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Swedish Institute for Financial Research, Saltmätargatan 19A 11, SE-113 59 Stockholm, Sweden
Phone: +46-8-728 51 20, Fax: +46-8-728 51 30, E-mail: info@sifr.org, Web: www.sifr.org



High-Speed Natural Selection in Financial
Markets with Large State Spaces

Yuriy Fedyk and Johan Walden



High-Speed Natural Selection in Financial Markets with Large

State Spaces∗

Yuriy Fedyk † Johan Walden ‡

March 15, 2007

Abstract

Recent research has suggested that natural selection in financial markets may be a very

slow process, taking hundreds of years. We show in a general equilibrium model that it

may be much faster in markets with large state spaces. In many cases, the time it takes to

wipe out irrational investors is inversely proportional to the number of stocks in the market,

i.e., if it takes about 500 years with one stock, it takes about one year with 500 stocks.

Thus, theoretically, natural selection can be very efficient even when there is high market

uncertainty. The speed of the natural selection process is a known function of irrational

investors’ sentiment and of the real characteristics of the stock market. According to a

calibration to U.S. stock data, it takes about fifty years for an irrational investor to be wiped

out. This is in line with studies of individual investor underperformance.
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1 Introduction

The idea of natural selection, that rational investors will outperform irrational investors and

eventually dominate the market, dates back to Alchian (1950) and Friedman (1953). However,

although the idea is simple and intuitive, it has been shown to be false under several conditions.

Over-optimistic investors may invest a larger share of their wealth in risky assets and ultimately

dominate the market when prices are set exogenously (DeLong, Shleifer, Summers, and Wald-

man, 1990; Blume and Easley, 1992). Similarly, irrational investors with a lower consumption-

to-savings ratio than rational investors may dominate the market. Moreover, even when rational

investors eventually dominate the market measured by fraction of wealth, irrational investors

may still have nonnegligible impact on prices (Kogan, Ross, Wang, and Westerfield, 2006).

However, when rational and irrational investors have identical utilities, natural selection will

occur except under special conditions. In general equilibrium with complete markets, Sandroni

(2000) shows that rational investors will eventually dominate the market under general condi-

tions if agents have identical intertemporal discount factors (although Blume and Easley 2006

recently showed that in incomplete markets, this result may not hold). Loewenstein and Willard

(2006) point out that models of the type of DeLong, Shleifer, Summers, and Waldman (1990)

implicitly have to allow for real transfers of production (between risk-less storage and risky

technology) and for changes in aggregate consumption.

An important quantitative question in markets where natural selection occurs is: How long

will it take to wipe out irrational investors? The answer to this question is crucial to our

understanding of stock markets. If it takes a limited amount of time, say less than a decade,

this may warrant a rational equilibrium view of the stock market. Rational equilibrium pricing

prevail most of the time, except for in periods of temporary disequilibrium. If, on the other

hand, it takes hundreds of years to wipe out irrational investors, the correct model must be one

of disequilibrium pricing.

A recent strand of research suggests that the natural selection process may be very slow.

Building on the general equilibrium literature with heterogeneous investors (see, e.g., Detemple

and Murthy 1994 and Basak 2000), Yan (2006) analyzes a Lucas model with one risky and one

risk-free asset, and shows that it may take several hundred years before a rational representative

investor dominates an irrational one. Similar results are derived in Dumas, Kurshev, and Uppal

(2005), under slightly different assumptions, and used in Branger, Schlag, and Wu (2006).

A slow selection process is somewhat alarming for believers in rational asset pricing theory.
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Moreover, it does not fit well with studies documenting underperformance by unsophisticated

investors in the market. For example, individual investors in the study by Barber, Lee, Liu,

and Odean (2005) underperform institutional investors by about 2.1% per year, which implies

a 50% underperformance in a 30-year horizon. Therefore, the quantitative question may not be

adequately addressed by current theoretical models.

One property of these current models is that they are based on severely restricted state

spaces, i.e., they have only one stock and one bond. One may ask if the results would change

in a more realistic model, with a large state space (e.g., with many stocks). Of course, in

conventional finance theory, with one single representative investor, little is changed by taking

into consideration additional states beyond what is spanned by the market portfolio. However,

the situation is different when agents disagree and there is no-longer a representative investor.

What might change in a richer model with respect to the speed of natural selection? A priori

this is not clear. On the one hand, one could argue that if it is difficult to take advantage of

irrational traders quickly in a simplified model of the stock market, it must be almost impossible

in a more complex market, where the irrationality is spread out over a huge state space. On

the other hand, one could argue that it is exactly in complex markets that rationality will pay

off, as a larger state space allows rational investors to separate their strategies from irrational

traders to a higher degree.

In this paper we show that the latter intuition is correct, and that natural selection may

indeed be a much faster process than that suggested by models with only one risky asset. The

intuition is simple: Consider a one-factor model with multiple firms, in which irrational investors

are slightly bullish about the prospects of half of the firms and slightly bearish about the other

half, leading to slight overpricing in half of the stocks and underpricing in the other half. The

natural arbitrage strategy for a rational investor in this case is to form a long-short portfolio,

eliminating all the market risk and almost all the idiosyncratic risk. Thereby, the investor

obtains a slight excess return with almost no risk. The reason why the first intuition fails is

that the rational investors have no need to “find” the markets in which the irrational investors

are trading. The irrational traders’ sentiments are automatically revealed by the prices of the

different assets.

The main contribution of this paper is to formalize this idea in a general equilibrium frame-

work and study its implications for the speed of natural selection. We call this speed the market’s

arbitrageability,1 and we show that it can be conveniently measured in our model. We study
1There are never pure arbitrage opportunities in our economy, but the arbitrageability quantifies how “close”
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a simplified model of value creation compared with the standard Lucas model. Our economy

is observationally equivalent to a Lucas economy with a modified value processes. Under quite

general conditions, the time it takes to wipe out irrational investors is inversely proportional to

the number of stocks. For example, if it takes 500 years in a market with one stock, it takes

less than one year in a market, with the same market Sharpe ratio, but with 500 stocks. Thus,

although the model with one risky asset qualitatively gives the same result as the multi-asset

model (extinction of irrational traders), the quantitative difference is striking. This result is

robust to various assumptions about the sentiments of irrational investors and the structure of

the stock market. The only cases for which the natural selection process is not faster is when

there is no spread of investor sentiment across stocks, or when stock returns are uncorrelated.

In these cases, the model collapses to the one stock model.

A second contribution of this paper is to calibrate the model to U.S. stock data, and estimate

the arbitrageability of the market. Under the ideal conditions of the theoretical model, trading in

the S&P 500 universe is extremely hazardous for unsophisticated investors. At the other extreme,

with effectively only one stock, prices are informationally quite inefficient, as sentiment investors

influence prices for a long time. Our simple calibration points to somewhere in-between. The

time it takes to wipe out irrational investors is about fifty years, in line with studies of individual

investor behavior in the stock market (Barber and Odean, 2001; Barber, Lee, Liu, and Odean,

2005).

The paper is organized as follows. In the next section we introduce the model. For ex-

positional reasons we begin with a one-stock, one representative agent set-up, which we then

generalize to multiple stocks and two agents. We then derive the results for the speed of the

natural selection process in Section 3. In Section 4, we do a simple calibration of the model to

the U.S. stock market. Finally, in Section 5, we make some concluding remarks. Details and

proofs are left to the appendix.

2 The model

2.1 One stock and one investor

For expositional simplicity, we first study the case with one stock and infinitely lived represen-

tative investor with time-separable log utility. This case will show how the general equilibrium

set-up works and we will subsequently use it for comparison with the multi-stock, multi-investor

the economy is to allowing pure arbitrage.
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results.

In a standard manner, we assume a filtered probability space (Ω,F ,Ft, P) and an Ft-adapted

standard Brownian motion Bt, satisfying the usual conditions. The instantaneous return of

investing in the stock at price P is:

μ̃ = μF
t dt + σF

t dBt, where μF
t

def=
g(ct)
Pt

, σF
t

def=
σ(ct)
Pt

. (1)

Here g and σ are exogenously given functions, Pt is the stock price at time t, ct is the instanta-

neous consumption per unit time, which is equal to the firm’s production, and Bt is a standard

Brownian motion. In the appendix we give a motivation for such a stochastic return process

using a simple production economy. Unless stated, all processes are assumed to be Ft-adapted.

Moreover, all conditions are assumed to hold almost surely.

The representative investor has time-separable log expected utility over consumption:

U = E

[∫ ∞

0
e−ρt log(ct)dt

]
. (2)

There is also a risk-free bond available in zero net supply, offering an instantaneously risk-free

interest rate of rt. For notational compactness we suppress dependencies when obvious, e.g.,

writing r instead of rt for interest rates, etc. The investors wealth, Wt then satisfies the stochastic

process:

dWt = −ctdt + Wt

(
rdt + αt(μF dt + σF dBt − rdt)

)
, (3)

where αt is the fraction of wealth invested in the risky asset at time t. We make the natural

restriction to only consider feasible investment strategies, i.e., strategies for which Wt ≥ 0.

The consumption market, per definition, clears at each point in time. An equilibrium can

therefore be described by the following three conditions: At each point in time

1. The representative investor solves the optimal consumption problem:

max
ct,αt

E

[∫ ∞

t
e−ρs log(cs)ds

]
, subject to (3),

2. The demand for the risk-free asset is zero: Wt = Pt,

3. The stock market clears: αtWt = Pt, (i.e. — by 2. — αt = 1).
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The following proposition characterizes the unique equilibrium in this economy:

Proposition 1 Given an investor with initial wealth W0, there is a unique equilibrium, in which

the wealth is:

dWt =
(
g(ct) − ρWt

)
dt + σ(ct)dBt, (4)

the interest rate is

rt =
g(ct)Wt − σ(ct)2

W 2
t

,

the price is Pt = Wt, and the instantaneous consumption is ct = ρWt.

In the standard Lucas set-up, g and σ are linear in ct. We deviate from this set-up by

assuming that g and σ are constants. This leads to an Ornstein-Uhlenbeck process for wealth.2

The deviation is needed for us to be able to solve for the case with multiple stocks. The reason is

that the dynamic systems become prohibitively difficult to solve in the standard set-up: With N

stocks, the general equilibrium formulation leads to a system of N coupled non-linear parabolic

PDEs. Only in special cases can the solution be found.3 We shall see that only relative wealth

levels of different investor groups are important for the speed of the natural selection process,

so this is no major restriction. This should come as no surprise as investors have logarithmic

utility, so the total wealth level is obviously unimportant.

Thus, in our set-up, wealth and price oscillate around the steady state wealth level W̄ = g/ρ

and the corresponding consumption c̄ = g, depending on the realization of the real economy.

Using the relation W̄ = g/ρ, it is easy to see that the steady-state interest rate is r̄ = ρ−ρ2σ2/g2

and the steady state Sharpe ratio is S̄ = ρσ/g.

For subsequent comparison, we introduce a numerical example: An intertemporal discount

factor of ρ = 10%, value creation drift of g = 1 and volatility σ = 2 lead to the following steady

state solution W̄ = P̄ = 10, r̄ = 6%, and a steady state Sharpe ratio of S̄ = 0.2.
2For very low levels of ct, we assume that σ(ct) decreases to zero, to ensure that wealth always is strictly

positive. For example, we can assume that σ(ct) = σ, for ct ≥ ε and σ(ct) = ctσ/ε for ct < ε. This ensures that
the SDE (4), with initial condition W0 = w has a unique strictly positive strong solution, see Karatzas and Shreve
(1998), pp. 287-289. This modification has negligible impact for the quantitative questions we wish to analyze,
as discussed in the appendix.

3We know of only two papers that analyze such cases: Cochrane, Longstaff, and Santa-Clara (2005) who
assume one representative investor with log utility and two stocks and Walden (2006), who assumes an OLG
structure with short-lived identical CARA investors. Neither approach is applicable to the problem we wish to
analyze. Our approach leads to an asymptotically stationary distribution of total wealth, as opposed to growing
expected total wealth in standard set-ups. In a different (slightly more complicated) set-up, we obtain identical
results with nonstationary, growing expected total wealth.
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We make three remarks: First, as the Sharpe ratio is not time-scale invariant, it can be

used to calibrate the model to the true stock market. For example, if the real stock market has

an annual Sharpe ratio of 0.2, then the interpretation of t in our numerical example is that it

measures years.

Second, for wealth levels below σ2/g, the interest rate is negative, reflecting the fact that

the representative investor’s risk aversion is so high, that the risk-free asset must offer negative

rates of return for him invest all his money in the stock. As we are working with real variables,

this could occur if there is inflation.

Third, the economy is observationally equivalent to a Lucas economy with a tree paying

a dividend stream following the Ornstein-Uhlenbeck process dD = ρ(g − D)dt + ρσdB. The

representative investor with wealth Wt holds the claim to the whole technology output, which

provides him with dividend flow to consume. At any time t, this claim costs exactly Pt, since it

allows the investor to keep the production assets, consume Ddt, and be left with Pt+dt.

2.2 Multiple stocks and two investors

We generalize the model to multiple stocks and investors. We assume a filtered probability space

(Ω,F ,Ft, P), and N -dimensional Ft-adapted standard Brownian motions Bt = (B1,t, . . . , BN,t)′,

(where ′ denotes transpose) satisfying the usual conditions, and Cov(dBi,t, dBj,t) = ρij dt.

There are N firms, i = 1, . . . , N , with stock selling at price Pi. Without loss of generality

we assume that each stock is in unit supply. Similar to the one-stock case, the instantaneous

return of each stock is

μ̃i = μF
i dt + σF

i dBi,t, where μF
i

def=
gi

Pi
and σF

i
def=

σi

Pi
, (5)

and where gi and σi are firm-specific drift and volatility terms respectively. We define the vectors

g def= (g1, . . . , gN )′ and μF = (μF
1 , . . . , μF

N )′, and the matrix Σ = [σi,j ], with σi,j = σiσjρij . The

pair (g,Σ) thereby completely characterizes the real part of the economy. We assume that Σ is

invertible. The price at time t is represented by the price vector Pt = (P1, . . . , PN )′.

There are two investors with time-separable log expected utility of consumption (2) and the

same intertemporal discount rate, ρ. These investors are enumerated by k ∈ {1, 2}. Investor 1

is rational and knows the correct (g,Σ). His belief is therefore g1 = g.

Investor 2 is irrational. He agrees with investor 1 about the correct Σ (which can be mo-

tivated by it being easy to infer volatilities and covariances in an arbitrary short time period
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in continuous time). However, he mistakes the drift term for g2 = g + δ, where δ ∈ R
N is a

constant. Moreover, the irrational investor does not update his beliefs over time (that is why he

is irrational). The term δ is the irrational investor’s sentiment vector. It represents the multi-

stock version of the irrationality assumption made by Yan (2006). We do not formally model the

source of the irrational investor’s sentiment, but refer to the vast literature on potential sources

for such irrationality, see e.g., De Bond and Thaler (1985) and De Bond (1993). We use the

notation gk
i = [gk]i. At each point in time, the two investors, of course, agree on the price, but

they disagree about the return prospects of investing in stock i, each investor believing it is:

μ̃k
i = μFk

i dt + σF
i dBk

it, where μFk
i

def=
gk
i

Pi
, k ∈ {1, 2}, (6)

(the k superscript over the Brownian processes is added, as they will not agree about the

realization of the random term as time progresses). We denote the different expectations for

the two investors by Ek, k ∈ {1, 2}. Finally, there is a risk-free bond in zero net supply offering

instantaneous return r. We define the vector of drifts μFk = (μFk
1 , . . . , μFk

N )′, and the volatility

matrix S = diag(σF
1 , . . . , σF

N )′.4 Finally, let the vectors α1,t, α2,t ∈ R
N denote the fraction of

wealth invested in different stocks by investors 1 and 2 respectively.

The investors’ wealth processes, Wk,t follow the true stochastic processes:

dWk,t = −ck,tdt + Wk,t(rdt + αk,t
′(μF dt + SdBt − r1Ndt)), (7)

whereas their perceived wealth processes are

dWk,t = −ck,tdt + Wk,t(rdt + αk,t
′(μF,kdt + SdBk,t − r1Ndt)), (8)

i.e., the irrational investor perceives the wrong drift-term and the wrong realization of the

Brownian motion. Here, 1N is the unity vector with N elements, 1N = (1, . . . , 1)′.

An equilibrium is described by the following conditions: At each point in time,

1. Investor k ∈ {1, 2} solves the optimal consumption problem:

max
ck,t,αk,t

Ek

[∫ ∞

t
e−ρs log(cs)ds

]
, subject to (8).

4Here, diag(x1, . . . , xN) denotes a diagonal N × N matrix with xi as its ith diagonal element.
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2. The net demand for the risk-free asset is zero: W1,t + W2,t = 1′
NPt.

3. The stock market clears: α1,tW1,t + α2,tW2,t = Pt.

We define the total wealth process Wt = W1,t +W2,t. The following proposition characterizes

the equilibrium completely:

Proposition 2 The unique equilibrium wealth process for two investors (with initial wealth W1,0

and W2,0 respectively), satisfies

dW1,t

W1,t
= −ρdt +

A

Wt
dt +

1
W 2

t

(
− BW2,t + CW 2

2,t

)
dt +

1
Wt

(
dZ1,t − W2,tdZ2,t

)
, (9)

dW2,t

W2,t
= −ρdt +

A

Wt
dt +

1
W 2

t

(
BW1,t − CW1,tW2,t

)
dt +

1
Wt

(
dZ1,t + W1,tdZ2,t

)
, (10)

the interest rate is

rt =
AWt − D

W 2
t

+
BW2,t

W 2
t

, (11)

the price vector is

Pt =
1
rt

(
g +

1
Wt

(
W2,tδ − Σ1N

))
, (12)

and the consumption is ck,t = ρWk,t, k ∈ {1, 2}. The constants A, B, C and D depend on the

real economy characteristics (g,Σ) and the sentiment (δ):

A = 1′
Ng,

B = 1′
Nδ,

C = δ′Σ−1δ,

D = 1′
NΣ1N .

The stochastic processes, Z1 and Z2 are defined by Z1,t = P′
tSBt and Z2,t = δ′Σ−1diag(Pt)SBt,

thereby satisfying: V ar(dZ1) = D dt, V ar(dZ2) = C dt, Cov(dZ1, dZ2) = B dt.

The constants A,B,C,D characterize how well rational investors take advantage of irrational

investors. Clearly, A is the aggregate drift term of the real economy, corresponding to g in the

one-firm case, and D is its total variance, corresponding to σ2. It is natural to call B the market

sentiment, as it is the sum of all stock sentiments. As we shall see below, it is natural to call C
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the arbitrageability of the market.

The way the terms enter into the deterministic part of the wealth equations (9-10) provides

some immediate information. First, bullish market sentiment (B > 0) will lead to an expected

wealth transfer from rational to irrational investors. This is the effect noted in DeLong, Shleifer,

Summers, and Waldman (1990) that bullish investors will over-invest in the stock market thereby

having higher expected returns than rational investors. Similarly, if they are bearish, they will

under-perform. Second, the arbitrageability coefficient, C, will lead to an expected wealth

transfer from irrational to rational investors. This is true regardless of the sign of the sentiment,

as Σ−1 is strictly positive definite, so C is always strictly greater than zero, as long as there is

any sentiment in the market.

By setting W2,0 = 0, we get the N -stock version of the representative agent model of the

previous section with the following dynamics:

dWt = (A − ρWt)dt + dZt

rt =
AWt − D

W 2
t

,

Pt =
1
rt

(
g − 1

Wt
Σ1N

)
, (13)

consumption is ct = ρWt, and the stochastic process, Z is defined by Zt = P′
tSBt with

V AR(dZ) = D dt. The steady state wealth is W̄ = A/ρ, the instantaneous market Sharpe

ratio is St =
√

D/Wt and the steady state market Sharpe ratio is S̄ = ρ
√

D/A. In our analysis,

we will mainly study the steady state market Sharpe ratio, which we will simply call the market

Sharpe ratio.

Several insights arise from comparing the static structures of the equilibria, with and without

rational investors, for a specific wealth realization W = W1 + W2. We can, for example, use

equations (12,13) to analyze the price impact of the irrational investors. Let PR
i and P I

i represent

the price of stock i, for two identical economies, with the only difference that only rational

investors are present in the R-economy (W2 = 0), whereas irrational investors are present in the

I-economy (W2 > 0). We have

P I
i

PR
i

=
1

1 + γ

(
1 +

W2δi

rRWPR
i

)
, γ =

BW2

AW − D
.

Thus, the price impact of irrational investors has two components. First, a market component,

9



γ, that depends on the market sentiment (B) and wealth (W2) of the irrational investors. This

component reflects the general equilibrium structure of the model: sentiment in one stock will

influence the prices of all other stocks. If the market sentiment is zero (B = 0), then the market

price error will also be zero. The second component (W2δi/(rRWPR
i )) is stock specific: it only

depends on the sentiment in stock i, δi.

We also note that when W2 is small, both these components are small. Thus, contrary to the

results in the model of Kogan, Ross, Wang, and Westerfield (2006), when irrational investors

make up a small part of the market, their price impact (as well as their impact on interest

rates) is small in our model. The reason for this difference lies in the assumptions about the real

economy. Whereas aggregate production at a specific point in time is exogenous in Kogan, Ross,

Wang, and Westerfield (2006), it is endogenous in our model. This gives increased opportunities

for consumption smoothing, and consumption “squeezes” can be avoided in bad states of the

world, resulting in less extreme behavior of the irrational investor in such states.

3 High-speed natural selection

We use the results in the previous section to analyze how the speed of natural selection process

depends on the number of stocks. Clearly, the constants A−D are crucial in deciding the wealth

developments. We saw that B and C determine expected wealth changes. It turns out that the

probability distribution for different relative wealth levels only depends on the arbitrageability-

term, C. We define the stochastic process for the fraction of the total wealth held by the rational

investor

ft
def=

W1t

Wt
.

We also define the random stopping time

τf
def= inf

t
{t : ft ≥ f}.

This is the time it takes until the rational investor controls a fraction f of the market wealth.

The following result characterizes the expected time it takes to reach a certain fraction of market

wealth:
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Proposition 3 If the initial fraction of wealth owned by the rational investor is f0, then

E(τf ) =
2η
C

, (14)

and

V ar(τf ) =
4η
C2

, (15)

where η = log
(

f
1−f

)
− log

(
f0

1−f0

)
.

We see that C is indeed the crucial parameter for describing how fast natural selection occurs.

3.1 A one-factor economy

To see how C depends on N , let us study a simple model with one systematic risk and one

idiosyncratic risk driving returns in each stock. We call this the market model. We wish to keep

the total market uncertainty constant as N grows. To have the same risk at the market level,

we set

g = 1N/N, Σ = [σij ], with σ2
ii = 8/(N(N + 1)), and σij = 4/(N(N + 1)), i �= j. (16)

This implies that A = 1 and D = 4, so with ρ = 10%, the steady state market Sharpe ratio is

the same as in the one-stock case S = ρ
√

D/A = 0.2, independently of N . We further assume

that the irrational investors are slightly bullish about the value creation process for exactly half

of the stocks and slightly bearish about the other half (assuming that N is even), i.e., for a

q > 0, δi = q/N for i = 1, . . . , N/2 and δi = −q/N for i = N/2+1, . . . , N . We use Proposition 2

to get

B = 0, and C =
N + 1

4
q2.

Thus, by (14-15), as the number of stocks grows, the time it takes to reach any fixed wealth

fraction for the rational investor is inversely proportional to the number of stocks, N + 1. For

the case where N = 1, we get5 C = q2/4. Therefore, as with two stocks C = 3q2/4, the speed-up

of going from one to two stocks is even more drastic — it is 3 times faster with two stocks than

with one. If it takes, in expectation, 1800 years for the rational investor to capture 90% of the

market with one stock, it takes 600 years (i.e., 1800/3 years) with 2 stocks, and about 3 years
5In the case with only one stock, the market sentiment is not zero, as the irrational investor has to be either

bullish or bearish about this one stock.
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with 600 stocks (i.e., 1800/601 years). In Figure 1 we show the expected time to reach different

wealth fractions for different number of stocks, N = 1, 2, 50, 600, for the case where the rational

and irrational investor have the same initial wealth, f0 = 1/2. The numbers for f = 90% are in

line with the argument just made.

The distribution of τf is thin-tailed. In fact, as shown in the proof of Proposition 3, it is

the first passage time distribution of a Brownian motion with drift C/2 and variance C per unit

time. This distribution is known, and decreases faster than a normal distribution for any fixed

f . In Figure 2, we show the time distribution to reach f = 90%, with f0 = 0.5, for N = 2,

N = 10 and N = 50 stocks.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

20

40

60

80

100

120

140

160

180

200

f

E
(

f)

N=1

N=2

N=600

N=50

Figure 1: Expected time, E[τf ], for rational investors to reach a specific fraction of total wealth, f =
W1/(W1 + W2), for N = 1, N = 2, N = 50 and N = 600 stocks, when irrational investors’ sentiment is
q = 10%.

We also note that even though the natural selection process is faster, the irrational investors

are never totally wiped out, regardless of the number of stocks in the market and the time passed,

as they become excessively risk-averse once they become poor. We still use the terminology of

the group being “wiped out,” denoting that their fraction of wealth becomes small, e.g., 10% of

total wealth.

How does the rational investor take advantage of the irrational investor so fast? By studying

the rational investor’s portfolio choice (given in the appendix) it is clear that the rational investor

will choose exactly the type of long-short position suggested in the introduction. In the case of

equal wealth for the rational and irrational investor, for example, in addition to holding his part

12
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Figure 2: Probability distribution of the time it takes for rational investors to reach 90% of total wealth
for N = 2, N = 10 and N = 50 stocks, when irrational investors’ sentiment is q = 10%.

of the market portfolio, corresponding to the case with only one rational investor, the rational

investor will speculate against the irrational investor, by longing (N +1)q/2 shares of each stock

that the irrational investor is pessimistic about, and short-selling the same amount of each stock

the irrational investor is optimistic about. This gets rid of the market risk, so investor 1 is only

exposed to a low level of idiosyncratic risk, and therefore earns an excess gross payoff of about

q per unit time. The strategy closely resembles ideas for how to form market neutral portfolios

with excess return in multi-factor economies, proposed e.g., in Rosenberg and Rudd (1982) and

Rosenberg, Reid, and Lanstein (1985). As shown in the appendix, the rational investor’s Sharpe

ratio is essentially proportional to q
√

N , whereas the irrational investor on the other hand will

have a Sharpe ratio proportional to −q
√

N . The market Sharpe ratio is almost constant, so the

wealth transfer can not be inferred from market level data.

3.2 General economies

The main objectives of this section are to show that natural selection will be fast in markets

with large state spaces under general conditions and that if a large arbitrary random economy

is chosen, the natural selection process will almost always be fast.
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How representative is the market model of Section 3.1? It turns out that high-speed natural

selection occurs almost universally in our model, even though the natural selection process may

not be as fast as in the market model. For example, sentiments need not to be symmetric.

Consider the market model with the same real-economy parameters as before (implying that

A = 1 and D = 4), but with asymmetric sentiments: being q1 for a fraction, a, of the stocks

and q2 for the rest, 1 − a.6 Without loss of generality, we assume that 0 < a < 1, (as the cases

a = 0 and a = 1 are covered by taking q1 = q2 = q). We call this the asymmetric market model.

From the definition of C in Proposition 2, it is straightforward to show that

C =
1
4

(
q2
1a + q2

2(1 − a) +
(
q2
1a + q2

2(1 − a) − (q1a + q2(1 − a))2
) × N

)
.

Thus, by Proposition 3, high-speed natural selection will occur unless the term multiplying N

equals zero. It is easy to show that the term equals zero if and only if q1 = q2.7

To study a more general set-up, we introduce a sequence of markets M = (M1, . . . ,MN , . . .)

where MN = (gN ,ΣN , δN ), is a market with N stocks. We do not make any restrictions on M.

However, we will mainly be interested in sequence of markets where the market Sharpe ratio,

size and total sentiment are roughly constant when N increases. We define

Definition 1 The total sentiment, Δ, in a market with sentiment vector δ is defined as

Δ =
∑

i

|(δ)i|.

Thus contrary to the market sentiment (B), the total sentiment aggregates unsigned sentiment

information. We could for example have zero market sentiment, although the total sentiment is

high. We use the notation aN ∼ bN , if there are strictly positive constants, 0 < c0 ≤ c1 < ∞,

such that for N large enough, c0bN ≤ aN ≤ c1bN .

Definition 2 A sequence of markets, M = (M1,M2, . . .), is said to be asymptotically well-

behaved if market Sharpe ratios S̄N ∼ 1, sizes of markets AN ∼ 1 and total sentiments ΔN ∼ 1.

For a sequence of markets, M, we say that

6We restrict our study to the cases when aN and (1 − a)N are both integers, to avoid issues rounding issues.
7If q1 = q2, then C = q2/4 regardless of N and the whole model collapses into the one-stock case.
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Definition 3 High-speed natural selection occurs if, in market MN , the expected time to reach

the fraction of wealth f , when initial wealth distribution is f0, satisfies E(τf ) ≤ G(f0, f,N) for

some function G : (0, 1) × (0, 1) × Z++ → R++
8, which for all f0 and f > f0 satisfies

lim
N→∞

G(f0, f,N) = 0.

Definition 4 High-speed natural selection of order ν (where ν > 0) occurs if the function G in

Definition 3 can be written in the form G(f0, f,N) = H(f0, f)/Nν.

We let CN denote the arbitrageability term in market MN . Clearly, Proposition 3 implies that

high-speed natural selection of order ν occurs if and only if

c
def= lim inf

N→∞
CN

Nν
, where CN = δ′NΣ−1

N δN ,

is not zero, i.e., 0 < c ≤ ∞. We define ρ(Σ) to be the spectral radius of the matrix Σ. We have:

Proposition 4 For a sequence of markets, M, high-speed natural selection of order ν occurs if

there are strictly positive constants c1, c2 and N0, and a function, f : Z++ → R++ such that the

following two conditions are satisfied for all N > N0:

• δ′NδN ≥ c1f(N),

• ρ(Σ) ≤ c2N
−νf(N).

Proposition 4 cannot be applied to prove high-speed natural selection of order one in the

market model of Section 3.1.9 However, the following proposition ensures that when real econ-

omy randomness is symmetric, in the sense that 1N is an eigenvector to Σ,10 then the only cases

where high-speed natural selection of order one will not occur is when there is no spread of

sentiment across stocks or when the covariance matrix is asymptotically not well-behaved. For

an arbitrary vector, q, we define Qq to be the Euclidean projection operator onto the orthogonal

complement of q.11 We have
8Here, and subsequently, Z++ represents the set of strictly positive integers and R++, the set of strictly positive

real numbers.
9This is easily seen: The first condition implies that f(N) ∼ N−1, which leads to a violation of the second

condition, as ρ(ΣN) ∼ N−1.
10The symmetry here is that each row of the variance covariance matrix sums to the same constant, for any

specific N . This is of course equivalent to 1N being an eigenvector. Clearly, it holds for the market model, as
well as for several other models, e.g., with industry-specific risks.

11That is, with matrix notation, Qq = I − qq′
q′q , where I is the identity matrix.
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Proposition 5 For a sequence of markets, M, high-speed natural selection of order ν occurs if

there are strictly positive constants c1, c2, N0, and a function, f : Z++ → R++, such that the

following three conditions are satisfied for all N > N0:

• 1N is an eigenvector of ΣN ,

• δ′NδN − (1′
NδN )2

N ≥ c1f(N),

• ρ(Q′
1N

ΣNQ1N
) ≤ c2N

−νf(N).

It is straightforward to check that both the market model and the asymmetric market model

satisfy the conditions of Proposition 5 with ν = 1, except for the asymmetric market model

with q1 = q2.12 This is in line with our analysis so far. The only other case when high-speed

natural selection may fail for the market model is when the third condition is violated (the first

condition is obviously always satisfied for the market model). For general variance covariance

matrices of the form ΣN = (aIN + b1′
N1N )/(Na + bN2), a > 0, b ≥ 0, this happens if and only

if b = 0. In this case, there are effectively N separate financial markets, and there is no gain to

the rational investor of being able to form long-short portfolios.

Under the conditions of Proposition 5, as the number of stocks increases, natural selection

works faster. In the limit, as the number of stocks N grows, the arbitrageability approaches

infinity and the natural selection becomes instantaneous. It is worth pointing out, however,

that for any finite N , there are never any pure arbitrage opportunities in the model, as investors

agree on zero-probability events. It is shown in the appendix that for an asymptotically well-

behaved sequence of markets, high-speed natural selection implies the presence of an asymptotic

arbitrage opportunity (Ross, 1976). However, this opportunity is not scalable in our general

equilibrium model, contrary to the assumptions of the Arbitrage Pricing Theory. This makes

our model suitable for the dynamic study of the natural selection process.

Propositions 4 and 5 can be used to prove high-speed natural selection for a specific sequence

of markets but do not say how “often” high-speed natural selection breaks down. Is high-speed

natural selection the norm, or are the previous examples just exceptional special cases? To

approach this question, we use theory of random quadratic forms. Specifically, we study how

often high-speed natural selection occurs in randomly generated markets. We look at a special

case of a random market (one factor) model. In the appendix we discuss how the results can be

generalized to K-factor models and to even more general random economies.
12If q1 = q2 in the asymmetric market model, the second condition of Proposition 5 fails.
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We make the following assumptions about the randomness of the markets, MN = (gN ,ΣN , δN ).

We assume that (gN )i = p̃N
i /N , where p̃N

i are i.i.d. random variables, E(p̃1
1) = p̄ > 0 and

V ar(p1
1) = σ2

p > 0. Similarly, (δN )i = q̃N
i /N , where q̃N

i are i.i.d. random variables, E(q̃1
1) = q̄

and V ar(q̃1
1) = σ2

q > 0. Furthermore, we assume that the randomness of the ith asset, σidBit,

is of the form σidBit = 1
N (βN

i dξ0t + αN
i dξit), where ξit are i.i.d. jointly independent standard

Brownian motions, and αN
i , βN

i are i.i.d. random variables: E(α1
1) = ᾱ > 0, V ar(α1

1) = σ2
α > 0,

E(β1
1) = β̄ and V ar(β1

1) = σ2
β > 0. All random variables are jointly independent. For simplic-

ity, we assume that all random variables are absolutely continuous (with respect to Lebesgue

measure) and that the β’s are (a.s.) bounded below by a strictly positive constant, ε > 0.13 Obvi-

ously, we require the p̃’s to be positive. For a fixed N , the market MN will thus be characterized

by gN = (p̃N
1 , . . . , p̃N

N )′/N , δN = (q̃N
1 , . . . , q̃N

N )′/N and ΣN = (diag(αN
1 , . . . , αN

N )2 + bNb′
N )/N2,

where bN = (βN
1 , . . . , βN

N )′. This corresponds to sequences of generalized market models, with

random loadings on the market factor and idiosyncratic factors for each stock, with random

value creation and random sentiment. We have

Proposition 6 A sequence of markets, M, satisfying the previous assumptions is asymptotically

well-behaved (almost surely), and has high-speed natural selection of order one (almost surely).

Thus, high-speed natural selection is really the norm in such markets, and the exception is when

it breaks down.

3.3 Variations

In this section, we discuss several variations under which high-speed natural selection occurs

that provide additional insight. Specifically, we show that high-speed natural selection can arise

even if sentiment is uniform, if both investors are irrational and that the order of the natural

selection process can be higher than one.

Uniform sentiments: Propositions 2 – 5 can be used for additional analysis of specific

markets. Let us, for example, analyze a market with firms of different sizes and show that, in

this case, even uniform sentiment can lead to high speed natural selection.

Suppose that there are N firms, i = 1, ..., N , each with si stocks outstanding. In the previous

analysis, we had unit supply of each stock. However, it is easy to incorporate variable supply. Let

us define the vector s = (s1, ...sN )′, and the diagonal matrix Λs = diag(s). Consider the market
13These assumptions can be relaxed in several directions, but at the expense of increased complexity.
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M = (ĝ, Σ̂, δ̂) def= (Λsg,ΛsΣΛs,Λsδ). This can be thought of as a market with each stock in unit

supply and firm characteristics and sentiments defined by ĝ, Σ̂ and δ̂ respectively. Alternatively,

it can be interpreted as a market with stock supply given by s and firm characteristics and

sentiments per unit supply of stock given by g, Σ and δ respectively.

Now consider a sequence of markets with

sN = (s1, ...sN )′, gN = g1N , ΣN = σ2IN , δN = q1N , (17)

where, g > 0, q �= 0, σ2 > 0, si > 0 for all i, IN is the N × N identity matrix, and we require

that

T1
def=

∞∑
i=1

si < ∞ and T2
def=

√√√√ ∞∑
i=1

s2
i < ∞.

Without loss of generality, we can assume that the si’s are decreasing, s1 ≥ s2 ≥ · · · . According

to our previous discussion, the market with N stocks is characterized by ĝN = gsN , Σ̂ = σ2Λ2
s

and δ̂ = qsN . Irrational investors are equally bullish about all stocks, so the (relative) market

sentiment is equal to (relative) individual stock sentiment. This is one of the two cases when

high-speed natural selection collapsed in the market model in Section 3.1.

Applying formula (12) to derive the vector of capitalizations leads to

P̂t =
1
rt

(
gs +

1
Wt

(
W2,tqs− σ2Λ2

s1N

))
,

or, in scalar notation, the capitalization of firm i at time t, P̂i,t is

P̂it =
1
rt

(
gsi +

1
Wt

(
W2,tqsi − σ2s2

i

))
. (18)

In order to make comparisons between different assets and their returns we introduce the

following notation. Recall that μF
it denotes the instantaneous expected return of asset i. For

each asset, i, let us define γi,t
def= rt/μ

F
i,t, i.e., γi,t measures the cost of rt units of expected surplus

by investing in asset i:

γi,t = P̂it
rt

sig
.

The risky assets with γi,t < 1 have positive expected excess return. The assets with γi,t > 1

have negative expected excess return.
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Using equation (18), we obtain

γi,t =
(
1 +

1
gWt

(
W2,tq − siσ

2
))

. (19)

The above expression for prices implies that (actual) expected excess return for each company

is positive if and only if

si >
W2tq

σ2
.

This in turn means that when sentiment is optimistic (positive) and identical across all stocks,

the actual risk premium for small stocks is low and even becomes negative when the above

inequality fails to hold. For rational investors, such stocks are overpriced (negative excess

return and positive market β), so rational investors will short-sell such small stocks. As the

irrational investors are driven out of the market, stock prices adjust to their fundamental level.

This stylized argument fits qualitatively well with what was observed during the New Economy

boom. Young growth companies had high stock prices, measured with standard indicators, and

their prices eventually collapsed, whereas mature value companies were hit less severely by the

market downturn.

Next, let us study the speed of the natural selection process in this kind of market. To make

our point, we study sequences of markets that have similar market Sharpe ratios, regardless

of the choice of the si’s. To achieve this, we scale with T1 and T2, i.e., we study sequences of

markets with

sN = (s1, ...sN )′, gN =
g

T1
1N , ΣN =

σ2

T 2
2

IN , δN =
q

T1
1N . (20)

Regardless of the choice of si’s, the market Sharpe ratio, S̄ = ρ
√

DN/AN , converges to ρσ/g,

as N becomes large, so this is the correct scaling when comparing sequences of markets with

different s’s.

Proposition 4 immediately implies that high-speed natural selection of order one will always

occur. In fact, the expression for arbitrageability is fairly simple:

CN =
(

q

T1
s
)′ ( σ2

T 2
2

ΛsINΛs

)−1 (
s

q

T1

)
=

T 2
2 q2

T 2
1 σ2

N.

Thus, as long as T1 < ∞, high-speed natural selection of order one will occur, even though irra-

tional investors’ sentiments are uniform across stocks. For example, if the sizes of the companies
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decrease geometrically: sk = sk, where s is a constant between zero and one (0 < s < 1), then

it is straightforward to show that

CN =
(1 − s)q2

(1 + s)σ2
N,

so the faster the decrease in firm size (s closer to zero), the faster the natural selection. When s

approaches one, high speed natural selection disappears, in line with our previous result: When

sizes of firms are equal and sentiment is uniform across stocks, rational investors can do nothing

better then hold the market portfolio.

Both investors are irrational: If both investor groups are irrational, then high speed

natural selection will still occur, favoring the investor group that is least irrational in a metric

weighted by the inverse of the covariance matrix. Under the same assumptions as before, but

with the first and second investors, having sentiment vectors δ1 ∈ R
N and δ2 ∈ R

N respectively,

we get the following generalization of Proposition 3.

Proposition 7 If the initial fraction of wealth owned by investor group 1 is f0, C1
def= δ′1Σ

−1δ1,

C2
def= δ′2Σ

−1δ2, C12
def= δ′1Σ

−1δ2, and C1 < C2, then

E(τf ) =
2η

C2 − C1
, (21)

and

V ar(τf ) =
4η(C2 + C1 − 2C12)

(C2 − C1)3
, (22)

where η = log
(

f
1−f

)
− log

(
f0

1−f0

)
.

Higher-order natural selection: Our examples so far have led to high-speed natural

selection of order one. Natural selection of other orders may also occur. The definition of

C = δ′Σ−1δ, shows that the closer Σ is to singular, the faster we can expect the natural

selection process to take place. For example, for a constant ν > −1, the sequence of markets

with MN = (gN ,ΣN , δN ) defined by

gN =
1N

N
, (ΣN )ii =

1 + N−ν

N2
, (ΣN )ij =

1
N2

, i �= j, and (δN )i = (−1)iq, (23)

will lead to high-speed natural selection of order 1+ν. This can be shown by a direct application

of Proposition 5. Thus, an efficient way for sophisticated investors to take advantage of unso-

phisticated ones is to introduce highly correlated assets. For example, we could interpret the
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economy, as one where some firms have “dot.com” names and irrational investors have positive

sentiment about these, although they are effectively identical to other firms. If such assets are

introduced, then even a slight degree of sentiment can lead to fast natural selection.

High-speed natural selection can thus be achieved in various ways. To summarize: According

to our model, sophisticated investors can efficiently take advantage of unsophisticated ones in

markets with large spread of firm sizes, in markets with many financial (i.e., zero-net supply)

assets, in markets with firms that have highly correlated value creation and in markets where

there is a large sentiment dispersion across assets.

3.4 Discussion

An alternative interpretation of our results is that investors with systematic sentiments die out

slowly, whereas any idiosyncratic sentiment will be punished very quickly. For example, in the

market model of Section 3.1, only uniform sentiment (δ ∝ 1) survives in the intermediate term.

Such sentiment is parallel to market risk.14 This interpretation is in line with the results in

Daniel, Hirshleifer, and Subrahmanyam (2001), where the authors, using a one period model,

find that arbitrageurs will remove idiosyncratic mispricing but not systematic mispricing. In our

model, it is possible for irrational investors to survive a long time in the market, but only if they

have a very restricted type of irrationality: In a market with 500 stocks and five factors there

are 495 types of irrationality that will be punished very quickly and five that will be punished

slowly.

In our examples so far, rational investors have been short-selling overpriced stocks. Do the

results survive in markets with short-sale constraints? In the market model of Section 3.1,

high-speed natural selection will not occur if short-sale constraints are present. However, short-

sale constraints do not seem to be binding in the market (see, e.g., Diether, Lee, and Werner

2006), so we do not view this as a major concern. In the appendix we discuss why high-speed

natural selection breaks down with short-sale constraints for market model. We also show

other examples for which high-speed natural selection occurs even with short-selling constraints

present. For example, in rapidly expanding markets, high-speed natural selection can occur even

with short-sale constraints, as the payoff of investing in the winners may be very high.
14The principal component of Σ is (proportional to) 1, representing market risk in the economy.
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4 Arbitrageability in the U.S. stock market

How applicable is our model to the U.S. stock market? Clearly, we do not see the extreme cases

where unsophisticated traders are almost immediately wiped out of the market, so the market

model of Section 3.1 does not seem to calibrate well with the real world.

However, studies of individual investor performance do find quite severe underperformance by

unsophisticated investors, so one-stock models, in which it takes hundreds of years for irrational

investors to be wiped out, seem equally ill-calibrated. For example, individual investors in the

study by Barber, Lee, Liu, and Odean (2005) underperform institutional investors by about

2.1% per year, which implies a 50% underperformance in a 30-year horizon. Thus, neither the

market model of Section 3.1, nor the one-stock model seem to quantitatively be in line with

arbitrageability in the real stock market.

Propositions 4–6 are of little help here, as they provide asymptotic results and do not tell us

about constants involved. However, qualitatively, the requirements of Proposition 5 for speed-up

of the natural selection process in the stock market, i.e., spread in stock sentiment and correlated

stock returns, seem to be met in real markets. For example, returns in boom periods have been

driven by specific sectors, like the Internet and high-tech sectors in the New Economy boom

(Ofek and Richardson, 2002; Lamont and Thaler, 2003). This suggests that if sentiment was a

driver in the boom, it was not uniform across stocks. Moreover, numerous studies estimate the

number of risks present in the stock market to be higher than one, but much lower than the

dimensionality of the stock market, e.g. Connor and Korajczyk (1993).

We can, in principle, estimate the arbitrageability of a market, C, using observable data.

This immediately implies the speed of the natural selection process through Proposition 3. We

do this in two ways: first using stock returns, and then using trading volume. The results are

quite similar: The first method suggests that it takes about 45 years to wipe out irrational

investors, whereas the second measure suggests that it takes about 58 years. This corresponds

to an average annual underperformance of 3.9%–5.0% per year, which is slightly larger than,

but of the same order of magnitude as, the results in Barber, Lee, Liu, and Odean (2005).

These results are indicative but should not be oversold. The empirical estimates we use

are rough and do not control for other factors driving returns and trading volume. A detailed

empirical analysis, although clearly of interest, is not within the scope of this paper.
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4.1 Method

A return-based estimate: Using the expected return vector μF , the return covariance matrix,

ΣF = [σ̄ij ]ij, the expected excess return vector, μe = μF − rt1N , and the relative firm size

s = P/1′
NP, it is straightforward to show that the following relationship holds:

X
def=

(
W2,t

Wt

)2

C = (ΣF s − μe)′(ΣF )−1(ΣF s− μe). (24)

Although this does not totally nail down C, it captures the main source of wealth transfer to

the rational investor in equations (9-10). We make the simplifying assumption that f0 = 50%.15

At any point in time, s is observable, whereas ΣF and μe must be estimated. To estimate the

covariance matrix, ΣF , we used both the sample covariance matrix, and the weighted covariance

estimator suggested by Litterman and Winkelmann (1998).

A weakness of this measure is the difficulty of empirically estimating stock-wise expected

excess returns, μe. To get around this issue, we note that (24) can be rewritten as:

X = σ2
m − 2μm + Y, where Y = μ′

e(Σ
F )−1μe.

Here, σm is the volatility of the market portfolio and μm is the market risk-premium. A lower

bound for Y is given by Y ≥ Nμ2
m/R, where N is the number of stocks and R = ρ(ΣF ) is the

spectral radius of the covariance matrix. Thus, market level data for volatility and risk-premium,

together with an estimate of the spectral radius of the covariance matrix, lead to a lower bound

for arbitrageability

C ≥ 4X̂, where X̂ = σ2
m − 2μm + N

μ2
m

R
. (25)

This is our return-based arbitrageability estimate.

A volume-based estimate: As noted, the return-based estimate, X̂ , suffers from the

difficulties in measuring expected returns. Another approach that does not suffer from this

drawback is to use data for trading volumes.

Trading in our model arises when there is wealth transfer between rational and irrational

investors: the higher the degree of wealth transfer, the higher the volume. We define the

difference in portfolio holdings between the rational and irrational investor

zt
def=

1
2
Λ−1

t (α1,tW1,t − α2,tW2,t) , (26)

15Analogue results for other values, f̂0, are immediately obtained by the mapping C �→ (2 − 2f̂0)
−2C.
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where Λt = diag(Pt). Then, dzt is the signed instantaneous relative trading volume, measured

as a fraction of market capitalization. We let qt denote the observed (unsigned) relative trading

volume in the real stock market. We assume that investors’ rebalancing interval is Δt, which

leads to the relation qt = | ∫ t
t−Δt dzt|/Δt.16 We assume that Δt = 1/12, i.e., that investors

rebalance once per month. We define q̄t = E[qt], the expected relative turnover, which we

will approximate with the sample mean. Finally, we assume that the market sentiment is small

compared with the total sentiment, i.e., that B << Δ and that f0 = 0.5.

Under these assumptions it can be shown (see appendix) that

∫ t+Δt

t
(dzt)′ΛtS2Λt(dzt) ≈

(
W1W2

W 2

)2 (
P′

tS
2Pt + D

)
CΔt

=
1
4

( N∑
i=1

(Pt)2i σ̄ii +
N∑

i=1,j=1

(Pt)iσ̄ij(Pt)j
)
CΔt, (27)

and that

∫ t+Δt

t
(dzt)′ΛtS2Λt(dzt) =

π

2
q̄′

tΛtS2Λtq̄tΔt + o(Δt) =
π

2

N∑
i=1

(q̄t)2i (Pt)2i σ̄iiΔt + o(Δt), 17 (28)

where, as before, S = diag(σ̄11, . . . , σ̄NN ). Altogether, this leads us to

C ≈ 2πẐ, where Ẑ =
∑N

i=1(q̄t)2i (Pt)2i σ̄ii∑N
i=1(Pt)2i σ̄ii +

∑N
i,j=1(Pt)iσ̄ij(Pt)j

. (29)

This is our volume-based arbitrageability estimate.18

4.2 Data

Both our estimates use the return covariance matrix. Ideally, we would wish to estimate the

arbitrageability of the whole market, but this is not feasible due to the difficulties of accurately

estimating N(N + 1)/2 variances and covariances for N stocks. We therefore use a randomly

selected subset of S&P 500 stocks.

We used the Center for Research in Security Prices (CRSP) to get daily data for returns

and turnover of 40 randomly chosen S&P 500 stocks, over the ten-year period 1996-2005. We
16This avoids the issue of infinite trading volumes due to the unbounded variation of Brownian motions.
17Here y(x) = o(x) denotes that limx↘0 y(x)/x = 0.
18Our estimate is based on the assumption that trading volume mostly is driven by speculation. A generalization

of the volume-based measure would be to divide trading volume into into a speculative and a nonspeculative
component. The implied arbitrageability would be lower with such a decomposition.
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used the one-month T-bill rate adjusted to a daily basis as the risk-free rate. The identity of,

and summary statistics for, the individual companies are shown in Table 1. The end-of-period

total market capitalization of companies in the sample was USD 893 Billion, corresponding to

an average company size of USD 22 Billion. The median company size was USD 11 Billion. The

largest company was Pfeizer Inc. (PFE) with a market capitalization of USD 172 Billion. The

smallest company was Steak N Shake (SNS) with a market capitalization of USD 0.47 Billion.

The annualized value-weighted average excess return for the companies in the sample was 6.1%

per year and the annualized portfolio volatility was 16.5%. The average annualized turnover

was about 95%.

4.3 Results

We estimate the arbitrageability from the return-based statistic, X̂ , for 3-40 stocks. The results

are shown in Figure 3. We see that for above 15 stocks, the estimated arbitrageability is almost
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Figure 3: Estimated arbitrageability from return-based measure, X̂, as a function of number of stocks,
N . Above: Estimated arbitrageability coefficient, C. Below: Expected time (in years) for rational
investors to capture 90% of wealth.

constant. With all 40 stocks, we have X̂ = 0.025, which corresponds to an arbitrageability of

C = 0.10. This implies that it takes, in expectation, 44 years for rational investors to capture

90% of the market if both groups start with the same wealth. Equivalently, it corresponds to an

average underperformance of 5.0% per year for irrational investors. This suggests a faster process
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compared with the 2.1% underperformance shown in Barber, Lee, Liu, and Odean (2005), but

clearly it is more in line with these results than the hundreds of years elsewhere suggested.

The results are quite similar when using the volume-based measure, shown in Figure 4.

Again, when more than 15 stocks are included in the sample, the estimated arbitrageability is

almost constant. With all 40 stocks, Ẑ = 0.012, corresponding to C = 0.076. This implies that

it takes, in expectation, 58 years for rational investors to capture 90% of the market if both

groups start with the same wealth, corresponding to an underperformance of 3.9% per year for

irrational investors.
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Figure 4: Estimated arbitrageability from volume-based measure, Ẑ, as a function of number of stocks,
N . Above: Estimated arbitrageability coefficient, C. Below: Expected time (in years) for rational
investors to capture 90% of wealth.

5 Concluding remarks

Theory alone does not tell us how fast irrational investors will be wiped out from the stock

market. As we have shown, the time it takes may vary by several orders of magnitude, ranging

from a few months to hundreds — or even thousands — of years. The speed depends on the

so-called arbitrageability of the market. The arbitrageability is a function of both real stock

market characteristics and the stock-wise sentiment of irrational investors. High-speed natural

selection occurs in stock markets with large state spaces, which allow rational investors to take
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advantage of irrational investors more effectively than in markets with only one stock and one

bond. We show that for very large markets, high-speed natural selection is the norm rather than

the exception.

Our analysis is connected to pure noarbitrage theory and to the arbitrage pricing theory.

The original theory provides bounds on the degree of irrationality allowed for a trader not to

be immediately wiped out. We show that, if the market is right, even a much lower degree of

irrationality (compared with the pure arbitrage case) may lead to a fast punishment. In our

model there are no real arbitrage opportunities — neither for pure arbitrage nor for scalable

asymptotic arbitrage. The arbitrage is statistical and the general equilibrium features of the

model allow it to be dynamically quantified.

The results have implications for investor performance in stock markets. A rough empirical

calibration of the model to the US stock market suggests that it takes about fifty years to wipe

out an irrational investor. The result is equivalent to an average underperformance of 3.9-5.0%

per year for unsophisticated investors, compared with sophisticated ones. This is in line with

recent studies of individual investor performance.
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No. Ticker Company Name Excess return Volatility Turnover Market cap.

1 FO FORTUNE BRANDS INC 0.103 0.26 0.81 11.3
2 KO COCA COLA CO -0.012 0.26 0.47 95.9
3 DD DU PONT E I DE NEMOURS CO 0.012 0.30 0.76 39.0
4 GM GENERAL MOTORS CORP -0.070 0.34 1.84 10.9
5 ITT I T T INDUSTRIES INC 0.132 0.28 1.12 9.49
6 COP CONOCOPHILLIPS19 0.121 0.26 0.92 82.8
7 CR CRANE CO 0.063 0.30 0.83 2.12
8 LMT LOCKHEED MARTIN CORP 0.028 0.30 1.13 27.7
9 PFE PFIZER INC 0.060 0.31 0.68 171.9
10 MMM 3M CO 0.078 0.26 0.96 58.8
11 HNZ HEINZ H J CO 0.0099 0.23 0.74 11.2
12 SNS STEAK N SHAKE CO 0.042 0.37 0.58 0.47
13 K KELLOGG CO 0.0034 0.27 0.54 17.9
14 COHU COHU INC 0.033 0.58 1.98 0.50
15 PLL PALL CORP -0.012 0.31 0.93 3.34
16 MDP MEREDITH CORP 0.067 0.27 0.94 2.07
17 MCD MCDONALDS CORP 0.015 0.29 0.95 42.4
18 MMC MARSH & MCLENNAN COS INC 0.068 0.32 0.89 17.2
19 BNI BURLINGTON NORTHERN CP 0.084 0.28 0.88 26.4
20 GWW GRAINGER W W INC 0.057 0.30 1.01 6.35
21 CTX CENTEX CORP 0.210 0.40 2.75 9.13
22 ITW ILLINOIS TOOL WORKS INC 0.089 0.28 0.70 24.6
23 STA ST PAUL TRAVELERS COS INC 0.040 0.30 1.18 30.9
24 CTL CENTURYTEL INC 0.058 0.30 1.19 4.3
25 FDX FEDEX CORP 0.147 0.33 1.25 31.4
26 DLX DELUXE CORP 0.038 0.25 1.15 1.52
27 CSX C S X CORP -0.0035 0.32 0.99 11.0
28 TMK TORCHMARK CORP 0.085 0.26 0.76 5.77
29 STI SUNTRUST BANKS INC 0.065 0.26 0.64 26.2
30 MYL MYLAN LABS INC 0.036 0.42 1.73 4.29
31 BBK B B & T CORP 0.117 0.25 0.45 22.7
32 GFR GREAT AMERICAN FINANCIAL RES 0.020 0.23 0.06 0.93
33 BJS B J SERVICES CO 0.217 0.49 3.61 11.8
34 AZO AUTOZONE INC 0.083 0.35 1.99 7.03
35 EP EL PASO CORP -0.026 0.51 1.77 8.01
36 KSS KOHLS CORP 0.179 0.37 1.60 16.7
37 PX PRAXAIR INC 0.096 0.31 1.15 17.0
38 ABC AMERISOURCEBERGEN CORP 0.134 0.41 2.55 8.63
39 WOR WORTHINGTON INDUSTRIES INC -0.0041 0.37 1.12 1.69
40 ROK ROCKWELL AUTOMATION INC 0.119 0.33 0.90 10.5

All 0.0607 0.165 0.938 893.24

Table 1: Summary statistics for companies in sample. Time period: 1996-2005. Excess return denotes
annualized excess return over 30-day T-bill rate, using geometric means. Variance is defined as annualized
sample variance of daily returns. Turnover denotes annual number of shares traded, divided by shares
outstanding. Market capitalization is measured on end-date (12/30 2005). Source: CRSP.

19Until 2002, Phillips Petroleum (P). In 2002, Conoco and Phillips merged to form ConocoPhillips (COP).
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Appendix

The production economy
We present the model in discrete time, and then take the continuous time limit. One firm produces a

consumption good. The firm exists as a sequence of one-period entities and we include the time scale Δt. The
firm uses a concave production technology as follows: for small production levels, the marginal cost of producing
an additional unit increases, but above a specific level, it is constant. The firm uses marginal cost pricing, e.g.
motivated by competition.20 The production process is reversible, so there is no waste related to overproducing.
There is also a fixed cost to producing in each time period, k = qΔt + ξnΔtσ

√
Δt, where the first part is

deterministic and the second part is stochastic and ξnΔt ∼ Normal(0, 1) are i.i.d. shocks over time.
The expected total surplus of producing and selling goods in one period is therefore bounded by g Δt for g

defined as follows:

g = z − q, where z =

Z C(t)

0

(p − mc(s))ds (30)

is the total variable part of the firm’s profit per unit time. That is, if the demand for consumption at time t is
C(t), the variable cost of producing an additional good is mc(s), and the price for the good is p, then the total
surplus generated is z − k (revenue – variable cost – fixed cost), and z − q is the deterministic part. The idea is
that mc(s) = p(s) above a small threshold, so even if C(t) varies, the stochastic process for the total profit will
be the same. As we shall see, under market clearing, this endogenously leads to an Ornstein-Uhlenbeck process
for consumption per unit time, which fits well with the notion of a business cycle.

We assume that the probability that demand will be below the point of constant marginal cost is negligible,
so this is exactly the surplus created per unit time.21 For timing purposes, we assume that the good is produced
and sold immediately (at t), whereas the cash flow of holding the stock is realized at time t + Δt, i.e., is paid out
as an end-of-period liquidating dividend.

In each period, the firm is set up and one divisible share, representing full ownership in the firm, is sold at the
market clearing price. Then the product is produced, sold and profits are realized. Finally, the firm is liquidated
and the value is paid out. The short term cash-flows of investing in the firm at time t if the market clearing price
is P are shown in Table 2 and the one-period return for the stock is then

μ̃
def
=

ΔP

P
=

g

P
Δt +

σ

P
(−ξ)

√
Δt. (31)

Time: t t + Δt

Cash flows: −P P + gΔt + σ(−ξ)
√

Δt

Table 2: Cash flows from investing in firm.

Proof of Proposition 1: Special case of Proposition 2.

20The assumption of flat marginal costs to producing above a certain level can be viewed as an approximation
of a market in which marginal costs are steep for small production quantities, and almost flat for large production
quantities. The key assumption that allows us to simplify the analysis is that the gross profit of the firm is
insensitive to demand shocks.

21This is assumed for simplicity, and imposes no major restriction. The model can also be formulated without
the assumption, with ξt’s having compact distributional support. In this case, the equilibrium conditions derived
in what follows will be the same as, long as consumption demand is above the threshold (which by assumption can
be arbitrarily small). This formulation complicates the notation considerably without offering additional insight
about the objects for our attention, the wealth processes, so we avoid it.
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Proof of Proposition 2:
As shown in Merton (1969), solving the optimal consumption problem for infinitely lived log-investors is

specifically simple: Regardless of the future investment opportunity set, the investors behave myopically: in-
stantaneously consuming ρWk,tdt, and only caring about instantaneous returns when making portfolio decisions.
Also, investors will instantaneously choose mean-variance efficient portfolios. Define Λt = diag(Pt).

The perceived instantaneous return of the stocks at time t for investor k is μ̃k = μF kdt + SdBk, and the
investors’ optimal relative portfolio choices will therefore be:

αk,t = ΛΣ−1Λ(μF k − rt1N) = ΛΣ−1(gk − rtPt). (32)

The stock market clearing condition then becomes:

α1,tW1,t + α2,tW2,t = Pt ⇒
W1,tΣ

−1(g1 − rtPt) + W2,tΣ
−1(g2 − rtPt) = Λ−1Pt ⇒

W1,t(g
1 − rtPt) + W2,t(g

2 − rtPt) = Σ1N ⇒
rtPt = g +

W2,t

Wt
δ − 1

Wt
Σ1N . (33)

This is the stated equation for the price process.
Premultiplying the price equation with 1′

N and using 1′
NPt = Wt leads to the equation for the interest rate

(11). Finally, plugging in the portfolio choices (32) into the true equation for the wealth process equation (7),
leads to the wealth processes:

dWk,t

Wk,t
= (−ρ + rt)dt + (gk − rtPt)

′Σ−1
“
(g1 − rtPt)dt + ΛSdBt

”
. (34)

From the pricing equation, (33), it follows that

g1 − rtPt = −W2,t

Wt
δ +

1

Wt
Σ1N , (35)

g2 − rtPt =
W1,t

Wt
δ +

1

Wt
Σ1N . (36)

Plugging these into (34), together with interest rate formula (11) leads to the derived wealth dynamics (9-10).22

Proof of Proposition 3:

We define zt
def
= W1t/W2t. Clearly, zt = ft/(1 − ft). Itô calculus implies that

d log(zt) = d(log(W1,t) − log(W2,t)) = dW1,t/W1,t − dW2,t/W2,t −
“
(dW1,t)

2/W 2
1,t − (dW2,t)

2/W 2
2,t

”
/2. (37)

22This derivation shows that the equilibrium exists and is unique except for one special case. When rt = 0,
it breaks down. In this case, there is either no equilibrium, or multiple price vectors that all provide equilibria.
Similar to the argument about very low levels of production in Section 2.1, a modification of the value generation
process to keep interest rates positive can be made to avoid issues about existence of equilibria. Such low aggregate
wealth levels are extremely rare events, occurring on average less than once in 10,000 years in our calibrations,
so they have few implications for the speed of natural selection.
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Equations (9-10), provide expressions for the first-order terms, and through Itô calculus imply that

(dW1,t)
2 =

W 2
1,t

W 2
t

“
dZ1 − W2,tdZ

2
2

”2

=
W 2

1,t

W 2
t

“
D − 2BW2,t + CW 2

2,t

”
dt,

(dW2,t)
2 =

W 2
2,t

W 2
t

“
dZ1 + W1,tdZ

2
2

”2

=
W 2

2,t

W 2
t

“
D + 2BW1,t + CW 2

1,t

”
dt.

Equation (37) together with equations (9-10) then implies that

d log(zt) =

dt

W 2
t

“
− BW2,t + CW 2

2,t − BW1,t + CW1,tW2,t − (D − 2BW2,t + CW 2
2,t − D − 2BW1,t − CW 2

1,t)/2
”

+
1

Wt

“
dZ1,t − W2,tdZ2,t − dZ1,t − W1,tdZ2,t

”
=

dt

2W 2
t

C(W 2
2,t + 2W1,tW2,t + W 2

1,t) − W1,t + W2,t

Wt
dZ2,t

=
W 2

t

2W 2
t

C dt − Wt

Wt
dZ2,t

=
C

2
dt +

√
CdB̃,

where B̃ is a standard Brownian motion. This is, of course, in line with the literature of growth-rate optimal port-
folios, which ensures that a rational investor with log-utility will dominate the market in the long run (Hakansson,
1971). The initial condition is log(z0) = log(f0/(1− f0)) and the first passage distribution of the time it takes for
log(zt) to reach log(f/(1 − f)), is therefore (Ingersoll, 1987)

τf =
log(f/(1 − f)) − log(f0/(1 − f0))

(2πCt3)1/2
e−(log(f/(1−f))−log(f0/(1−f0))−Ct/2)2/(2Ct).

The expected time is (Ingersoll, 1987)

E(τf ) =
2

C

“
log(f/(1 − f)) − log(f0/(1 − f0))

”

and the variance is

V ar(τf ) =
C(log(f/(1 − f)) − log(f0/(1 − f0)))

2(C/2)3
=

4

C2

“
log(f/(1 − f)) − log(f0/(1 − f0))

”
.

Portfolio held by investors: By (32), and (35-36), the positions held by the investors are

α1,tW1,t =
W1,t

Wt
P− W1,tW2,t

Wt
ΛΣ−1δ, (38)

α2,tW2,t =
W2,t

Wt
P +

W1,tW2,t

Wt
ΛΣ−1δ.

The first part of these positions correspond to the market hedging part, which is the only component if there are
no sentiments. The second part is the speculative part, where investor 1 and 2 take opposite positions. Under
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the assumptions of parameters of Section 2.3, the second part for investor 1 becomes

qW1,tW2,t(N + 1)

Wt
diag(sign(δ))P,

where the sign-operation is taken element-wise on the δ vector. This thus corresponds to a long-short portfolio,
scaled up linearly in N .

Sharpe ratios: The Sharpe ratio for investor k is

Skt =
α′

ktΛ
−1(g − rtP)p

α′
ktΛ

−1ΣΛ−1αkt

. (39)

For investor 1, this leads to

S1,t =
(P− W2,tΛΣ−1δ)′Λ−1(−W2,tδ + Σ1N )/Wtp
(P− W2,tΛΣ−1δ)′Λ−1ΣΛ−1(P − W2,tΛΣ−1δ)

=

q
D − 2W2,tB + W 2

2,tC

Wt
.

Similarly, for investor 2, we get:

S2,t =
(P + W1,tΛΣ−1δ)′Λ−1(−W2,tδ + Σ1N )/Wtp
(P + W1,tΛΣ−1δ)′Λ−1ΣΛ−1(P + W1,tΛΣ−1δ)

=
D + (W1,t − W2,t)B − W1,tW2,tC

Wt

q
D + 2W1,tB + W 2

1,tC
.

In the case of study, when B = 0, C = q2(N + 1), D = 1, this reduces to

S1,t =
1

Wt

q
1 + W 2

2,tq
2(N + 1), S2,t =

1 − W1,tW2,tq
2(N + 1)

Wt

q
1 + W 2

1,tq
2(N + 1)

,

so for large N , the Sharpe ratio of investor 1 is basically proportional to q
√

N , whereas it is proportional to
−q

√
N for investor 2. It also follows that the market Sharpe ratio is

St =

√
D

Wt

“
1 − W2,tB

D
),

which under the assumptions of Section 2.3, with B = 0, reduces to exactly the same Sharpe ratio at each point
in time as in the case with only one investor.

Asymptotic arbitrage: High-speed natural selection in an asymptotically well-behaved sequence of markets,
M, implies that the conditions for an asymptotic arbitrage (Ross, 1976) are satisfied. Let us define CN =
δ′NΣ−1

N δN . An arbitrage (i.e., self financed) portfolio is constructed by borrowing P′
tΣ

−1(g − rtPt)/CN and

investing it in the portfolio α
def
= ΛΣ−1(g − rtPt)/CN .

The instantaneous expected excess return of this portfolio is:

1

CN
(g − rP)′Σ−1(g − rP) =

1

CN

„
−W2,t

Wt
δ +

1

Wt
Σ1N

«′
Σ−1

„
−W2,t

Wt
δ +

1

Wt
Σ1N

«

=
1

CN

„
W 2

2,t

W 2
t

CN +
D

W 2
t

− 2
W2,tB

W 2
t

«
≥ W2t

Wt
− ε,
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for any ε > 0, for large N . The instantaneous variance is

1

C2
N

(g − rP)′Σ−1ΣΣ−1(g − rP) =
1

C2
N

„
−W2,t

Wt
δ +

1

Wt
Σ1N

«′
Σ−1

„
−W2,t

Wt
δ +

1

Wt
Σ1N

«

=
1

C2
N

„
W 2

2,t

W 2
t

CN +
D

W 2
t

− 2
W2,tB

W 2
t

«
≤ ε,

for any ε > 0 for large N . Thus, the conditions for asymptotic arbitrage in M are satisfied (Ross, 1976).
We stress that, contrary to the partial equilibrium approach of general arbitrage arguments, in our general

equilibrium approach, this is not a scalable asymptotic arbitrage opportunity, as the pricing system is not linear.
For any fixed economy, if the demand for the portfolio is scaled up in an unbounded fashion, the pricing adjusts
and the opportunity to earn abnormal returns diminishes in relative terms.

Proof of Proposition 4: The proof is a straightforward application of spectral decomposition. The spectral
theorem ensures that for each N , there is a real orthogonal transformation of ΣN into a diagonal matrix with
strictly positive elements, ΣN = R′

NΛNRN , ΛN = diag(ρ1, . . . , ρN ) and R−1
N = R′

N . W.l.o.g., we can assume that
the ρ’s are ordered increasingly, so the spectral radius of ΣN is ρN . Standard matrix-norm theory implies that

min
δ′

N
�=0N

δ′NΣ−1
N δN

δ′NδN
=

1

ρN
,

and by our assumptions, ρN ≤ c2N
−νf(N), δ′NδN ≥ c1f(N), so

δ′NΣ−1
N δN ≥ Nν

c2f(N)
× c1f(N) =

c1

c2
Nν .

Proof of Proposition 5: As in the proof of the previous proposition, the spectral theorem ensures that for
each N , there is a real orthogonal transformation of ΣN into a diagonal matrix with strictly positive elements,
ΣN = R′

NΛNRN , Λ = diag(ρ1, . . . , ρN) and R−1
N = R′

N . Moreover, the first assumption ensures that there is an
eigenvalue, ρi, with corresponding eigenvector 1N . We define ρ∗ = ρ(Q′

1N
Σ−1

N Q1N ). Also, let us denote by PN , the

projection operator onto the one-dimensional subspace spanned by 1N , so Q1N ⊥ PN . Clearly PNδN =
1′

N δN

N
1N .

We can decompose

δ′NΣ−1
N δN = (δN − PNδN + PNδN )′Σ−1(δN − PNδN + PNδN) =

(δN − PNδN )′Q′
1N

Σ−1
N Q1N (δN − PNδN ) +

(PNδN )′(PNδN )

ρi
≥

(δN − PNδN )′Q′
1N

Σ−1
N Q1N (δN − PNδN ) ≥

(δN − PNδN )′(δN − PNδN)

ρ∗ =

δ′NδN − (1′
N δN )2

N

ρ∗ .

By the assumptions of the Proposition, we therefore have (for large enough N):

δ′NΣ−1
N δN ≥ c1f(N)

c2N−νf(N)
=

c1

c2
Nν .
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Proof of Proposition 6: i) Asymptotically well-behaved markets (a.s.): For the Nth market, the market
Sharpe ratio is SN = ρ

√
DN/AN , where ρ is the intertemporal substitution factor, and AN and DN of MN are

defined in Proposition 2. The strong law of large numbers immediately imply that AN →a.s. p̄ > 0, ΔN →a.s.

E(|q̃|) ∈ (0,∞). Furthermore,
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2] ∈ (0,∞), and

P
i β̃N

i /N →a.s. β̄, so D →a.s. 0 + β̄2 ∈ (0,∞). Thus, S ∼ 1 a.s.,
AN ∼ 1 a.s., and ΔN ∼ 1 a.s., so the conditions for an asymptotically well-behaved sequence of markets are a.s.
satisfied.

ii) High-speed natural selection of order one (a.s.): Define Λα,N = diag(αN
1 , . . . , αN

N ) and λN = NδN . We use
the inversion formula (I + xx′)−1 = I − 1

1+x′xxx′ for an arbitrary vector x to get
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The independence of these variables, together with the strong law of large numbers, implies that
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The strict positivity of k is ensured, as σβ > 0, σq > 0, and Jensen’s inequality ensures that E[(α1
1)

−2] ≥ 1
σ2

α+ᾱ2 .

Thus, CN grows like kN a.s. as N becomes large. This completes the proof. If E[(α1
1)

−2] < ∞ (which is not
guaranteed by our assumptions) then k < ∞, so in this case the order of the natural selection process is exactly
one. Otherwise it can be faster.

We note that the argument is easy to generalize to more general random structures. For example, a similar
result can be derived for K-factor models, K > 1, using the same argument as above, but with the inversion rule
(IN + XX′)−1 = IN −X(IK + X′X)−1X′. Here, X is an N ×K random matrix, representing the factor loadings
of the N stocks on K factors, IN is the N × N identity matrix and IK is the K × K identity matrix.
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Short-sales constraints: In the market model of Section 2.2-2.3, high-speed natural selection will not
survive the imposition of nonnegativity constraints for investors’ portfolios. imposing such constraints basically
divides the market into two: one with a subset of stocks in which only the rational investors trade, and the
complement in which only the irrational investors trade. Both groups view the other’s set of stocks as overpriced
and avoid them. The only way to get high-speed natural selection in this case would be through the risk-free
asset, i.e., if the rational investors would be lending to the irrational ones at very high interest rates. However,
an analysis of the constrained optimization problems does not show such behavior, at least not for the market
model of Section 2.2-2.3. In fact, for asymptotically well-behaved sequences of markets, the interest rate will be
bounded, regardless of the number of assets, so high-speed natural selection will not take place.

Thus, with short-sale constraints present, it is not straightforward to achieve high-speed natural selection.
However, if the sequence of markets is not asymptotically well-behaved, it is still possible to achieve high-speed
natural selection. For example, in a growing sequence of markets, the selection process may still be fast. Consider
the following sequence of markets,

gN = 1N , ΣN = IN + 1N1′
N , (δN)2i = 0.1, (δN)2i+1 = −0.1, (40)

with W10 = W20 = 2. For ρ = 10%, and large N , this market has a wealth far below the steady state wealth
of W̄N = AN/ρ = N/ρ, so consumption and wealth will grow initially. It is straightforward to check, using
equation (38), that the short-selling constraint will not be binding in this case. Moreover, Proposition 5 implies
that high-speed natural selection occurs. Thus, high-speed natural selection survives imposition of short-sale
constraints in this special case. An interpretation of this result is that in rapidly expanding markets, high-speed
natural selection can occur even with short-sale constraints, as in such markets the payoff of finding the winners
is higher.

Proof of Proposition 7: Identical to the proof of Proposition 3.

The return-based measure: We have μF = Λ−1g and ΣF = Λ−1ΣΛ−1, which, using (35-36), leads to
(24). By expanding (24), we get

(ΣF s − μe)
′(ΣF )−1(ΣF s− μe) = s′ΣF s − 2μ′

es + μ′
e(Σ

F )−1μe = σ2
m − 2μm + μ′

e(Σ
F )−1μe

≤ σ2
m − 2μm + Nμ2

m/R,

i.e., (25).

The volume-based measure: From equations (35-36), we have zt = ((W1t−W2t)1N−2W1tW2tΣ
−1δ)/(2Wt),

via Itô calculus leading to

dzt = −W1tW2tW
−2
t dZ2t1N + W1tW2tW

−2
t ((W1t − W2t)dZ2t − dZ1t)Σ

−1δ + o(dt1/2).

For convenience, we define the vector a = Σ−1δ. For a general N × N matrix K, we then have

dz′
tKdzt = dt

„
W1tW2t

W 2
t

«2

(1NdZ2t + ((W1t − W2t)dZ2t − dZ1t)a)′ K (1NdZ2t + ((W1t − W2t)dZ2t − dZ1t)a)+o(dt).

We choose K = ΛS2Λ, and assume that K is a good preconditioner for Σ−1, i.e., that KΣ−1 ≈ IN (see Golub and
van Loan 1991). This is a natural assumption if the idiosyncratic risk of individual stocks are not small. Using
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the definitions of A, B, C, and D in Proposition 2, we arrive at

dz′
tKdzt ≈ dt

„
W1tW2t

W 2
t

«2 `
1′

NK1NC + (W1t − W2t)
2C2 + DC − 2B2

´
+ o(dt),

which, by the assumptions that W1t = W2t and B << Δ, reduces to

dz′
tKdzt ≈ dt

1

4

`
PtS

2Pt + D
´
C + o(dt),

justifying the approximation (27).

For (28), we note that for small Δt, vt
def
= (Δt)−1

R t

t−Δt
(dzt)i is approximately Normal(0, h2) distributed for

some h > 0, so (q)i = E(|vt|) ≈ h × π/2, and as
R t+Δt

t
(dz)2i = h2Δt + o(Δt), (28) follows.
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Paul Söderlind, December 2005

40. Overconfidence and Trading Volume
Markus Glaser and Martin Weber, December 2005

41. Golden Handshakes: Separation Pay for Retired and Dismissed CEOs
David Yermack, February 2006

42. Arbitrage in the Foreign Exchange Market: Turning on the Microscope
Q. Farooq Akram, Dagfinn Rime, and Lucio Sarno, February 2006

43. Pay Me Later: Inside Debt and Its Role in Managerial Compensation
Rangarajan K. Sundaram and David L. Yermack, February 2006

44. Life-Cycle Housing and Portfolio Choice with Bond Markets
Otto van Hemert, September 2006

45. Market Conditions and Venture Capitalist Experience in Start-Up Financing
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