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Abstract

The average firm going public or issuing new equity has underperformed the market

in the long run. Endogeneity of the number of new issues has been proposed as

a potential explanation of this long-run underperformance. Under pseudo market

timing of new issues, ex post measures of average abnormal returns may be negative

on average despite zero ex ante abnormal returns. We show that, under reasonable

stationarity assumptions on the process generating events, traditional measures of

average abnormal returns are consistent, and the pseudo market timing effect is

a small sample problem. In simulations of an empirical model we demonstrate

that the bias is small even in moderate sample sizes. An abnormal return measure

capturing a feasible investment strategy is not biased. We argue that it is unlikely

that pseudo market timing is the explanation for the long-run underperformance in

equity issuances.
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I Introduction

Major corporate events are inherently endogenous. For example, a firm may decide when

to go public depending on general market conditions. It is well documented that firms

tend to go public after high underpricing in initial public offerings (IPOs) and after high

market returns. Traditional event study methods, however, treat the timing of events as

exogenous. Event studies have shown that the average firm going public has underper-

formed the market in the long run. In a recent review, Ritter and Welch (2002) report

an average 23% underperformance (relative to the market) during the three-year period

following a US IPO.1 The lack of an explanation for the long-run underperformance in

IPOs and similar underperformance in seasoned equity offerings (SEOs) has been referred

to as the “new issues puzzle.”

In a recent paper, Schultz (2003) proposes an explanation for the apparent long-run

underperformance of firms that go public. He argues that the underperformance may

be a statistical illusion caused by the clustering of IPOs after a period of unusually high

abnormal returns on previous IPO firms. This effect is referred to as pseudo market timing.

Note that it is not genuine market timing ability that is at work, since abnormal returns of

future IPOs are conditionally unpredictable. Instead, when using traditional iid-oriented

event study methods the clustering of events after periods with positive abnormal returns

causes a statistical bias in estimated average abnormal returns. The pseudo market timing

argument, in principal, extends to other endogenous corporate events. For example, SEOs

have also shown a long-run underperformance. Hence, the pseudo market timing argument

appears to have more wide-spread implications than just for IPOs.

In this paper we provide a thorough evaluation of the endogeneity problem in event

studies as it relates to long-run underperformance and undertake both theoretical and

simulation analyses. Measuring and testing abnormal returns when the number of events is

1The long-run underperformance in IPOs was first documented by Ritter (1991). Reviews on security
issuance include Eckbo and Masulis (1995), Ibbotson and Ritter (1995), Jenkinson and Ljungqvist (2001),
Loughran, Ritter, and Rydqvist (1994), and Ritter (2003).
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endogenous is a non-trivial econometric problem.2 We approach event studies from a time

series perspective, which contrasts to the usual cross-section oriented treatment of event

studies. The time series perspective takes into account the dynamic dependence of events

on past returns and easily incorporates general forms of pseudo market timing. When

reasonable (stationarity) assumptions on the process generating the number of events are

imposed, the traditional cumulative abnormal return measures are not problematic in

large samples. We also consider an abnormal return measure that captures the returns

on a feasible investment strategy in event firms; this measure is in line with the calendar

time approach advocated by Fama (1998). We show that this abnormal return measure

is unbiased and does not have the problems of the traditional measures—not even in

small samples. Hence, pseudo market timing as a potential explanation for long-run

underperformance is limited to small samples.

To evaluate the potential small sample bias in the traditional measures, we undertake

simulation experiments. As a basis for the simulations, we consider count data regres-

sions where the non-negative integer character of the event data (here IPOs) is explicitly

acknowledged. This makes the empirical model well suited for simulations. We find that

pseudo market timing is a small sample problem, and that the bias depends on the pa-

rameters related to persistence in the number of events, impact of market conditions, and

cross-sectional correlations in abnormal returns. An important finding is that dependence

of the number of IPOs on past market returns is not sufficient to generate pseudo market

timing bias; instead, biases are caused by correlation between past abnormal returns and

the number of events. Event abnormal return measures that correct for cross correlations

show much less bias than the usual equally weighted measures. But even for the equally

2Eckbo, Maksimovic, and Williams (1990) discuss exogenous versus endogenous events. Other prob-
lematic issues in measuring long-run abnormal returns relate to the right benchmark model, the use of
average abnormal returns or buy-and-hold returns, the use of value-weighted or equally weighted returns,
corrections for cross-sectional correlations, time-varying market risk, and non-normally distributed ab-
normal returns; see, for instance, Barber and Lyon (1997), Brav (2000), Brav and Gompers (1997), Brav,
Geczy, and Gompers (2000), Eckbo and Norli (2001), Fama (1998), Gompers and Lerner (2003), Kothari
and Warner (1997), Loughran and Ritter (1995), and Mitchell and Stafford (2000).

2



weighted abnormal return measure, the pseudo market timing effect does not provide suf-

ficient bias to explain the observed long-run underperformance of IPOs in samples of the

size typically used in empirical research. We conclude that it is unlikely that the long-run

underperformance of IPO firms is explained by pseudo market timing.

Our work relates to two concurrent working papers. Viswanathan and Wei (2004)

study the properties of long-run performance measures with endogenous events. They

use more restrictive assumptions in their theoretical analysis, but show, as we do, that

the cumulative abnormal return measure converges to zero in large samples. In addition,

they calculate the finite sample expectation of the cumulative abnormal return for a

specific data generating process for the number of IPOs. The calculations show that

under a stationary process for the number of IPOs the biases in abnormal return measure

are small. Ang, Gu, and Hochberg (2004) conduct simulations and conclude that the

IPO underperformance is highly unlikely to be due to small sample problems in abnormal

return measures.

We start our analysis in Section II by providing examples similar to Schultz (2003).

We then turn to a formal analysis of the event abnormal return measures in Section III.

We present an empirical model for the number of events in Section IV, and report the

simulation results in Section V. We conclude in Section VI.

II Two Examples

We follow Schultz (2003) and analyze the pseudo market timing hypothesis in a two-

period model. Initially we make the same simplifying assumptions as he does; later we

relax one crucial assumption.3 The pseudo market timing effect we consider is couched

in a initial public offering (IPO) setting, but extends to general settings with endogenous

corporate events. The purpose of this section is to show the exact cause of the pseudo

3To focus the discussion on the effects of pseudo market timing, we abstract from problems such as
bad benchmark models, value versus equal weighting of events, non-normality and the like. We do pay
attention to cross-sectional correlations, because it interacts with pseudo market timing.
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market timing effect, and to motivate the use of abnormal return measures that correct

for cross-sectional correlation.

Consider a two-period model. The market return is normalized to zero in both periods.

The idea of pseudo market timing is that more firms go public when past returns have been

positive. Returns of private firms (that potentially may go public) and firms that actually

go public are assumed to follow a simple binomial process. These firms experience either a

positive or negative 10% return with equal probability (in both periods). Since the market

return is assumed to be zero in both periods, the binomial process also characterizes the

abnormal returns of private firms and firms that go public. Let the abnormal return

in period 1 (between date 0 and date 1) be denoted by r1. Similarly, let r2 denote the

abnormal return in period 2 (between date 1 and date 2). According to the binomial

process, the abnormal returns in periods 1 and 2 can take four different paths (or four

scenarios, labeled I to IV):

I. r1 = +10% and r2 = +10%;

II. r1 = +10% and r2 = −10%;

III. r1 = −10% and r2 = +10%;

IV. r1 = −10% and r2 = −10%.

The interesting feature of the analysis is that the number of observed IPOs depends

on the past performance. When the price in period 1 is higher than the initial price, more

IPOs are observed. Conversely, a lower price leads to fewer IPOs. Suppose the number

of IPOs in the beginning of the first period, known at date 0, is one (that is, N0 = 1).

If a positive (abnormal) return is observed in period 1, the number of IPOs increases

to, say, three (that is, N1 = 3). It is important to recognize that the number of IPOs

is a function of past returns, but not contemporaneous or future returns. The assumed

number of IPOs in period 2 (here three) is not important for the reasoning; it could be

any positive number larger than one. Suppose now instead that the return in period 1 is
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negative, then the number of IPOs decreases to zero (that is, N1 = 0). [Below, we relax

Schultz’s (2003) assumption that the number of IPOs is zero. It turns out that this is

important for the analysis.] Panel A in Table I summarizes the four scenarios with the

abnormal returns and the number of IPOs.

The table also reports three measures of average abnormal returns. The first measure

is an equally weighted abnormal return measure, denoted AREW . It simply averages

the observed abnormal returns in a scenario. This is the measure that Schultz (2003)

focuses on. The second measure, denoted ARCW , is an extension of the equally weighted

measure, and corrects for the cross-sectional dependence in the abnormal returns. In the

correction for cross-sectional dependence, all event returns in the same period are counted

as one observation. The third measure is a feasible investment abnormal return measure,

denoted ARFI . It captures the per-period return on a feasible investment strategy that

invests in a portfolio of event firms in each period. If there is no event in a period, the

investment is in the benchmark (here the market) and the abnormal return for that period

is by construction equal to zero. This measure captures the essential idea of Fama’s (1998)

calendar time abnormal returns by creating a portfolio of all event firms within a single

investment period.

Table I shows that the unconditional expectations of the first two measures of average

abnormal returns (the AREW and ARCW measures) are negative (–3.75% and –2.5%), that

is, they are both biased downwards. It is also more likely that a negative, rather than

a positive measure of abnormal returns is uncovered. These observations are Schultz’s

(2003) main points. He refers to this as pseudo market timing—despite the ex ante

expectation of zero abnormal returns, it is likely that a negative measure of abnormal

returns is observed ex post. It is driven by the fact that the number of IPOs is determined

by past returns. It is further claimed that this pseudo market timing is not a small sample

issue. The ARFI measure is, however, zero. Recall that this measure captures a feasible

investment strategy, where the investment is in all IPOs in a period. If there are multiple
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IPOs, the investment is divided equally over the event firms. Also, if there are no IPOs in

a period, the investment is in the market. This measure yields a zero average abnormal

return, which is what should be expected from the zero ex ante abnormal returns.

The setting above is special and restrictive in the sense that after one negative ab-

normal return, there are no more IPOs. Consider instead a less drastic assumption and

let the number of IPOs decline, but remain positive, after a negative abnormal return.

For example, start with two IPOs in period 1 (that is, N0 = 2). Then, after a positive

abnormal return in period 1, the number of IPOs doubles and after a negative abnormal

return it halves (that is, N1 = 4 or N1 = 1 depending on the return in period 1). Panel

B in Table I summarizes the four scenarios with the abnormal return measures.

We now observe a different picture. The AREW measure is still biased downwards, but

the ARCW measure is unbiased. Note that the key difference with the previous example

is the number of IPOs in scenarios III and IV. In Panel A, scenarios III and IV show

no IPOs in period 2, hence the abnormal return in period 2 is not taken into account in

these scenarios. In Panel B, there is still one IPO in period 2. This observation exactly

offsets the negative abnormal return in period 1 if the abnormal return measure corrects

for cross-sectional dependence. The ARFI measure is again unbiased. That the abnormal

return in period 2 is not observed in Panel A is not a problem for the ARFI measure

as the investment strategy is then to invest in the benchmark, yielding a zero abnormal

return. Still, this observation is taken into account in the per-period average.

That cross-sectional dependence for computing average abnormal returns is problem-

atic has been noticed in several studies (including Brav, 2000, and Mitchell and Stafford,

2000). Fama (1998) argues that a better way of gauging abnormal returns is to construct

portfolios representing investments in all feasible events in a period and then evaluate the

performance of such a strategy in the time series. Note that in the examples above, such

a measure is similar to our ARCW and ARFI measures. Depending on how periods with

no events are treated it coincides with either ARCW or ARFI . If it is assumed that there

6



is no investment at all in periods with no IPOs, it coincides with ARCW . If it is assumed

that the investment is in the benchmark when there are no events, it coincides with ARFI .

Finally, note that it is only the ARFI measure that is unbiased in both examples.

III Abnormal Return Measures and Sampling Properties

In this section we derive formal sampling properties of abnormal return measures. We

first formalize the way cumulative abnormal return measures are calculated, and then

discuss unbiasedness (a small sample property) and consistency (a large sample property)

of the measures in relation to endogenous event timing. Finally, we consider a feasible

investment abnormal return measure and its sampling properties.

A Cumulative Abnormal Return Measures

Consider a sample period of length T + K, where Nt denotes the number of events in

period t. We assume the events are realized at the end of the period, so Nt ∈ Ωt, for

t = 1, .., T . The abnormal returns on the event firms, ri,t+k, are realized in periods t + 1

through t + K. We are interested in measuring the average abnormal return on event

firms up to K periods after the event period.

Consider the abnormal return measures from the previous section. The equally weighted

abnormal return in event period k is calculated as follows:

ARk
EW =

∑T
t=1

∑Nt

i=1 ri,t+k∑T
t=1 Nt

. (1)

This expression sums up the abnormal returns over all events in all time periods, and then

divides by the total number of events. It is a traditional abnormal return measure. An

equally weighted cumulative abnormal return is obtained by aggregating all event periods

CAREW =
K∑

k=1

ARk
EW =

K∑
k=1

∑T
t=1

∑Nt

i=1 ri,t+k∑T
t=1 Nt

=

∑T
t=1

∑Nt

i=1

(∑K
k=1 ri,t+k

)
∑T

t=1 Nt

. (2)

This measure is simply an equally weighted average abnormal return for the cumulative
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abnormal returns
∑K

k=1 ri,t+k in firm i.

The measure with correction for cross-sectional dependence first averages the abnormal

returns within each period, and then averages the resulting numbers over all time periods.

If there is at least one event in each period, we have

ARk
CW =

1

T

T∑
t=1

(
1

Nt

Nt∑
i=1

ri,t+k

)
. (3)

To allow for periods without events (Nt = 0 in some periods), we can generalize it to

ARk
CW =

∑T
t=1 I [Nt > 0]

(
1

Nt

∑Nt

i=1 ri,t+k

)
∑T

t=1 I [Nt > 0]
, (4)

where I [.] is an indicator function (the value is one if Nt > 0, and zero otherwise). Like

before, this measure can be cumulated to obtain the cross-sectionally weighted cumulative

abnormal return measure

CARCW =
K∑

k=1

ARk
CW =

∑T
t=1 I [Nt > 0]

(
1

Nt

∑Nt

i=1

∑K
k=1 ri,t+k

)
∑T

t=1 I [Nt > 0]
. (5)

Again, this is simply a cross-sectionally weighted average abnormal return applied to the

individual cumulative abnormal returns.

We now assess the properties of the cumulative abnormal return measures. To fix the

idea, start with the case of purely exogenous timing of events. Formally, we assume that

E (ri,t) = 0 and Nt and ri,s are independent for all t and s. This independence implies

that E
(∑K

k=1 ri,t+k|N1, . . . , NT

)
= E

(∑K
k=1 ri,t+k

)
= 0. Under the exogenous market

timing assumption one can easily show that both cumulative abnormal return measures

are unbiased (i.e., E (CAREW ) = 0 and E (CARCW ) = 0). In contrast to the exogenous

event situation, the number of events in the pseudo market timing case is endogenous and

correlated with past abnormal returns. We therefore cannot set the expectations of ri,t

conditional on the full time series of the number of observations N1, . . . , NT to zero. In

this case, we generally cannot deliver a proof of unbiasedness.4 We are therefore left with

4The problem is that in both expressions for these estimators, we divide by a function of Nt, which is

8



considering large sample properties of these two measures.

To assess the large sample properties, we exploit the assumption that abnormal returns

have expectation zero conditional on all previous information (i.e., we assess whether

these estimators are unbiased under the null that E (ri,t|Ωt−1) = 0, where Ωt−1 denotes

information available at time t−1). This is exactly the assumption Schultz (2003) makes.

This assumption captures the key idea of market efficiency and excludes genuine market

timing of abnormal returns (predictive ability of abnormal returns).

We show that the cumulative average abnormal return measures converge in large

samples to zero (that is, we prove consistency in all cases). The proof for the equally

weighted average abnormal return measure is straightforward:

plimT→∞CAREW =
plimT→∞T−1

∑T
t=1

(∑Nt

i=1

∑K
k=1 ri,t+k

)
plimT→∞T−1

∑T
t=1 Nt

=
0

n
= 0, (6)

where n is the long-run average number of events per period. It is assumed that

(i) n is strictly positive, and

(ii)
∑Nt

i=1

∑K
k=1 ri,t+k is a martingale difference sequence, i.e. E

(∑Nt

i=1

∑K
k=1 ri,t+k|Ωt

)
=

0, with finite variance, i.e. E|
∑Nt

i=1

∑K
k=1 ri,t+k|2 < Q < ∞ for some Q.5

Condition (i) rules out processes that die out over time (i.e., processes where the number

of events over time almost surely converges to zero). Condition (ii) rules out processes

where the number of events grows without bound. Combined, these two conditions guar-

antee that the event process is stable (stationary) over time. The martingale difference

property in condition (ii) is implied by the null hypothesis E (ri,t|Ωt−1) = 0. Using the

law of iterated expectations and the timing convention Nt ∈ Ωt, the martingale property

E
(∑Nt

i=1

∑K
k=1 ri,t+k|Ωt

)
= 0 follows immediately.

For the cross-sectionally weighted average abnormal return measure, we find a similar

not independent of the abnormal returns in the numerator, and conditioning on past information only is
not possible.

5See Hamilton (1994) page 191, Proposition 7.7 and the text following that proposition.
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result:

plimT→∞CARCW =
plimT→∞T−1

∑T
t=1 I [Nt > 0]

(
1

Nt

∑Nt

i=1

∑K
k=1 ri,t+k

)
plimT→∞T−1

∑T
t=1 I [Nt > 0]

=
0

p
= 0, (7)

where p is the long-run average fraction of time periods with at least one event. It is

assumed that

(i) p is strictly positive, and

(ii) 1
Nt

∑Nt

i=1

∑K
k=1 ri,t+k is a martingale difference sequence and E| 1

Nt

∑Nt

i=1

∑K
k=1 ri,t+k|2 <

Q < ∞ for some Q.

Again, condition (i) guarantees that the event process does not die out (i.e., the number

of events does not converge to zero). Condition (ii) is again implied by the null and is

slightly weaker than the condition for the consistency of the equally weighted average

abnormal return measure. Both conditions seem reasonable in a stationary environment.

The consistency results imply that, although possibly biased in small samples, event

studies using the equally weighted abnormal return measure or the cross-sectionally

weighted abnormal return measure give consistent estimates in large samples. Hence,

we find that the possible bias of the equally weighted average abnormal return measure is

only a small sample problem. Our conclusion contradicts Schultz’s (2003) statements and

seems at odds with the results of his multi-period simulations. We conjecture that his

simulations violate the stationarity condition we impose above. His simulations increase

the number of events after a price increase, and decrease the number of events after a

price decrease. As Schultz (2003) states, this is reminiscent of a doubling strategy. The

problem with such a process is that the unconditional variance of the number of events Nt

grows without bound over time. As a result, his simulations violate condition (ii) which

requires the variance of the sum of abnormal returns to be bounded.
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B A Feasible Investment Abnormal Return Measure

Fama (1998) suggests an alternative measure of the event effect, captured by the return

on a feasible investment strategy in the event firms. For every time period t, define the

excess return (over a benchmark) on an investment strategy in all firms that had an event

in the window from t−K to t− 1

rFI
t = I

[
K∑

k=1

Nt−k > 0

] ∑K
k=1

∑Nt−k

i=1 ri,t∑K
k=1 Nt−k

, (8)

The indicator function I [.] implies that if there are no events in the period (t−K, . . . , t−1),

the feasible investment return equals zero, reflecting an investment in the benchmark. The

abnormal return measure is obtained by averaging rFI
t over time:

ARFI =
1

T

T∑
t=1

rFI
t . (9)

This measure reflects the averages per period return on an investment strategy in events

in the previous K periods. To compare the excess return with the cumulative abnormal

returns, the ARFI measure has to be multiplied by K (the length of the event window).

It is straightforward to show the unbiasedness of the measure capturing a feasible

investment strategy. Recall that the abnormal investment return in a period is the cross-

sectional average of abnormal return. Unbiasedness follows from the fact that this abnor-

mal investment return is a martingale difference, so that

E
(
rFI
t |Ωt−1

)
= E

(
I

[
K∑

k=1

Nt−k > 0

] ∑K
k=1

∑Nt−k

i=1 ri,t∑K
k=1 Nt−k

|Ωt−1

)
= 0, (10)

where the second equality follows from the conditional independence of Nt−k and ri,t.

Applying this result to all the returns we find

E (ARFI) = E

(
1

T

T∑
t=1

E
(
rFI
t |Ωt−1

))
= E

(
1

T

T∑
t=1

0

)
= 0, (11)
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Consistency is also immediate, since

plimT→∞ARFI = plimT→∞
1

T

T∑
t=1

rFI
t = 0, (12)

where we use that rFI
t is a martingale difference sequence with finite variance. For this

to hold, we need essentially the same conditions as for the consistency of the cumulative

abnormal return measure CARCW .

IV Data and Empirical Model

In this section we fit an empirical model of the number of IPOs to actual data. We

first describe the data used, then discuss and estimate the model, and finally provide

simulation evidence.

A Data Description

We study the effects of market conditions on the number of IPOs using U.S. data. The

sample period is January 1960 to June 2003, yielding 522 monthly observations. Data on

the number of IPOs in a month, denoted Nt, are taken from the web pages of Jay Ritter.6

We consider two variables that proxy for market conditions: returns on the S&P 500 index

and average initial underpricing in IPOs. They are denoted by Rm,t and Ru,t. The S&P

500 returns are from Ibbotson Associates; the data on initial underpricing are taken from

the web pages of Jay Ritter. The initial underpricing variable is the equally weighted

initial underpricing across all IPOs in a month. An individual initial underpricing is

measured as the percentage change in the closing price within a month from the IPO offer

price.7

Figure I shows the number of IPOs aggregated into a quarter together with monthly

6The number of offerings excludes Regulation A offerings, REITs, and close-end funds, but includes
ADRs. The web pages of Jay Ritter give a detailed description with references to data sources.

7The definition of underpricing varies somewhat in the sample as described in Ibbotson and Jaffe
(1975), Ritter (1984), and updates of Ibbotson, Sindelar, and Ritter (1988, 1994) at Jay Ritter’s web
pages.
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observations of the log of cumulative returns (labeled log of market index in the figure)

and the initial underpricing. There are four distinct periods of relatively low IPO activity

(1963-67, 1973-79, 1988-90, and 2001 to the end of the sample). Consequently, there

are also four periods of relatively high IPO activity (up to and including 1962, 1968-72,

1980-87, and 1991-2000). In each of the low activity periods the annual number of IPOs

was well below 240 (a monthly average of less 20 IPOs), whereas the annual number of

IPOs in high activity periods ranges from 238 to 953. It is evident from the figure that

immediately before a period of low IPO activity there are severe falls in equity values. It

is also evident that there is clustering in the initial underpricing. Further, it seems as a

large underpricing is followed by a period of high IPO activity. However, the most recent

period of low IPO activity (after a dramatic fall in prices in aftermath of the internet

boom) is preceded by a period of large initial underpricing.

Table II presents summary statistics of the three variables. The total number of IPOs

in the sample is 14,860. The average and median number of IPOs in a month is 28.5 and

22. The number of IPOs in a month varies a lot (the standard deviation is 24.7); there

are 18 months with no IPOs, and the maximum number of IPOs in a month is 122. Note

that the variance is much larger than the mean, which for count data is referred to as

overdispersion. The average return on the S&P 500 is about 0.91% per month (10.9%

annualized). The standard deviation is about 4.34% per month (15.0% annualized). The

average initial underpricing is 18.1%, but it ranges between a minimum of -28.8% and a

maximum of 119.1% (also seen in Figure I). The median underpricing is about 13%.

From the returns on S&P 500 and initial underpricing, we compute 12-month moving

average series. They are denoted R12
m,t and R12

u,t. We will use the 12-month moving averages

in the count data regressions below to capture general market conditions in the previous

year.
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B An Empirical Model of the Number of IPOs

To study the effects of market conditions on the number of IPOs we use count data

regressions. We explicitly acknowledge the non-negative integer character of the data

(the number of IPOs in a month). This non-negativity is, in general, a concern for the

fitted values of the number of IPOs, and, in particular, a concern for simulations of the

number of IPOs. The empirical model is a count regression model and has two major

components, first a distributional assumption, and second a specification of the mean

parameter as a function of explanatory variables. This makes the model well suited for

simulations.8

The basic Poisson regression model in the time series assumes that the occurrence of

event counts (here the number of IPOs in a month Nt) conditional on variables known at

time t− 1, denoted by xt−1, has a Poisson distribution. The density is

f (Nt|xt−1) =
exp [−µ(xt−1)]

[
µ(xt−1)

Nt
]

Nt!
, Nt = 0, 1, 2, . . . , (13)

where µ(xt−1) > 0 is the intensity or rate parameter that completely determines the

density. It is well known that the first two central moments of the Poisson distribution

are equal, that is,

E (Nt|xt−1) = Var (Nt|xt−1) = µ(xt−1). (14)

This equality of the mean and variance is referred to as equidispersion. When the variance

is a larger (smaller) than the mean, we have overdispersion (underdispersion).

Empirically, overdispersion is common (for example, we have noted that the number

of IPOs is unconditionally overdispersed). To allow for overdispersion, we let the number

of IPOs in a month be drawn from the mixing of a Poisson distribution and a gamma

8Indeed, predicted values in Schultz (2003) are negative in some periods (see his Figure 1). Simulated
values of the model suffer from this drawback as well.
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distribution. That is,

ηt ∼ Gamma
[
1/σ2

η, 1/σ
2
η

]
, (15)

Nt|xt−1, ηt ∼ Poisson [ηtµt (xt−1)] , (16)

where ηt is drawn from a gamma distribution with a unit mean and a variance equal to σ2
η.

The error term ηt is a multiplicative error term that accounts for unobserved heterogeneity

in the data over time. It is straightforward to show that conditional mean and variance

are now

E (Nt|xt−1) = µ (xt−1) , (17)

Var (Nt|xt−1) = µ (xt−1) + σ2
η [µ (xt−1)]

2 . (18)

These moments are equal to the mean and variance of the negative binomial II model in

Cameron and Trivedi (1986), and extensively discussed in Cameron and Trivedi (1998)

and Winkelmann (2003).

The Poisson regression model is derived from the Poisson distribution by parameteriz-

ing the relation between the mean parameter and its regressors. Consider the exponential

mean parameterization

E (Nt|xt−1) = µ(xt−1) = exp(β′xt−1), t = 1, 2, . . . , T, (19)

where β and xt−1 are both vectors with dimension l. The vector of regressors xt−1 may

include a constant term. As described in detail below, we include functions of lagged

number of IPOs, lagged market returns, and lagged initial underpricing in xt−1.

We use the Generalized Method of Moments (GMM) of Hansen (1982) to estimate

parameters. We consider the following moment conditions:

E ([Nt − exp(β′xt−1)] xt−1) = 0. (20)

E
(
[Nt − exp(β′xt−1)]

2 − exp(β′xt−1)− σ2
η [exp(β′xt−1)]

2
)

= 0. (21)
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The parameter vector β is identified in the first l moment conditions (20), and σ2
η is iden-

tified in the last moment condition (21).9 Together this is an exactly identified system

with l + 1 equations and l + 1 parameters. In practice the moments are replaced with

their sample counterparts.10 Note that the Poisson regression model is intrinsically het-

eroskedastic, and GMM provides a consistent covariance matrix robust to autocorrelation

and heteroskedasticity.

We consider model specifications where the number of IPOs is a function of past

number of IPOs (similar to an autoregressive model) and measures of market conditions.

The following is our base line specification:

E (Nt|Nt−1, Rm,t−1) = exp
[
β0 + β1Rm,t−1 + β2 ln(N∗

t−1)
]
, (22)

where Rm,t−1 is the lagged S&P 500 return and N∗
t−1 = max(d,Nt−1). The value 0 <

d < 1 in the max operator prevents potential problems in taking the logarithm when

Nt−1 = 0. We let d = 0.5, but experimenting with different values reveals that the

results are not sensitive to the choice of 0.5. We further use ln
(
N∗

t−1

)
rather than N∗

t−1 as

the model could otherwise explode (see, Cameron and Trivedi, 1998). We also consider

specifications with alternatives to the market return as a proxy for market conditions

(initial underpricing, and the 12-month moving averages of market returns and initial

underpricing), and specifications where more lags of the number of IPOs are included.

The main results from the count data regressions are presented in Table III. Specifi-

cation (i) shows that the measured coefficient on the lagged S&P 500 returns is about

1.4 and statistically significant at usual significance levels. The interpretation is that a

1% point increase in the current month’s return leads to a 1.4% increase in the expected

9Alternative ways of identifying σ2
η (see, for instance, Gourieroux, Monfort, and Trognon, 1984) yield

similar estimates. See also Hall, Griliches, and Hausman (1986) for an application.
10Another natural estimator is maximum likelihood (ML). It turns out that the set of sample moment

conditions related to (20) equals the score of the log likelihood function for the ML estimator of the
basic Poisson model, and GMM and ML yield identical point estimates. It is well known that as long as
the conditional mean is correctly specified the estimates are consistent even if the Poisson distribution
assumption is not appropriate.
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number of IPOs in the next month. Specifications with the lagged initial underpricing

(ii) or a lagged 12-month moving average of S&P 500 returns (iii) show significant coef-

ficients as well. The market condition in the last 12 months is particular important for

the number of IPOs. Specification (iii) suggests that a year with a one 1% point increase

in the average S&P 500 return is followed by a month with an 8.4% expected increase

in the number of IPOs. The effect of market conditions on the number of IPOs seems

economically significant. The coefficient on a lagged 12-month moving average of initial

underpricing in specification (iv) is only marginal significant (a p-value of 6%). We also

run specifications with multiple measures of market conditions. The results in specifica-

tion (v) suggest that the lagged S&P 500 return as well as the lagged initial underpricing

is important; they are both significant at usual significance levels. The results in specifi-

cations (vi) and (vii) indicate that the 12-month moving average of S&P 500 returns is

the main driver of the results.

In all specifications the measured coefficients on the lagged number of IPOs indicate

a high degree of persistence in the number of IPOs—the coefficients are in the range

0.79 to 0.84. We also estimate models with further lags of the number of IPOs. The

results are reported in Table IV. The coefficients on additional lags are often significant,

however, the sum of the coefficients on the lags are less than 0.85 in all specifications.

Importantly, the inclusion of further lags does not considerably affect the estimates on the

measures of market conditions. The R-square measures do not strongly favor a particular

specification, though it is important to include at least one lag of the number of IPOs.

Following Lowry (2003) and Pástor and Veronesi (2004), we also consider specifications

with a dummy for observations in the first quarter of a year. We do not find any evidence

in favor of a quarterly seasonality. However, specifications with monthly dummies for

January, February, and March show that (conditionally) there are significantly fewer

IPOs in January.

In sum, we show that current market conditions have information about the number
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of IPOs in the future. This is consistent with the idea of pseudo market timing. Next we

use the empirical model to simulate from.

V Simulation Evidence

We have shown that the abnormal return measure that captures a feasible investment

strategy is unbiased under pseudo market timing. In order to assess the small sample

performance of the other two average abnormal return measures (the equally weighted

abnormal return measure and the measure that takes into account cross-sectional depen-

dence), we undertake simulation experiments. The basis of the simulations is the empirical

model for the number of IPOs fitted in the previous section.

A Simulation Set-Up

The steps in the experiments are:

1. The data generating process of market returns.

Monthly market returns are drawn (with replacement) from the actual S&P 500

returns. Based on the sampled monthly market returns, 12-month moving averages

are constructed. The sample size varies in different simulations (100, 200, or 500

observations).

2. The data generating process of abnormal returns.

The following error components model is used for abnormal returns

r̂i,t = ct + εi,t (23)

where ct ∼ N(0, σ2ρ) and εi,t ∼ N(0, σ2(1 − ρ)). The cumulative abnormal return

for any time period and firm is then given by
∑K

k=1 r̂i,t+k =
∑K

k=1 ct +
∑K

k=1 εi,t.

This error component model implies an interesting correlation structure for the

cumulative abnormal returns. It is straightforward to show that the variance of
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the cumulative return is Kσ2 and the cross-sectional covariance is Kσ2ρ. The

correlation between two cumulative abnormal returns is then ρ, independent of the

cumulation horizon K. The parameters σ and ρ are set to match empirical estimates

in Brav (2000) and Mitchell and Stafford (2000) of the cross-sectional correlation in

abnormal returns and the variance of abnormal returns. Initially we pick ρ = 2.6%

and σ = 17%.

3. The data generating process of number of IPOs

We consider two alternative processes of the number of IPOs. The first alternative

conditions on the time series of 12-month moving averages and uses the empirical

model directly to generate a time series of the number of IPOs (denoted N̂t). The

initial number of IPOs is drawn from a Poisson distribution with an unconditional

intensity parameter equal to exp
(

β̂0+β̂1µ̂m

1−β̂2

)
, approximated from equation (22) with

µ̂m being the average market return and β̂0, β̂1, and β̂2 being estimated parameters.

This generates about 30 IPOs for the first month, close to the unconditional average

number of IPOs per month in the sample. For subsequent observations we have

the following structure: a multiplicative error term is first drawn from a gamma

distribution with unit mean and variance σ̂2
η; then the number of IPOs is drawn from

a Poisson distribution with a conditional mean (based on the estimated parameters

β̂, and lagged number of IPOs and 12-month moving average return) times the

multiplicative error term. Parameter estimates from specification (iii) in Table III

are used as default parameters.

The second alternative data generating process uses the same structure as the first

alternative, but allows the lagged common component of the abnormal returns ct to

affect the future number of IPOs. This will impose a pseudo market timing effect in

the model, since the number of IPOs is affected by the abnormal IPO returns in the
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previous period. The equation for the number of IPOs then contains the expression

β′xt−1 = β0 + β1Rm,t−1 + β2 ln(N∗
t−1) + β3ct−1. (24)

However, since we did not include the lagged common IPO return component in the

empirical model (as it is unobserved), we have to assume a particular value for the

coefficient β3. In the simulations, we pick values so that the effect of market and

previous IPO returns are in the same order of magnitude.

4. The average abnormal return measures.

The abnormal return measures are calculated according to:

CAREW =

∑T
t=1

∑N̂t

i=1

(∑K
k=1 r̂i,t+k

)
∑T

t=1 N̂t

, (25)

CARCW =

∑T
t=1 I

[
N̂t > 0

] (
1

N̂t

∑N̂t

i=1

∑K
k=1 r̂i,t+k

)
∑T

t=1 I
[
N̂t > 0

] , (26)

ARFI =
1

T

T∑
t=1

I

[
K∑

k=1

N̂t−k > 0

](∑K
k=1

∑N̂t−k

i=1 r̂i,t∑K
k=1 N̂t−k

)
. (27)

These calculations correspond to Equations (2), (5), and (9) above. We consider

cumulative returns with horizons of 1, 36, and 60 months. To make the monthly fea-

sible investment returns comparable to the K-month cumulative abnormal returns,

we multiply ARFI by K in all the tables.

The four steps above are repeated 1,000, 2,500, or 5,000 times (depending on the length of

the series simulated). The averages of the generated measures are reported. We also report

Monte Carlo standard errors of the averages, constructed from the standard deviation of

the generated abnormal return measures.

B Simulation Results

Table V reports the results of our simulations when the generating process of the number

of IPOs exactly follows the empirical model above (ı.e. β3 = 0). The table shows bias
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estimates of the three abnormal return measures CAREW , CARCW , and ARFI expressed

in % over the horizons of 1, 36, and 60 months. We consider four parameter set-ups.

Panel A shows the results for the default case where parameters is from specification (iii)

in Table III. Further, the cross-correlation in abnormal returns is set to 2.6% and the

standard deviation of the abnormal returns is set to 17% per month. The magnitudes

of the reported biases are economically small (less than 0.16% in absolute value in the

60-months period). There is no tendency for an overall negative or positive bias. Indeed,

no reported bias is larger than its Monte Carlo standard error (given below the bias and

within parenthesis).

To see how sensitive the results are to the chosen parameter values, we presents sim-

ulations where we expect to get significant biases. Panel B shows the results where the

persistence in the event generating process is higher (the coefficient on the lagged number

of IPOs is increased from 0.8 to 0.95); Panel C shows the results where the coefficient

on lagged 12-month moving average returns is doubled (from 8.438 to 16.876) in addition

to the higher persistence; Panel D shows results where the cross-sectional correlations in

abnormal returns is increased (from 2.6% to 15%). All augmented set-ups reveal the same

result: there is no bias in the abnormal return measures.

Table VI reports the results of our simulations when we allow the lagged common

component of the abnormal returns ct to affect the future number of IPOs. We do this by

choosing β3 = 5 as the default value; this choice makes the variance of β3ct approximately

equal to the variance of β1Rm,t. We consider again four parameter set-ups. Panels A

(default) and B (high persistence) follow the set-ups in the previous table and show a

consistently negative bias for the equally weighted measure due to the pseudo market

timing. However, the magnitudes are small. The cross-sectional corrected measure and

the measure of the feasible investment strategy show now biases. In Panel C, the impact

of the lagged common component is set to 10 and together with high persistence the bias

for the equally weighted measure is larger (about 2% over a 60-month horizon). In Panel
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D the cross-sectional correlations is set at 15% and the equally weighted measure now

show a bias of about 6% over a 60-month horizon. The bias is significantly negative for

the equally weighted measure; the largest bias is -6% for the 60-month horizon and 100

observations, which is still quite much less than the underperformance of IPO firms found

in most empirical studies. Panels C and D also reveal that the cross-sectional corrected

measure and the measure of the feasible investment strategy show almost no biases.

To conclude, in our simulations we find no or only small biases in the average abnormal

return measures. It is crucial to have a correlation between IPO returns and the process

for the number of IPOs in order to generate a pseudo market timing effect. Based on our

results, pseudo market timing does not seem to be a problem in sample sizes typically

used in empirical work on IPO underperformance.

C A Comparison with Other Studies

How can we reconcile our results with Schultz’s (2003) results? A critical assumption in

the simulations is that the event generating process is stationary. We explicitly acknowl-

edge that the number of IPOs in a month is a non-negative integer; we also allow for

high persistence in the process, though the process cannot be absorbed at zero and does

not explode. The key in Schultz (2003) is that the simulations violate the stationarity

assumptions made above. However, then the probability limit of the abnormal return

estimator is not well defined. Several studies, including Lowry (2003), Schultz (2004)

and Viswanathan and Wei (2004) have tested for a unit-root in the level of the number of

IPOs, but these tests seem inconclusive. We do not find it economically plausible that the

process is exploding or have an absorbing state at zero. Recall that if we let the process

be near-integrated but still stationary (the autoregressive coefficient is set to 0.95), there

is still not a bias in typical sample sizes.

Schultz (2004) argues that there is a bias in the traditional equally weighted measure

even when the data generating process is stationary. We find this odd. Looking closer at
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the way he generates abnormal returns, we find that his seemingly uncorrelated abnormal

returns (i) share a common market component that induces cross-sectional correlations in

abnormal returns, and (ii) contain a complex dependence structure with market returns

and the number of IPOs. To see this, consider the way IPO returns are generated:

Ri,t = a + βi,mRm,t + νi,t, Rm,t ∼ N(µm, σ2
m), νi,t ∼ N(0, σ2

ν), (28)

where a = −0.43695 is a constant term, βi = 1.4634 is the estimated beta in a market

model regression, µm = 0.94293% is the market mean return, σ2
m = 0.002254 is the market

variance, and σ2
ν = 0.002631 is the residual variance in the market model regression. The

abnormal return is then given by

ri,t = Ri,t −Rm,t = a + (βi,m − 1)Rm,t + νi,t. (29)

Note that the constant a is chosen such that the abnormal return is forced to have an

expected value of zero, that is, E (ri,t) = 0. However, abnormal returns share a market

component. It is straightforward to show that the cross-sectional correlation between the

abnormal returns is non-zero and given by

Corr (ri,t, rj,t) =
Cov (ri,t, rj,t)

Var (ri,t)
=

(βi,m − 1)2σ2
m

(βi,m − 1)2σ2
m + σ2

ν

. (30)

Plugging in the values yields a cross-sectional correlation of 15%, which is much higher

than what data suggest; Brav (2000) and Mitchell and Stafford (2000) report cross-

correlations close to zero (about 2% to 3%). In addition, the common component of

abnormal returns in equation (29) equals (βi,m − 1)Rm,t and is therefore perfectly corre-

lated with the market returns. These market returns also determine the number of IPOs

in future periods. Hence, Schultz’s (2004) simulations contain a complex dependence

structure between market returns, number of IPOs, and abnormal returns.
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VI Conclusion

Returning to the question in the title of paper whether pseudo market timing is a fact or

fiction, the answer is that in theory there may be a bias, but that the bias is small and

negligible for typical sample sizes. An abnormal return measure that captures a feasible

investment strategy exhibits no bias at all. For other, maybe more traditional, measures, it

is a small sample problem that disappears in large samples (yielding consistent measures).

However, even in moderate sample sizes, the bias is small. Based on this, it seems unlikely

that the long-run underperformance of firms going public or issuing equity is explained

by pseudo market timing.
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Table I: Analysis of Average Abnormal Returns in Two-Period Examples

Number of IPOs and Abnormal Returns Abnormal Return Measures

Scenario N0 r1 N1 r2 AREW ARCW ARFI

Panel A. Example with Zero IPOs after a Negative Return

I 1 +10% 3 +10% +10% +10% +10%

II 1 +10% 3 –10% –5% 0% 0%

III 1 –10% 0 +10% –10% –10% –5%

IV 1 –10% 0 –10% –10% –10% –5%

Average –3.75% –2.5% 0%

Panel B. Example with Non-Zero IPOs after a Negative Return

I 2 +10% 4 +10% +10% +10% +10%

II 2 +10% 4 –10% –3.33% 0% 0%

III 2 –10% 1 +10% –3.33% 0% 0%

IV 2 –10% 1 –10% –10% –10% –10%

Average –1.67% 0% 0%

This table presents the abnormal return measures in four scenarios (labeled I to IV) of the two-
period examples. N0 and N1 refer to the number of events in periods 1 and 2 (known at dates 0
and 1). r1 and r2 refer to the abnormal returns in periods 1 and 2. AREW denotes the equally
weighted average abnormal return measure. It sums up the abnormal returns over all events in all
time periods, and then divides by the total number of events. ARCW corrects for the fact that there
is cross-sectional dependence in the abnormal returns. It counts all events in the same period as
one observation. ARFI denotes the average per-period return on a feasible investment strategy that
invests in a portfolio of event firms in each period (if there is no event in a period, the abnormal
return for that period is equal to zero).
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Table II: Summary Statistics

Number of IPOs Return on S&P 500 Initial Underpricing

Statistic Nt Rm,t Ru,t

Mean 28.5 0.91 18.11

Median 22 1.07 13.15

Std.Dev. 24.7 4.34 21.31

Minimum 0 -21.52 -28.80

Maximum 122 16.57 119.10

This table presents summary statistics of monthly observations of the number of
IPOs in a month (Nt), S&P 500 returns (Rm,t), and the average initial underpricing
in IPOs in a month (Ru,t). The sample period is January 1960 to June 2003,
yielding 522 observations. The number of months with zero IPOs is 18 (or 3.5% of
all observations). The moments of Rm,t and Ru,t are expressed in % per month.
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Table III: Empirical Models of the Number of IPOs in a Month

(i) (ii) (iii) (iv) (v) (vi) (vii)

Moment Conditions (20)

Constant 0.554 0.517 0.615 0.542 0.514 0.599 0.573
(0.069) (0.071) (0.073) (0.071) (0.074) (0.073) (0.077)

Rm,t−1 1.384 1.256 0.849
(0.546) (0.529) (0.560)

Ru,t−1 0.228 0.197 0.074
(0.094) (0.089) (0.125)

R12
m,t−1 8.438 8.335 6.988

(1.736) (1.759) (1.832)

R12
u,t−1 0.192 0.167 0.109

(0.103) (0.101) (0.157)

ln(N∗
t−1) 0.845 0.847 0.800 0.842 0.846 0.795 0.804

(0.019) (0.019) (0.023) (0.020) (0.019) (0.023) (0.024)

Moment Condition (21)

σ2
η 0.309 0.309 0.297 0.309 0.307 0.297 0.297

(0.016) (0.017) (0.017) (0.017) (0.017) (0.017) (0.017)

Diagnostics

R-square I 0.793 0.792 0.803 0.794 0.795 0.803 0.895

R-square II 0.867 0.867 0.876 0.868 0.868 0.876 0.876

T 521 521 510 510 521 510 510

This table presents results of count data regressions for the number of IPOs in the U.S. (Nt) for the
period January 1960 to June 2003. Lagged S&P 500 returns (Rm,t−1), lagged initial underpricing
(Ru,t−1), 12-month moving averages of S&P 500 returns (R12

m,t−1) and initial underpricing (R12
u,t−1),

and functions of lagged number of IPOs (N∗
t−1 = max(0.5, Nt−1)) are used as regressors. The initial

underpricing variable is set to zero when there are no IPOs in a month. Sample counterparts to
moment conditions (20) and (21) in the text are used to identify parameters:

E ([Nt − exp(β′xt−1)]xt−1) = 0. (20)

E
(
[Nt − exp(β′xt−1)]

2 − exp(β′xt−1)− σ2
η [exp(β′xt−1)]

2
)

= 0, (21)

where xt−1 contains a one, Rm,t−1, Ru,t−1, R12
m,t−1, R12

u,t−1, and ln(N∗
t−1). Heteroskedastic and

autocorrelation consistent standard errors are shown within parentheses below the point estimates.
R-square I refers to the pseudo R-square in Cameron and Trivedi (1986) for the basic Poisson
model. R-square II refers to the squared correlation coefficient between the number of IPOs and
the predicted value. T refers to the number of observations used in the count regression.

30



Table IV: Empirical Models of the Number of IPOs in a Month: Robustness

(viii) (ix) (x) (xi)

Moment Conditions (20)

Constant 0.615 0.553 0.503 0.459
(0.073) (0.068) (0.068) (0.073)

R12
m,t−1 8.438 8.310 8.879 9.926

(1.736) (1.730) (1.816) (1.961)

ln(N∗
t−1) 0.800 0.624 0.573 0.531

(0.023) (0.041) (0.046) (0.051)

ln(N∗
t−2) 0.197 0.066 0.044

(0.038) (0.049) (0.045)

ln(N∗
t−3) 0.195 0.100

(0.036) (0.043)

ln(N∗
t−4) 0.124

(0.052)

ln(N∗
t−5) 0.019

(0.044)

ln(N∗
t−6) 0.027

(0.036)

Moment Condition (21)

σ2
η 0.297 0.293 0.285 0.281

(0.017) (0.018) (0.017) (0.016)

Diagnostics

R-square I 0.803 0.811 0.820 0.825

R-square II 0.876 0.879 0.884 0.886

T 510 510 510 510

This table presents results of count data regressions for the
number of IPOs in the U.S. (Nt) on lagged S&P 500 12-month
moving averages of S&P 500 returns (R12

m,t−1) and functions
of lagged number of IPOs (N∗

t−1 = max(0.5, Nt−1)) for the pe-
riod January 1960 to June 2003. Sample counterparts to mo-
ment conditions (20) and (21) in the text are used to identify
parameters. See also the note in Table III. Heteroskedastic and
autocorrelation consistent standard errors are shown within
parentheses below the point estimates. R-square I refers to
the pseudo R-square in Cameron and Trivedi (1986) for the
basic Poisson model. R-square II refers to the squared correla-
tion coefficient between the number of IPOs and the predicted
value. T refers to the number of observations used in the count
regression.
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Table V: Simulation Results, Biases with No Pseudo Market Timing Effect

1-Month Horizon 36-Month Horizon 60-Month Horizon

Measure 100 200 500 100 200 500 100 200 500

Panel A. Default Case

CAREW 0.00 –0.00 –0.00 –0.08 –0.04 0.01 0.16 0.01 0.03
(0.01) (0.01) (0.01) (0.14) (0.15) (0.16) (0.22) (0.24) (0.25)

CARCW –0.00 –0.00 0.01 –0.12 –0.12 –0.09 0.13 0.08 0.02
(0.01) (0.01) (0.01) (0.14) (0.14) (0.15) (0.22) (0.23) (0.24)

ARFI –0.01 –0.00 –0.01 –0.04 –0.08 0.03 –0.00 0.10 –0.02
(0.01) (0.01) (0.01) (0.13) (0.14) (0.15) (0.17) (0.21) (0.23)

Panel B. High Persistence

CAREW –0.01 –0.01 0.02 0.34 –0.01 0.01 0.45 0.26 –0.04
(0.01) (0.01) (0.01) (0.16) (0.19) (0.21) (0.24) (0.28) (0.32)

CARCW –0.00 0.00 0.01 0.31 0.01 –0.01 0.37 0.03 0.07
(0.01) (0.01) (0.01) (0.15) (0.16) (0.16) (0.23) (0.24) (0.24)

ARFI 0.01 0.02 –0.01 0.23 –0.11 –0.07 0.17 –0.25 0.39
(0.01) (0.01) (0.01) (0.13) (0.14) (0.15) (0.18) (0.21) (0.23)

Panel C. High Persistence and Large Market Impact

CAREW –0.01 0.01 0.00 0.27 –0.27 0.22 0.27 0.16 0.01
(0.01) (0.01) (0.01) (0.18) (0.22) (0.27) (0.26) (0.31) (0.38)

CARCW –0.03 –0.00 0.01 0.02 –0.26 0.01 0.21 0.16 –0.19
(0.01) (0.01) (0.01) (0.16) (0.17) (0.17) (0.25) (0.26) (0.25)

ARFI –0.01 0.01 0.01 0.11 –0.21 0.04 0.01 0.03 –0.25
(0.01) (0.01) (0.01) (0.14) (0.15) (0.16) (0.18) (0.22) (0.23)

Panel D. High Persistence and Extreme Cross-Correlations

CAREW –0.00 0.01 0.00 –0.28 –0.15 –0.03 –0.55 0.05 0.80
(0.02) (0.02) (0.02) (0.27) (0.32) (0.37) (0.39) (0.47) (0.55)

CARCW 0.00 0.00 –0.01 –0.20 –0.02 0.03 –0.44 –0.30 0.43
(0.02) (0.02) (0.02) (0.23) (0.24) (0.25) (0.37) (0.39) (0.40)

ARFI 0.01 0.01 –0.01 –0.19 –0.02 0.11 –0.06 –0.29 –0.42
(0.01) (0.01) (0.01) (0.21) (0.23) (0.24) (0.29) (0.36) (0.38)

This table presents the average biases of the equally weighted cumulative abnormal return measure
(CAREW ), the cross-sectionally weighted cumulative abnormal return measure (CARCW ), and the
average abnormal return in the feasible investment strategy (ARFI) in simulations of an empirical
model for the number of IPOs. The biases are expressed in % over the horizon of 1, 36, and 60 months
with three different sample sizes (100, 200, and 500 months). The number of replications are 5,000,
2,500, and 1,000 for the three sample sizes. Below each bias estimate the standard error is given
within parenthesis. There are four different set-ups. Panel A presents results for the default case.
Parameters for the conditional mean is from specification (iii) in Table III. The cross-correlation in
abnormal returns is set to 2.6%. The standard deviation of the abnormal returns is set to 17% per
month. Panel B presents results where the coefficient on the lagged number of IPOs is increased from
0.8 to 0.95 compared to the default case. Panel C presents results where the coefficient on the lagged
number of IPOs in increased from 0.8 to 0.95 and the effect of the lagged 12-month moving average of
the S&P 500 return is increased from 8.438 to 16.876 compared to the default case. Panel D presents
results where the cross-correlations in abnormal returns are set to 15% (rather than 2.6%), remaining
the high persistence. The average number of IPOs in a month is comparable in all panels (about 30).
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Table VI: Simulation Results, Biases with a Pseudo Market Timing Effect

1-Month Horizon 36-Month Horizon 60-Month Horizon

Measure 100 200 500 100 200 500 100 200 500

Panel A. Default Case

CAREW –0.02 –0.01 –0.01 –0.49 –0.33 –0.15 –0.58 –0.06 0.07
(0.01) (0.01) (0.01) (0.14) (0.15) (0.15) (0.22) (0.23) (0.24)

CARCW 0.00 –0.01 –0.01 –0.04 0.01 0.09 0.04 0.38 0.19
(0.01) (0.01) (0.01) (0.14) (0.14) (0.14) (0.22) (0.23) (0.24)

ARFI –0.00 0.00 –0.00 0.09 –0.04 0.02 0.09 0.31 0.33
(0.01) (0.01) (0.01) (0.13) (0.14) (0.14) (0.17) (0.21) (0.22)

Panel B. High Persistence

CAREW –0.04 –0.05 –0.03 –1.04 –0.60 –0.41 –1.45 –1.25 –0.75
(0.01) (0.01) (0.01) (0.16) (0.19) (0.22) (0.24) (0.28) (0.34)

CARCW 0.02 –0.02 –0.03 –0.12 –0.13 –0.12 –0.33 –0.24 –0.26
(0.01) (0.01) (0.01) (0.15) (0.16) (0.16) (0.23) (0.24) (0.25)

ARFI –0.00 –0.01 0.00 –0.18 0.09 0.11 –0.03 –0.18 –0.29
(0.01) (0.01) (0.01) (0.13) (0.14) (0.15) (0.17) (0.21) (0.24)

Panel C. High Persistence and Large Pseudo Market Impact

CAREW –0.10 –0.08 –0.06 –1.77 –1.61 –0.84 –2.29 –2.12 –1.17
(0.01) (0.01) (0.01) (0.16) (0.19) (0.23) (0.24) (0.28) (0.35)

CARCW 0.00 –0.02 –0.03 –0.21 –0.24 0.08 –0.18 –0.35 –0.05
(0.01) (0.01) (0.01) (0.15) (0.16) (0.16) (0.23) (0.25) (0.25)

ARFI 0.00 –0.00 0.00 0.14 –0.07 0.16 0.09 –0.15 –0.14
(0.01) (0.01) (0.01) (0.13) (0.15) (0.15) (0.18) (0.21) (0.24)

Panel D. High Persistence and Extreme Cross-Correlations

CAREW –0.29 –0.21 –0.15 –5.59 –4.60 –4.02 –6.02 –6.72 –4.74
(0.02) (0.02) (0.02) (0.37) (0.45) (0.56) (0.55) (0.67) (0.80)

CARCW –0.00 0.03 0.01 –0.82 –0.54 –0.64 0.16 –0.70 –1.53
(0.02) (0.02) (0.02) (0.33) (0.34) (0.33) (0.51) (0.54) (0.55)

ARFI 0.02 0.02 0.00 –0.18 –0.08 –0.45 0.89 0.16 –1.09
(0.01) (0.01) (0.01) (0.30) (0.32) (0.32) (0.41) (0.49) (0.53)

This table presents the average biases of the equally weighted cumulative abnormal return measure
(CAREW ), the cross-sectionally weighted cumulative abnormal return measure (CARCW ), and the
average abnormal return in the feasible investment strategy (ARFI) in simulations of an empirical
model for the number of IPOs but with the additional feature that lagged common components of
abnormal returns affect the future number of IPOs. The biases are expressed in % over the horizon
of 1, 36, and 60 months with three different sample sizes (100, 200, and 500 months). The number
of replications are 5,000, 2,500, and 1,000 for the three sample sizes. Below each bias estimate the
standard error is given within parenthesis. There are four different set-ups. Panel A presents results
for the default case. Parameters for the conditional mean is from specification (iii) in Table III, but
the lagged common component ct enters with a coefficient of 5. The cross-correlation in abnormal
returns is set to 2.6%. The standard deviation of the abnormal returns is set to 17% per month.
Panel B presents results where the coefficient on the lagged number of IPOs is increased from 0.8
to 0.95 compared to the default case. Panel C presents results where the coefficient on the lagged
number of IPOs in increased from 0.8 to 0.95 and the effect of the lagged common component of
abnormal returns is increased from 5 to 10 compared to the default case. Panel D presents results
where the cross-correlations in abnormal returns are set to 15% (rather than 2.6%), remaining the
high persistence. The average number of IPOs in a month is comparable in all panels (about 30).
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15. Valuing Corporate Liabilities
Jan Ericsson and Joel Reneby, June 2003

16. Rental Expectations and the Term Structure of Lease Rates
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