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Abstract

The conventional assumption in economics, that individuals have 'material-
istic’ preferences, has been questioned by experimental evidence. In this paper
we study the evolution of preferences when players are engaged in simultane-
ous and sequential move Prisoner’s Dilemma games. There is, as long as each
game is played with strictly positive probability, a unique asymptotically stable
population where players with reciprocal, altruist and materialist preferences
co-exist in the population. Our results provide some simple insights into the
evolutionary foundations for the ’game of life’ that may be regarded as causing
much experimentally observed behavior.
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1 Introduction

The conventional assumption in economics, that individuals are solely motivated by
their material self-interest, has been questioned by experimental evidence. Players
often behave in a cooperative, or fair, way that does not seem compatible with a
self-interested preference. There is, for example, often co-operation in a (sequence
of) one-shot Prisoner’s Dilemma (PD) games (see e.g. Dawes and Thaler (1988) and
Cooper et. al. (1996)). The same is true for situations where players must contribute
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to a public good (see Ledyard (1995)). In bargaining experiments with games like the
‘ultimatum game’ (see Giith et. al. (1982)) fairness and reciprocity norms seem to
affect the outcomes (see Roth (1995) for an overview). Moreover, there are enough
examples from everyday life: People give to charity and vote; they return lost wallets;
they tip the waiter even when being sure to never visit the same restaurant again,
and so on. And, on the negative side, a customer may refuse to buy a good from a
seller in order to punish the seller for charging an 'unfair’ high price; an employee who
has been sacked may, on her last day at work, engage in acts of sabotage, in order to
punish the employer (see Sobel (2001)).

In all these situations people behave in a way that does not maximize the monetary
return, even when they do not have to worry about punishment or future interaction.
Indeed, experimental research has documented the existence of a significant fraction
of players with ’social preferences’. Following Fehr and Fischbacher (2002), we say
that a player has social preferences when she cares not just about her own money
payoffs, but also cares about the entire distribution of money payoffs between her and
other reference agents, and/or cares about how this distribution was brought about.
We refer the reader to e.g. Fehr and Schmidt (2001) for a survey of the experimental
findings.

There are several important kinds of social preferences: Reciprocity, inequity aver-
sion, altruism and spiteful preferences. Reciprocity may be characterized as being
’kind’ ("unkind’) toward someone who is, or is expected to be, kind (unkind). Reci-
procity is, in other words, conditional niceness. See e.g. Rabin (1993) and, for good
surveys, see Fehr and Géchter (2000) and Sethi and Somanathan (2002). Whereas
reciprocity is concerned with the decision process, inequity aversion (see Fehr and
Schmidt (1999) and Bolton and Ockenfels (2000)) is only concerned with the final
outcomes. An inequity averse person prefers an equitable distribution of resources.
Such a person is willing to increase the opponent’s material payoff if the current dis-
tribution of resources is too favorable for the person. Conversely, if the opponent
is about to get too much, the inequity averse person is willing to take actions that
decrease the opponent’s material payoff.

Unlike the reciprocal person, an altruist is unconditionally nice. The key difference
between a reciprocally and an altruistically motivated person is that the latter will
never take actions that decreases the opponent’s payoff. That is, an altruist will never
‘punish’ the opponent. Finally, we have spiteful, or envious, preferences. A player with
these preferences values the opponent’s payoff negatively and seeks to maximize the
difference between his own and the opponent’s payoff - even when this means giving
up some of his own material payoff.

There is considerable empirical evidence indicating that a significant proportion of
us have social preferences and that another significant proportion have materialistic
preferences (see e.g. Fehr and Géchter (1998)). We would like to explain why some
people have acquired these social preferences, and why other people have purely mate-
rialistic preferences. In this paper we therefore endogenize the proportions of individ-
uals having different preferences. To do this, we let players with different preferences
‘compete’ against each other, in order to determine what preference(s) will emerge as
the ’winner’ of the economic ’struggle for survival’. This methodology is called the
'indirect evolutionary approach’ (see e.g. Giith and Yaari (1992) and Giith (1995)):



Players act rationally given their preferences, but those preferences may change over
time, as the result of a socioeconomic or cultural learning and imitation process. The
key assumption is that preferences who give their 'users’ higher-than-average money
payoffs tend to be adopted by more players over time. An interpretation is that, in
order to survive in the economic system, one needs to perform materially well. How-
ever, this assumption, that ’only money matters’, does not a priori bias the analysis
towards the survival of materialistic preferences: Any sort of preference that leads
players to a materially superior, or just reasonable, behavior will prosper. Thus, if
players with, say, reciprocal, preferences earn more money than those with material-
istic preferences, the population frequency of the former will tend to increase at the
expense of the latter.

We use the one-shot Prisoner’s Dilemma as the basic building block. The envi-
ronment in which this game is played is varied along two dimensions: The game form
(simultaneous-move, sequential or each being played with some probability, which we
refer to as the mized game) and information (perfect information or no information
about other players’ preferences). In the mixed version players are sometimes involved
in simultaneous interaction and at other times in sequential interaction. We believe it
is important to allow for such interaction in multiple games: The ’game of life’ played
‘out there’ is not simply a simultaneous move game, or a sequential move game: There
is a variety of game situations that we can find ourselves engaged in and they differ
in many ways. In this paper we focus on the move structure: Due to unmodelled
stochastic background factors, players sometimes end up playing a simultaneous game
and other times they play a sequential game.!

We start by analyzing preference evolution in the simultaneous and the sequential
game. We show that the preference dynamic is very different. We then turn our at-
tention to the mixed game, where players are involved in simultaneous and sequential
interaction with varying probabilities. Here preference selection under perfect informa-
tion leads to a unique and asymptotically stable population. Three preferences types,
namely materialist, reciprocator and altruist, co-exist in this population, with the pro-
portions of each preference varying with the exogenous parameters. This co-existence
result qualitatively captures the results from experiments. We obtain asymptotic sta-
bility for any probability distribution over the simultaneous and the sequential game,
as long as each game is played with strictly positive probability. Allowing for multi-
ple games thus strengthens the predictions of the model. The result also shows the
importance of perturbing an analysis of a single game situation by introducing the
possibility that players find themselves involved in other, nearby, situations.

Why do materialism, reciprocity and altruism co-exist? Intuitively, the reason is
that neither preference type can dominate the other preference types: An all-altruistic
population is too 'nice’ to be evolutionarily stable; an all-materialistic population earns
too low a material payoff; and, finally, an all-reciprocal population is not evolutionarily
stable as long there is the tiniest chance that the players end up defecting against each
other; this means that altruistic mutants can invade. The last has not, we believe,
been seen in other models of preference evolution.? Moreover, there is a ’cyclical’

'For a different analysis of preference evolution in a variety of games, we refer the reader to Giith
and Napel (2002).

2In the duopoly context analyzed in Bester and Giith (1998), however, an altruist may, under
certain circumstances, be able to invade an all-materialist population. See also Bolle (2000) and



relationship between the three preferences: Against the reciprocal preference type,
the altruist preference is optimal; and against the latter preference the materialist one
is optima, against which reciprocity becomes optimal, and so on. In combination these
two observations produce a unique and asymptotically stable population.

The second environmental variable that we change is information about fellow
players’ preferences. First, we conjecture that our results, derived under perfect infor-
mation, will also hold for sufficiently precise information. If, however, players have zero
information about other players’ preferences, then social preferences have no impact
on behavior: In any evolutionarily stable outcome, all players defect. We conjecture
that the same will hold when players have sufficiently little information. These results
should, in our opinion, be interpreted as an indication, in an evolutionary context, that
the standard assumption that players always and only have materialistic motivations,
is ill-founded and inappropriate. Such a statement needs to be qualified: Certain envi-
ronments are more conducive for social preferences than others. The features that we
have stressed here are the amount of information that is available about other people’s
motivations and the exact way people interact (the move protocol).

The requirement, mentioned above, that players must have enough information
about other players’ preferences, is crucial: It is necessary in order for two reciprocal
players to perform well enough against each other and, moreover, it permits a Re-
ciprocator to avoid being ’exploited’ by Materialists. If, on the other hand, players
have little or no information about their opponent’s motivations, then reciprocity and
altruism can not thrive in the population. See also Ok and Vega-Redondo (2001) for
a similar result. Our analysis shows that in communities with anonymous interaction,
where players know little about each other, reciprocity and altruistic behavior should
not be expected to emerge. If, on the other hand, it is possible for players to acquire
information about opponents prior to interaction, then reciprocity and/or altruism is
a real possibility, and sometimes the only possibility. But, how is it that a player can
deduce whether another person is, say, a reciprocal or materialist individual? Strictly
speaking, of course, this is impossible: Individuals cannot ’see’ inside other persons’
heads. However, some authors, such as Robert Frank (Frank (1988)) have argued that
it is often possible to correctly deduce people’s characteristics, and underlying mo-
tivations, from physical tell-tale signs, such as facial expressions and body posture.?
Another possibility is that individuals have access to information about an opponent’s
previous behavior, from encounters with other people. Given this information, people
form an opinion about what can be expected from the opponent. See e.g. Kandori
(1992) for such a model. Yet another possibility is that individuals base their evalua-
tions of other individuals’ preferences using indicators such as income, skin color, area
of residence, and so on. We leave for future research the task to incorporate such, and
other, realistic features into models of preference evolution.

What is the relevance of our results for the experimental findings, mentioned ear-
lier? In most experiments players do not have information about fellow players’ pref-
erences. Interaction is deliberately kept anonymous. Our results, emphasizing the role
of information about preferences for reciprocity and altruism to survive, can therefore
not directly explain to the experimental findings. What happens in the lab is pre-

Possajennikov (2000).
3We refer the reader to Brosig (2002) for an experiment examining these and other claims.



sumably that subjects’ believe that there are sufficiently many reciprocal and altruist
people out there. Given these (correct) beliefs subjects with reciprocal/altruistic pref-
erences optimally cooperate. The question, therefore, once more, is: How is it that
some (often a significant fraction of) subjects have these beliefs and preferences? It
is this question that our model supplies some answers to: The beliefs and preferences
have been shaped in the outside ’Game of Life’ and are consequently used in the ex-
perimental lab, too. The Game of Life is such that players with social preferences do
survive, side by side with materialistic players. In our model not all players could be
materialists in the Game of Life, for reciprocal players could invade. Similarly, not
everybody could be reciprocal, or altruist, since players with other preferences would
outperform them. The result is co-existence between players with different prefer-
ences. This is why some players, when seated in the lab in an anonymous setting,
optimally co-operate, while others do not. We do not claim that our simple Game of
Life, modeled as a mix of simultaneous and sequential Prisoner’s Dilemma games, is
an adequate representation of the real Game of Life. However, we still believe it gives
an insight into what one might expect from a richer model.

There are several important differences between our model and the existing liter-
ature. First, we pay attention to how the Prisoner’s Dilemma game is played: Do the
players make choices simultaneously or sequentially? Or, are the players sometimes
engaged in the simultaneous, and other times in the sequential game? We show this
has a significant difference for the preferences that survive. For example, whereas ma-
terialistic players induce reciprocal players to defect under simultaneous interaction,
it is reciprocal players who induce materialists to co-operate under sequential interac-
tion (see Fehr and Schmidt (1999) for similar observations). Indeed, the evolutionarily
stable preferences that emerge in the simultaneous and in the sequential game when
played in isolation are qualitatively different from those that emerge when each game
is played with arbitrary but strictly positive probabilities.

Second, rather than simply assuming, as is done in most of the existing literature,
that two reciprocal individuals always manage to cooperate in the simultaneous Pris-
oner’s Dilemma game (see e.g. Guttman (2000) and Ockenfels (1993)), we allow for
the possibility that they sometimes defect. We believe this is more plausible, since the
outcome where each reciprocal player defects is a strict Nash equilibrium and hence
should not be a priori discarded. The possibility that two reciprocal players can-
not always co-ordinate on their preferred equilibrium has the crucial implication that
endogenous fluctuations occur and that players with altruistic preferences survive.

Third, the existing papers typically only allow for two kinds of preferences, namely
the materialist and the reciprocal one (see e.g. Fershtman and Weiss (1998), Guttman
(2000) and Ockenfels (1993)). We allow for altruism and give a complete analysis
with these three preferences. We also derive some results where a fourth preference
is admitted. We believe it is important to allow for as many preferences as possible:
Any restrictions on the number of preferences that evolution can work with means that
the evolutionarily successful preferences in the restricted model may be different from
those that would occur if people were allowed to develop more kinds of preferences
(Sethi and Somanathan (2002) make the same point). We show that the models with
only the Reciprocator and the Materialist preference types available may give too
optimistic predictions about the occurrence of cooperation, due to their exclusion of
players with altruistic preferences.



Fourth, and finally, we model social preferences in a way that differs somewhat from
the one in the existing literature. There social preferences are modeled by positing a
utility function that, in addition to a player’s own material payoff, has fellow players’
material payoffs as arguments (see e.g. Fehr and Schmidt (1999)). We, on the other
hand, work directly with the underlying preference orderings. This allows us to study
possible optimal behaviors that cannot always be captured by a specific functional
form for the utility function. We elaborate on this in Section 2.2.2 below.

There are many other models of preference evolution, studying different games
and using somewhat different modeling techniques. We refer the reader to Ely and
Yilankaya (2001), Ok and Vega-Redondo (2001) and Sethi and Somanathan (2001).
The result that different player types can co-exist in an evolutionarily stable outcome
has also been observed in (direct) evolutionary models, where players are "hardwired’
to a certain behavior. We refer the reader to e.g. Amann and Yang (1998), Sethi (1996)
and Vogt (2000). This evolutionary approach is complementary to, but conceptually
very different from the indirect approach used here.

2 The Model

2.1 The Prisoner’s Dilemma Game

Our PD game has the following money payoffs:
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where a >1>0>b, (1/2)(a+b) <1 and 'C” and "D’ stand for ’Co-operate’ and
"‘Defect’, respectively. If both players care only about their own money payoffs, the
unique outcome is (D, D), which, in terms of money, is worse than (C, C). In Section
3.1, we will assume this game is played simultaneously; in Section 3.2 we analyze it
under sequential interaction. And then, in Section 4, a pair of players face each game
with a strictly positive probability.

2.2 Preferences

Let (4,7), where 4, j = C, D, denote the outcome where a player chooses ¢ and the
opponent chooses j. For reasons that will be discussed in Section 2.2.2 below, we
will not represent these preferences by a utility function (possibly defined over the
monetary consequences); we will instead consider the (pure) best replies, i.e., what a
player will choose, given that the opponent plays C', and what will he choose, given
the opponent plays D. We start by considering the following three preference types:

The Materialist (M) preference type: Choose D both if the opponent chooses C
and if the opponent chooses D. That is, D is strictly dominant. The Reciprocator
(R) preference type: Play C' if the opponent chooses C' and play D if the opponent



chooses D. The Altruist (A) preference type: Choose C both if the opponent chooses
C and if the opponent chooses D. That is, C' is strictly dominant.

In Section 5 below, we consider a fourth preference type.

2.2.1 Interpretation

The "Materialist’, 'Reciprocator’ and ’Altruist’ labels reflect the following interpreta-
tion of what kinds of outcomes of the PD game they would like, and why: The Materi-
alist seeks to maximize his monetary return; the Reciprocator perceives a choice by the
opponent to defect as 'unkind’ and hence chooses to defect, too; an act of co-operation
by the opponent is perceived as 'kind’ and hence the person cooperates, too.* The
Altruist is determined to try to establish a cooperative outcome and will always do
her part, independently of what the opponent does. She can also be interpreted as
wanting to maximize the sum of the players’ monetary returns.’

However, we would like to stress that other interpretations of our preference types
are possible. First, we could just as well have used the label ’Inequity averse’ instead
of ’Reciprocator’. This is because a player with sufficiently inequity averse preferences
would do the same as the Reciprocator: Similarly, instead of "Materialist” we could use
’Spiteful’” (or ’Envious’); this is because in the Prisoner’s Dilemma game maximizing
one’s own money return is the same as minimizing both the opponent’s relative and
absolute money payoff. Both requires defection no matter what the opponent does.
Under this interpretation the ’Materialist’ type actively compares his payoffs with
other players, and is, in this sense, just as ’social’ as the other preference types. Of
course, the following 'minimalist’ interpretation is also possible: Players just have a
preference ordering and do not know 'why’ they prefer what they prefer (that is, if we
asked them why they have the preferences they do, they would not know what to an-
swer). Our labels "Materialist’ etc., are then completely arbitrary and for convenience
only.

2.2.2 Comparison with the Utility Function Approach to Modeling Social
Preferences

A preference type as defined above, is a pair of pure best replies: What a player
optimally chooses when the opponent chooses C' (D). One may speculate what utility
functions can generate these best replies. We therefore consider some of the functional
forms proposed in the literature (see Fehr and Schmidt (2001) for an overview ).

A popular utility function that has been used to model reciprocity was suggested
in Fehr and Schmidt (1999). Suppose an outcome is realized that gives money payoffs
(71, m) to players 1 and 2. Then player i = 1,2 gets utility

U,Z'(ﬂ'i,ﬂ'j) =T; — Q4 max{wj — T4, 0} — Bz max{m — 7Tj,0},

where «; > 0 and 3; > 0 represent player i’s disutility from disadvantageous

4We refer the reader to Rabin (1993) for formal analysis of kindness.
5This requires that the parameters a and b satisfy 0 < a + b < 2.
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and advantageous inequality, respectively. These preferences are said to represent
‘inequality aversion’. Depending on the parameter values different best replies for our
PD-game emerge. If the opponent plays C', an individual plays C' when f; is sufficiently
large. However, if the opponent plays D, a player always plays D. Thus we can only
get the best reply behavior of our Reciprocator and the Materialist preference type,
but never that of our Altruist preference type.

Another model is Bolton and Ockenfels (2000). Let o; denote player i’s proportion
of the total monetary payoff: o; = m;/(m + m) if 1 + 71 > 0 and m; = 1/2 if
m = 7y = 0, where ¢ = 1,2. In the simplest formulation of their model a player has
preferences

ui(ﬂ'iaﬂ-j) = YT — (1/2)51'[01' - 1/2]2,

where v; > 0 and §; > 0. Thus subjective payoff depends positively on the player’s
monetary payoff but is diminished whenever an unequal distribution of money arises.
Bolton and Ockenfels assume that all monetary payoffs are positive. We therefore,
without any loss of generality, add —b to all the payoffs in our PD game. We verify
that if the opponent plays C, a player chooses C' when ¢; is sufficiently large relative to
~. However, a player always plays D if the opponent plays D. Asin Fehr and Schmidt’s
specification, we can only generate the behavior corresponding to our Materialist and
the Reciprocal preference type.

Whereas we can not get the behavior of our Altruist preference type from the
specifications of Fehr and Schmidt (1999) and Bolton and Ockenfels (2000), we can
get it, together with some of the other preference types, from a simple linear utility
function (see e.g. Ledyard (1995)):

’LLZ'(TI'Z', 7Tj) = T + Oliﬂ'j,

where o; is the weight that person ¢ assigns to person j’s monetary payoff.® Some
calculations reveal that a player with a; < min {(a—1)/(b—1),—b/a} [a; > maz {(a—
1)/(b—1), —b/a}] has defection [co-operation] as a strictly dominant strategy, i.e., she is
like our Materialist [Altruist] preference type. Furthermore, if —b/a < (a —1)/(1 —b)
and —b/a < «o; < (a —1)/(1 —b), we get the Reciprocator type, while if —b/a >
(a—1)/(1 =b)and (a —1)/(1 —b) < a; < —b/a, the player responds to cooperation
with defection and responds to defection with cooperation. We will return to this,
rather ’paradoxical’, preference type in Section 5 below. Thus within this class of
utility functions our we can get the Altruist, Materialist and Reciprocator preference
types, but only for certain parameter values.

Finally, consider the utility function studied in Charness and Rabin (2001):

ui(xy, x2) = (1 — y)m + y[d min{z1, x2} + (1 — 0)[x1 + 22]],

where v € [0,1] and § € [0,1]. These preferences express a trade-off between one’s
own and both players’ monetary payoff; the self-interest decreases with v. Moreover,

6See Levine (1998) for an explicit modeling of these weights.



the concern for the groups’s monetary payoff is a combination of a concern for the
least advantaged and efficiency (the latter being weighted more heavily when § is
small). We verify that a player’s best reply to a choice of C' by the opponent is C
when § > % (for which it is necessary that v > 1/3) and otherwise D is optimal.

Similarly, a best reply to D is C' when ¢ < 272—;1 (for which it is necessary that v > 1/2).
We can therefore get all our three A, R and M preference types for different (v, §)
configurations. However, we cannot get the preference type for which a best reply to

C (D) is D (C) (cf. Section 5 below).

We believe this shows that our approach, of postulating a set of preference types
(i.e., various best reply combinations) is never more restrictive, and can be more
general, than postulating a specific class of utility functions. Doing the latter may
exclude some behavior that actually turns out to be viable in the evolutionary model.

2.3 Evolutionary Selection

We assume there is a large population of players and that at each instant of time the
players are randomly matched in pairs. Each pair of players then play the PD once.
Players are then re-matched and the process is repeated indefinitely.

Let x;, with ¢ = A, R, M, denote the population fraction of players of type i,
where 0 < x; < 1 and ) .2; = 1. Then x = (z4,2p,x)) is the population state.
Denote by (i, x) the expected money payoff to a type i player and let 7(x,x) denote
the average expected payoff at the population state x. Then the evolution of the
population proportion of players of type i is given by

& = xi[n (i, z) — 7 (z, )]

This is the well-known Replicator Dynamic (Taylor and Jonker (1978)). It says
that the growth rate of players with preference i = A, R, M grows if these players earn
above-average money payoff. We wish to describe the dynamic of preference evolution
and to find those population states that are (asymptotically) stable for this dynamic.

3 Pure Interaction

In this section players are engaged in either simultaneous or sequential interaction,
but never both.

3.1 Simultaneous Interaction

For the evolutionary analysis we need to compute the money payoffs m;;, where ¢, j =
A, R, M, obtained by a player with preference ¢ when she is matched with an opponent
of type j. These payoffs are given in the matrix below:



A R M
Al 1 b
R 1 TRR 0
Mla] O 0

Table 1: The money payoffs in the evolutionary game under simultaneous interac-
tion. A= Altruist; R = Reciprocator; M = Materialist.

Consider, for example, a meeting between an M-type and an R-type. The M-type
always plays D and the R-type consequently plays D, too. Thus the money payoff
to each player is the mutual defection payoff, zero: 7y r = mry = 0. Similarly, in
an encounter between an A-type and an R-type, the former always plays C and the
R-type then responds with C, too. Thus map = Tra = 1.

In a meeting between two R-types, there are two possible outcomes, corresponding
to the two strict Nash equilibria: (D, D) and (C,C).” If the players could co-ordinate
on the (C,C) Nash equilibrium their money payoff would equal 1, while playing the
(D, D) Nash equilibrium would give each player zero.

We make the following assumption:

Assumption 1 The money payoff that an R-type earns when meeting another R-type,
TRrR, Satisfies
0<mrr < 1.

Assumption 1 implies that two Reciprocators perform better than two Materialists,
but not as well as two Altruists. One may justify our assumption as follows: Suppose
that when two R types meet, each individual plays C with probability A and D
with probability 1 — A (A could be interpreted as the probability assigned to C' in
the symmetric mixed Nash equilibrium). Then we have 0 < mpr < 1 whenever
0<(1/2)(a+0b) < 1.

Proposition 1 Consider the evolutionary game based on the simultaneous-move Pris-
oner’s Dilemma game.

(a). Any population where all players have the same preference is unstable.

(b). There is a unique interior equilibrium population, x*. This equilibrium is
a center, i.e., surrounded by periodic orbits. Thus, whenever the population is not
wnitially exactly at x*, the population frequencies of the three preference types fluctuate
endlessly.

—bTI'RR b(]_ — a) (]_ — TRR)(G — ].)
D ' D D ’ (1)

vt = 2, ok, vy =

where D = (1 —a — b)mgrr + (a — 1)(1 —b).

"There is also a symmetric and mixed Nash equilibrium, but we ignore it here.
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Proof: The proof follows by an application of the results in Bomze (1983). We refer
the reader to the Appendix.

Below we have given the dynamic for the case where a = 2, b = —1 and mgg = 1/2.

Figure 1: The phase diagram for the simultaneous move PD game; a = 2, b = —1 and
mrr = 1/2. Equilibrium proportions: z% = 1/4, 25 = 1/2 and z}, = 1/4.

The vertex labeled i is the population where all players are of preference type i,
where i = A, R, M. Any orbit circles around the equilibrium. The proportions of
players with different preferences fluctuate endlessly.

Why do we get these never-ending fluctuations? As the proportion of R types
increases, the proportion of A-types increases too and the proportion of M-types fall;
however, once there are sufficiently many A-types, preference M gains foothold; this
lowers the proportion of A and R-types, after which type R again gains territory,
and so on. Moreover, facing a Materialist type a Reciprocator and a Materialist type
perform ezactly as well (they both defect and so get zero payoff). A mathematician
would say that this payoff tie, mgrys = marar, in the payoff matrix in Table 1 is a
‘non-robust’ feature of the model, in the sense that a small perturbation in these
payoffs will change the dynamic (see also Zeeman (1980)). However, our payoffs in
the evolutionary game are endogenous: They are derived from the optimal behavior of
the players, and so it does not really make sense to discuss arbitrarily small changes
in these payoffs.®

Our results show that players with altruistic preferences perform equally well as
those with materialistic or reciprocal preferences. Indeed, our result that a population
of reciprocally minded players is unstable, since an Altruist can invade, has not, to
our knowledge, been observed in other models of preference evolution.’ There is a role
for altruism whenever two reciprocators cannot perfectly establish full cooperation:
Unlike a reciprocal player, an altruist induces a reciprocal player to co-operate with

8In Robson (1990) a similar argument is presented.
9But see Binmore and Samuelson (1992) for a similar kind of result, although in a different context.
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probability one.!® Our results therefore show that the exclusion of altruism is not

justified in the simultaneous-move game.

3.2 Sequential Interaction

We now assume that when two players are matched, one of them is randomly chosen
to be first-mover. This player then chooses between cooperate and defect. The other
player, the second-mover, observes the first-mover’s choice and makes a choice himself.
The fact that players are randomly allocated to be first-mover or second-mover is
meant to reflect a set-up where, when two players meet each other, random factors
decide who moves first. We assume, as before, that players’ preferences are common
knowledge. In particular, the first-mover knows the second-mover’s preferences before
the first-mover makes a choice.

Consider a player who, in the role of first-mover, faces a reciprocal second-mover. If
the first-mover cooperates (defects), the second-mover cooperates (defects), too. Thus
we must ask how the first-mover ranks the (C,C) outcome relative to the (D, D)
outcome. We will make the following assumption:

Assumption 2 All players, irrespective of their preference, prefer the (C,C) outcome
to the (D, D) outcome.

We feel this is a plausible assumption, which is entirely in line with our proposed
interpretation of materialism, reciprocity and altruism.

We then obtain the following matrix for the evolutionary game:

A R M
All1] 1 b
R[TI[ 1 12
M|al|l/2] 0

Table 2: The money payoffs in the evolutionary game under sequential interaction.
A= Altruist; R = Reciprocator; M = Materialist.

We see that it is no longer true that the Altruist preference type is a unique best
reply to the Reciprocator preference type. Moreover, the R preference type is a unique
best reply to the M preference type. We get the following proposition:

Proposition 2 Consider the evolutionary game for the Sequential Prisoner’s Dilemma
game.

(a). As in the simultaneous-move game, the all-M population is unstable. How-
ever, no Materialist players are observed in any stable population.

10Tf two Reciprocators could perfectly co-ordinate on co-operation, i.e., Tgr = 1, there would be
no type M players in any stable population. See Poulsen (2002) for this analysis.
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(b). A population is stable if it is composed exclusively of Reciprocators and Altru-
ists and the proportion of Altruists, x4, is sufficiently small: x4 < 1/(2a — 1).

The proof of this proposition is in the Appendix. We have illustrated the proposi-
tion below, where a = 2 and b = —1.

J

/ S o . \\ \\ \\
S e ~ NENAN
> N
VAV A/ AV A S It U O\
7 VA A S = — N
A S R

Figure 2: The phase diagram for the sequential PD game; a = 2 and b = —1.

The vertex M, where all players are Materialists, is unstable, as before (part (a)).
The component labeled S consists of all the stable populations with Altruists and
Materialists (part (b)). In our example, up to one-third of the players can be altruistic
in a stable population. The vertical line connecting the M vertex with the endpoint
of the S component gives those populations at which the proportion of M types is
neither increasing or decreasing.

The important difference from simultaneous interaction is that (i). Sequential
interaction allows two Reciprocators to overcome their co-ordination problem and (ii).
a Reciprocator outperforms a Materialist against a Materialist opponent.'' Thus the
presence of reciprocally motivated players induces materialistic players to behave more
cooperatively than they otherwise would. Even though the Materialist prefers to
defect, given any choice by the opponent, when her own choice will determine the
opponent’s choice, she is led to cooperate. This is a specific case of a quite general
phenomenon: The presence of individuals in the population with reciprocal preferences
affects the behavior of materialistically motivated individuals, and, in fact, makes the
latter more cooperative. See e.g. Fehr and Schmidt (1999) and Fehr and Fischbacher
(2002) for a discussion.

1 Observation (i) holds because when a reciprocal first-mover faces a reciprocal second-mover, the
first-mover chooses C' and the second-mover responds with C, too (Assumption 2). In a meeting
between two Reciprocators, each player therefore earns (1/2)(1) + (1/2)(1) = 1. The second observa-
tion comes from the fact that when the Materialist is first-mover she optimally chooses to cooperate
rather than to defect (cf. Assumption 2).
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4 Mixed Interaction

In Section 3 interaction was either simultaneous or sequential. In this section we
assume that when two players are matched, they engage in the simultaneous game
with probability x and with remaining probability 1 — p interaction is sequential. We
impose only 0 < 4 < 1. We will refer to this game as the mized PD game.

A player’s evolutionary performance, i.e., his monetary earnings, is now a weighted
average of his performance in the simultaneous game and his performance in the
sequential one. This gives us the following matrix, where we again assume that 0 <
Trr < 1:

A R M
Al 1 b
R |1 | prpr+1—p| (1—p)(1/2)
M| a] (1-p)(1/2) 0

Table 3: The money payoffs in the mixed evolutionary game, where the simulta-
neous (sequential) game is played with probability g (1 — p).

Let us recall that (i). in the simultaneous (sequential) game preference type A is
the unique (alternative) best reply to preference type R, (ii), in both the simultaneous
and the sequential game the M preference type is the unique best reply to preference
type A and (iii). in the sequential (simultaneous) game preference type R is the unique
(alternative) best reply to preference type M. This implies that for any p € (0,1) we
get a cyclical best reply structure. The implication is given in the following proposition:

Proposition 3 Consider the mized evolutionary game, where individuals play the si-
multaneous Prisoner’s Dilemma game with probability p and play the sequential game
with probability 1 — p. There is for each p € (0,1) a unique interior equilibrium,
v = [y Un, Uil and it is globally asymptotically stable.

2
% 1% +2b(27TRR—1)/L+2b—1

yE:2(a—1)[2l;)—1+u], (3)

v = 4p(l — a)FSl — mm)7 (4)

and with E = 4prrp(a+b—1)+ (20— p—1)(2a — 1 — p).

The proof is in the Appendix. An illustration is provided below, again with a = 2,
b= —1and mgr = 1/2, and with each game being equally likely to be played: p = 1/2.
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Figure 3: Phase diagram for the mixed PD game. Parameter values: a = 2, b = —1,
mrr = 1/2 and p = 1/2. Equilibrium proportions: z% = 11/35, z} = 20/35 and
xh, = 4/35.

Evolutionary selection for the mixed game gives a unique prediction of population
behavior for the mixed game for any value of 1 € (0,1). Any initial population, where
all three types are present, will over time evolve to the preference profile y*. It is
the cyclical best replies mentioned above that creates the spiraling convergence to the
equilibrium (see also Hofbauer and Sigmund (1998)). Thus, by allowing for multiple
games being played, we obtain a sharper prediction than in either the simultaneous or
the sequential game. Our result qualitatively mimics the finding from the experimental
literature that there are several personality types in the population and these are
materialistic, reciprocal and altruist.

5 Including the ’'Paradoxical’ Preference Type

Until now we ignored the following preference type:

The Paradoxical (P) preference type: Play C if the opponent plays D and play
D if the opponent plays C.

In this section we consider evolutionary stability when players may also evolve
this type of preference. We proceed straight to the mixed game. Let 7;;, where
i,j = A, R, M, P, denote the money payoff to a player of preference type ¢ when
matched with an opponent of preference type j in the simultaneous game. The matrix
below contains all the payoffs for the evolutionary game.

A R M P
Al 1 b b
R 1 Prrr +1— p (1/2)(A = p) | prre + (1/2)(0 = p)(a+1)
M| a (1/2)(1 — p) 0 a
Pl a|prpr+(1/2)(1 - p)(1+0) b prpp + (1/2)(1 — p)(a +b)
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Table 4: The money payoffs in the mixed evolutionary game with four preference
types; A= Altruist; R = Reciprocator; M = Materialist; P = Paradoxical preference

type.

Let us briefly explain how we have arrived at the payoffs in the fourth row and
column. The first payoff, a, is computed as follows. In the simultaneous game the A
type plays C, as usual, and so the P-type plays D. Thus the P-type gets a. In the
sequential game the P-type chooses D when first-mover and the A-type responds with
C'. When the A-type is first-mover, she effectively chooses between (C, D), giving her
money payoff a, and (D, C), giving money payoff b. We will assume that the A-type
is benevolent enough to choose C' and so establishes the (D, C') outcome.

When the P-type meets an R-type, there is a unique symmetric and mixed Nash
equilibrium in the simultaneous game. In the sequential game a reciprocal first-mover
in effect chooses between the outcomes (D, C) and (C, D). We assume that the R type
prefers the outcome (D, C) over outcome (C, D), i.e., chooses D. When the P-type
is first-mover, Assumption 2 (Section 3.2) implies that we get the (C,C) outcome.
The P-type therefore gets payoff (1/2)mpr + (1/2)[(1/2)b + 1/2]. The R-type gets
(1/2)7rp + (1/2)[(1/2)a + 1/2]. When the opponent is an M-type, on the other
hand, the outcome is that the P-type chooses C' and the M-type chooses D, both in
the simultaneous and the sequential game. Finally, suppose two P-types meet. In
the simultaneous game there is a unique symmetric mixed Nash equilibrium!?, giving
money payoff mpp. In the sequential game a P-type as first-mover gets a and as
second-mover he gets b. Thus the overall monetary payoff to a P-type against another
P-type in the mixed game is (1/2)7pp + (1/2)[(1/2)a + (1/2)b].

Looking at the payoffs in the matrix reveals that the M type performs strictly
better, or at least as well, as the P type against the A, M and P types. Moreover,
type M performs better against an R type in the sequential game. This follows since
the P type’s inclination to choose D (C) if the opponent plays C' (D), coupled with
our assumption that the R type prefers (D, C') over (C, D), means that the P type co-
operates and the R type defects. The P type’s preferences lead her to being exploited
by an R type in the sequential game. The M-type, on the other hand, realizes the
better (D, D) outcome when matched with an R-type and the former is second-mover.
However, the P type performs strictly better than the M type against an R type in
the simultaneous contest. This gives us the following proposition:

Proposition 4 Suppose it is sufficiently likely that interaction is sequential: p <
—b Then:

2rpr—b"

(a). The M-type weakly dominates the P-type.

(b). When the initial population contains all four preference types, the population
proportion of type P players approaches zero as time approaches infinity.
The proof is in the Appendix.

The condition in the proposition is likely to hold whenever the P type performs
badly against the R type in the simultaneous-move setting (such that 7mpg is small).

12There are also two asymmetric pure Nash equilibria, but we ignore them here.
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This, in turn, will be the case whenever the R-type’s preferences lead her to behave
‘aggressively’ against the P type, i.e., to be very likely to play defect.

Part (b) implies that we can effectively ignore the P preference type from the
analysis: The population will eventually 'land’ on the face of the simplex spanned by
the strategies A, R and M, and from then on the dynamic will be as when only the
these three strategies were available from the beginning. In this case all our results
from Sections 3 and 4 hold.

6 The Case of No Information about Preferences

In the previous analysis subjective payoffs were common knowledge. It was as if
players had their preference types written on their foreheads. We conjecture that our
results continue to hold as long as information is sufficiently accurate, or as long as it
is not too costly to acquire such information.'® However, let us now consider the polar
opposite to perfect information: A player, when having to decide between cooperating
and defecting, receives no information about the opponent’s preferences; all interaction
is completely anonymous. The only thing a player knows is the aggregate distribution
of the different preference types in the population.

Anonymous interaction means that a player’s preferences can no longer affect an
opponent’s choice. All players face the same distribution of C' and D choices. But
that implies that the unambiguously best thing to do in terms of money is to defect.
The following result holds no matter whether interaction is simultaneous, sequential
or mixed:

Proposition 5 Consider the simultaneous, the sequential or the mized evolutionary
game when players do not know their opponents’ preferences. Then: In any stable
population there are no Altruists and all players defect.

Note that the proposition does not say that all players are materialistic in any
stable population; in fact, some may be reciprocal. However, in any stable population
there are so many Materialists that the Reciprocators defect, too. Thus in any stable
outcome materialistic and reciprocal players are indistinguishable from each other.
It is the lack of a means of communication that prevents the Reciprocators from
‘breaking out’ and establishing the cooperation between themselves that would give
them an evolutionary advantage over the materialists. In the terminology of Robson
(1990), in a completely anonymous world, reciprocal players cannot give each other a

‘secret handshake’.'*

This proposition underlines the importance of personal communication for reci-
procity, and altruism, to be successful. Reciprocal players must be able to signal, or
communicate, what value system they have, in order to establish cooperative outcomes
and in order to avoid co-operating with ’bad’ players. In a completely anonymous
world, cooperation is not possible.

3For a formal analysis, see Giith (1995) and Giith and Kliemt (1994).
1Gee also Ok and Vega-Redondo (2001).
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The assumption of no information seems just as unrealistic as one of perfect in-
formation. In the real world, individuals form opinions about fellow individuals’ pref-
erences based on information about observables such as income and skin color. The
future challenge, we believe, is to explore this area ’intermediate’ between perfect and
no information.

7 Conclusion

In this paper we analyzed what kind of preferences we should expect people to evolve
over time when they are engaged in a social dilemma situation of the Prisoner’s
Dilemma type. This game was played under varying amounts of information about
other players’ preferences and different move protocols. In particular, we assumed that
players were involved in several game situations with varying probabilities. When play-
ers have information about other players’ preferences, a unique asymptotically stable
distribution of preferences emerged over time. Here reciprocal, materialist and altruist
individuals live side-by-side. We believe our results may contribute to providing an
evolutionary foundation for the experimentally observed fact that many individuals
have social preferences that differ from the materialistic preferences that are normally
assumed.

8 Appendix

For simplicity, set mrp = 7.

Proof of Proposition 1: The equations giving the expected payoffs to the A, R and
M preference type are as follows (cf. Table 1): w(A,z) = 1—zy+xyb, T(R, ) = x4+
xzrmand w(M, z) = z4a. Solving the system 7(A, z) = 7(R, z) and 7(R, z) = 7 (M, ),
using 1 = x4 + xr + xp/, gives the solutions from the main text:

. —bm

T =

AT a+b—1—ab+7—7a— b’

T —

R a+b—-1—ab+7 —ma— b’
1-— -1

O e (U

a+b—1—ab+m—ma—br’

We next consider the stability of the interior equilibrium x*. As already stated in
the main text, our proof that z* is a center builds on the results in Bomze (1983).
Bomze exploits the fact that there is a close relationship between the Lotka-Volterra
Dynamic and the Replicator Dynamic: If (p, ¢) is a fixed point for the Lotka-Volterra
dynamic, then
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ot = (al, 2%, vy) = (L/A+p+q),p/(1+p+q),¢/(1+p+q)) (5)

is a fixed point for the Replicator Dynamic. Moreover, results about the stability
of one system will hold for the other system (Hofbauer (1981)). We refer the reader
to Bomze (1983) for details. See also Hofbauer and Sigmund (1998).

We may, instead of the matrix in Table 1, study the equivalent matrix, obtained
by deleting the number 1 (1) [b] from all entries the first (second) [third] column:

A R M
A 0 0 0
R 0 T™—11]—b
Mia—1| -1 | -=b

Or, in abbreviated form,

A R M
AlO0lO0] O
Rlia|B|Yy
M| 6|el 0

Bomze shows (Proposition 6, part (ii)) that if the quantities 56 — ve, ae — 36
and 70 — af all have the same sign, then the Lotka-Volterra dynamic has a unique
fixed point, given by p = g‘;:iz and g = g;:g‘:. We compute S0 — yve = —mwb > 0,
ae—pd=(1—m)(a—1) > 0and y§ —af = —b(a — 1) > 0. Hence there is a unique
fixed point, (p,q), where p > 0 and ¢ > 0 and

—b(a — 1)

pP= —7b

(1—m)(a— 1)‘

—7b

q:

We may verify that when these expressions are used in (5), we get exactly the
solutions above and in the main text.

Bomze shows furthermore that if Sp+ 6q = 0, then (p, ¢) is a center for the Lotka-
Volterra system. We have

b(r —1)(a—1) N —b(1 —7)(a—1)

O —
fp + 04 b —7b

=0.

We may therefore conclude that (p,q) is a center for the Lotka-Volterra system.
This, in turn, allows us to conclude that our equilibrium z*, given in (5) above, is a
center for the Replicator Dynamic. Finally, in order to verify that 0 < z} < 1 for
i = A, R, M, we may use the fact that p > 0, ¢ > 0 and (5). B

Proof of Proposition 2: Part (a). First, the M-strategy is not a Nash equilibrium
and hence unstable. Second, suppose there is a stable population where the M-strategy
is present. Then there must be players of type A or of type R, as well. Suppose there
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are only A and M types in the population. This, however, contradicts stability, since
the M-type in such a population earns strictly higher expected payoff than the A-
type. A similar contradiction is obtained if only the M and the R type are present.
Thus stability implies that all three preference types are present in the population.
However, then the R-type earns strictly higher expected payoff than the A-type, again
a contradiction of stability.

Part (b). Consider a population, x, with only R and A-players. We then have
m(R,z) = (A, x) = n(xz,x) = 1. Moreover, we have m(M,x) = x40 + (1 —x4)(1/2),
som(M,z) < m(x,z) when x4 < 1/(2a—1). Then z is a symmetric Nash equilibrium.
To show that z is also a Neutrally Stable Strategy (NSS), and hence stable for the
Replicator Dynamic!®, we must verify that m(z,2') = 7(2',2") for any 2’ # x using
strategy A and R. Since 7(z,2’) = 7(2',2") = 1, x is an NSS (but not an ESS). B

Proof of Proposition 3:

The equations giving the expected payoffs are now m(A,x) = x4 + xp — xub,
m(R,x) = wa+aplpr+1—pl+oy[(1-p)(1/2)] and 7(M, z) = zaa+zg[(1/2)(1 - p)].
Solving these equations yields

—1+p?—2bp+2b+4bum
1—4pm—2pa—2bpu+4ab+4bunr+4pra+p?2—2b+2p—2a

Yy =

l—a—-2b+4+2ab+pa—p
1—dpum—2pa—2bu+4ab+4bpr+4pma+p?2—2b+2pu—2a

*

Yp = 2

* Yy u(—m—a+ma+l)
Yu = 1—4punm—2pa—2bu+4 ab+4bun+4 pmatp?—2b+2u—2a

Simplifying these expressions gives those in the main text.

Consider now the dynamic stability of y*. Again, subtracting 1 (1) [b] from the first
(second) [third] column from the matrix in Section 4 gives us the following equivalent
matrix:

A R M
A0 0 0
R| 0 pur = p (1/2)(1—p) —b
M a=1]=01/2)1+pn) —b

Using the same notation as earlier, we compute 0 — ve = (1/2)b[u — 1 — 2un]| +
(1/4)(1 = p)(1 +p), ae =36 = p(l —m)(a —1) and 76 —ab = (a —1)[(1/2)(1 — p) — b].
It is straightforward to verify that all three expressions are strictly positive. Thus we
may, once more, use the results in Bomze (1983) to conclude that there is a unique
fixed point (p, q) for the Lotka-Volterra dynamic, where p > 0 and ¢ > 0 and

(o —D[(1/2)(A = p) — b]
1/2)blp = 1 = 2pm] + (1/4)(1 — p) (1 + p)
15We refer the reader to e.g. Weibull (1995).

T
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pla—1)(1 — )
1/2)blp — 1 = 2pm] + (1/4)(1 — p) (1 + p)’

T

Again, using the relationship y* = (v, y5, Yi) = (H;Jrq, vt 1+Z+q> gives our

expressions in the main text. Furthermore, we compute

—(1/2)p(1 —m)(1 — p)(a — 1)
1/2)blp — 1 = 2pm] + (1/4)(1 — ) (1 + p)’

6p+9q=(

The numerator is strictly negative for any g € (0,1). Since the denominator is
strictly positive, we may conclude that Bp + 6g < 0. Thus (p,q) is asymptotically
stable for the Lotka-Volterra dynamic. This then implies that y* is asymptotically
stable for the Replicator Dynamic. The proof that 0 < y* < 1 follows from using the
relationship between p, ¢ and y* given earlier and the fact that p > 0 and ¢ > 0. B

Proof of Proposition 4:

If a pure strategy, 7, is weakly dominated by another (mixed) strategy, call it z,
then either strategy ¢ approaches extinction over time, or those pure strategies against
which z strictly outperforms i, die out (see Weibull (1995), Proposition 3.2). In our
case © = P and we may choose = to be the pure strategy M. That is, strategy P is
one of those strategies against which = outperforms P. This implies that P dies out
over time. H

Proof of Proposition 5:

It is not difficult to see that there can be no Altruists in any stable population. For
the Altruists always cooperate and the Materialists defect, so the latter earns strictly
higher expected payoff than the former against any population where some players
cooperate. This then implies that in any stable population state all players defect,
i.e., they are materialists and/or Reciprocators. B
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