C-CAPM and the Cross-Section of Sharpe Ratios

PAUL SÖDERLIND
NO 18 — DECEMBER 2003
Stockholm Institute for Financial Research (SIFR) is a private and independent non-profit organization established at the initiative of members of the financial industry and actors from the academic arena. SIFR was launched in January 2001 and is situated in the center of Stockholm. Magnus Dahlquist serves as director of the Institute. The mission of SIFR is to:

- Conduct and stimulate high quality research on issues in financial economics, where there are promising prospects for practical applications,
- Disseminate research results through publications, seminars, conferences, and other meetings, and
- Establish a natural channel of communication about research issues in finance between the academic world and the financial sector.

The activities of SIFR are supported by a foundation based on donations from Swedish financial institutions. Major contributions have been made by: AFA, Alecta, Alfred Berg, AMF Pension, Brummer & Partners, Carnegie, Handelsbanken, Kapitalmarknadsgruppen, Länsförsäkringar, Nordea, Svenska Fondhandlareföreningen, and Östgöta Enskilda Bank.

Sveriges Riksbank funds a position as visiting professor at SIFR.

SIFR also gratefully acknowledges research grants received from Riksbankens Jubileumsfond, Jan Wallanders och Tom Hedelius Stiftelse, Föreningsbankens Forskningsstiftelse, and Torsten och Ragnar Söderbergs stiftelser.
C-CAPM and the Cross-Section of Sharpe Ratios

Paul Söderlind
Executive Summary

It is well known that the standard consumption-based asset pricing model (constant relative risk aversion, representative investor) has serious problems with matching the high average excess return on equity.

Most economists still tend to believe that risk premia (average excess returns) must somehow be related to consumption and utility theory. After all, most of us invest in order to be able to consume more later. The weak empirical support of the standard consumption-based asset pricing model has therefore spurred plenty of refinements - and they have had some success in accounting for the high equity risk premium.

It is perhaps not so surprising that a more complicated model can fit the equity premium: with one more parameter, it should be possible to fit one more fact. The true test of the refinements is therefore if they, in addition, can fit other facts. In this paper, I study if they produce a reasonable pattern for risk compensation in different industries, firm sizes, geographical location, and more.

It is shown that the basic model and the refinements (Epstein-Zin utility, habit persistence, and idiosyncratic shocks) actually share the same implications for the cross-sectional dispersion of Sharpe ratios: the Sharpe ratio should be linearly increasing in the correlation of the asset return with aggregate consumption growth.

This is studied on quarterly data for 40 US portfolios (1947–2001) and 10 international portfolios (1957/1971–2001). The analysis is done in terms of both unconditional (time average) moments and conditional (time-varying) facts.

There is little support for the consumption-based model (refined or not). The basic problem is that there is a great deal of variation in Sharpe ratios, but most portfolios have relatively similar (and low) correlations with aggregate consumption growth. The classical CAPM gets a bit more support.
C-CAPM and the Cross-Section of Sharpe Ratios

Paul Söderlind *

August 2003

Abstract

This paper studies if the consumption-based asset pricing model can explain the cross-section of Sharpe ratios. The CRRA model and several extensions (habit persistence, recursive utility and idiosyncratic shocks) all imply that the Sharpe ratio is linearly increasing in the asset’s correlation with aggregate consumption growth. Results from quarterly data on 40 US portfolios (1947–2001) and 10 international portfolios (1957/1971–2001) suggest that both the unconditional and conditional C-CAPM have serious problems: there is a great deal of variation in Sharpe ratios, but most portfolios have relatively similar and low correlations with aggregate consumption growth.

Keywords: consumption-based asset pricing, habit persistence, recursive utility, idiosyncratic risk, multivariate GARCH

JEL Classification Numbers: G12, E130, E320

*University of St. Gallen, CEPR, and SIFR. Address: s/bf-HSG, Rosenbergstrasse 52, CH-9000 St. Gallen, Switzerland. E-mail: Paul.Soderlind@unisg.ch.
1 Introduction

It is well documented that the standard consumption-based asset pricing model (constant relative risk aversion, representative investor) has serious problems with matching the high risk premia on equity.1 This paper takes a look at a related, but less studied, issue: can the consumption-based model explain the cross-sectional dispersion of Sharpe ratios—when we are agnostic about how to measure consumption volatility and the risk aversion?2 That is, if we treat consumption volatility and risk aversion as free parameters, can C-CAPM then explain the dispersion of Sharpe ratios among different equity and bond portfolios?

There are good reasons to be uncertain about the relevant measure of consumption volatility and risk aversion. For instance, several recent extensions of the basic consumption-based model have argued that we should consider adding idiosyncratic risk (Mankiw (1986) and Constantinides and Duffie (1996)), recalibrate the risk aversion (Epstein and Zin (1989)) or assume habit persistence (Campbell and Cochrane (1999)).

Fortunately, we can test important implications of the consumption-based model quite independently of these issues. A basic feature of the model is that, in a cross-section, the Sharpe ratio is linearly related to the correlation of the return with aggregate consumption growth. This holds even if there is idiosyncratic risk and/or habit persistence: in all cases the slope of the relation should be positive (more so if consumption volatility and risk aversion are high) and the fit of the regression should be good (perfect if it wasn’t for sampling uncertainty). The C-CAPM (with or without extensions) can thus be rejected if the slope is negative and the fit poor.

The outline of the rest of the paper is as follows: Section 2 derives the relation between the Sharpe ratio and correlation in the basic model and several extensions; Section 3 presents the results for 40 US portfolios and 10 international portfolios; and Section 4 concludes.

2 C-CAPM and the Cross-Section Sharpe Ratios

This section derives a simple relation between the asset’s Sharpe ratio and correlation with the consumption growth. This relation is later studied on some 50 US and interna-
tional portfolios.

The basic asset pricing equation says

$$E(Z_{it}M_t) = 0,$$ \(1\)

where \(Z_{it}\) is the excess return of holding asset \(i\) from period \(t - 1\) to \(t\), \(M_t\) is a stochastic discount factor, and \(E\) denotes the expectations (possibly conditional on some information set). To simplify the analysis, assume that the excess return, \(Z_{it}\), and the log stochastic discount factor (SDF), \(\ln M_t\), have a bivariate normal distribution. Use Stein’s lemma (see Appendix B) and rearrange (1) to express the Sharpe ratio, \(SR_i = E(Z_{it})/\sigma(Z_{it})\), as

$$SR_i = -\rho(Z_{it}, \ln M_t) \times \sigma(\ln M_t),$$ \(2\)

where \(\rho(Z_{it}, \ln M_t)\) is the correlation of the excess return and the log SDF, and \(\sigma(Z_{it})\) and \(\sigma(\ln M_t)\) are the standard deviations of the excess return and log SDF respectively. If the expectation in (1) is conditional, so are the moments in (2).

We can relax the assumption that the excess return is normally distributed: (2) holds also if \(Z_{it}\) and \(\ln M_t\) has a bivariate mixture normal distribution—provided \(\ln M_t\) has the same mean and variance in all the mixture components (see Appendix B). This restricts \(\ln M_t\) to have a normal distribution, but allows \(Z_{it}\) to have a distribution with fat tails and skewness.

2.1 The Standard CRRA Model

With constant relative risk aversion (CRRA), the SDF has the form \(M_t = \beta(C_t/C_{t-1})^{-\gamma}\), where \(\gamma\) is the risk aversion parameter and \(C_t\) is the consumption level. The log SDF is therefore

$$\ln M_t = \ln \beta - \gamma \Delta c_t,$$ \(3\)

where \(\Delta c_t\) is the growth rate of consumption, that is, \(\Delta c_t = \ln(C_t/C_{t-1})\). If we assume that that \(Z_{it}\) and \(\Delta c_t\) have a bivariate normal distribution (or a mixture normal as discussed above), then we can plug (3) into (2) to get

$$SR_i = \rho(Z_{it}, \Delta c_t) \times \sigma(\Delta c_t) \gamma.$$ \(4\)

Most studies of the consumption-based asset pricing model have focused on the prob-
lem of reconciling the low volatility of consumption growth, \(\sigma(\Delta c_t) \), with the high excess return of an aggregate equity portfolios (this is the equity premium puzzle of Mehra and Prescott (1985)). This problem clearly becomes worse if the correlation, \(\rho(Z_{it}, \Delta c_t) \), of the excess return and consumption growth is low (the correlation puzzle discussed by, among others, Cochrane (2001)).

This paper is instead about a broader cross-section of assets—and about the case when we are uncertain about how to measure the volatility of consumption growth and the risk aversion parameter. Here, the cross-sectional implication of (4) are studied by estimating the linear cross-sectional regression equation

\[
SR_i = a + b \rho(Z_{it}, \Delta c_t) + u_i. \tag{5}
\]

According to the model (4) the slope coefficient \((b) \) should be positive (since \(\sigma(\Delta c_t) \gamma \) is) and the coefficient of determination \(R^2 \) high (unity, except for sampling variability). In a sense, this regression is similar to the traditional cross-sectional regressions of returns on factors with unknown factor risk premia (see, for instance, Campbell, Lo, and MacKinlay (1997)).

The advantage of this formulation is that it does not require any data on either risk aversion or consumption volatility—which will turn out to be especially convenient when we allow for habit persistence and idiosyncratic risk (see below).

The analysis has so far focused on unconditional moments. However, asset pricing theory is mostly about conditional moments. For instance, an investor’s first order condition for optimal saving/consumption gives the basic asset pricing equation (1)—but where the expectation is conditional on the information set at the time of optimization, \(E_{t-1}(Z_{it} M_t) = 0 \).

Assuming that the conditional distribution of the excess return and the log SDF is bivariate normal (or a mixture normal as discussed above) gives the same kind of expression as before for the Sharpe ratio (4), except that all moments are now conditional (and therefore carry time subscripts)

\[
SR_{t-1i} = \rho_{t-1}(Z_{it}, \Delta c_t) \times \sigma_{t-1}(\Delta c_t) \gamma, \tag{6}
\]

where \(SR_{t-1i} = E_{t-1}(Z_{it})/\sigma_{t-1}(Z_{it}) \). This means that there is still a linear relation between the Sharpe ratio and the correlation—within a period. The slope can change
between periods (if $\sigma_{t-1}(\Delta c_t)\gamma$ does). To test the conditional model we therefore have to run a cross-sectional regression like (5) for each period separately (using conditional Sharpe ratios and correlations).

The next few sections show that recent refinements of the consumption-based models (habit persistence, Epstein-Zin utility, idiosyncratic risk) typically give something similar to (4) or (6), except that the consumption growth volatility and risk aversion parameter have to be reinterpreted. However, the correlation is typically unchanged, so (5) (unconditional or conditional) is still a valid approach to study the cross-sectional implications.

2.2 High Risk Aversion 1: Habit Persistence

The habit persistence model of Campbell and Cochrane (1999) has a CRRA utility function, but the argument is the difference between consumption and a habit level, $C_t - X_t$, instead of just consumption. The habit is parameterized in terms of the “surplus ratio” $s_t = (C_t - X_t)/C_t$, which measures how much aggregate consumption exceeds the habit. Since this ratio is external to the investor, marginal utility becomes $(C_t - X_t)^{-\gamma} = (C_t s_t)^{-\gamma}$. The log SDF is therefore

$$\ln M_t = \ln \beta - \gamma(\Delta s_t + \Delta c_t),$$

where s_t is the log surplus ratio. The process for s_t is assumed to be a non-linear AR(1) (constant suppressed)

$$s_t = \phi s_{t-1} + \lambda(s_{t-1})\Delta c_t,$$

where $\lambda(s_{t-1}) \geq 0$ is a decreasing function of s_{t-1}.

Using these equations in the conditional version of (2) gives (see Appendix B)

$$SR_{t-1i} = \rho_{t-1}(Z_{it}, \Delta c_t) \times \sigma_{t-1}(\Delta c_t)\gamma[1 + \lambda(s_{t-1})].$$

Within a period, the only difference to the CRRA model (6) is the very last term, $1 + \lambda(s_{t-1})$, which can be thought of as a time-varying risk aversion. This may help explain the equity premium puzzle (by making the effective risk aversion larger than γ) and also predictability in risk premia (if any). However, it gives the same cross-sectional implications as the CRRA model: SR_{t-1i} is still linearly related to $\rho_{t-1}(Z_{it}, \Delta c_t)$.

3Lettau and Uhlig (2002) also provide simple (but different) analytical expressions for these models—mostly with the aim to discuss the equity premium and riskfree rate puzzles.
2.3 High Risk Aversion 2: Epstein-Zin Utility

The recursive utility function in Epstein and Zin (1989)\(^4\) has different parameters for the risk aversion and the intertemporal elasticity of substitution. It is then possible to have a high risk aversion (to fit the Sharpe ratio) without playing havoc with the riskfree rate.

Epstein and Zin (1989) show that if all wealth is marketable, then the Euler equation for the excess return of asset \(i\) is

\[
E_{t-1}[\beta^\theta (C_t / C_{t-1})^{-\theta/\psi} R_{mt}^{\theta-1} Z_{it}] = 0, \quad \text{where } \theta = (1 - \gamma)/(1 - 1/\psi),
\]

(10)

where \(R_{mt}\) is the market gross return, \(\gamma\) the risk aversion, and \(\theta\) the elasticity of intertemporal substitution.

To illustrate that (10) has (approximately) the same implications for risky assets as the CRRA model, assume that consumption-wealth ratio is constant (for instance, because the market return is iid). This effectively closes down all interaction between the risk and intertemporal substitution (see Svensson (1989) and Campbell (1993)). It then follows that consumption growth and the market return are proportional so (10) can be written (see Appendix B)

\[
E_{t-1}[(C_t / C_{t-1})^{-\gamma} Z_{it}] = 0,
\]

(11)

which is exactly the same as the CRRA model. This holds as a good approximation as long as the consumption-wealth ratio is not too variable.

2.4 High Volatility of Consumption: Idiosyncratic Risk

The volatility of aggregate consumption may underestimate the risk faced by investors if there are uninsurable individual shocks. Such shocks mean that the consumption growth of investor \(j\) is the aggregate consumption growth plus an idiosyncratic component. His log SDF is therefore \(\ln M_{jt} = \ln \beta - \gamma \Delta c_t - \gamma u_{jt+\delta}\), where \(u_{jt+\delta}\) is the idiosyncratic shock. For analytical convenience, I let the shock be realized a split second \((\delta)\) after the asset return and aggregate consumption.

Using the law of iterated expectations, the first order condition (the “asset pricing

\(^4\) Utility is \(U_t = [(1 - \delta)C_t^{1-1/\psi} + \delta Z_t^{1-1/\psi}]^{1/(1-1/\psi)}\), where \(Z_t\) is the certainty equivalent of future utility, \(Z_t = [E_t(U_t^{1-\gamma})]^{1/(1-\gamma)}\).
equation”) of investor j, $E_{t-1}(Z_{it} M_{jt}) = 0$, can now be written

$$E_{t-1}[Z_{it} M_t E_t \exp(-\gamma u_{jt+\delta})] = 0, \quad (12)$$

where $M_t = \ln \beta - \gamma \Delta c_t$ (as in previous sections).

Let the distribution of the idiosyncratic shock, conditional on the information set in t be normal. It is important that the mean of this distribution does not depend on the return or consumption growth. If it did, the uninsurable idiosyncratic shock would be correlated with the return (which would make the shock insurable) or with aggregate consumption (which would make the shock non-idsosyncratic). We therefore assume that the mean is always zero. In contrast, the variance is assumed to be $2 \lambda(\varepsilon_t)$ where $\lambda(\varepsilon_t)$ is some function of the aggregate shock, $\varepsilon_t = \Delta c_t - E_{t-1} \Delta c_t$.

With these assumptions, (12) can be written (see Appendix B)

$$E_{t-1}[Z_{it} \exp(-\gamma(\varepsilon_t - \gamma \lambda(\varepsilon_t)))] = 0. \quad (13)$$

To calculate this expectation, I use Lettau’s (2002) convenient approximation by assuming that ε_t and $\lambda(\varepsilon_t)$ have a bivariate normal distribution. This is only an approximation since a normal distribution cannot guarantee that the variance is always non-negative.

When $\lambda(\varepsilon_t)$ is a constant, then it can be cancelled from (13) and we are back in the standard CRRA model: idiosyncratic shocks have no effect on risk premia unless their variance depends on the aggregate shock (see Mankiw (1986) and Constantinides and Duffie (1996) for similar results).

The simplest model that gives an effect is $\lambda(\varepsilon_t) = a + b \varepsilon_t$. We can then replace ε_t in the standard CRRA model by $\varepsilon_t (1 - \gamma b)$ to get the conditional Sharpe ratio

$$SR_{t-1i} = \rho_{t-1}(Z_{it}, \Delta c_t) \times \sigma_{t-1}(\Delta c_t) \gamma(1 - \gamma b). \quad (14)$$

If $b < 0$, so bad times are also risky times, then the idiosyncratic shocks add to the Sharpe ratio (the term $1 - \gamma b$ is positive). However, the implication for the cross-sectional pattern of Sharpe ratios is the same as in the standard CRRA model without idiosyncratic shocks (6). This is likely to continue to hold as long as $\lambda(\varepsilon_t)$ is not too non-linear.
3 Empirical Evidence

3.1 Unconditional Sharpe Ratios

This section presents results for unconditional Sharpe ratios and correlations—estimated by the historical averages.

Figure 1 shows results for fifty different portfolios—mostly US equity portfolios sorted on industry, dividend-price ratio, size, or book-to-market, but also some international bond and equity portfolios (dollar returns, for US, France, Germany, Japan, and UK). More details on data are given in Appendix A. In Figure 1.a, the vertical axis shows (annualized) unconditional Sharpe ratios and the horizontal axis shows unconditional correlations with consumption growth (here measured at $t + 1$). Results from a cross-section regression (5) are given at the bottom of the figure.

Most portfolios are clustered around a correlation of 0.2, but the Sharpe ratios vary a great deal. If anything, there is a weak negative relation between the correlation and the Sharpe ratio—and the R^2 is virtually zero. This suggests that the consumption-based model has serious problems with explaining this broad cross-section. We will later study if it does a better job in smaller cross-sections.

As a comparison Figure 1.b shows results from a similar regression, but where the correlation with consumption growth is replaced by the correlation with the US equity market. This traditional CAPM seems to do a somewhat better job. The relation between the Sharpe ratio and the correlation with the US equity market is positive (although not significant at the 5% level; the test is based on a GMM approach that accounts for the generated regressors). However, the R^2 remains very low. It could also be argued that the positive slope is due to a few particular portfolios with low correlations and low Sharpe ratios. We will later see that these are the international portfolios.

We now turn to studying smaller cross-sections, that is, subsets of the fifty portfolios. Figure 2 shows the result for C-CAPM by plotting the Sharpe ratios against the correlations with consumption growth. For three of the four US cross-sections (industries, dividend-price ratio, and size) there is a weak negative relation, and it is only for the book-to-market portfolios that the C-CAPM is a success (significantly positive coefficient). For

5It is unclear if returns should be related to what is recorded as consumption this quarter or the next. The reason is that consumption is measured as a flow during the quarter, while returns are measured at the end of the quarter. I choose to show the results for Δc_{t+1} since they are somewhat more supportive of the consumption-based model—but the difference is not large.
Figure 1: Sharpe ratio and correlation with consumption growth and US market (unconditional). Subfigure a shows unconditional Sharpe ratios and correlations with Δc_{t+1} for 50 US and international portfolios. The large circle is the aggregate US stock market. The numbers at the bottom are slope coefficients and R^2 from a regression of the Sharpe ratio on a constant and the correlation (5). Significance at the 5% level is marked by a star *, and is based on a GMM approach that accounts for generated regressors. Subfigure b is similar but shows the correlation with the US equity market instead. Excess returns are real returns in excess of the real return on a one-month Treasury Bill. To annualize the Sharpe ratio, quarterly means are multiplied by 4 and quarterly standard deviations by 2. See Appendix A for details on data sources and transformations.

The international portfolios, the evidence is mixed: the relation is (significantly!) negative for equity portfolios, but positive for bond portfolios.

All in all, there is little support for the C-CAPM in either the large cross-section or in the smaller cross-sections. The main problem is that there are considerable differences in Sharpe ratios, but not in correlations with consumption growth. To put it bluntly: systematic risk seems to be something else than correlation with consumption growth.

Figure 3 shows CAPM result for the smaller cross-sections: the Sharpe ratio is plotted against the correlation with the US equity market. These correlations are typically much higher than the correlations with consumption growth, but the CAPM is about as bad as the C-CAPM at explaining the US returns (negative slope for three out of four cross-sections), although it does a better job with the international portfolios (positive slopes for both international equity and bond portfolios).

3.2 Conditional Sharpe Ratios

This section presents results for conditional (time-varying) Sharpe ratios and correlations. To estimate the conditional moments, I use a combination of a VAR model and a multi-
Figure 2: Sharpe ratio and correlation with consumption growth (unconditional). Subfigure a shows unconditional Sharpe ratios and correlations with Δc_{t+1} for 10 US industry portfolios for 1947Q1–2001Q4 (the sample period is given in the title). Subfigures b–d are for US dividend/price, size, and book-to-market portfolios respectively. Subfigures e–f are for international equity and bond portfolios respectively. See Figure 1 for more details on the figure and Appendix A for details on data sources and transformations.

For each asset, I estimate a “multivariate GARCH-in-mean” model with four variables: the excess return on asset i, consumption growth, the excess return on the US equity market, and the “cay” variable of Lettau and Ludvigson (2001) which has proven to be an interesting predictor of US returns. Let \(x_t \) be the vector \([R^e_{it}, \Delta c_t, R^e_{mt}, cay_t] \). The estimated model is

\[
x_t = A_0 + A_1 x_{t-1} + A_2 x_{t-2} + B_m \text{Cov}_{t-1}(R^e_{it}, R^e_{mt}) + B_c \text{Cov}_{t-1}(R^e_{it}, \Delta c_t) + u_t,
\]

where \(R^e_{it} \) is the excess return on asset i at time t, \(\Delta c_t \) is the change in consumption, \(R^e_{mt} \) is the excess return on the US equity market, and \(cay_t \) is the “cay” variable. The model includes lagged terms to capture the dynamic nature of the relationships. The coefficients \(A_0, A_1, A_2, B_m, B_c \) are estimated by maximizing the likelihood function of the model.

The estimates for the models are provided in the figures, indicating the strength of the relationships and the explanatory power of the variables.
where the conditional covariance matrix of the residuals \(u_t \) is modelled as a “dynamic conditional correlation multivariate GARCH” (Engle (2002) and Engle and Sheppard (2001)). This multivariate GARCH model allows for dynamic correlations (which we certainly want), but is still fairly parsimonious.\(^6\) The variables in the vector \(x_t \) are assumed to be predicted by two lags (cross effects are allowed) as well as the conditional covariances of asset \(i \) with consumption growth and the US market. The conditional covariances are from the GARCH model of the residuals. The estimation of this model is highly non-linear (since the covariances enter as “regressors”), but that is straightforward to handle in a quasi-maximum likelihood setting.

\(^6\)Some details: the GARCH models are of order (1,1) and the DCC MVGARCH model is of order (2,1). Diagnostic tests suggest that this model is reasonable.
The essence of this reduced form model is that it allows the expected return (numerator of the Sharpe ratio) to vary with recent returns, consumption growth, and the cay variable as well as with the current conditional covariances (as theory predicts). The standard deviation of the asset return (the denominator in the Sharpe ratio) and the correlation are allowed to vary with recent volatility, which captures the notions of volatility clustering/spillover.

The estimation gives a time series of the conditional moments for every asset. These are used to study if the implication of (6) holds: within a period there should be a linear relation (in a cross-section) between the Sharpe ratio and the correlation of the asset with consumption growth or the US market. I study this by running a regression like (5) for every time period.

The slope coefficients vary a lot across time, and negative coefficients are not uncommon. Table 1 summarizes the results by showing time averages. On average, the coefficients are slightly negative for the C-CAPM (both within the smaller cross-sections and the large cross-section of all 50 portfolios)—much like the results for the unconditional Sharpe ratios. This is also verified by simply taking time-averages of the conditional Sharpe ratios and correlations in (6) and then running the cross-sectional regression. The basic reason for why the results are similar is that there is relatively little predictability in these data so average conditional moments are fairly similar to unconditional moments.

Table 1: Results from period-by-period cross sectional regressions, average over time. This table summarizes the results from period-by-period cross-sectional regressions of conditional Sharpe ratios on conditional correlations with Δc_{t+1} and the US market return. The slope coefficients and R^2’s are time averages, and the Rej % is fraction of periods for which we reject the hypothesis that the slope coefficient is zero. The tests are based on standard errors from a Monte Carlo simulation of (15) with 2200 repetitions.

<table>
<thead>
<tr>
<th></th>
<th>Δc_{t+1}</th>
<th>US market</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Slope</td>
<td>Rej %</td>
</tr>
<tr>
<td>US industries, 47-01</td>
<td>0.08</td>
<td>0.33</td>
</tr>
<tr>
<td>US D/P, 47-01</td>
<td>-0.75</td>
<td>0.32</td>
</tr>
<tr>
<td>US size, 47-01</td>
<td>-0.47</td>
<td>0.38</td>
</tr>
<tr>
<td>US B/M, 47-01</td>
<td>1.05</td>
<td>0.64</td>
</tr>
<tr>
<td>Int equity, 70-01</td>
<td>-0.69</td>
<td>0.33</td>
</tr>
<tr>
<td>Int bond, 57-01</td>
<td>1.21</td>
<td>0.39</td>
</tr>
<tr>
<td>All</td>
<td>-0.07</td>
<td>0.51</td>
</tr>
</tbody>
</table>
These results are somewhat different from those obtained in Menzly, Santos, and Veronesi (2001) who get fairly positive results for a habit persistence model on 20 industry portfolios. The results are also different from those in Bansal, Dittmar, and Lundblad (2001) who get fairly good results from an Epstein-Zin utility on a fairly wide cross-section of portfolios. One possible reason for these differences is that I use a larger set of variables (“instruments”) to create the conditional moments.

The results for the CAPM on the smaller cross-sections are somewhat more discouraging than in the unconditional case, but we once again get a positive slope (time average) for the large cross-section—mostly because of the differences between the international and the US portfolios.

4 Summary

This paper studies if the consumption-based asset pricing model can explain the cross-sectional dispersion of Sharpe ratios—if we allow ourselves to be agnostic about the correct way of measuring consumption volatility and about the coefficient of relative risk aversion.

It is shown that the CRRA model and friends (Epstein-Zin utility, habit persistence, and idiosyncratic shocks) share the same implications for the cross-sectional dispersion of Sharpe ratios: the Sharpe ratio should be linearly increasing in the correlation of the asset return with aggregate consumption growth.

This is studied on quarterly data for 40 US portfolios (1947–2001) and 10 international portfolios (1957/1971–2001). The analysis is done in terms of both unconditional (time average) moments and conditional moments where the time-varying moments are estimated by a combination of a VAR model and a multivariate GARCH-in-mean model.

There is little support for the consumption-based model. The basic problem is that there is a great deal of variation in Sharpe ratios, but most portfolios have relatively similar (and low) correlations with aggregate consumption growth. The classical CAPM gets a bit more support, but mostly because the international portfolios tend to have lower Sharpe ratios and lower correlation with the US market.
A Data Appendix

The nominal US stock returns are from French’s (2001) website. These monthly returns are converted to quarterly returns by multiplying the monthly gross returns, for instance, the gross returns for January, February, and March are multiplied to generate a quarterly gross return. The portfolios are formed from NYSE, AMEX, and NASDAQ firms. The aggregate stock market return is a value weighted return of all available returns. The (equally-weighted) portfolios based on industry, size, dividend/price, or book-to-market are from the same data set, but with the firms sorted on the respective characteristic. The ten industry portfolios are for consumer nondurable, consumer durables, oil, chemicals, manufacturing, telecom, utilities, wholesale and retail, financial services, and other. The ten size portfolios are for deciles of firm market values; the D/P portfolios are for deciles of dividend/price; and the B/M portfolios are for deciles of book value/market values.

The nominal return on long US government bonds is from Ibbotson Associates.

The international stock and long government bond returns are from Ibbotson Associates, but come originally from Morgan Stanley and IMF respectively. The international data is for France, Germany, Japan, and United Kingdom, and has been converted into US dollar returns.

Real returns are calculated by dividing the nominal gross return by the gross inflation rate over the same period. Inflation is calculated from the seasonally adjusted CPI for all urban consumers (available at http://www.stls.frb.org/fred/).

Quarterly growth of real consumption per capita of nondurables and services is calculated from the seasonally adjusted number in NIPA Table 8.7 (available at http://www.bea.doc.gov/bea/dn1.htm). The growth rate is calculated as a weighted average of the growth rate of nondurables and the growth rate of services (chained 1996 dollars), where the (time-varying) weight is the relative (current dollar) size of nondurables in relation to services.

B Derivations Appendix

B.1 Derivation of (2)

If \(x \) and \(y \) have a bivariate normal distribution and \(h(y) \) is a differentiable function such that \(E[|h'(y)|] < \infty \), then \(\text{Cov}[x, h(y)] = \text{Cov}(x, y) E[h'(y)] \). See, for instance,
Cochrane (2001). Here, this gives \(\text{Cov}(Z_{it}, M_t) = \text{Cov}(Z_{it}, \ln M_t) E(M_t) \). Since (1) can be written \(E(Z_{it}) E(M_t) = - \text{Cov}(Z_{it}, M_t) \), (2) follows.

B.2 Derivation of (9)

Use (8) in (7) to get \(\ln M_t = \ln \beta - y(\phi - 1)s_{t-1} - [1 + \lambda(s_{t-1})]y' \Delta c_t \). Since \(s_{t-1} \) is known in \(t - 1 \), the conditional standard deviation is \(\sigma_{t-1}(\ln M_t) = [1 + \lambda(s_{t-1})]y' \sigma_{t-1}(\Delta c_t) \), and the conditional correlation is \(\rho_{t-1}(Z_{it}, \ln M_t) = - \rho_{t-1}(Z_{it}, \Delta c_t) \) which gives (9).

B.3 Derivation of (11)

The budget restriction is \(W_t = R_{mt}(W_{t-1} - C_{t-1}) \), where \(W_t \) is wealth. If \(C_t/W_t = 1/\alpha \), then we can substitute for wealth in the budget restriction to get \(C_t\alpha = R_{mt}C_{t-1} = C_{t-1} \), or \(C_{t+1}/C_t = R_{mt}(\alpha - 1)/\alpha \). Using this in (10) gives (11).

B.4 Derivation of (13)

We have that \(E_t \exp(-\gamma u_{jt+\delta}) = \exp[\gamma^2 \lambda(\varepsilon_t)] \), and \(\ln M_t = \ln \beta - \gamma E_{t-1} \Delta c_t - \gamma \varepsilon_t \). Equation (12) can therefore be written \(E_{t-1}[Z_{it}\exp[(\ln \beta - \gamma E_{t-1} \Delta c_t - \gamma \varepsilon_t + \gamma^2 \lambda(\varepsilon_t))] = 0 \), which we can simplify by cancelling the non-random terms \((\ln \beta - \gamma E_{t-1} \Delta c_t) \) to get (13).

B.5 Derivation of Stein’s Lemma for a Special Case of Mixture Normals

This section proves that Stein’s lemma continues to hold if \(x \) and \(y \) has a bivariate mixture normal distribution, but that the marginal distribution of \(y \) is normal.

Let the pdf of \((x, y)\) be a mixture of \(n \) bivariate normal distributions

\[
pdf \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \sum_{i=1}^{n} \alpha_i \phi \left(\begin{bmatrix} x \\ y \end{bmatrix}; \begin{bmatrix} E_i(x) \\ E_i(y) \end{bmatrix}, \begin{bmatrix} \text{Var}_i(x) & \text{Cov}_i(x, y) \\ \text{Cov}_i(x, y) & \text{Var}_i(y) \end{bmatrix} \right), \text{ with } \sum_{i=1}^{n} \alpha_i = 1,
\]

and where \(\phi(z; \mu, \Sigma) \) is the normal pdf with mean vector \(\mu \) and covariance matrix \(\Sigma \).

Direct calculations give

\[
\text{Cov} [x, h(y)] = \sum_{i=1}^{n} \alpha_i \left[\text{Cov}_i [x, h(y)] + E_i(x) E_i [h(y)] \right] - E(x) E[h(y)].
\]

If \(E_i [h(y)] \) is a constant \(E[h(y)] \), then this simplifies to

\[
\text{Cov} [x, h(y)] = \sum_{i=1}^{n} \alpha_i \text{Cov}_i [x, h(y)].
\]

Since \(\text{Cov}_i [x, h(y)] = \text{Cov}_i (x, y) E_i [h'(y)] \) for all states, we get

\[
\text{Cov} [x, h(y)] = E[h'(y)] \sum_{i=1}^{n} \alpha_i \text{Cov}_i (x, y).
\]

If \(E_i(y) = E(y) \), then the sum equals \(\text{Cov}(x, y) \). Note, however, that the combination of \(E_i(y) = E(y) \) and \(E_i [h(y)] = E[h(y)] \) requires that \(\text{Var}_i(y) = \text{Var}(y) \), which means that the marginal distribution of \(y \) is a normal distribution.
References

SIFR Research Report Series

All reports can be downloaded from our website www.sifr.org, under the heading Research. Reports no. 1-15 are also available in print. In order to obtain copies of printed reports, please send your request to info@sifr.org with detailed ordering information.

1. **Foreigners’ Trading and Price Effects Across Firms**
 Magnus Dahlquist and Göran Robertsson, December 2001

2. **Hedging Housing Risk**
 Peter Englund, Min Hwang, and John M. Quigley, December 2001

3. **Winner’s Curse in Discriminatory Price Auctions: Evidence from the Norwegian Treasury Bill Auctions**
 Geir Høidal Bjønnes, December 2001

4. **U.S. Exchange Rates and Currency Flows**
 Dagfinn Rime, December 2001

5. **Reputation and Interdealer Trading. A Microstructure Analysis of the Treasury Bond Market**
 Massimo Massa and Andrei Simonov, December 2001

6. **Term Structures in the Office Rental Market in Stockholm**
 Åke Gunnelin and Bo Söderberg, April 2002

7. **What Factors Determine International Real Estate Security Returns?**
 Foort Hamelink and Martin Hoesli, September 2002

8. **Expropriation Risk and Return in Global Equity Markets**
 Ravi Bansal and Magnus Dahlquist, November 2002

9. **The Euro Is Good After All: Corporate Evidence**
 Arturo Bris, Yrjö Koskinen, and Mattias Nilsson, November 2002

 Mariassunta Gianetti and Andrei Simonov, November 2002

11. **Corporate Governance and the Home Bias**
 Magnus Dahlquist, Lee Pinkowitz, René M. Stulz, and Rohan Williamson, November 2002

12. **Implicit Forward Rents as Predictors of Future Rents**
 Peter Englund, Åke Gunnelin, Martin Hoesli, and Bo Söderberg, November 2002

13. **Accounting Anomalies and Information Uncertainty**
 Jennifer Francis, Ryan LaFond, Per Olsson, and Katherine Schipper, June 2003
 Steven N. Kaplan and Per Strömberg, June 2003

15. Valuing Corporate Liabilities
 Jan Ericsson and Joel Reneby, June 2003

16. Rental Expectations and the Term Structure of Lease Rates
 Eric Clapham and Åke Gunnelin, October 2003

17. Dealer Behavior and Trading Systems in Foreign Exchange Markets
 Geir Høidal Bjønnes and Dagfinn Rime, December 2003

18. C-CAPM and the Cross-Section of Sharpe Ratios
 Paul Söderlind, December 2003

19. Is there Evidence of Pessimism and Doubt in Subjective Distributions?
 A Comment on Abel
 Paolo Giordani and Paul Söderlind, December 2003