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Abstract 

The vocational employment training program is the most expensive training pro
gram in Sweden and a cornerstone of labor market policy. We analyze its causal 
effects on the individual transition rate from unemployment to employment by ex
ploiting variation in the timing of treatment and outcome, dealing with selectivity 
on unobservables. We demonstrate the appropriateness of this approach in our con-
text by studying the enrollment process. We develop a model allowing for duration 
dependence and unobserved heterogeneity (leading to spurious duration dependence) 
in the treatment effect itself, and we prove non-parametric identification. The data 
cover the population and include multiple unemployment spells for many individu
als. The results indicate a large significantly positive effect on exit to work shortly 
after exiting the program. The effect at the individual level diminishes after some 
weeks. When taking account of the time spent in the program, the effect on the mean 
unemployment duration is small. 
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1 Introduction 

Training programs for the unemployed have been a cornerstone of labor market policy for 
many decades. In Sweden, training programs have been used since 1918 and constitute an 
important part of the so-called Swedish model (or Nordic model) of labor market policy. 
Among Sweden’s current programs, the employment training program (which we denote 
by its Swedish acronym AMU) is the most prestigious. AMU aims to improve the chances 
of unemployed job seekers to obtain a job, by way of substantive skill-enhancing courses. 
In 1997, on average 37,000 individuals were participating in AMU per month, which cor
responds to over 10% of total unemployment.1 AMU is the most expensive active labor 
market program in Sweden and as such it adds to the tax burden. Nevertheless, the number 
of evaluation studies is rather small, and most of these analyze the effect of AMU on the 
participants’ annual earnings and/or use data from early eighties and/or data on special 
subgroups of unemployed workers, notably youths in Stockholm (see references below). 

This paper provides a comprehensive empirical analysis of the effect of AMU on the in
dividual transition rates from unemployment to employment. Note that the officially stated 
objective of AMU is to generate a positive effect. The results are of obvious importance for 
the evaluation of the AMU program and the underlying “Swedish model”. In addition, they 
are of importance in the light of the recent policy shifts in many other countries towards 
an increased use of active measures of bringing the unemployed back to work, notably by 
way of reschooling unemployed workers with low skills or obsolete qualifications (see e.g. 
Fay, 1996). 

The paper also makes two methodological contributions on the analysis of treatment 
effects in dynamic settings. These concern the Timing of Events approach, in which the 
information in the timing of events (like the moment at which the individual enrolls in 
training and the moment at which he finds a job) is used to estimate causal treatment 
effects in the presence of “selectivity on unobservables”. The approach involves estimation 
of models that simultaneously explain the duration until an outcome of interest and treat
ment status. The treatment is allowed to affect the main outcome by way of the rate at 
which the latter occurs after the treatment. Abbring and Van den Berg (2003) provided a 
formal underpinning of the approach by proving non-parametric identification in a number 
of settings,2 and they provide a systematic account of the behavioral assumptions that 

1In 2000, these figures are 30,000 and 9%, respectively (see AMU, 2001). 
2A major advantage of the approach is that it does not require exclusion restrictions on the set of 

explanatory variables that directly affect the chances of getting a job. Also, it does not require selection 
effects to be captured completely by observed variables (like the so-called matching approach). This is 
particularly useful if the set of observed variables only contains a small number of indicators of past 
individual labor market behavior, as is often the case. See Van den Berg (2001), for a survey, and Abbring 
and Van den Berg (2004) for a more detailed comparison to other evaluation methodologies. 
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are required for a valid use of this approach. Notably, individuals are not allowed to an
ticipate the moment at which the treatment occurs, although they are allowed to know 
the distribution of this moment over time. Many of the requirements for the use of this 
approach also apply to other treatment evaluation methods, including those that do not 
focus on dynamic treatment assignment or on a duration variable as main outcome. Nev
ertheless, they are often neglected in the empirical literature, including empirical studies 
of treatment effects on duration variables. We explain in detail that AMU fits well into 
the methodological framework, contrary to other labor market training programs and ac
tive labor market programs in Sweden. To substantiate our claims we use evidence from 
discussions with caseworkers, and we also rely on existing studies on unemployment, unem
ployment insurance, and active labor market programs in Sweden. These include Eriksson 
(1997a, 1997b), Zettermark et al. (2000), Carling and Richardson (2004), Dahlberg and 
Forslund (2005), Edin et al. (1998), and Carling et al. (1996). (Some of these deal with 
the interaction between the inflow into active labor market programs in general on the one 
hand, and expiration of benefits entitlement on the other; we return to this in Sections 2 
and 3.) Our paper thus contributes to the evaluation literature by explicitly studying the 
empirical implementation of the Timing of Events approach at a very high level of detail. 
We regard this to contain the first methodological contribution, as it provides a systematic 
review and assessment in a real-life setting of the conditions that need to be satisfied for a 
sensible use of the method. 

A major practical advantage of the Timing of Events approach is that it does not just 
lead to a single estimated treatment effect, but instead it allows for estimation of how 
the causal training effect changes over time. In particular, we allow the effect of AMU 
on the exit rate to work to depend on the elapsed time in unemployment since exiting 
the course and on the elapsed unemployment duration at which participation took place. 
(Time-varying) effects on hazard rates can be more easily related to the individual economic 
behavior than effects on the over-all probability of finding work as a function of the time 
since entry into unemployment. The estimates can therefore be used to study the reasons 
for why training works or not. The paper thus illustrates the usefulness of the Timing of 
Events approach in understanding the reasons for the effectiveness of a policy, and this in 
turn facilitates the assessment of counterfactual policy changes. 

Notice that unobserved heterogeneity in the treatment effect may be an important 
explanation for changes of the observed treatment effect over time. The intuition is the 
same as for the spurious duration dependence generated by unobserved heterogeneity in 
duration models (e.g. Lancaster, 1990). Treated individuals with unobserved characteristics 
such that their treatment effect is high are (holding every other characteristic constant) 
more likely to leave unemployment quickly. This tends to decrease the average treatment 
effect among the treated survivors. Whether the exit rate after treatment declines because 
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of a fading treatment effect or because of dynamic selection has major policy implications. 
In the former case the policy is only effective for a short while, whereas in the latter case one 
might want to screen individuals more closely before admission into training. We develop a 
model in which the treatment effect depends on the time since treatment, on covariates, and 
on an unobserved heterogeneity term which may be related to the unobserved heterogeneity 
terms affecting the treatment assignment rate and the transition rate out of the current 
state. This model, which could be labelled a Mixed Proportional Treatment Effect model, 
was not considered by Abbring and Van den Berg (2003). We demonstrate identification 
of this model under conditions similar to those in Abbring and Van den Berg (2003). The 
identification of duration dependence and unobserved heterogeneity in the treatment effect 
is an innovative methodological contribution of this paper. 

Duration model estimates with treatment effects are less sensitive to model assumptions 
if multiple spell data are available. Our longitudinal matched register data set covers the 
full population of unemployed individuals in Sweden, and this includes many individuals 
with multiple unemployment spells. We therefore exploit this advantage. We also estimate 
models that deal with participation in non-AMU programs, and we estimate models that 
take account of the real time spent in training. The latter mitigates any positive effect of 
training, in the sense that time in training by itself (the so-called lock-in effect) increases 
the mean unemployment duration. 

To date, a few econometric studies have addressed the effect of AMU on unemployment 
duration. Harkman and Johansson (1999) and some replication studies examine individuals 
who finish a program in the final quarter of 1996. Harkman and Johansson (1999) use a 
subset of the data that we use and match it to data from a postal survey conducted in late 
1997. They estimate a bivariate probit model on the employment probability at one year 
after the program, for different programs. The instrumental variable in the participation 
equation is the composition of programs within the employment office. The validity of 
the corresponding exclusion restriction is debatable. Their results indicate that persons 
in AMU have a higher probability to get a job. Subjective responses on the perceived 
importance of program participation agree with the estimation results.3 De Luna, Forslund 

3Edin and Holmlund (1991) and Larsson (2003) examine the effect of AMU on the transition rate 
from unemployment to work for young individuals aged below 25. Edin and Holmlund (1991) use data 
from Stockholm from the early 1980s. They compare the unemployment spells of individuals who become 
unemployed and do not enter the program with the unemployment spells after exiting an AMU-program, 
and they attempt to deal with selective assignment by adding many variables on the individual’s unem
ployment history. They find a positive effect. Larsson (2003) also uses a matching approach, with data 
from the 1990s. Her results are mixed. We do not examine these studies further because in our empirical 
analyses we restrict attention to individuals aged over 25 (see Subsection 3.4). See Björklund (1993) for a 
survey of other studies based on data from the 1970s and 1980s. Regnér (2002) studies earnings effects of 
AMU with register data from around the 1980s. A matching approach is used to construct a comparison 
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and Liljeberg (2008) use a matching approach to study effects of vocational AMU on 
employment probabilities in recent years, in which assignment is affected by the target 
that 70% of the participants should have a job three months after program completion. 
They find positive effects. 

The paper is organized as follows. Section 2 describes the AMU program. In Section 3 
we discuss the model framework and we highlight the main assumptions. We then argue 
that AMU fits into the framework whereas other programs do not. Section 4 describes 
the data. Section 5 contains the main estimation results. We also report the sensitivity 
of the results with respect to a number of assumptions concerning the model, and the 
construction of duration variables. Section 6 concludes. 

Labor market training in Sweden 

2.1 The AMU program 

The purpose of the AMU program is to improve the chances of job seekers to obtain a job, 
and to make it easier for employers to find workers with suitable skills. This means that it 
aims to increase unemployed individuals’ transition rate to work. The program attempts to 
achieve this by way of the participation of individuals in training and education courses.4 

The program is targeted at unemployed individuals as well as employed individuals who 
are at risk of becoming unemployed. The individuals have to be registered at the local job 
center (which we shall call the (local) employment office) and must be actively searching 
for a job. The lower age limit is 20, although nowadays younger individuals are entitled to 
participate if they are disabled or receive unemployment insurance (UI) benefits. 

During the 1980s, the yearly average number of individuals in AMU per month was 
about 40,000. During the heavy Swedish recession of the early 1990s, this number increased 
up to 85,000, with seasonal peaks of about 100,000. After 1992, this number decreased again 
to about 30,000–40,000, which is about 1% of the total labor force (Dahlberg and Forslund, 
2005; AMU, 2001). Nowadays, the annual inflow into AMU is less than or equal to 80,000. 
The average duration of a course has fluctuated during the past decade and is now about 
six to seven months. In 1994, total expenditure on the AMU program amounted to about 
SEK 12 billion (1.2 billion euro), half of which was for training procurement and half for 
training grants. Per participant this equals about 10,000 euro for procurement and 10,000 
euro for grants, on a yearly base (AMU, 1997). 

group. He concludes that on average there is no effect of AMU on earnings. 
4See e.g. AMS (1997). The formulation of the official aims of AMU has changed somewhat over time. 

For example, earlier formulations sometimes even refer to the prevention of cyclical inflationary wage 
increases. See e.g. Harkman and Johansson (1999) and Regnér (1997). 
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There is strong evidence that in 1991 and 1992, participation in AMU was often used 
in order to extend benefits entitlement (Regnér, 2002, and Edin et al. 1998). This requires 
a brief exposition. A commonly recognized problem with Swedish labor market programs 
is that until 2001 they could be used to extend an individual’s entitlement to unemploy
ment benefits (which is 300 working days (≈ 14 months) for those aged between 25 and 
55). By participating in a program, the unemployed individual ensured that his benefits 
entitlement was extended until completion of the program; in fact, if the participation 
exceeded a few months then the new entitlement extended further into the future. Edin 
et al. (1998) examine this interaction between inflow into active labor market programs 
in general on the one hand, and expiration of benefits entitlement on the other. They do 
not consider differences across programs. They find that many unemployed workers move 
into programs shortly before expiration. Carling et al. (1996) use data from 1991–1992 to 
study these issues as well, and they reach similar conclusions.5 In January 1993, a new large 
program called ALU (“work experience”) was introduced to end the abuse of AMU for ben
efits entitlement extension. ALU is specifically targeted towards individuals whose benefits 
entitlement expires. Participation usually amounts to performing tasks in the non-profit 
private that would otherwise not be carried out. Also, in 1993, the size of other non-AMU 
programs increased, and other new programs were designed. Again, these programs are 
much cheaper than AMU. 

There are two types of AMU training: vocational and non-vocational. Vocational train
ing courses are provided by education companies, universities, and municipal consultancy 
operations. The local employment office or the county employment board pay these or
ganizations for the provision of courses. The contents of the courses should be directed 
towards the upgrading of skills or the acquisition of skills that are in short supply or that 
are expected to be in short supply. In the 1990s, most courses concerned computer skills, 
technical skills, manufacturing skills, and skills in services and medical health care. Voca
tional training is not supposed to involve the mastering of a wholly different occupation 
with a large set of new skills. 

Non-vocational training (basic general training) concerns participation in courses within 
the regular educational system, i.e. at adult education centers and universities. Non
vocational training specifically intends to prepare the individual for other types of training 
(so that the aim of an increased transition rate to work is less direct here). Before 1997, 
a substantial part of AMU consisted of this non-vocational training. In 1997, a new pro

gram of adult education (called the Adult Education Initiative, or Knowledge Lift) has 

5Note that this also suggests that workers do not enjoy training very much, since otherwise they would 
have entered these programs earlier. Alternatively, caseworkers may stimulate unemployed individuals 
to enter programs only shortly before the benefits expiration, or program participation was quantity 
constrained for individuals with low unemployment durations. 
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been introduced, and this program is, amongst other things, supposed to replace the non
vocational training part of AMU (see Brännäs, 2000). Nevertheless, for the period since 
January 1995, non-vocational training amounts to approximately 40% of all AMU courses 
followed. As of 2000, this number is even higher (about 50%). 

Concerning UI it should be mentioned that entitlement also requires registration at 
the employment office. In the mid-1990s, about 40% of the inflow into unemployment and 
about 65% of the stock of unemployed qualified for UI (Carling, Holmlund and Vejsiu, 
2001). Part of the remaining 60% received “cash assistance” benefits, which are typically 
much lower than UI benefits. The average replacement rate for UI recipients is about 75% 
(Carling, Holmlund and Vejsiu, 2001). 

During the training, the participants’ income is called a training grant. Those who are 
entitled to UI receive a grant equal to their UI benefits level, with a minimum of SEK 240 
per day (which is about 24 euro). The other participants receive a grant of SEK 143 per 
day. These payments are made by the UI agency. In case of vocational training, the training 
organizations have to send in attendance reports, and the grant is withheld in case of non
attendance. In all cases, training is free of charge. In fact, additional benefits are available 
to cover costs of literature, technical equipment, travel, and hotel accommodation. In this 
sense, AMU training is far more attractive than regular education. 

In Sweden there is a number of other active labor market programs (that is, apart from 
AMU and the above-mentioned ALU). Most of these concern subsidized employment. See 
AMS (1998) and Harkman and Johansson (1999) for descriptions of the programs and 
changes in program participation over time, respectively. In 1997, on average 191,000 in
dividuals (4.5% of the total labor force) participated in one of the programs. The gov
ernment’s part of the total costs of this have amounted to over 3% of GDP (Dahlberg 
and Forslund, 2005, Regnér, 2002). In fact, Sweden has been the country with the highest 
percentage of GDP spending on active labor market policies in the world. 

The benefits entitlement rules and programs for persons aged below 25 or over 55 differ 
from those aged between 25 and 55. Young persons must participate in a program after 
100 days of unemployment, or otherwise they lose their unemployment benefits. They may 
use special programs that are not available for other age groups. Persons over 55 receive 
unemployment benefits for 450 days (instead of 300 days for those aged between 25 and 
55). 

Dahlberg and Forslund (2005) examine crowding out of non-participants by active labor 
market programs. They find no significant crowding out effects of AMU. 
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2.2 The training enrollment process at the individual level 

In this subsection we describe the process that leads to an individual’s enrollment in 
AMU. The information is mostly obtained from documents of the Swedish National Labour 
Market Board (AMS) (see e.g. AMS, 1998) and from in-depth interviews with a number 
of individual caseworkers.6 In addition, we rely on Zettermark et al. (2000), who provide a 
wealth of information on the day-to-day activities of employment offices and caseworkers. 
Most of that information confirms the interview outcomes. 

Usually the employment office advertises, at the office and in the newspapers, the 
availability of AMU courses. Most of the offices advertise one or two months before the 
scheduled starting date. In the advertisement they invite interested individuals to an in
formation meeting. At this meeting individuals are informed about the contents of the 
course and about the eligibility rules. The individuals can usually talk to their personal 
caseworker at the meeting. Those who are interested can then apply to the course. 

Enrollment requires approval from the caseworker. The eligibility rules usually include 
minimum requirements on the educational level upon inflow, but these are typically not 
binding. The caseworker also estimates the individual’s “need” for AMU. In practice this 
means that he examines whether the individual’s skills can be enhanced by the course. It 
is common that the applicants undergo a test in order to find out if they are able to benefit 
from the course. One may for example test the person’s skills in mathematics or in the 
Swedish language. The test may also include some ability testing. Another way to address 
whether the individual’s skills can be enhanced is by profiling the individual in terms of 
employment opportunities, i.e. making an educated guess about the individual’s “typical” 
unemployment duration. This duration is regarded to be high in case of a low education or 
an obsolete type of education, or if the individual has an occupation in excess supply. The 
profiling procedure is subjective. Sometimes the applicant should write a personal letter 
that explains why he wishes to participate in a specific AMU-course. If the person has 
work experience in his occupation, the caseworker might call employer references to ask if 
they would consider employing the person after AMU participation. In general, caseworkers 
seem to be reluctant to offer AMU courses in fields that are completely different from the 
occupation of the individual. If an individual rejects a caseworker’s offer of an AMU course 
then in principle the individual’s unemployment benefits may be cut off completely, but 
such sanctions were extremely rare in practice. 

The assignment may be affected by caseworkers working closely with firms that demand 
certain skill categories. Such firms may have an influence on who is accepted into the 

6We did not use a formal sampling procedure to select caseworkers to be interviewed. Rather, we 
contacted a number of them to get detailed information concerning the actual decision process at the work 
floor of the employment offices. In recent years beyond our observation window, profiling procedures have 
started to become prominent in the assignment process (see De Luna, Forslund and Liljeberg, 2008). 
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program. In such cases, training (of the unemployed individual) and job search effort (done 
by his caseworker) go hand in hand, so the effect of AMU may consist of a skill enhancing 
effect as well as a search effort effect. 

If the number of applicants is insufficient then the course may be cancelled (i.e. may 
not be bought from the course provider). If there are more applicants than slots in a given 
course, then individuals with high elapsed durations or being at risk of losing benefits 
(these are usually the same individuals) are often given priority. However, AMU is gener
ally not offered to individuals if they are primarily concerned about the renewal of their 
unemployment benefits. It is commonly felt that such practices would not agree with the 
objective of AMU. Perhaps more importantly, there are in general cheaper alternative pro
grams to deal with such cases, like workfare programs, and efforts are made to push the 
individual into those programs instead of AMU. Similarly, AMU is generally not offered 
to individuals who, in the opinion of the caseworker, need practical experience in order to 
be able to get a job, or who are just deemed in “need something to do” during daytime. 
In such cases the individual is offered another active labor market program, like a work 
experience program. 

It takes approximately one month from the first information meeting to the first day of 
the course. On average, the period from application to acceptance takes 2–3 weeks, while 
the period from acceptance to the start of the course takes 1–2 weeks. An individual may 
try the AMU-course before actually starting the course. For example, if he is interested 
in welding then he can make a one-week visit to the school that offers welding courses. 
Also, individuals may drop out of the course, because they find a job or for other reasons. 
In fact, in the first case, they are encouraged to do so, and they can come back later and 
complete the course. An AMU participant may also follow a sequence of courses, starting 
with basic vocational training and ending in a very narrow type of vocational training. 
Such a sequence may take 30–40 weeks. The participants do not receive grades or test
based certificates upon finishing a course. 

We now show that the above information given by caseworkers on the process that leads 
to an individual’s enrollment in AMU is confirmed by existing empirical studies. Eriksson 
(1997a, 1997b) analyzes choice and selection into different programs using register data in 
combination with survey data on choice and selection by the unemployed as well as the 

¨ caseworkers. (The H ANDEL register that she uses is part of the set of registers that we 
use in the current paper.) It is shown that the personal characteristics that are observable 

¨ in H ANDEL are not able to give a very precise prediction of actual participation in AMU 
versus non-participation. The predictive performance can be substantially enhanced if one 
takes account of self-reported (by the unemployed) measures of the amount with which 
AMU is expected to have certain advantages for future labor market prospects. These 
can be assumed to capture unobserved heterogeneity in the inflow rate into AMU and 
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perhaps unobserved heterogeneity in the treatment effect. (Of course they may also reflect 
an ex-post rationalization of actual choices made in the past.) Eriksson (1997a) notes that 
informal interviews with caseworkers reveal that the motivation of the unemployed is a 
very important criterium for placing an unemployed individual into AMU. 

Eriksson (1997b) exploits survey data obtained by letting caseworkers give AMU-advice 
on the basis of actual files of unemployed individuals that are supplied to them by the 
survey agency. The allocation of files to caseworkers is fully randomized. The data also 
allow for a comparison between the valuation of AMU as stated by the caseworkers and 
the actual (non-)participation of the individual. It turns out that heterogeneity of the 
caseworkers (which is typically unobserved but is here observed and used as an identifier) 
is a more important determinant of the caseworkers’ stated decisions than the unobserved 
heterogeneity of the unemployed individuals as captured by fixed effects. So, there is a lot 
of variation in the caseworkers’ decisions which can not be attributed to the unemployed 
individuals’ identities but can be attributed to the caseworkers’ identities. When selecting 
on the basis of observable personal characteristics, officials seem to use rules of thumb which 
are often not in accordance to the stated goals of AMU on priority groups. If the caseworkers 
think that an individual would benefit a lot from participation then the individual is also 
more likely to be an actual participant. But the actual participation also depends on the 
unemployed individual and on unexplained factors. 

¨ Carling and Richardson (2004) use the H ANDEL data from 1995 onwards to study 
the choice of a particular type of training program conditional on going into one of these 
programs. They use a Multinomial Logit model for this. They find that employment agency 
identifiers have significant effects, and that these dominate the effects of characteristics of 
the unemployed individual. 

According to Eriksson (1997b), caseworkers are reluctant to let current participants to 
non-AMU programs enter AMU. Also, work experience programs and public temporary 
employment are substitutes for each other but not for AMU. Caseworkers regard AMU to 
be a fundamentally different kind of program. So the variation in the caseworkers’ behavior 
with respect to AMU mostly concerns the choice between AMU and no AMU, instead of the 
choice between AMU and another program. According to Dahlberg and Forslund (2005), 
nowadays, AMU is typically not used for UI entitlement extensions. 

The model framework 

3.1 A class of bivariate duration models for treatment evaluation 

We normalize the point of time at which the individual enters unemployment to zero. The 
durations Tu and Tp measure the duration until employment and the duration until entry 
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into the AMU training program, respectively.7 At this stage we assume that unemployment 
can only end in employment, and we take the period in AMU as part of the unemployment 
spell. Also, for the moment we ignore other training programs during unemployment. As 
a result,  Tu also denotes the duration of unemployment. The population that we consider 
concerns the inflow into unemployment, and the probability distributions that are defined 
below are distributions in the inflow into unemployment (unless stated otherwise). 

The two durations are random variables. If necessary we use Tu and Tp to denote the 
random variables and tu and tp to denote their realizations, but for expositional reasons 
we occasionally use the latter notation for both. We assume that, for a given individual in 
the population, the duration variables are absolutely continuous and nonnegative random 
variables. We assume that all individual differences in the joint distribution of Tu, Tp can 
be characterized by explanatory variables X,V , where  X is observed and V is unobserved 
to us. Of course, the joint distribution of Tu, Tp|X,V can be expressed in terms of the 
distributions of Tp|X,V and Tu|Tp, X, V . The latter distributions are in turn characterized 
by their hazard rates θp(t|x, V ) and  θu(t|tp, x, V ), respectively.8 

As noted in the introduction, we are interested in the causal effect of participation in 
AMU on the exit out of unemployment. The treatment and the exit are characterized by 
the moments at which they occur, so we are interested in the effect of the realization of 
Tp on the distribution of Tu. To proceed, we assume that, conditional on X,V , the set 
of possible relations between Tu and Tp is characterized as follows: the realization tp of 
Tp affects the shape of the hazard of Tu from tp onwards, in a deterministic way. The 
assumption implies that the causal effect is captured by the effect of tp on θu(t|tp, x, V ) 
for t > tp. Note that it is ruled out that tp affects θu(t|tp, x, V ) on  t ∈ [0, tp]. Obviously, it 
is useful to take the hazard rates as the basic building blocks of the model specification. 
As will become clear below, this also facilitates the discussion of the empirical relevance 
of some assumptions, and it enables one to interpret empirical findings in terms of an 
economic-theoretical framework. 

Let V := (Vu, Vp)
′ be a (2 × 1)-vector of unobserved covariates. As usual, we take Vp 

(Vu) to capture the unobserved determinants of Tp (Tu). We adopt the following model 
framework, in terms of the hazard rates θu(t|tp, x, Vu) and  θp(t|x, Vp) (where it should be 
stressed that we also estimate less restrictive model specifications), 

7Formally, different potential values tp of Tp denote different treatments. The model framework can 
accordingly be developed in terms of counterfactual notation; see Abbring and Van den Berg (2003). Here 
we simply outline the model as a system of two equations: one for the treatment assignment mechanism 
and one for the actual duration outcome corresponding to the actual assigned treatment tp. 

8For a nonnegative random (duration) variable T , the hazard rate is defined as θ(t) = limdt↓0 Pr(T ∈ 
[t, t + dt)|T ≥ t)/dt. Somewhat loosely, this is the rate at which the spell is completed at t given that it 
has not been completed before, as a function of t. It provides a full characterization of the distribution of 
T (see e.g. Lancaster, 1990). 
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Model 1. 

θp(t|x, Vp) =  λp(t) · exp(x ′βp) · Vp (1) 

θu(t|tp, x, Vu) =  λu(t) · exp(x ′βu) · exp(δ(t|tp, x) · I(t > tp)) · Vu (2) 

where I(.) denotes the indicator function, which is 1 if its argument is true and 0 otherwise. 
Apart from the term involving δ(t|tp, x), the above hazard rates have Mixed Propor

tional Hazard (MPH) specifications. The term δ(t|tp, x) · I(t > tp) captures the AMU effect. 
Clearly, AMU has no effect if and only if δ(t|tp, x) ≡ 0. Now suppose δ(t|tp, x) is a positive  
constant. If Tp is realized then the level of the individual exit rate to employment increases 
by a fixed amount. This will reduce the remaining unemployment duration in comparison 
to the case where AMU is entered at a later point of time. 

More in general, we allow the effect of AMU to vary with the moment tp of entry into 
AMU and with x. Moreover, the individual effect may also vary over time, as we allow it 
to depend on the elapsed unemployment duration t. As a result, the individual effect may 
also vary with the time t− tp since entry into AMU. The effect of t− tp may capture that 
the exit rate is low during the training course or high immediately after completion of it. 
Model 1 does not rule out that for each individual there is a probability that he will never � ∞
get training ( 

0 λp(t)dt <∞) We may also allow x to be time-varying. In an extension we 
allow the training effect to depend on unobserved characteristics, i.e. to be heterogeneous 
across individuals with the same x (see Subsection 3.2). 

Suppose that we have a random sample of individuals from the inflow into unemploy
ment, containing one unemployment spell per individual (i.e. single-spell data). The data 
then typically provide observations on Tu and x for each individual. In addition, if Tp is 
completed before the realization tu then we also observe the realization tp, otherwise w e  
merely observe that Tp exceeds tu. 

Consider the (sub)population of individuals with a given value of x. The individuals 
who are observed to enter AMU at a date tp are a non-random subset from this population. 
The most important reason for this is that the distribution of Vp among them does not equal 
the corresponding population distribution, because most individuals with high values of Vp 

have already gone into AMU before. If Vp and Vu are dependent, then by implication the 
distribution of Vu among them does not equal the corresponding population distribution 
either. A second reason for why the individuals who are observed to enter AMU at a date 
tp are a non-random subset is that, in order to observe the fact that entry into AMU 
occurs at tp, the individual should not have left unemployment before tp. Because of all 
this, the AMU effect cannot be inferred from a direct comparison of realized unemployment 
durations of these individuals to the realized unemployment durations of other individuals. 
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If the individuals who enter AMU at tp have relatively short unemployment durations then 
this can be for two reasons: (1) the individual causal AMU effect is positive, or (2) these 
individuals have relatively high values of Vu and would have found a job relatively fast 
anyway. The second relation is a spurious selection effect. 

If Vu and Vp are independent (which includes the case in which unobserved heterogeneity 
Vu in the exit rate to work is absent) then I(t > tp) is an exogenous time-varying covariate 
for Tu, and one may infer the AMU effect from a univariate duration analysis based on the 
distribution of Tu|tp, x, Vu mixed over the distribution of Vu. However, in general there is 
no reason to assume independence of Vu and Vp, and if this possible dependence is ignored 
then the estimate of the AMU effect may be inconsistent. 

The joint density of Tu, Tp|x at Tu = tu, Tp = tp can be expressed as 

� ∞ ∞ 

(exp(x ′βu)vuλu(tu) exp(δ(tu|tp, x)I(tu > tp)) 
0 0 

min{tu,tp} tu 

exp − exp(x ′βu)vu λu(s)ds+ I(tu > tp) λu(s) exp(δ(s|tp, x))ds (3) 
0 tp � tp 

� 

exp(x ′βp)vpλp(tp) exp(− exp(x ′βp)vp λp(s)ds) dG(vu, vp) 
0 

where G is the joint distribution of Vu, Vp in the inflow into unemployment. This joint 
density forms the basis for the Maximum Likelihood estimation of the model.9 

Abbring and Van den Berg (2003) show that Model 1 is identified from single-spell 
data, i.e., from a random sample of drawings of {Tu, I(Tp ≤ Tu), Tp · I(Tp ≤ Tu), x}. This  
means that there is a one-to-one mapping between the data generated by the model and 
the set of model determinants (being the functions λu, λp, δ, the unobserved heterogeneity 
distribution G, and the parameters βu and βp). This is a useful model property. It im
plies that the estimation results are not fully determined by parametric functional form 
assumptions on the functions λu, λp, δ  and G. 

Intuitively, what drives the identification of the training effect δ is the extent to which 
the moments of training and the moment of exit to work are close in time. If training is 
quickly followed by exit to work, no matter how long the elapsed unemployment duration 
before the training, then this is evidence of a causal effect of training. The spurious selection 
effect gives a second relation between the two duration variables, but it can be shown that 
that relation does not give rise to the same type of quick succession of events. So the 
interaction between the moment of exit and the moment of training in the conditional 
rate of events allows one to distinguish between the causal effect and selectivity. With 

9Note that Model 1 and (3) include a specification of the distribution of Tp for Tp > Tu. However, this 
specification is immaterial, as it does not play any role in the paper or indeed in any empirical analysis. 
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specifications where δ depends on t and tp, the identification follows from a comparison of 
treated and not-yet treated at points of time t and tp, using observations of min{Tu, Tp}|x 
to correct for selectivity (see Abbring and Van den Berg, 2004). 

Identification does not require exclusion restrictions on the hazard specification of ei
ther duration, so the same vector x may affect both hazards. This entails that we allow 
individuals to be aware of the existence of the AMU, and we allow them to influence both 
the rate of entry into AMU and the rate of exit into employment. This is obviously an 
advantage. We return to this below. 

So far we have ignored time-varying covariates, although tp can be thought of as an 
endogenous time-varying covariate in θu. It is clear that in some cases a model with time
varying covariates is not identified, for example, if θi(t|x, vi) =  λi(t) exp(x(t)

′βi) with  x(t) 
additive in t. However, in general, variation of x over time is helpful for identification of 
duration models. Honoré (1991) and Heckman and Taber (1994) provide some illustrations 
of this. In our empirical model specifications we include exogenous x variables that vary 
over time. 

The identification with single-spell data does require a number of assumptions that 
are standard in the literature on identification of MPH models. Notably, X⊥⊥ V , and  X 
includes two continuous variables with the properties that (i) their joint support contains 
a non-empty open set in R

2, and  (ii) the vectors of the corresponding elements of βu 

and βp form a matrix of full rank. Abbring and Van den Berg (2003) show that these 
assumptions can be discarded if the data provide multiple spells, i.e. if for individuals in 
the sample we have more than one unemployment spell with the same value of V , and  if  
these spells are independent given the values of x and V . We assume that an individual 
has a given value of Vu, Vp. Since  Vu and Vp are unobserved, the duration variables given x 
are not independent across spells. It is especially useful that identification with multi-spell 
data does not require independence of observed and unobserved explanatory variables, as 
in general such independence is hard to justify.10 In fact, multi-spell data also allow the 
relaxation of multiplicity assumptions in Model 1. Specifically, we may allow x to enter in 
an arbitrary nonproportional manner in the conditional hazard rates, and we do not need 
variation of these hazard rates with x at all. Alternatively, we may allow the dependence of 
the conditional hazard rates on t, x in the second spell to be different from the dependence 
of these rates on t, x in the first spell. The size of the AMU effect may also be different 
across the two spells. A causal effect of the realizations for the first spell on the outcomes for 
the second spell or the other way round is not allowed (although the observed outcomes are 
related across spells by way of their unobserved determinants). But the individual values 

10One may use the Stratified Partial Likelihood estimation method to deal with unobserved heterogeneity 
as fixed effects, but this requires strong assumptions in case of sequential spells in a fixed observation 
window with right-censoring; see Ridder and Tunalı (1999). 
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of x may differ across spells. 

3.2	 Identification of models with duration dependence and un

observed heterogeneity in the treatment effect 

In the model of the previous subsection, the magnitude of the causal training effect δ does 
not depend on unobserved characteristics, so any systematic heterogeneity of treatment 
effects across individuals comes from observable characteristics x. It is hard to justify this 
assumption. Moreover, unobserved heterogeneity in δ may be an important explanation 
for changes of the observed (i.e., only conditional on x) treatment effect over time. The 
intuition is the same as for the spurious duration dependence generated by unobserved het
erogeneity in duration models (e.g. Lancaster, 1990). Treated individuals with unobserved 
characteristics such that their treatment effect is high are (holding every other character
istic constant) more likely to leave unemployment quickly.11 This tends to decrease the 
average treatment effect among the treated survivors. Of course, if the unobserved charac
teristics affecting the treatment effect are inversely related to the unobserved characteristics 
Vu affecting the exit rate to work in general, then more subtle effects can be generated for 
the observed treatment effect. 

As we shall see in Section 4, the decline of the observed exit rate to work among 
the treated is a major distinguishing feature of the raw data. It therefore makes sense to 
consider models that allow for both duration dependence of the individual treatment effect 
and spurious duration dependence due to dynamic selection as two potential explanations 
for the observed decline. Moreover, whether the exit rate after treatment declines because 
of a fading treatment effect or because of dynamic selection has major policy implications. 
In the former case the policy is only effective for a short while, whereas in the latter case 
one might want to screen individuals more closely before admission into training. 

Abbring and Van den Berg (2003) demonstrate identification of a model in which δ is 
a sum of a term depending on t, a term depending on x, and an unobserved heterogeneity 
term Vδ. This function δ does not depend on tp. For our purposes, such a model is less 
attractive. Instead, we consider a model in which δ is allowed to depend on t − tp, x,  and 
Vδ. Specifically, in Model 1 we replace δ by 

δ(t− tp, x, Vδ) =  λδ(t− tp) +  x ′βδ + Vδ	 (4) 

where	 Vδ is allowed to be stochastically related to Vu and Vp. Note that the exit rate to 

11The heterogeneity may also be due to heterogeneity of characteristics of the training course. The indi
viduals who follow a good course find a job quickly, and those who follow a bad course remain unemployed 
longer. 
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work (or, more generally, the transition rate out of the state of interest) is proportional 
to exp(δ), so that by analogy to the Mixed Proportional Hazard model we may call our 
model the Mixed Proportional Treatment Effect model. 

In the Appendix we present the model assumptions in detail and we prove identification 
of this model under conditions similar to those in Abbring and Van den Berg (2003) and 
in the previous subsection. To be short, 

Proposition 1. The Mixed Proportional Treatment Effect model is identified. 

3.3 Implicit assumptions in the model specifications 

The model specifications reflect a number of implicit assumptions. First of all, the future 
realization of the moment tp of entry into training does not affect the individual’s exit rate 
θu prior to that moment tp. So the individual’s exit rate at t is the same irrespective of 
whether training will occur at t + 1 or whether it will occur at t + 100. This rules out 
anticipation of the future individual realization of the moment of training. If an individual 
would foresee participation in AMU at a particular future date tp then he may use this 
as an input of his current behavior, for example he may want to wait for the treatment 
by reducing his search intensity for jobs, and this may decrease the probability that Tu 

is quickly realized. If this is ignored in the empirical analysis then the training effect 
may be over-estimated. However, if the time span between the earliest moment at which 
anticipation can occur and the moment of the actual training is short relative to typical 
values of the durations Tp and Tu − Tp, and if the anticipatory effect is not very large, then 
estimation results may be relatively insensitive to the assumption of no anticipation. 

It is important to distinguish anticipation of the realization of Tp from ex ante knowl
edge of the existence of the program and ex ante knowledge of the individual distribution 
of Tp. With well-established programs like AMU, it is plausible that determinants of the 
stochastic process of training assignment affect the individual’s exit rate out of unemploy
ment before the actual entry into training. For example, if the individual knows that he 
has a relatively high training enrollment rate and if he enjoys training then he will reduce 
his job search effort. In such cases the program is said to have an ex ante effect on exit 
out of unemployment before training. The “ex ante” effect contrasts to the ex post effect 
of training, which is the effect of actual training on the individual exit rate. The ex ante 
effect is an example of the macro effects that are present in a world in which a particular 
program is implemented. There may also be ex ante or macro effects on the magnitude 
and composition on the inflow into unemployment and on the behavior of employers. 

The model framework is compatible with ex ante effects. However, we do not aim to 
disentangle such effects from other determinants of the hazard rates. Identification of the ex 
ante effect on the exit rate to work before training requires additional information, such as 
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strong functional-form assumptions, instruments for a comparison of a world with AMU to 
a world without it, or the imposition of an economic-theoretic structure on the model (see 
Abbring and Van den Berg, 2005). The first option is undesirable, whereas the others are 
beyond the scope of this paper. This means that the treatment effect δ is defined relative 
to the exit rate to work in absence of a treatment but within a world in which treatments 
are present. 

We now turn to a different type of anticipation. The model framework rules out that 
the future realization of the variable of interest Tu has an effect on the current level of θp. 
In reality, an individual may have private knowledge on a future job opportunity that is 
independent of whether the training will occur, and the individual may use this knowledge 
to avoid training. If something like this does occur in reality then a positive effect of 
training on exit to employment is under-estimated. However, if the training course takes a 
long time, then this bias may be empirically unimportant, as employers may be unwilling 
to wait for a new employee for many months. Also, if the time span between the moment 
at which the anticipation occurs and the moment of the actual exit to work is relatively 
short, and if the anticipatory effect is not very large, then estimation results may be rather 
insensitive to this. Again, absence of anticipation does not rule out that individuals know 
the determinants of the process leading to employment and use these as inputs in their 
decision problem. For example, the individuals may know that λu(t) increases in the near 
future, and modify their strategy accordingly, which may affect their θp. The latter can be 
captured in the model through λp(t). 

Finally, the fact that we specify the assignment of training by way of specifying the 
hazard rate of a duration distribution implies that there is a random component in the 
assignment that is independent of all other variables (see e.g. Ridder, 1990, and Abbring 
and Van den Berg, 2003). The model framework thus postulates that there is variation in 
Tp at the individual level. (This variation affects Tu only by way of the treatment.) To see 
the importance of this, consider the extreme case where individuals can only enter AMU at, 
say, exactly one year after flowing into unemployment. Then it is impossible to distinguish 
the effect of AMU from the duration dependence in the exit rate to work after one year. 
(In such a case it is of course also hard to justify that entry into AMU is not anticipated.) 

3.4 Applicability of the model framework to AMU 

In this subsection we argue that the model framework (covering the different specifications 
we consider) is particularly well suited for our study of the AMU program. We focus on 
the following issues: dependent unobserved heterogeneity, randomness in the moment of 
treatment assignment, absence of anticipatory effects, and absence of substitution with 
other programs. 
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From the information in Subsection 2.2 and from the studies by Eriksson (1997a, 1997b), 
it is obvious that unobserved (to us) heterogeneity of the unemployed individuals plays an 
important role in the assignment to AMU. The corresponding variables taken into account 
by the caseworker (like motivation, subjectively assessed expected unemployment duration, 
and subjective assessments of other aspects of the future career) are also indicative of 
unobserved determinants of the individual exit rate to work. The empirical analysis should 
therefore take account of potentially related unobserved heterogeneity terms in θu and θp. 

If the individual knows that a variable is an important determinant of the treatment 
assignment process (like the amount and type of discretionary behavior of his caseworker), 
and the individual knows that he may be subject to treatment, then he has a strong 
incentive to inquire the actual value of the variable. Subsequently, he will take his value 
of the variable into account to determine his optimal strategy, and this strategy in turn 
affects the rate at which he moves to employment. We should note that the variables that 
are observed by us and that may have an effect on assignment to AMU are also observable 
to the individuals under consideration, so that we cannot impose exclusion restrictions on 
βu, and  we take the  same  vector  x to affect both θu and θp. 

Now let us consider the presence of randomness in the moment of entry into AMU. 
To some extent this may be generated by changes in the behavior of the caseworker or 
the employment agency that are beyond observation of the unemployed individual. More 
importantly, it is generated by the variation in the moment at which AMU courses start. In 
addition, admission to a course may depend on the extent to which other individuals apply 
to the course, which is random from the individual’s point of view. Recall that Eriksson 
(1997b) finds residual variation in the AMU assignment process that can not be attributed 
to the individual or the caseworker. 

We now turn to anticipation of the moment of entry into AMU. From Subsection 2.2, the 
time period between the moment at which the individual is informed about the possibility 
of enrolling into an AMU course and the moment at which the course starts is very short. 
There are however two reasons for why some individuals may anticipate the moment of 
entry, and both of these lead us to restrict the focus of the empirical analysis somewhat. 

First, as discussed in Section 2, in 1991 and 1992 AMU was often used to extend benefits 
entitlement. In that case, the date of inflow into AMU is mostly determined by the date of 
expiration of benefits entitlement. The latter date is known in advance by the unemployed 
individual and his caseworker (this date does not vary much across the unemployed; see 
the references). This allows for anticipation of the inflow into AMU, which violates a key 
assumption of our evaluation approach. Moreover, such self-selection into AMU is governed 
by different motives than self-selection in other years, so we may expect the unobserved 
heterogeneity distribution to be different across time. From January 1993 onwards, other 
programs took over its role as means to extend benefits entitlement. We therefore restrict 
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4 

attention to data from 1993 onwards. 
Secondly, recall from Section 2 that part of AMU concerns non-vocational training, 

in particular before 1997. Non-vocational training is often given within the regular school 
system. This implies that the starting date of the non-vocational training is often deter
mined by institutional features of the school system, like the starting dates of the school 
seasons. As a result, it is straightforward for unemployed individuals to anticipate the date 
of inflow into such a program. We therefore restrict ourselves to vocational training. There 
are two additional reasons to do so. First, vocational training is relatively expensive, so the 
participation costs are higher. Secondly, vocational training is difficult to obtain in alterna
tive labor market programs, whereas non-vocational training is easier to obtain elsewhere, 
implying that in the latter case there are substitution possibilities. 

Concerning substitution possibilities in general, recall from Subsection 2.2 that case
workers regard vocational AMU training as a very different type of program than the other 
active labor market programs. The latter are regarded to be substitutable to a high de
gree. For persons under 25, there are programs that are more similar to AMU vocational 
training. Also, for these individuals, the similarity with vocational courses and tracks in 
the regular school system may be important. For this reason we restrict attention to indi
viduals aged over 25. Also, young individuals must enter a training course after 100 days of 
unemployment, which may generate anticipatory effects. We omit individuals over 55 be-
cause they face a different unemployment benefits system and because for them vocational 
AMU training seems to have relatively small advantages. 

It follows from the above that our model framework may be less suited for the analysis 
of the effects of the other active labor market programs on unemployment duration. With 
other programs, individuals may anticipate their enrollment a long time in advance, because 
of their link to benefits entitlement expiration or because of their connection to the regular 
school system. Moreover, it is difficult to analyze them in isolation from each other because 
of the high degree of substitutability. 

The data 

4.1 Data registers and unemployment spells 

¨ The data are taken from a combination of two Swedish register data sets called H ANDEL 
(from the official employment offices) and AKSTAT (from the unemployment insurance 

¨ fund). H ANDEL covers all registered unemployed persons since August 1991 (approxi
mately 2 million observations). According to Carling, Holmlund and Vejsiu (2001), more 
than 90% of the individuals who are ILO-unemployed according to labor force surveys also 

¨ register at the employment offices. H ANDEL includes detailed information on the individ
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uals’ training activities and work experience activities, including the starting and ending 
¨ dates of program participation. H ANDEL is also informative on whether an individual in 

AMU receives vocational training or non-vocational training. AKSTAT is available from 
1994 onwards and provides information on the wage level and working hours in the job 
prior to the spell of unemployment, for individuals who are eligible for UI. 

Our observation window runs from January 1, 1993 until June 22, 2000. The unit of 
¨ observation is an individual. For each individual who is in H ANDEL at least once during 

¨ the observation window, we can construct an event history from H ANDEL. For any spell 
¨ of unemployment (to be defined below), H ANDEL and AKSTAT provide characteristics 

at the beginning of the spell, and a list of dates within the spell at which changes occur, 
including the nature of the change. We also include the information on participation in 
non-AMU programs, since such participation may temporarily rule out a transition to 
AMU, or may at least reduce the transition rate to AMU and/or work. 

We only use information on individuals who become unemployed at least once within 
the observation window. An individual becomes unemployed at the first date at which he 
registers at the employment office as being “openly” unemployed. This eliminates registra
tion spells that start because the individual wants to change employer and also eliminates 
spells that start because the individual knows that he is going to be unemployed in the 
future (short term contract or notification of lay-off), at least until the individual does 
actually become unemployed. We also ignore unemployment spells that are already in 
progress at the beginning of the observation window, because using them would force us to 
make assumptions about the period before the beginning of the window. We thus obtain 
a so-called inflow sample of unemployment spells, and we follow the individuals over time 
after this moment of inflow. (Note that we also use information available on the period 
prior to such spells, notably on wages.) We exclude individuals who have experienced un
employment between August 1991 and January 1, 1993. The years 1990–1992 witness an 
unusually severe recession in Sweden with a major reallocation of workers and a major 
displacement of workers with obsolete skills (see e.g. Albrecht, Van den Berg and Vroman, 
2008). The size and composition of the inflow into unemployment in those years may not 
be representative for the inflow in later years. Moreover, they were exposed to a different 
active labor market policy regime before 1993, and this might affect their AMU program 
participation and outcomes after 1993 as well. 

For convenience, we use the term “unemployment spell” to include possible spells in 
AMU, relief work, ALU, etc. The spell ends if the individual leaves the employment office 
register or if he moves from the unemployment categories in the employment office register 
to a non-unemployment category in the register. If the exit destination is employment 
then we observe a realization of the duration variable of interest. If the exit destination 
is different (e.g. “regular education”, or “other reason”) then this duration variable is 
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right-censored. The duration is right-censored if the spell is continuing at the end of the 
observation window. 

Occasionally, we observe coding errors in data at points of time at which individuals 
move between different categories in the register. Obvious typing errors are corrected, 
whereas otherwise we right-censor the duration variables at the moment at which such 
an error occurs. If exit occurs into “wage subsidy” or “(public) sheltered employment” 
then we remove the individual from the sample, since these programs are for handicapped 
people (who are typically not in open unemployment anyway). As mentioned in Subsection 
3.4, we restrict attention to individuals who were at least 25 and below 55 at the moment 
they enter unemployment. As a result, our data set contains 500,960 individuals. Note 
that by following the individuals over time we may observe multiple unemployment spells 
per individual. For each individual we use at most 3 unemployment spells. The analyses 
are based on a random subsample of the full data set at our disposal, containing 16467 
individuals, with in total 28451 unemployment spells. 

Even though vocational AMU and other programs are fundamentally different and are 
not used as substitutes, we are forced to consider the participation in other programs 
during unemployment, as such participation spells are likely to affect the transition rates 
into AMU and into work for a certain amount of time. Since participation in those other 
programs takes place at points in time that are dispersed across individuals and that may 
to some extent be random, the common deterministic duration dependence functions in 
Model 1 cannot capture this. Also, we have seen that expanding the Timing of Events 
model framework to include multiple types of treatment is hard to justify. If we treat par
ticipation in other programs before participation in AMU as regular unemployment, then 
the transition rate from unemployment into AMU is extremely low during the participation 
in the other programs. Participation in non-AMU programs most likely also reduces the 
transition rate into employment. So, during such a period of program participation, it may 
be preferable to halt the time clock of the duration until regular employment. As a starting 
point, the time spent in training (in non-AMU programs as well as in AMU) is therefore 
assumed not to contribute to the unemployment duration, and the time spent in other 
training programs is assumed not to contribute to the duration until AMU. Note that this 
also means that time spent in non-AMU programs after AMU does not contribute to the 
unemployment duration. We subsequently relax these assumptions in additional analyses. 

4.2 Descriptive statistics 

Table 1 provides summary statistics of the unemployment duration, the participation in 
labor market programs, and their interrelation. Of all 28451 spells, 2185 (i.e. 7.7%) are 
observed to include a period of participation in a vocational AMU course. Some of the 
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other spells are right-censored due to the finiteness of the observation window, and in 
reality some of those may include AMU participation afterwards. The median value of the 
duration until training across the 2185 spells that are observed to include training is 153 
days. Except where stated otherwise, the duration outcomes in Table 1 are measured while 
ignoring time in training and other programs. 

In a setting where one duration outcome of interest (Tp) is right-censored by the other 
(Tu) and both durations are subject to end-of-follow-up right-censoring, the information 
in summary statistics of outcomes is limited. Spells with observed AMU participation are 
longer than spells without simply because it takes time before Tp is realized. To complicate 
matters further, note that right-censoring due to finiteness of the observation window takes 
place at the duration value equal to the difference between June 22, 2000, and the moment 
of inflow into unemployment, and the latter is dispersed across spells. One notable aspect 
is that a sizeable fraction of spells with AMU participation ends with a transition to work 
within a few days after leaving training. 

Of the 2185 spells that are observed to include AMU participation, 47% are also ob-
served to include participation in another type of active labor market program. Not sur
prisingly, this happens predominantly in long spells. Of the spells with tp smaller than 160 
days, only 12% are also observed to include participation in another type of active labor 
market program before AMU participation. Of the spells observed to be shorter than 160 
days that are not observed to include participation in AMU, 10% are observed to include 
participation in another type of active labor market program. This suggests that participa
tion in other programs is not related to AMU participation. The fact that spells with AMU 
participation relatively often also include participation in other programs is because of the 
fact that by conditioning on AMU participation we condition on high realized durations. 

Figure 1 displays the non-parametric estimate of the transition rate from unemployment 
to employment as a function of the time spent without regular employment, i.e. unemploy
ment including time spent in training and other programs. We use the Ramlau-Hansen 
kernel estimator for hazard rates (see e.g. Andersen et al., 1993), with a kernel bandwidth 
of 10 days. To obtain a high precision we use all 500,960 individuals in the original data, 
with at most three unemployment spells per individual, for all four figures in this sub
section. Figure 2 displays the non-parametric estimate of the rate at which unemployed 
individuals move into AMU, with a bandwidth of 10 days. Again, this includes time spent 
in other programs before entering AMU. Notice that the figures have different ranges of 
values on the vertical axis, reflecting that only a fraction of unemployed individuals ever 
move into AMU. 

Figure 3 displays the non-parametric estimate of the transition rate from unemployment 
to employment as a function of the time since leaving AMU. For this we use all spells that 
include participation in AMU, but we exclude the individuals who move to work within 5 
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Table 1: Summary statistics for the treatment and the outcome.
 

regardless of treatment 

# spells 
# individuals 
% with exactly one spell 
% with exactly two spells 
% with  ≥ 3 spells 

% spells with tp observed 
% spells with tu observed 
average observed tu 

median observed tu 

% spells with time in other programs 
average time spent in other programs 
id. for spells with observed tu < its median 

All spells 

28 451 
16 467 

7.7 
58.0 

149 (181) 
89 

20.7 
43 (117) 
14 (53) 

First spell 

16 467 
16 467 

53 
21 
26 

8.1 
57.1 

162 (199) 
95 

20.0 
45 (125) 
12 (49) 

concerning spells with observed tp 

# spells 2185 1339 
% spells with tu observed 56.5 53.1 
average observed tp 211 (205) 240 (219) 
median observed tp 153 187 
average observed tu 328 (285) 379 (310) 
median observed tu 246 294 
average observed tu − tp 132 (188) 152 (210) 
id. incl. censored tu 162 (229) 185 (254) 
average observed (tu − tp)/tp 1.9 (8.1) 1.7 (7.1) 
id. incl. censored tu 2.3 (15.1) 2.3 (17.9) 
average observed (tu − tp)/tu 0.3 (0.3) 0.3 (0.3) 
id. incl. censored tu 0.4 (0.3) 0.4 (0.3) 
% spells with tu ≈ tp 24.8 21.9 
id. incl. censored tu 19.4 16.7 
average time in training 119 (114) 120 (114) 
% spells with time in other programs 47.4 49.3 
average time spent in other programs 114 (186) 128 (200) 
id. for spells with observed tu < its median 46 (104) 58 (108) 

Explanatory note: Standard deviations in parentheses. The time unit is one day. The condition 
tu ≈ tp is shorthand for tp ≤ tu ≤ tp + 5.  
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Figure 1. Non-parametric estimate of the transition rate from unemployment to
 
employment.
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Figure 2. Non-parametric estimate of the transition rate from unemployment into AMU. 
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Figure 3. Non-parametric estimate of the transition rate from unemployment to 
employment as a function of the time since leaving AMU, ignoring time in programs. 

days of leaving AMU. The latter constitute almost a fifth of all spells that include AMU 
participation, and their inclusion in the figure would give rise to a peak at durations close 
to zero that would completely dominate the picture. We now ignore the time spent in 
training and other programs, in order to facilitate the connection to the empirical analyses 
in the next section. We again use a kernel bandwidth of 10 days. Notice that the figure 
has different ranges of values on both axes than the previous figures, reflecting that the 
observed realized values on the horizontal axis are now typically smaller. 

In fact, Figure 3 should not be compared to Figure 1, as the latter incorporates the time 
spent in programs. Figure 4 examines the rate of Figure 1 while excluding time in programs. 
According to Figure 4, after about 180 days of open unemployment, the estimated rate to 
work is about 0.003 per day, while about 500 days later it is about half of that. According 
to Figure 3, if AMU is left at e.g. 150 days (which is close to the median observed value 
of Tp) and the individual does not move to work within 1 month, then the estimated rate 
to work is also about 0.003, and about 500 days later it is about half of that as well. This 
similarity in non-parametric duration dependence suggests that there is no large long-run 
effect of AMU participation on the transition rate to employment. Of course, this line of 
reasoning ignores a range of selection effects. 

Table 2 provides summary statistics of explanatory variables in the empirical analysis, 
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Figure 4. Non-parametric estimate of the transition rate from unemployment to 
employment, ignoring time in programs. 

across all spells and across all first spells. The latter reflects the composition across indi
viduals better than the former, as we allow the x variables to differ across the spells of a 
given individual. 

Concerning education we distinguish between five levels: junior high school or lower, 
short senior high school, long senior high school, short tertiary education, and full uni
versity degree or higher. These are roughly equivalent to ≤ 9, 10–11, 12–13, 14, and ≥ 
15 years of education, respectively. Concerning nationality we distinguish between three 
categories: Eastern Europe, Africa / Asia, and otherwise (including Sweden). Concerning 
the type of unemployment benefits received during unemployment we distinguish between 
three categories: UI, cash allowance, and neither. For UI recipients in 1994 and beyond, 
the AKSTAT data include the hourly wage earned in the job that was held just before the 
onset of the spell of unemployment. This is almost linearly related to their UI level (see 
e.g. Carling, Holmlund and Vejsiu, 2001). For non-UI-recipients the wage variable is set 
to zero. (The main results are insensitive to whether a zero wage is imputed or a dummy 
variable is included, to capture non-observation of a pre-unemployment wage.) UI recipi
ents who become unemployed and subsequently employed within 1993 are also imputed a 
zero wage. However, if they move back to unemployment in 1994, we use the corresponding 
pre-unemployment wage to quantify the pre-unemployment wage for the spell in 1993. The 
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Table 2: Averages of explanatory variables.
 

Across all spells Across first spells 

age 
level of education: 

35.9 (8.3) 35.4 (8.7) 

junior high school or lower 0.31 0.33 
short senior high school 0.26 0.25 
senior high school 0.20 0.21 
short tertiary education 0.06 0.05 
university 0.17 0.16 

female 
unemployment benefits: 

0.51 0.50 

UI recipient 0.66 0.63 
cash allowance recipient 

nationality: 
0.07 0.08 

from Eastern Europe 0.05 0.05 
from Africa/Asia/S.America 0.05 0.05 

hourly wage if observed 87.6 (33.0) 86.8 (32.9) 
experience in occupation (dummy) 0.63 0.62 
education in occupation (dummy) 
occupation: 

0.63 0.63 

low-skilled manufacturing 0.22 0.20 
professional, technical, agric. 0.23 0.23 
health, nursing and social care 0.14 0.14 
adm., managerial, sales, clerical,service 0.41 0.43 

large city (dummy) 0.52 0.53 
needs guidance (dummy) 0.08 0.09 
willing to move (dummy) 0.16 0.16 
accepts part-time work (dummy) 0.06 0.06 
local unemployment rate 0.09 (0.03) 0.09 (0.03) 

Explanatory note: Standard deviations are in parentheses.
 

26
 



� � � 

5 

“large city” dummy equals 1 iff the individual lives in one of the counties covering Stock
holm, Göteborg, and Malmö. Notice that some variables concern subjective assessments 
by the caseworker (e.g. whether the individual needs guidance) or subjective statements 
by the individual concerning the span of jobs that he searches for. 

The sample means across spells are virtually equal to those across individuals in their 
first spell. This suggests that the observation of multiple spells is not strongly driven by 
selectivity. Age is on average slightly higher across spells than across individuals in their 
first spell, but this is a consequence of the fact that an individual’s age necessarily increases 
over consecutive spells. 

The empirical analysis 

5.1 Parameters 

For the duration dependence functions and the bivariate unobserved heterogeneity distri
bution we take flexible specifications. We take both λu(t) and  λp(t) to have a piecewise 
constant specification, 

λi(t) = exp  λij Ij (t) i = u, p
 
j=1,2,...
 

where j denotes time intervals and Ij (t) are time-varying binary indicators that equal 1 in 
consecutive time intervals. Note that with a sufficiently large number of time intervals any 
duration dependence pattern can be approximated closely. 

In most of the empirical analyses we take 8 intervals for λu and 6 for λp. In both cases  
the length of an interval is 56 days, except for the last intervals which are unbounded from 
the right. 

We take the joint distribution of the unobserved heterogeneity terms Vu and Vp to be 
bivariate discrete with two unrestricted mass point locations for each term. This specifi
cation is popular, flexible, and computationally feasible (see Van den Berg, 2001, for an 
overview). Let v1, v2, v3 and v4 denote the points of support of Vu and Vp, respectively 
(note that Vu and Vp are random variables whereas v1, .., v4 are realizations). The associ
ated probabilities are denoted as pij := Pr(Vu = vi, Vp = vj ) with  i = 1, 2 and  j = 3, 4, and 
with p24 = 1  − p13 − p14 − p23. Note that unobserved heterogeneity adds 7 parameters to 
the model, but two of these need to be normalized as Vi enters θi multiplicatively. 

The covariance of Vu and Vp equals 

cov(Vu, Vp) = (p13p24 − p14p23) · (v1 − v2) · (v3 − v4) 
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It is easy to show that Vu and Vp are independent if and only if cov(Vu, Vp) = 0.  
In the estimation procedure we actually estimate the transformed probabilities qij which 

are implicitly defined by 

exp(qij ) 
pij = �2 �4 i = 1, 2; j = 3, 4. 

exp(qi∗j∗ )i∗=1 j∗=3 

Because the pij sum to one, we normalize by taking q24 = 0. There is a one-to-one mapping 
between admissible values of p13, p14 and p23 on the one hand, and q13, q14 and q23 on 
(−∞,∞) on the other. So, estimating the qij instead of the pij has the advantage that no 
boundary restrictions have to be imposed on the parameter space. Moreover, conditional 
on v1 � and v3 = v4, there holds that corr(Vu, Vp) = 0 if and only if q23 = q13 − q14.= v2 �

5.2 Estimation results for the basic model 

We estimate the models using the method of Maximum Likelihood. We take the unit of 
time to be one calender time day. For the categorical variables in x the following baseline 
categories apply: education = less than short senior high school; gender = male; unemploy
ment benefits type = none; nationality = not in Eastern Europe, Africa, Asia, or South 
America; occupation type = manufacturing. Log age and log hourly wage in the previous 
job are measured in deviation from their mean across all spells. The “constant terms” in θu 

and θp are represented by the means of Vu and Vp, respectively, which is why we normalize 
λu1 = λp1 = 0  and  why  x does not include a constant. 

The parameter estimates in Table 3 concern the basic model specification, i.e. Model 
1 with the following restrictions: δ is a constant, the lengths of the time intervals spent 
within AMU and within other programs are set to zero, and within a spell any subsequent 
participation in AMU after the first course is ignored. We do include data on multiple 
unemployment spells per individual. To keep the computational burden manageable, we do 
not disaggregate the 4 occupational categories further. Also, we capture local labor market 
conditions by the local unemployment rate instead of using yearly or monthly dummy 
variables.12 As a result, the number nx of elements in the vector x equals 21, and the model 
has 20+2nx = 62 unrestricted parameters: v1, v2, v3, v4, q13, q14, q23, δ, βu, βp, λuj (j = 2, ..8), 
and λpj (j = 2, ..6). 

The reported value of −∞ for log v3 requires some explanation. The iterative estimation 
routines always converge to large negative values for log v3, but the value varies with the 
starting values of the estimation routine, and the corresponding standard error is always 
very large. The likelihood value and the estimates and standard errors of the other estimates 

12Specifically, we include the mean-centered log municipal unemployment rate in the inflow year. 
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Table 3: Estimation results for the basic model specification (first part).
 

To work 
θu 

To AMU training 
θp 

Training effect 

δ 0.68 (0.053)∗ 

Individual characteristics 

log (age) 
level of education: 
short senior high school 
senior high school 
short tertiary education 
university 

female 
unemployment benefits: 
UI recipient 
cash allowance recipient 

nationality: 
from Eastern Europe 
from Africa/Asia/S.America 

log (hourly wage) 
experience in occupation 
education in occupation 
occupation: 
professional, technical, agric. 
health, nursing and social care 
adm., managerial, sales, clerical,service 

large city 
needs guidance 
willing to move 
accepts part-time work 
relative unemployment rate 

−0.43 (0.061)∗ 

0.063 (0.036) 
−0.000 (0.039) 

0.063 (0.062) 
0.23 (0.044)∗ 

0.026 (0.030) 

0.26 (0.033)∗ 

0.14 (0.057)∗ 

−0.49 (0.071)∗ 

−0.75 (0.078)∗ 

0.094 (0.049) 
0.089 (0.030)∗ 

0.19 (0.029)∗ 

−0.026 (0.040) 
0.18 (0.047)∗ 

−0.22 (0.037)∗ 

−0.19 (0.026)∗ 

−0.54 (0.058)∗ 

0.059 (0.034) 
−0.042 (0.056) 
−0.68 (0.041)∗ 

0.15 (0.15) 

0.23 (0.086)∗ 

0.15 (0.091) 
0.20 (0.15) 
0.094 (0.11) 

−0.037 (0.072) 

0.22 (0.081)∗ 

0.34 (0.13)∗ 

0.19 (0.13) 
−0.10 (0.15) 
−0.062 (0.093) 

0.13 (0.074) 
0.12 (0.071) 

0.003 (0.093) 
−0.41 (0.13)∗ 

0.019 (0.086) 
−0.35 (0.064)∗ 

0.27 (0.11)∗ 

0.20 (0.081)∗ 

−0.45 (0.16)∗ 

0.19 (0.11) 

Explanatory note: Standard errors in parentheses. The superindex ∗ denotes significance at the 
5% level (only for elements in βi and λi (with i = u, p) and  δ). 
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Table 3 (continued).
 

To work 
θu 

To AMU training 
θp 

Duration dependence 

λi2 0.089 (0.028)∗ −0.50 (0.089)∗ 

λi3 0.10 (0.035)∗ −0.51 (0.10)∗ 

λi4 0.048 (0.043) −0.40 (0.11)∗ 

λi5 0.028 (0.051) −0.36 (0.12)∗ 

λi6 −0.068 (0.063) −0.26 (0.10)∗ 

λi7 −0.088 (0.072) 
λi8 −0.19 (0.057)∗ 

Unobserved heterogeneity 

log v1 

log v2 

log v3 

log v4 

q13 

q14 

q23 

−5.30 (0.058) 
−6.67 (0.075) 

−∞ 
−7.17 (0.21) 

-0.23 (0.78) 
-0.069 (0.33) 
-1.78 (1.39) 

log likelihood 
number of individuals 

-126453.2 
16467 

Explanatory note: Standard errors in parentheses. The superindex ∗ denotes significance at the 
5% level (only for elements in βi and λi (with i = u, p) and  δ). 
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are always the same and indeed are the same as when log v3 = −∞ is imposed. Clearly, the 
convergence values are driven by numerical limitations of the computer program. Taken 
literally, the results imply that there is a fraction of workers who have a zero inflow rate 
into training. This may be true, or it may be that the actual inflow rate is a small positive 
number. 

The main parameter of interest is the causal effect δ of training on the transition rate 
to work. The estimated value of δ is 0.68 and is significantly different from 0. Training 
thus raises this transition rate with about 100%, which means that it doubles. The effect 
on the mean or median unemployment duration depends on the moment at which training 
occurs. If the training is given within the first month then the mean duration is more or 
less reduced by half. Similarly, training at a relatively early stage in an unemployment 
spell has a large effect on the probability of long-term unemployment. (Of course, such a 
policy can be costly if implemented on a wide scale.) Recall that (part of) the effect may 
be due to increased search effort on the part of the caseworker, both before and during the 
participation period. 

Now let us turn to the covariate effects βu and duration dependence λu of the transition 
rate to work. To the extent that they are also estimated in other studies on recent Swedish 
unemployment durations, like Carling, Holmlund and Vejsiu (2001), the results are similar 
to those reported in those studies. The signs of the significant covariate effects are as ex
pected. The exit rate to work is significantly lower for older and non-Swedish individuals 
and higher for university graduates. It is also higher for unemployment benefits recipients, 
reflecting the stronger labor market attachment of these individuals. There are no signifi
cant disincentive effects of high benefits as represented by the previous wage. Note however 
that this variable presumably also captures the mean wage offer. Individuals in large cities 
and in areas and years with high unemployment have a lower exit rate to work, whereas 
individuals with experience in their occupation or with an education that fits in with their 
occupation have a higher rate. Finally, individuals deemed to be in need of guidance by the 
caseworker at the moment of entry into unemployment have a much lower exit rate than 
others. This captures characteristics of the individual that are not fully described by the 
observed explanatory variables. The estimated duration dependence of θu is such that the 
individual transition rate to work decreases as the duration increases. Apparently, stigma
tization and discouraged worker effects play a significant role here. Also, some individuals 
may enter a loop of successive periods of unemployment and workfare. 

To some extent, the effects βp of individual characteristics on θp can be interpreted as 
resulting from cost-benefits considerations by the caseworkers. For example, for individu
als with the lowest education, AMU courses are presumably too difficult so they should 
not enter training. Also, individuals with occupations in the health, nursing and social 
care sectors do not need AMU because their job finding rates are relatively high anyway. 
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Individuals who are willing to accept part-time jobs may benefit less from human capital 
accumulation in terms of earnings capacity, so they should have lower priority. Note that 
such considerations call for an analysis of heterogeneous treatment effects (see the next 
subsection). Individuals who are entitled to unemployment benefits should have a higher 
priority because of their opportunity costs. However, entitlement also signals a prolonged 
commitment to labor market institutions, and this may enhance their chances of being ad-
mitted to AMU training. If the individual is in need of guidance then the rate of entering 
training is much higher than otherwise. Finally, the estimated rate of entering training is 
highest during the first 56 days of unemployment. 

Concerning the estimated unobserved heterogeneity distribution we find that v1 > v2 

and v3 < v4. It is not difficult to see that the estimated correlation between Vu and Vp is 
negative, implying that individuals with unobserved factors that increase the exit rate to 
work have a lower rate into training. 

As a first informal check on the robustness of the covariate effects, we compare them to 
those obtained from simpler specifications in which it is imposed that there is no unobserved 
heterogeneity or that the heterogeneity is independent across the hazard rates. In both 
cases, the treatment is by assumption exogenous. Also, in both cases, the parameters of θu 

can be estimated in isolation from those in θp. In the no-unobserved heterogeneity case, the 
estimated treatment effect is equal to 0.41. It turns out that the other estimates are very 
close to those reported in Table 3.13 The covariate effects are a few percent smaller. This is 
not surprising. Typically, when unobserved heterogeneity is ignored in duration analysis, 
the estimated duration dependence is more negative (i.e., θu decreases more over time), 
and the estimated covariate effects on the hazard rate are smaller (see e.g. Van den Berg, 
2001, for an overview). If we allow for unobserved heterogeneity but erroneously assume 
that Vu⊥⊥Vp then the estimated treatment effect equals 0.55. So, ignoring selectivity leads 
to a slight under-estimation of this effect. The other estimates are almost indistinguishable 
from those reported in Table 3.14 

5.3	 Duration dependence and unobserved heterogeneity of the 

treatment effect on the individual transition rate to work 

The previous subsection assumed homogeneity of the treatment effect δ on the exit rate to 
work, over individuals and over time. (Of course, the treatment effect on other outcomes 

13For brevity, we do not report these. All unreported estimates are available upon request. 
14We also attempted to estimate the model with one spell per individual. The estimates of δ and the 

distribution of V converge to limiting values such that part of the population has a zero inflow rate into 
training while the other part has a zero inflow rate into work before training and a moderate inflow rate 
into work after training. With multiple-spell data this is impossible because the data contain individuals 
who sometimes move into training and sometimes do not. 
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of interest, like the mean duration or the fraction employed within a year is heterogeneous, 
due to the nonlinear way in which they depend on δ and x, vu, vp.) We now allow for 
heterogeneous treatment effects. 

First, we only allow δ to depend on the time t − tp that has elapsed since AMU par
ticipation. The data show that many individuals move to employment closely after they 
leave training, and this shows that δ is not constant over time. The treatment effect may be 
smaller if the elapsed time is large, because of the termination of the caseworker’s increased 
search assistance during participation, and because the acquired human capital may depre
ciate after some time. Also, as we have seen, heterogeneity of δ across individuals generates 
spurious duration dependence of δ as a function of t − tp. 

We take δ to be a piecewise constant function of t−tp, by analogy to the duration depen
dence parameterization of the hazard rates in Subsection 5.1, so δ(t−tp) =  j λδ,j Ij (t−tp) 
where j denotes time intervals and Ij (t) are time-varying dummy variables that are one in 
consecutive time intervals. We report estimates for the case in which δ is constant within 
the first three two-week intervals after training and is constant after the sixth week (so j 
attains 4 values). The results are not very sensitive to the choice of intervals, and most of 
the action occurs within the first weeks after training. 

Table 4 gives the estimates for δ, or, more precisely, the estimates of λδ,j . Clearly, the 
training effect is very large right after the training participation period. It is 6.5 times as 
likely to move to employment within two weeks after AMU training, in comparison to when 
the individual would not have participated in the training. After the first two weeks, the 
effect is still positive but it is smaller in magnitude. Between 2 and 6 weeks the transition 
rate to work is about 1.6 times larger, whereas after 6 weeks it is about 1.3 times larger. 
The likelihood ratio test of constancy of δ results in rejection of the null hypothesis at all 
conventional levels of significance. 

For sake of brevity we do not report the other parameter estimates for this model. 
The estimates of the covariate effects βu and βp and their standard errors are virtually 
the same as in Table 3. This is also true for the estimates of the duration dependence λp. 
The estimated duration dependence λu is slightly less negative, which is not surprising 
given that now δ(t − tp) has become a source of negative duration dependence as well. The 
estimates of the unobserved heterogeneity distribution also change slightly. Notably, log v3 

is estimated to equal −8.04, so now the estimate of v3 strictly exceeds 0. 
As noted, one explanation for the observed negative duration dependence of the training 

effect is that the individual effect is heterogeneous. To proceed, we estimate models that 
allow for such heterogeneity. We start by incorporating individual characteristics x in δ, by  
specifying that δ is the sum of the above-used piecewise constant duration dependence term 
and a term x′βδ. For computational reasons we restrict the vector x in δ to six elements. 
We also add tp as an explanatory variable. 
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Table 4: Estimation results for the model in which the training effect on the transition rate 
to work is allowed to depend on the elapsed time since training. 

Training effect on θu 

time since training: 
≤ 2 weeks 
between 2 and 4 weeks 
between 4 and 6 weeks 
> 6 weeks 

1.87 (0.071)∗ 

0.49 (0.15)∗ 

0.49 (0.16)∗ 

0.28 (0.070)∗ 

log likelihood 
number of individuals 

-126213 
16467 

Explanatory note: Standard errors in parentheses. The superindex ∗ denotes significance at the 
5% level. 

Table 5 gives the estimates for δ, or, more precisely, the estimates of λδ,j and βδ,j . Again, 
we do not report the other parameter estimates for this model because these are virtually 
the same as before (even the βu coefficients corresponding to the covariates included in δ). 
We first examine the covariate effects βδ,j . The training effect is significantly smaller for 
elderly individuals, for those with a high level of education, and for those who are trained 
when they are long-term unemployed. The educational effect can be explained by noting 
that not many courses are available at an academic level so that individuals with a high 
level of education may not be able to benefit as much from training as other individuals. 
The effect of tp on the treatment effect can be due to selectivity of those who are treated 
later. We return to this below.15 Also, the effect of tp may reflect an effect of t, because 
of the “age-period-cohort” problem that only two of the three effects of t, tp, t  − tp are 
identified. The estimated effects for women and immigrants are not significantly different 
from zero. The likelihood ratio test of the hypothesis that δ does not depend on observed 
individual characteristics leads to rejection at all conventional levels of significance. 

To compare the duration dependence coefficients in Table 5 to those in Table 4, notice 
that the explanatory variables are not measured in deviation from their mean, except 
for log(age), the relative unemployment rate, log tp. In addition, the average of x among 
those who are exposed to training is different from the average of x in the inflow into 
unemployment, because those with favorable characteristics will have found a job before 
Tp is realized. For an individual with characteristics equalling the average in the inflow, 
the training effect δ has estimated values 1.89, 0.51, 0.53, and 0.35 respectively as the time 

15Recall that we allow for selectivity of being treated at tp, but not yet for systematically different 
treatment effects of those with certain unobserved characteristics. 
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Table 5: Estimation results for the model in which the training effect on the transition 
rate to work is allowed to depend on a number of individual characteristics, the moment 
of training, and the elapsed time since training. 

Training effect on θu 

time since training: 
≤ 2 weeks 
between 2 and 4 weeks 
between 4 and 6 weeks 
> 6 weeks 

2.15 (0.13)∗ 

0.77 (0.16)∗ 

0.79 (0.17)∗ 

0.61 (0.086)∗ 

individual characteristics: 
log(age) 
education > senior high school 
female 
unemployment benefits 
immigrant (E.Eu.,Af.,As.,S.Am.) 
relative unemployment rate 

−0.51 (0.19)∗ 

−0.34 (0.11)∗ 

−0.13 (0.087) 
−0.20 (0.12) 
0.30 (0.15) 

−0.034 (0.15) 
log (tp) −0.096 (0.037)∗ 

log likelihood 
number of individuals 

-126188 
16467 

Explanatory note: Standard errors in parentheses. The superindex ∗ denotes significance at the 
5% level. 

since training proceeds over the four different intervals that we distinguish. The number 
of 1.89 for when the time since training t − tp is less than or equal to two weeks is slightly 
larger than the corresponding value in Table 4. After the initial two weeks, the treatment 
effect heterogeneity in x gives rise to a dynamic selection, leading to negative duration 
dependence in the effect averaged over x among the survivors. So, part of the estimated 
negative duration dependence in δ in Table 4 is now captured by the heterogeneity in x. 
As a result, the estimated duration dependence in Table 5 is less negative than in Table 
4. In other words, not taking heterogeneity of the treatment effect into account leads to 
an over-estimate of the speed at which the treatment effect vanishes after the treatment. 
Nevertheless, the shape of the training effect as a function of the elapsed time since training 
is qualitatively the same as before. 

This line of reasoning naturally leads to the question whether the negative duration 
dependence in the training effect may be due to dynamic selection because of unobserved 
heterogeneity. We therefore estimate a model in which δ not only depends on t − tp and x 
but also on unobserved heterogeneity. This relies on the novel identification result that we 
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proved in Subsection 3.2. Note that we should not include tp as a covariate in δ as it is not 
clear whether such a model is identified without parametric functional form restrictions. 

To keep the estimation manageable, we assume that Vδ ( and therefore log δ) is a  
linear function of log Vu which is the unobserved heterogeneity term in the exit rate to 
work. This is equivalent to a one-factor loading specification for Vδ, log Vu. Specifically, 
δ(t − tp, x, V ) =  λδ,j Ij (t − tp) +  x′βδ + α log Vu, where  Ij (t) are again time-varying 
dummy variables that are one in consecutive time intervals, and βδ is a vector. 

The model with δ(t, tp, x) and  the model  with  δ(t − tp, x, V ) are not nested. However, 
they only differ in whether tp or v1 is included as a regressor in δ, whereas the other 71 
parameters are the same. The model with v1 in δ produces a much higher likelihood value 
than the other model. From this one may conclude that unobserved heterogeneity in the 
treatment effect is an important feature, and, indeed, is more important than the way in 
which the treatment effect depends on the moment of treatment. 

The covariate effects in Table 6 are not very different from those in Table 5, except 
that now immigrants have a significantly higher treatment effect than natives.16 The level 
of the duration dependence coefficients in Table 6 is again difficult to compare to those in 
previous tables. The unobserved heterogeneity term Vu is not included in deviation from 
its mean, and, more importantly, the mean of Vu among those who are exposed to training 
is lower than the mean of Vu in the inflow into unemployment. The latter is due to the 
dynamic selection driven by the effect of Vu on the exit rate to work before the treatment 
is realized. 

The observed and unobserved heterogeneity in the determinants of the treatment effect 
give rise to a large amount of heterogeneity of the treatment effect itself across individuals. 
For individuals with Vu = v1, the treatment effect on the exit rate to work is so large 
that virtually all of them will leave unemployment within some weeks after training. Of 
course, with Vu having a high value, the exit rate to work is relatively high, so that many 
would move to work before Tp is realized. Also, among those for whom Vu is large, the 
probability that Vp is large is very small (in the inflow it is 1.4%, which follows from 
Pr(Vu = v1, Vp = v3) = 0.417 and Pr(Vu = v1, Vp = v4) = 0.006), so their treatment rate is 
very small. In sum, very few v1-individuals will be exposed to the treatment. Note that in 
reality, for given x, there are most likely more than two types of individuals, and it is not 
clear for how many of them the estimated value of v1 is appropriate. 

Let us return to the duration dependence shape of the treatment effect. The treatment 
effect heterogeneity in V gives rise to an additional dynamic selection, leading to negative 
duration dependence in the treatment effect averaged over V among the survivors. As 
follows from the previous paragraph, in our estimated model this issue is primarily relevant 
in the very first weeks after training. It implies that part of the estimated negative duration 

16In Table 5 the t-value is 1.95. 
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Table 6: Estimation results for the model in which the training effect on the transition rate 
to work is allowed to depend on a number of individual characteristics, the elapsed time 
since training, and on unobserved heterogeneity. 

Training effect on θu 

time since training: 
coefficients on 
≤ 2 weeks 1.39 (0.18)∗ 

between 2 and 4 weeks 0.74 (0.19)∗ 

between 4 and 6 weeks 0.75 (0.20)∗ 

> 6 weeks 0.47 (0.14)∗ 

individual characteristics: 
coefficients on 
log(age) 
education > senior high school 
female 
unemployment benefits 
immigrant (E.Eu.,Af.,As.,S.Am.) 
relative unemployment rate 

−0.43 (0.19)∗ 

−0.30 (0.12)∗ 

−0.025 (0.090) 
−0.10 (0.13) 
0.51 (0.16)∗ 

0.11 (0.16) 
unobserved heterogeneity Vu: 
coefficient on log v1 −0.68 (0.043)∗ 

Unobserved heterogeneity distribution 

log v1 

log v2 

log v3 

log v4 

q13 

q14 

q23 

−5.21 (0.059) 
−6.34 (0.062) 
−8.70 (0.30) 
−6.97 (0.16) 
−0.041 (0.17) 
−4.24 (3.51) 
−1.12 (0.57) 

log likelihood 
number of individuals 

-126086 
16467 

Explanatory note: Standard errors in parentheses. The superindex ∗ denotes significance at the 
5% level (only for coefficients of δ). 
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dependence in δ in Table 5 is now explained by the heterogeneity in V . As a result, the  
estimated duration dependence in Table 6 is less negative than in Table 5. In other words, 
not taking unobserved heterogeneity of the treatment effect into account leads to an over
estimate of the speed at which the treatment effect vanishes after the treatment. 

Nevertheless, for many individuals the shape of the training effect as a function of the 
elapsed time since training is qualitatively similar to before. For many individuals, the exit 
rate to work in the first two weeks after training is more than 3 times larger than the 
counterfactual exit rate in the absence of training. Also, the individual exit rate to work 
in the seventh week after training is only 40% (=exp(0.47 − 1.39)) of the exit rate during 
the first two weeks after training. 

Consider for example a native male individual, aged 36, with a high-school education 
level, who receives unemployment insurance, lives in a region with average labor market 
conditions, and has Vu = v2. His exit rate to work in the first two weeks after training is 
3.6 times larger than in the absence of training, and his exit rate to work in the seventh 
week after training is only 1.4 times larger than in the absence of training. For an otherwise 
equal woman, these numbers are virtually the same (3.5 and 1.4). If they would have age 
55 instead of 36 then these numbers are 3.0 and 1.2. If the individual is an immigrant or 
is aged in his/her twenties then the effects are larger, while if he/she is highly educated 
then they are smaller. Notice that for identification reasons we do not allow for interaction 
effects between covariates and the time since training. 

5.4 Interpretation of the treatment-effect estimates 

Recall that the official purpose of AMU is to increase the transition rate to work, and that 
this is supposed to be achieved by way of skill enhancements, i.e. by way of productivity 
improvements. Human capital accumulation by itself cannot explain the peak in the indi
vidual exit rate to work right after training. After all, skills do not depreciate at the rate 
at which the training effect decreases. The same applies to signaling-and-screening effects 
of having completed training. It is also difficult to explain the peak by the accumulation of 
vacancies or job offers during the period of training: it is hard to imagine that an employer 
is willing to reserve a vacancy for an individual who may or may not be available 3 or 6 
months later (and who may by then have accumulated the appropriate skills). 

It is therefore likely that the peak is driven by the increased job-search assistance 
efforts by the caseworkers towards the end of the training period. These efforts make it 
easier for employers to find suitable workers. After the training is completed, the job-search 
assistance efforts return to their normal level. This explains why the treatment effect does 
not stay at a high level as the elapsed time since training increases. 

In our estimates, the effect on the exit rate to work does not vanish as time proceeds. 
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Six weeks after the training, the exit rate is often still 40% higher than in the absence 
of training, which is substantial. Of course it remains to be seen whether this magnitude 
persists in case of more general model specifications. Presumably, the estimates for the 
long-run effect will be smaller than 40% if we allow for a larger number of time intervals in 
the piecewise-constant duration-dependence of the effect, or for more possible realizations 
of unobserved heterogeneity in the effect, or for a non-deterministic relation between Vδ 

and Vu, or for observed course heterogeneity, or for interactions between covariates and 
duration dependence in the effect. (The computational demands would however increase 
dramatically.) The fact that other studies with data from the same or different eras have 
consistently failed to find AMU effects on income variables (see earlier references and Korpi, 
1994) supports the hypothesis that the productivity-enhancement effect is small. This is 
in line with a treatment effect on the exit rate to work that converges in the long run to a 
small number. 

If the success of the job search assistance efforts right after training is due to a pro
ductivity improvement of the worker, then the total training effect can be increased by 
extending the job search assistance efforts in time. If the success of the job search as
sistance efforts is simply due to bridging the search-frictions information gap, then the 
training courses are not needed in the first place. In either case, it seems that the over-all 
effect can be improved if resources are reallocated away from the training courses towards 
job search assistance. Also, in the light of the amount of heterogeneity in the training effect, 
it seems that AMU can be made more effective by a stronger pre-screening and selection 
of potential candidates on their characteristics. 

5.5 Time in training 

We now incorporate the time spent in AMU training into the duration analysis, that is, 
we drop the rule that the length of the time interval spent within AMU training is set 
to zero. There are two major issues involved. First, the time in training adds to the time 
out of work. This is the so-called lock-in effect of training. Treatment effects on the total 
time out of work should incorporate this. This can be carried out in a straightforward way 
with the results of the previous subsections, by carefully adding the time in training to the 
duration out of work for someone who has been in training, when calculating effects on the 
mean duration out of work. 

The second issue is that individuals may influence the time they are in training. In the 
data, the time in training is not constant across spells with training. To a large extent this 
reflects course heterogeneity. It is not known whether course heterogeneity gives rise to 
selectivity in course enrollment, and also not whether the moment at which training ends 
is driven by selective drop-out behavior. It is difficult to deal with such selection effects. 
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Relatively short times in training are rarely observed, so perhaps selective drop-out is not 
a major concern. 

Incorporating the time in training into the duration model may lead to different esti
mated effects on the exit rate to work. Consider for example the training effect directly 
after leaving training. Let t0 be the duration at entry into training. So far, the effect has 
been obtained by comparing (a) the exit rate of individuals who complete training, eval
uated at the moment they complete training, to (b) the exit rate of individuals who have 
not entered training at t0, evaluated at t0, while appropriately taking selection effects into 
account. With a positive time in training, one may argue that (b) should be replaced by 
a measure that reflects the exit rate of non-trained individuals evaluated at t0 plus the 
training time. After all, the duration dependence in the exit rate to work may be driven 
by the time out of work rather than the time in open unemployment. 

From the previous two paragraphs it follows that models incorporating the time in 
training would be complex, and we feel that the empirical analysis of such models is 
beyond the scope of the paper. Instead we consider effects on the time out of work based 
on results from the previous subsections, and we provide estimates of relatively simple 
duration models to shed some further light on the size of the lock-in effect. It should be 
borne in mind that all these results do not take account of course-length selection effects 
or drop-out selection effects. 

The estimates for the basic model in Subsection 5.2 can be used to estimate the mean 
duration of residual unemployment E(Tu|Tp = tp, x, Vu = vu, Tu ≥ tp) after entry into 
AMU at tp, for given values of tp, x,  and vu. The difference E(Tu|Tp = tp, x, Vu = vu, Tu ≥ 
tp)−E(Tu|Tp = ∞, x, Vu = vu, Tu ≥ tp) equals the gain in numbers of unemployed days due 
to entry into AMU at tp as compared to no entry into AMU at all. This can be contrasted 
to the time spent in AMU. It turns out that for average x and Vu, and for tp equal to 
112 days (which is a relatively low value for tp), the estimated gain equals 62 days. If we 
increase tp, the estimated gain decreases somewhat, reflecting non-linearities in the model. 
At tp = 280 it has reduced to 21 days. Clearly, these numbers fall short of the typical time 
spent in AMU. This implies that the program is not cost effective for the average worker. 
(Of course, the estimates of the richer model specifications lead to larger gains for specific 
subgroups of workers.) 

Let us now discuss additional duration analyses. We may generalize the basic model 
estimated in Subsection 5.2 by letting δ depend on whether the total time in training was 
short (smaller than 90 days) or long. If, as before, we stop the time clock during training, 
so that the duration variable does not take account of the time in training, then we obtain 
that δ is estimated by 0.67 for short courses (standard error 0.066) and by 0.76 for long 
courses (standard error 0.064). This suggests that long courses are slightly beneficial in 
their effect  on  the exit rate to work.  Now suppose that we let  the time clock  run during  
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training, and we let the treatment effect δ affect the exit rate to work from the onset 
of training, where δ only depends on whether the course is short or long. Clearly, this 
ignores that in reality the exit rate to work is very small during training and is large after 
training. The parameter estimate will capture some average of the low exit rate to work 
during training and the training effect after leaving training. Consequently, we expect the 
estimate of δ to be smaller than in Table 3. Indeed, we obtain that δ is estimated by 
0.24 for short courses (standard error 0.069) and by –0.35 for long courses (standard error 
0.084). What this shows is that the over-all training effect that comprises the lock-in effect 
and the post-training effect together is very small. As seen from the moment at which the 
individual enters training, the lock-in effect is of a similar order of magnitude, but with 
an opposite sign, as the post-training effect on the exit rate to work. This is due to the 
fact that individuals do not often move from training to work during the first five months 
of AMU training. Note that this explanation is consistent with the fact that the over-all 
effect is more negative for long courses than for short courses, After all, the longer courses 
have a substantially larger lock-in effect but only a marginally larger post-training effect. 

The fact that the other parameter estimates are similar to before means that they are 
insensitive to whether we include time spent in other programs or not. 

5.6 Participation in other programs 

The present paper does not aim to analyze the effects of participation in other active labor 
market programs, neither in isolation from AMU training, nor in possible interaction with 
AMU training and its effects. We have already seen that AMU training is regarded as being 
fundamentally different from other programs, and substitution seems to be absent. The 
data suggest that AMU training and other programs are unrelated activities. Nevertheless, 
the way we handle the actual time spent in other programs may affect our estimate of 
the training effect on the exit rate to work. To shed some more light on this we estimate 
a model version in which time spent in other programs not ignored but is added to time 
in unemployment. For Tu this is appropriate if individuals move to employment at the 
same rate within other programs as they do when they are openly unemployed. For Tp 

this is appropriate if individuals move into AMU at the same rate when they are in other 
programs as they do when they are openly unemployed. The estimate of δ in the basic 
model now equals 0.54 (standard error 0.052), which is slightly lower than in Table 3. It 
was to be expected that the estimate would be somewhat lower, because now the treated 
are effectively compared to not-yet treated who are at an earlier stage of the unemployment 
spell than the comparison group used earlier. 

The fact that the other parameter estimates are similar to before means that they 
are insensitive to whether we include time spent in other programs or not. The duration 
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dependence of the inflow rate into AMU is more negative than before. This reflects the fact 
that individuals cannot be in AMU training and in another program at the same time. 

We can combine our current approach to that of the previous subsection, meaning that 
we let the time clock run during training and other program participation, and we let 
the training effect δ affect the exit rate to work from the onset of training, where δ only 
depends on whether the training course is short or long. This gives an estimate for δ of 
0.18 for short courses (standard error 0.067) and of –0.26 for long courses (standard error 
0.081). So, the over-all training effect on the total time out of work is even closer to zero 
if  we take time in other  programs into account.  

Finally, we return to the framework of Subsection 5.3 where the clock is halted during 
program participation and the treatment effect is heterogeneous. We estimate a model in 
which the effect is also allowed to depend on a dummy variable indicating whether the 
individual has participated in another program during the current spell of unemployment 
before entry into training. The corresponding parameter estimate equals 0.17 (standard 
error 0.068). This suggests that the effect of AMU training benefits from an earlier partic
ipation in another program. Recall however that we do not control for selectivity of such 
program participation. 

Conclusions 

The individual transition rate from unemployment to employment is significantly and sub
stantially raised as a result of the individual’s participation in an AMU vocational training 
course. Individual re-employment rates are more or less tripled upon completion of the 
AMU course. However, this large effect only holds during the first few weeks after comple
tion of the course. This may reflect the fact that caseworkers provide extra effort to find a 
job for AMU participants towards the end of the course. The observed decline of the effect 
can only to a limited degree be explained by dynamic weeding out due to heterogeneity of 
individuals’ skills and other characteristics. When we take the time spent within the pro
gram into account as well, then the average net effect on the individual’s unemployment 
duration is close to zero. Thus, the program does not appear to be cost-effective. 

It seems that the over-all effect can be improved if resources are reallocated away 
from the training course, in the sense that their durations are shortened, towards a more 
prolonged job search assistance effort by the caseworker after completion of the course. 
Also, in the light of the amount of heterogeneity in the training effect, it seems that AMU 
can be made more effective by a stronger pre-screening and selection of potential candidates 
on their characteristics. 

We have argued that the empirical analysis has benefited from the availability of multi
spell data. In fact, any stochastic dependence across spells of the same individual can only 
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be due to the presence of heterogeneity. It is ruled out by assumption that realizations of 
the unemployment duration or the training program in one spell affect the distributions of 
these in another spell. This may be a strong assumption. A topic for future work would be to 
examine to what extent AMU courses have effects that carry over to future unemployment 
spells (although the finding that the effect is strongest right after completion of the course 
suggests that such long-term effects may be negligible). 
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Appendix. Proof of Proposition 1 

Suppose first that the distribution of the observed explanatory variables X is degenerate. 
As in Abbring and Van den Berg (2003), the information in a large data set can then be 
summarized by 

Qp(t, tp) := Pr(Tu > t, Tp > tp, Tu > Tp) and  Qu(t) := Pr(Tu > t, Tu < Tp)  (5)  

for all (t, tp) ∈ R
2
+. These are the so-called sub-survival-functions of (Tu, Tp) and  Tu for the 

sub-populations with Tu > Tp and Tu < Tp, respectively. 
Note that the distribution of the identified minimum of (Tu, Tp), i.e. the smallest of 

Tu and Tp, together with the identity of this smallest duration, is fully characterized by 
(Q0 

p, Qu), with Q0 
p(tp) :=  Qp(−∞, tp) for all tp ∈ R+. 

Now let X be allowed to be heterogeneous. In obvious notation, the data then come in 
the form of a collection {Qp, Qu} := {(Qp(·|x), Qu(·|x)); x ∈ X} of conditional sub-survival 
functions. Here, X ⊂ R

k, 1  ≤ k <∞, is the support of X. 
We adopt the model of Subsection 3.2. In fact, we consider a slightly more general 

model where exp(x′βi) is replaced by φi(x), 

θp(t|x, Vp) =  λp(t) · φp(x) · Vp
 

θu(t|tp, x, Vu, Vδ) =  λu(t) · φu(x) · Vu · exp(δ(t− tp, x, Vδ) · I(t > tp))
 
δ(t− tp, x, Vδ) =  λδ(t− tp) +  φδ(x) +  Vδ
 

Notice that λu(.), φu(.) and  Vu act multiplicatively on θu(t|tp, x, Vu, Vδ) while at the same 
time exp(λδ(.)), exp(φδ(.)) and exp(Vδ) act multiplicatively on θu(t|tp, x, Vu, Vδ). This asym
metry between notation indexed by u and p on the one hand and notation indexed by δ 
on the other hand complicates some expressions below. 

We make the following regularity conditions, assumptions, and normalizations. 

Assumption 1. Variation over observed covariates. 
φu, φp, and φδ are continuous functions φp : X →  (0,∞) and  φu : X →  (0,∞) and  
φδ : X → (−∞,∞). Further, {(φu(x), φp(x)); x ∈ X} contains a non-empty open set in R2 

and {φu(x) · exp(φδ(x)); x ∈ X} contains a non-empty open interval in R. 

Assumption 2. Baseline hazards. 
The functions λu : R+ → (0,∞) and  λp : R+ → (0,∞) are continuous except at at most a 
finite number of known points. They have integrals � t � t
 

Λu(t) :=  λu(τ)dτ <∞ and Λp(t) :=  λp(τ)dτ <∞
 
0 0 
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for all t ∈ R+. The function λδ : R+ → (−∞,∞) is continuous except at at most a finite 
number of known points. Moreover, its integral � t 

Λ∆(t) :=  exp(λδ(τ))dτ 
0 

exists and is finite for all t ∈ R+. The functions λδ and λu are such that � t 

K(t, tp) :=  λu(τ) exp(λδ(τ − tp))dτ 
tp 

exists and is finite for all {(t, tp) ∈ R2 : t > tp ≥ 0}. 
Assumption 3. Independence of observed and unobserved heterogeneity. 
(Vu, Vp, Vδ) is independent of X. 

Assumption 4. Positive unobserved heterogeneity. 
Pr((Vu, Vp, exp(Vδ)) ∈ (0,∞)3) = 1.  

Assumption 5. Finite means of unobserved heterogeneity. 
E[Vu] <∞ and E[Vp] <∞ and E[VuVp exp(Vδ)] <∞. 
Assumption 6. Normalizations. 
For some a priori chosen x ∗ ∈ X  , there holds that φu(x ∗) =  φp(x ∗) = 1  and  φδ(x ∗) = 0.  
For some a priori chosen t ∗ ∈ (0,∞), Λu(t ∗) = Λp(t ∗) =  K(t ∗ , 0) = 1. 

We now introduce some new notation. Let λ∆, φ∆, and V∆ be defined such that for every 
t, x, Vu, Vδ, 

V∆ = Vu exp(Vδ), 

λ∆(t) = exp(λδ(t)) 

φ∆(x) =  φu(x) exp(φδ(x)) 

Consequently, the exit rate to work at t > tp can be expressed as 

θ(t|tp, x, V∆) =  λu(t)φ∆(x)λ∆(t− tp)V∆ 

By Proposition 2 in Abbring and Van den Berg (2003), the functions Λu,Λp, φu and φp 

and the joint distribution of Vu, Vp are identified from {Q0, Qu}, given the assumptions p

listed above. We proceed by subsequently identifying the functions Λ∆ and φ∆ and the 
joint distribution of Vu, V∆, Vp from Qp. Once we established this, the identification of 
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the functions Λδ and φδ and the joint distribution of Vu, Vp, Vδ follows immediately. The 
structure of the remainder of the proof is similar to the structure of the proof in Abbring and 
Van den Berg (2003) of identification of a model where δ depends on x, t, and unobserved 
heterogeneity V (their Proposition 4). 

Let L denote the trivariate Laplace transform of the distribution G∆ of (Vu, V∆, Vp), 
and L(∆p)(z1, z2, z3) :=  ∂2L(z1, z2, z3)/∂z2∂z3 for all (z1, z2, z3) ∈ (0,∞)3 . Note that As
sumption 3 implies that (Vu, Vp, V∆)⊥⊥X. 

For fixed x ∈ X  , ∂2Qp(t, tp|x)/∂t∂tp and ∂2Qp(t, tp|x ∗)/∂t∂tp exist for almost all t, tp ∈ 
R+ such that tp < t. For  these (t, tp), 

∂2Qp(t, tp|x)/∂t∂tp L(∆p)(φu(x)Λu(tp), φ∆(x)K(t, tp), φp(x)Λp(tp)) 
= φp(x)φ∆(x) (6)

∂2Qp(t, tp|x ∗)∂t∂tp L(∆p)(Λu(tp), K(t, tp),Λp(tp)) 

If t ↓ 0 and  tp ↓ 0, both sides of (6) above reduce to φp(x)φ∆(x) because, by assumption, 
E[V∆Vp] = limz↓(0,0,0) L(∆S)(z) < ∞. We have already  identified  φp, and the left-hand side 
is data, so this identifies φ∆. 

For arbitrary x ∈ X  and t, tp ∈ R+ such that tp < t  there also holds that 

∂Qp(t, tp|x)/∂tp 
= L(p)(φu(x)Λu(tp), φ∆(x)K(t, tp), φp(x)Λp(tp)), (7)

λp(tp)φp(x) 

with L(p)(z1, z2, z3) :=  ∂L(z1, z2, z3)/∂z3. Note that the left-hand side of this equation is 
already identified for all tp arbitrarily close to zero. As tp ↓ 0, the right-hand side reduces 
to 

L(p)(0, φ∆(x)K(t, 0), 0). (8) 

After imposing t = t ∗ , we can identify the completely monotone function −L(p)(0, ·, 0) 
on a nonempty open set in R by appropriately varying x in equation (8). This identifies 
−L(p)(0, z,  0) for all z ∈ (0, ∞) because of the real analyticity of −L(p)(0, ·, 0) (see below). 
Subsequently, the right-hand side of (8) is strictly monotone in K, so  K(t, 0) can be traced 
out by varying t, and as a result the function K(t, 0) as a function of t is identified. Recall 
that K(t, 0) = 

0 
t 
λu(τ)λ∆(τ)dτ . Given Assumption 2, this suffices to identify Λ∆(t) for all 

t >  0. 
Finally, by appropriately varying x and t in equation (7), we can trace L(p) on an 

nonempty open subset of R3. This identifies L(p) on (0, ∞)3 because −L(p) is real analytic. 
This in turn identifies L (see Abbring and Van den Berg, 2006). 
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