satisfies β ∈ (βmin, βmax).

5 Non Linear Utility

To the study the non-linear utility case (α < 1), we first establish the follow-
ing results.
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Lemma 3 Let Assumptions 1-5 be satisfied. Then:

V21 = (α− 1)T α−2[T1 − (1− δ)T2]T2 + Tα−1[T21 − (1− δ)T22], (28)

V23 = T α−2 [(α− 1)T2T3 + TT23] . (29)

Furthermore, no matter which sector is the most capital intensive, V21+V23 ≥
0 for all γt ∈ (γ, γ).

Proof. By definition V (kt, kt+1, Xt) = [T (kt, kt+1 − (1− δ)kt, Xt)]
α /α. Un-

der Assumption 4 we can compute the following derivative: V2 = Tα−1T2,
V21 = (α − 1)T α−2[T1 − (1 − δ)T2]T2 + T α−1[T21 − (1 − δ)T22] and V23 =
T α−2 [(α− 1)T2T3 + TT23] . Using the expressions of V21 and V23, we get:

V21 + V23 = (α− 1)T α−2[T1− (1− δ)T2 + T3]T2 + T α−1[T21− (1− δ)T22 + T23]

Under Assumptions 2-3 we can show that T3 = F1
1

∂k1

∂X
+ XF1

2
∂l1

∂X
+ l1F1

2 .
By definition, y = F2(k2, l2X). Hence,

0 = F2
1

∂k2

∂X
+ F2

2

∂l2

∂X
+ l2F2

2 . (30)

Under the full employment of productive resources we have

∂k1

∂X
= −∂k2

∂X
, (31)

∂l1

∂X
= − ∂l2

∂X
. (32)

Furthermore, the envelope theorem tells us that T2(k, y,X) = −q, and
by definition,

q =
F1

1

F2
1

=
F1

2

F2
2

. (33)

Substituting (31), (32) and (33) into (34), and using (30), we get

T3 = qF2
2 > 0. (34)

We now determine the sign of T21 + T23. Using (10), we have

T21 + T23 = T21

(
1− k1

l1X

)
+

2l2(F1
12 + qF2

12)

F2
1

.
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Under Assumption 2, 2l2(F1
12 + qF2

12)/F2
1 > 0. It follows that V21 + V23 >

0 if T21 + T23 > 0. And T21 + T23 > 0 if T21 (1− k1/l1X) ≥ 0. So, if
T21 (1− k1/l1X) ≥ 0, then V21 + V23 > 0. Along a BGP,

1− k1

l1X
=

l1k − k1

l1k
=

l2

k

(
k2

l2
− k1

l1

)
.

Hence, on using (8), we obtain

T21

(
1− k1

l1X

)
=
F1

12F2
12qF2l1l2

∆k1k2k

(
k2

l2
− k1

l1

)2

≥ 0.

We can see from (8) that when the consumption good sector is more
capital intensive for all γt ∈ [0, γ], then T12 < 0. The sign of V21 is ambiguous.
So, if V21 changes sign at some value of γ ∈ [0, γ], then f does not have a
well defined inverse. If one assumes that factor intensity reversal takes place
V21 may also change sign. 6, 7

Lemma 4 Let Assumptions 1-5 be satisfied. Then there exists a map θ de-
fined from [γ, γ] onto [γ, γ], such that

γt = θ(γt+1). (35)

Proof. Define

f(γt+1) = V1(1, γt+1, 1)/β, (36)

g(γt) = −γ1−α
t V2(1, γt, 1), (37)

6With full depreciation, i.e. for δ = 1 looking at the expression for V21 derived in
Lemma 3 we see that V21 can become negative if utility is not too concave, i.e. for α close
to unity.

With partial depreciation, i.e. for γ < δ < 1 V21 = Tα−2(α − 1)T2[T1 − (1 − δ)T2] +
Tα−1[T21 − (1− δ)T22].

For V21to be negative we need both:
(i) −T21 > (1− δ)T22 and
(ii)− T [T21 − (1− δ)T22] > (α− 1)T2[T1 − (1− δ)T2].
7Assumption 6 holds for a simple economic example. If c = (k1)σ(l1X)1−σ and y =

(k2)1/2(l2X)1/2 then γ̂ = 1. In this case it can be shown that if k1/l1 > k2/l2 there exists
0
γ ∈ [0, γ] such that V21(1,

0
γ, 1) = 0. Full request of this statement can be obtained on

request.
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where f : [γ, γ] → J v <∗+ and g : [γ, γ] → I v <∗+.
Using (36) and (37), the Euler equation (5) can be written as −g(γt) +
f(γt+1) = 0.

g′ = (1− α)γ−α
t V2(1, γt, 1) + γ1−αV22(1, γt, 1). (38)

From the Euler theorem on homogenous functions we have

(α− 1)V2(1, γt, 1) = V21(1, γt, 1) + V22(1, γt, 1)γt + V23(1, γt, 1).

Hence
g′ = V21(1, γ, 1) + V23(1, γ, 1) > 0

g is one to one. From the definition of g we see that range(g) = I. Thus, g
has a well defined inverse g−1. We can rewrite (38) as γt = θ(γt+1), where
g−1 [f(γt+1)] . From this definition, it follows that θ : [γ, γ] → [γ, γ].

It can be shown that the sign of θ
′
(γt) depends on the sign of V12.

Lemma 5 Let Assumptions 1-5 be satisfied. Let θ : [γ, γ] → [γ, γ] be defined
as in (35). Then,

θ
′
(γt+1) =

βγα
t V21(1, γt+1, 1)

V21(1, γt, 1) + V23(1, γt1, )
.

Under the results of Lemma 3 it follows that θ
′
(γt+1) ≷ 0 if and only if

V12(1, γt+1, 1) ≷ 0. If the investment good sector is more capital intensive, we
see from Lemmas 1 and 3 that V12(1, γt+1, 1) > 0 for all γt+1 ∈ [γ, γ̂). However
the results of Lemmas 1 and 3 indicate that the sign of V12 is ambiguous for
γt+1 ∈ [γ, γ̂). Factor intensity reversal does not guarantee the unimodality of

θ
′
(γt). We first make the following assumption:

Assumption 9 : There exists a unique
0
γ, where 0 <

0
γ < γ, such that

V21 changes sign at
0
γ.
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5.1 Unimodality of θ

To establish the unimodality of θ we need to show θ is continuous on [γ, γ],
strictly monotonically increasing on some open interval (γ, γ∗) ⊂ [γ, γ] and
strictly monotonically decreasing on the interval (γ∗, γ) ⊂ [γ, γ].

Lemma 6 Let Assumptions 1-5 and 9 be satisfied. Let θ : [γ, γ] → [γ, γ] be
defined as in (35). Then, θ is unimodal if one of the following holds.
(i) Factor reversal occurs once at some γ̂ ∈ (γ, γ).
(ii) For all γt ∈ (γ, γ) the consumption good sector is capital intensive.

Proof. :

From the definition of θ given in Lemma 4, θ is continuous as a composite
function of two continuous functions.

(i) Suppose first that for all γt+1 ∈ [γ, γ̂) the capital good sector is more
capital intensive, i.e. suppose that for all γt+1 ∈ [γ, γ̂)

k1(1, γt+1, 1)

l1(1, γt+1, 1)
<

k2(1, γt+1, 1)

l2(1, γt+1, 1)
,

From Lemma 5 we know that θ
′
(γt+1) ≷ 0 if and only if V12(1, γt+1, 1) ≷ 0.

If for all γt+1 ∈ [γ, γ̂)

k1(1, γt+1, 1)

l1(1, γt+1, 1)
<

k2(1, γt+1, 1)

l2(1, γt+1, 1)
,

then it follows that T21 > 0, V21 > 0 and θ
′
(γt+1) > 0 for all γt+1 ∈ [γ, γ̂).

Under Assumption 9 there exists a unique
0
γ, where γ <

0
γ < γ, such that

V21 changes sign at
0
γ. It follows that V12(1, γt+1, 1) < 0 and that θ

′
(γt+1) < 0

for all γt+1 ∈ (
0
γ, γ). A necessary condition to be true is that T21(1,

0
γ, 1) < 0.

Under the result so Lemma 1 this implies that

k1(1,
0
γ, 1)

l1(1,
0
γ, 1)

>
k2(1,

0
γ, 1)

l2(1,
0
γ, 1)

.

Factor reversal has happened at
0
γ. Under Assumption 9 this means that

k1(1, γt+1, 1)

l1(1, γt+1, 1)
>

k2(1, γt+1, 1)

l2(1, γt+1, 1)
for all γt+1 ∈ (

0
γ, γ).
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(ii) Suppose now that for all γt+1 ∈ [γ, γ] the consumption good sector is
more capital intensive, i.e. suppose that for all γt+1 ∈ [γ, γ]

k1(1, γt+1, 1)

l1(1, γt+1, 1)
>

k2(1, γt+1, 1)

l2(1, γt+1, 1)
,

From Lemma 5 we know that θ
′
(γt+1) ≷ 0 if and only if V12(1, γt+1, 1) ≷ 0.

Under Assumption 9 there exists a unique
0
γ, where γ <

0
γ < γ, such that

V21 changes sign at
0
γ. It follows that V12(1, γt+1, 1) ≷ 0 for γt+1 ∈ (

0
γ, γ].

Suppose that V12(1, γt+1, 1) < 0 for γt+1 ∈ (
0
γ, γ].and that V12(1, γt+1, 1) > 0

for γt+1 ∈ [γ,
0
γ). It follows that θ

′
(γt+1) < 0 for all γt+1 ∈ (

0
γ, γ) and that

θ
′
(γt+1) > 0 for all γt+1[γ,

0
γ). The same argument can be used to prove that

θ
′
(γt+1) > 0 for all γt+1 ∈ (

0
γ, γ) and that θ

′
(γt+1) < 0 for all γt+1[γ,

0
γ) if one

assume that V12(1, γt+1, 1) > 0 for γt+1 ∈ (
0
γ, γ] and that V12(1, γt+1, 1) < 0

for γt+1 ∈ [γ,
0
γ).

In other words, unicity of factor reversal is no longer a necessary and suf-
ficient condition for the unimodality of θ. An alternative sufficient condition
for unimodality is that the consumption good sector is capital intensive for
all γt ∈ [0, γ] and that Assumption 9 is satisfied. A similar result is obtained
in Nishimura and Yano (1995, 2000) and Nishimura et.al. (1994).

5.2 Expansiveness of θ, and chaos

In this section we show that if the discount factor is bounded below then
the slope of θ is everywhere greater than unity for all feasible values of the
growth factor. We then establish the main result on ergodic oscillations and
geometric sensitivity.

Lemma 7 Let Assumptions 1-5 and 9 be satisfied. Then a necessary condi-
tion for θ : [γ, γ] → [γ, γ] to be expansive is

∣∣∣∣
V21(1, θ(γt+1), 1) + V23(1, θ(γt+1), 1)

θ(γt+1)αV21(1, γt+1, 1)

∣∣∣∣ < 1 for all γt+1 ∈ (γ, γ̂)∪ (γ̂, γ). (39)
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A necessary and sufficient condition for θ : [γ, γ] → [γ, γ] to be expansive is
that β ∈ (βmin, βmax), where

βmin = max
γt+1∈(0,bγ)∪(bγ,γ)

∣∣∣∣
V21(1, θ(γt+1), 1) + V23(1, θ(γt+1), 1)

θ(γt+1)αV21(1, γt+1, 1)

∣∣∣∣ ,

βmax =
1

[F2(1, 1)]α
.

Proof. From the definition of θ it follows that θ is twice continuously dif-
ferentiable on both (γ, γ̂) and (γ̂, γ). θ is expansive if

∣∣θ′(γt+1)
∣∣ > 1 for all

γt+1 ∈ (1, γ̂) ∪ (γ̂, γ). Or, equivalently, if

∣∣∣∣−
V21(1, θ(γt+1), 1) + V23(1, θ(γt+1), 1)

θ(γt+1)αV21(1, γt+1, 1)

∣∣∣∣ < β for all γt+1 ∈ (γ, γ̂) ∪ (γ̂, γ).

It follows that

βmin = max
γt+1∈(1,bγ)∪(bγ,γ)

∣∣∣∣−
V21(1, θ(γt+1), 1) + V23(1, θ(γt+1), 1)

θ(γt+1)αV21(1, γt+1, 1)

∣∣∣∣ .

Since, by assumption, we have β < 1, a necessary condition for expansiveness
is ∣∣∣∣−

V21(1, θ(γt+1), 1) + V23(1, θ(γt+1), 1)

θ(γt+1)αV21(1, γt+1, 1)

∣∣∣∣ < 1.

For the transversality condition to be satisfied, βγα < 1. As γ = F2(1, 1),
we have

βmax =
1

F2(1, 1)α
.

Collecting these results together we have the following result.

Proposition 6 Let Assumptions 1-5 and 9 be satisfied. θ : [γ, γ] → [γ, γ] is
chaotic both in the sense of ergodic oscillations and geometric sensitivity if
the following four conditions hold:
(i) Either there is factor intensity reversal atleast once or the consumption
sector is always capital intensive,
(ii) V21 changes sign once,
(iii) (39) is satisfied for all γt+1 ∈ (0, γ̂) ∪ (γ̂, γ) and
(iv) The discount factor β satisfies β ∈ (βmin, βmax).
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6 Conclusion

The intuition of the result is as follows (see Benhabib and Nishimura (1985)
and Reichlin (1997)). It is easiest to see it in the case of full discounting. At
time t, set k = kt and y = kt+1. An oscillating trajectory will have: kt <
yt = kt+1 > yt+1 = kt+2. This possibility can arise when the consumption
sector is more capital intensive or if there is capital intensity reversal. To
induce the oscillation, we need

1. An increase of the capital stock from kt to kt+1 > kt (a shift outward
of the PPF)

2. to generate a fall of the investment output from yt to yt+1 < yt

3. and a rise of consumption from ct to ct+1 > ct.

The Rybczynski Theorem tells us that an ncrease in a sector’s endowment
of a factor will cause an increase in output of the good which uses that
factor intensively, and a decrease in the output of the other good. Under
the Rybczynski theorem, this can happen if the consumption sector is more
capital intensive than the investment sector.

What about factor intensity reversal? Consider two periods where kt+1 >
kt. Then the Rybczynski theorem will imply that the capital stock will be
increasing. At some time market clearing and static efficiency will imply that
the it is desirable to increase consumption output and decrease investment
output. This will happen when there is a factor intensity reversal.

This is the intuition for having a 2-period cycle. Having externalities
introduces an additional non-linearity so that there can be chaos where there
were only cycles. The Harrod-Neutrality is important as the homogeneity
properties enable us to get a characterization of the dynamics.

References

1. Arrow, K.J., (1962): “The Economic Implications of Learning by Do-
ing”, Review of Economic Studies, 29: 155-173.

2. Benhabib, J., and K. Nishimura, (1985): “Competitive equilibrium
cycles”, Journal of Economic Theory 35: 284-306.

26



3. Baumol, W.J. and J. Benhabib, (1989): “Chaos: Signifiance, Mecha-
nisms and Economic Applications”, Journal of Economic Perspectives,
3: 77-105.

4. Boldrin, M., (1989): “Paths of Optimal Accumulation in Two-Sector
Models”, in Barnett, W., J. Geweke and K. Shell (Eds.): Economic
Complexity, Chaos, Sunspots, Bubbles and Nonlinearity, Cambridge:
Cambridge University Press.

5. Boldrin, M., and R. Deneckere, (1990): “Sources of Complex dynamics
in Two-Sector Growth Models”, Journal of Economic Dynamics and
Control, 14: 627-653.

6. Boldrin, M., Nishimura K., Shigoka, T. and M. Yano, (2001): “Chaotic
Equilibrium Dynamics in Endogenous Growth Models”, Journal of
Economic Theory, 96: 9-132.

7. Boldrin, M., and M. Woodford, (1990): “Equilibrium Models Display-
ing Endogenous Fluctuations and Chaos”, Journal of Monetary Eco-
nomics, 25: 189-222.

8. Collet, P., and J.P. Eckman, (1980): Iterated Maps on the Interval as
Dynamical Systems, Birkhauser.

9. Deneckere, R., and S. Pelikan, (1986): “Competitive Chaos”, Journal
of Economic Theory, 40: 13-25.

10. Day, R.H., (1994): Complex Economic Dynamics, Cambridge: MIT
Press.

11. Day, R.H.,. and G. Panigiani, (1991): “Statistical Dynamics and Eco-
nomics”, Journal of Economic Behavior and Organizations, 16: 37-83.

12. Drugeon, J.P. and A. Venditti, (1998): “Intersectoral External Effects,
Multiplicities and Indeterminacies II: The Long -Run Growth Case”,
GREQAM Working Paper 98A20.

13. Drugeon, J.P., Poulsen O. and A. Venditti, (2003): “On Intersectoral
Allocations, Factor Substitutability and Multiple Long-Run Growth
Paths”, Economic Theory, 21: 175-183.

27



14. Goenka, A., Kelly, D., and S.E. Spear (1998): “Endogenous Strategic
Business Cycles”, Journal of Economic Theory, 81: 97-125.

15. Goenka, A. and O. Poulsen, (2004): “Indeterminacy and Labor Aug-
menting Externalities”, Journal of Economics, Forthcoming.

16. Grandmont, J.M., (1985): “On endogenous Competitive Business Cy-
cles”, Econometrica, 5, 995-1045.

17. Lasota, A. and J. Yorke, (1973): “On the Existence of Invariant Mea-
sures for Piecewise Monotonic Transformations”, Transaction of the
American Mathematical Society, 186: 481-488.

18. Li, T., and J. Yorke, (1978): “Ergodic Transformations from an Interval
into Itself”, Transaction of the American Mathematical Society, 235:
183-192.

19. Lucas, R, (1988): “On the Mechanics of Economic Development”, Jour-
nal of Monetary Economics, 22: 3-42.

20. Majumdar, M., and T. Mitra (1994) “Robust Ergodic Chaos in Dis-
counted Dynamic Optimization Models ”, Economic Theory, 4: 677-
688.

21. Mitra, T., (1996): “An Exact Discount Factor Restriction for Period-
Three Cycles in Dynamics Optimization Models”, Journal of Economic
Theory, 69: 281-305.

22. Mitra, T., (1998): “On Equilibrium Dynamics under Externalities in
a Model of Economic Development”, Japanese Economic Review, 49:
85-107.

23. Nishimura, K., Sorger G., and M. Yano, (1994): “Ergodic Chaos in
Optimal Growth Models with Low Discount Rates”, Economic Theory,
4: 705-717.

24. Nishimura, K., and M. Yano, (1995): “Nonlinear Dynamics and Chaos
in Optimal Growth: An Example”, Econometrica, 63, 981-1001.

25. Nishimura, K., and M. Yano, (1996): “On the Least Upper Bound
of Discount Factors that are Compatible with Optimal Period-Three
Cycles”, Journal of Economic Theory, 66: 306-333.

28



26. Nishimura, K., and M. Yano, (2000): “Non-Linear Dynamics and Chaos
in Optimal Growth: A Constructive Exposition”, in Majumdar, M,
T. Mitra and K. Nishimura (Eds.) Optimization and Chaos, Berlin:
Springer.

27. Reichlin, P., (1997): Endogenous cycles in competitive models: An
overview, Studies in Nonlinear Dynamics and Econometrics, 1:, 175-
185.

28. Romer, P., (1983): “Dynamic Competitive Equilibria with Externali-
ties, Increasing Returns and Unbounded Growth”, Unpublished Ph.D.
Thesis, University of Chicago.

29. Romer, P., (1986): “Increasing Returns and Long Run Growth”, Jour-
nal of Political Economy, 94: 1002-1037.

30. Sheshinski, E., (1967): “Optimal Accumulation with Learning by Do-
ing”, in Shell, K. (Ed.) Essays on the theory of optimal economic
growth. Cambridge: MIT Press, 31-52.

31. Sorger, G., (1992): “On the Minimum Rate of Impatience for Com-
plicated Optimal Growth Paths”, Journal of Economic Theory, 56,
160-179.

32. Sorger, G., (1994): “Period Three Implies Heavy Discounting”, Math-
ematical Operations Research, 19: 1-16.

33. Uzawa, H., (1961): “Neutral Inventions and the Stability of Growth
Equilibrium”, Review of Economic Studies, 28: 117-124.

29



Department of Economics: 
 
 
Skriftserie/Working Paper: 
 
 
2002: 
 
WP 02-1 Peter Jensen, Michael Rosholm and Mette Verner: A Comparison of Different 

Estimators for Panel Data Sample Selection Models. ISSN 1397-4831. 
 
WP 02-2 Erik Strøjer Madsen, Camilla Jensen and Jørgen Drud Hansen: Scale in 

Technology and Learning-by-doing in the Windmill Industry. ISSN 1397-4831. 
 
WP 02-3 Peter Markussen, Gert Tinggaard Svendsen and Morten Vesterdal: The political 

economy of a tradable GHG permit market in the European Union. ISSN 1397-
4831. 

 
WP 02-4 Anders Frederiksen og Jan V. Hansen: Skattereformer: Dynamiske effekter og 

fordelingskonsekvenser. ISSN 1397-4831. 
 
WP 02-5 Anders Poulsen: On the Evolutionary Stability of Bargaining Inefficiency. ISSN 

1397-4831. 
 
WP 02-6 Jan Bentzen and Valdemar Smith: What does California have in common with 

Finland, Norway and Sweden? ISSN 1397-4831. 
 
WP 02-7 Odile Poulsen: Optimal Patent Policies: A Survey. ISSN 1397-4831. 
 
WP 02-8 Jan Bentzen and Valdemar Smith: An empirical analysis of the interrelations 

among the export of red wine from France, Italy and Spain.  ISSN 1397-4831. 
 
WP 02-9 A. Goenka and O. Poulsen: Indeterminacy and Labor Augmenting Externalities.  

ISSN 1397-4831. 
 
WP 02-10 Charlotte Christiansen and Helena Skyt Nielsen: The Educational Asset Market: A 

Finance Perspective on Human Capital Investment. ISSN 1397-4831. 
 
WP 02-11 Gert Tinggaard Svendsen and Morten Vesterdal: CO2 trade and market power in 

the EU electricity sector. ISSN 1397-4831. 
 
WP 02-12 Tibor Neugebauer, Anders Poulsen and Arthur Schram: Fairness and Reciprocity in 

the Hawk-Dove game. ISSN 1397-4831. 
 
WP 02-13 Yoshifumi Ueda and Gert Tinggaard Svendsen: How to Solve the Tragedy of the 

Commons? Social Entrepreneurs and Global Public Goods. ISSN 1397-4831. 
 
WP 02-14 Jan Bentzen and Valdemar Smith: An empirical analysis of the effect of labour 

market characteristics on marital dissolution rates. ISSN 1397-4831. 
 



 
WP 02-15 Christian Bjørnskov and Gert Tinggaard Svendsen: Why Does the Northern Light 

Shine So Brightly? Decentralisation, social capital and the economy. ISSN 1397-
4831. 

 
WP 02-16 Gert Tinggaard Svendsen: Lobbyism and CO2 trade in the EU. ISSN 1397-4831. 
 
WP 02-17 Søren Harck: Reallønsaspirationer, fejlkorrektion og reallønskurver. ISSN 1397-

4831. 
 
WP 02-18 Anders Poulsen and Odile Poulsen: Materialism, Reciprocity and Altruism in the 

Prisoner’s Dilemma – An Evolutionary Analysis. ISSN 1397-4831. 
 
WP 02-19 Helena Skyt Nielsen, Marianne Simonsen and Mette Verner: Does the Gap in 

Family-friendly Policies Drive the Family Gap? ISSN 1397-4831. 
 
2003: 
 
WP 03-1 Søren Harck: Er der nu en strukturelt bestemt langsigts-ledighed I SMEC?: 

Phillipskurven i SMEC 99 vis-à-vis SMEC 94. ISSN 1397-4831. 
 
WP 03-2 Beatrice Schindler Rangvid: Evaluating Private School Quality in Denmark. ISSN 

1397-4831. 
 
WP 03-3 Tor Eriksson: Managerial Pay and Executive Turnover in the Czech and Slovak 

Republics. ISSN 1397-4831. 
 
WP 03-4 Michael Svarer and Mette Verner: Do Children Stabilize Marriages? ISSN 1397-

4831. 
 
WP 03-5 Christian Bjørnskov and Gert Tinggaard Svendsen: Measuring social capital – Is 

there a single underlying explanation? ISSN 1397-4831. 
 
WP 03-6 Vibeke Jakobsen and Nina Smith: The educational attainment of the children of the 

Danish ‘guest worker’ immigrants. ISSN 1397-4831. 
 
WP 03-7 Anders Poulsen: The Survival and Welfare Implications of Altruism When 

Preferences are Endogenous. ISSN 1397-4831. 
 
WP 03-8 Helena Skyt Nielsen and Mette Verner: Why are Well-educated Women not Full-

timers? ISSN 1397-4831. 
 
WP 03-9 Anders Poulsen: On Efficiency, Tie-Breaking Rules and Role Assignment 

Procedures in Evolutionary Bargaining. ISSN 1397-4831. 
 
WP 03-10 Anders Poulsen and Gert Tinggaard Svendsen: Rise and Decline of Social Capital 
 – Excess Co-operation in the One-Shot Prisoner’s Dilemma Game. ISSN 1397-

4831. 
 
 



 
WP 03-11 Nabanita Datta Gupta and Amaresh Dubey: Poverty and Fertility: An Instrumental 

Variables Analysis on Indian Micro Data. ISSN 1397-4831. 
 
WP 03-12 Tor Eriksson: The Managerial Power Impact on Compensation – Some Further 

Evidence. ISSN 1397-4831. 
 
WP 03-13 Christian Bjørnskov: Corruption and Social Capital. ISSN 1397-4831. 
 
WP 03-14 Debashish Bhattacherjee: The Effects of Group Incentives in an Indian Firm 

– Evidence from Payroll Data. ISSN 1397-4831. 
 
WP 03-15 Tor Eriksson och Peter Jensen: Tidsbegränsade anställninger – danska erfarenheter. 

ISSN 1397-4831. 
 
WP 03-16 Tom Coupé, Valérie Smeets and Frédéric Warzynski: Incentives, Sorting and 

Productivity along the Career: Evidence from a Sample of Top Economists. ISSN 
1397-4831. 

 
WP 03-17 Jozef Koning, Patrick Van Cayseele and Frédéric Warzynski: The Effects of 

Privatization and Competitive Pressure on Firms’ Price-Cost Margins: Micro 
Evidence from Emerging Economies. ISSN 1397-4831. 

 
WP 03-18 Urs Steiner Brandt and Gert Tinggaard Svendsen: The coalition of industrialists 

and environmentalists in the climate change issue. ISSN 1397-4831. 
 
WP 03-19 Jan Bentzen: An empirical analysis of gasoline price convergence for 20 OECD 

countries. ISSN 1397-4831. 
 
WP 03-20 Jan Bentzen and Valdemar Smith: Regional income convergence in the 

Scandinavian countries. ISSN 1397-4831. 
 
WP 03-21 Gert Tinggaard Svendsen: Social Capital, Corruption and Economic Growth: 

Eastern and Western Europe. ISSN 1397-4831. 
 
WP 03-22 Jan Bentzen and Valdemar Smith: A Comparative Study of Wine Auction Prices: 

Mouton Rothschild Premier Cru Classé. ISSN 1397-4831. 
 
WP 03-23 Peter Guldager: Folkepensionisternes incitamenter til at arbejde. ISSN 1397-4831. 
 
WP 03-24 Valérie Smeets and Frédéric Warzynski: Job Creation, Job Destruction and Voting 

Behavior in Poland. ISSN 1397-4831. 
 
WP 03-25 Tom Coupé, Valérie Smeets and Frédéric Warzynski: Incentives in Economic 

Departments: Testing Tournaments? ISSN 1397-4831. 
 
WP 03-26 Erik Strøjer Madsen, Valdemar Smith and Mogens Dilling-Hansen: Industrial 

clusters, firm location and productivity – Some empirical evidence for Danish 
firms. ISSN 1397-4831. 

 



 
WP 03-27 Aycan Çelikaksoy, Helena Skyt Nielsen and Mette Verner: Marriage Migration: 

Just another case of positive assortative matching? ISSN 1397-4831. 
 
2004: 
 
WP 04-1 Elina Pylkkänen and Nina Smith: Career Interruptions due to Parental Leave – A 

Comparative Study of Denmark and Sweden. ISSN 1397-4831. 
 
WP 04-2 Urs Steiner Brandt and Gert Tinggaard Svendsen: Switch Point and First-Mover 

Advantage: The Case of the Wind Turbine Industry. ISSN 1397-4831. 
 
WP 04-3 Tor Eriksson and Jaime Ortega: The Adoption of Job Rotation: Testing the 

Theories. ISSN 1397-4831. 
 
WP 04-4 Valérie Smeets: Are There Fast Tracks in Economic Departments? Evidence from 

a Sample of Top Economists. ISSN 1397-4831. 
 
WP 04-5 Karsten Bjerring Olsen, Rikke Ibsen and Niels Westergaard-Nielsen: Does 

Outsourcing Create Unemployment? The Case of the Danish Textile and Clothing 
Industry. ISSN 1397-4831. 

 
WP 04-6 Tor Eriksson and Johan Moritz Kuhn: Firm Spin-offs in Denmark 1981-2000 – 

Patterns of Entry and Exit. ISSN 1397-4831. 
 
WP 04-7 Mona Larsen and Nabanita Datta Gupta: The Impact of Health on Individual 

Retirement Plans: a Panel Analysis comparing Self-reported versus Diagnostic 
Measures. ISSN 1397-4831. 

 
WP 04-8 Christian Bjørnskov: Inequality, Tolerance, and Growth. ISSN 1397-4831. 
 
WP 04-9 Christian Bjørnskov: Legal Quality, Inequality, and Tolerance. ISSN 1397-4831. 
 
WP 04-10 Karsten Bjerring Olsen: Economic Cooperation and Social Identity: Towards a 

Model of Economic Cross-Cultural Integration. ISSN 1397-4831. 
 
WP 04-11 Iben Bolvig: Within- and between-firm mobility in the low-wage labour market. 

ISSN 1397-4831. 
 
WP 04-12 Odile Poulsen and Gert Tinggaard Svendsen: Social Capital and Market 

Centralisation: A Two-Sector Model. ISSN 1397-4831. 
 
WP 04-13 Aditya Goenka and Odile Poulsen: Factor Intensity Reversal and Ergodic Chaos. 

ISSN 1397-4831. 


	WP 04-13.pdf
	WORKING PAPER 04-13




