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Your average budding yeast may not live extraordinarily exciting lives, 

and you might think this little single-celled organism is unable to protect 

itself from the dangerous world. You are wrong. This thesis will cover a 

large aspect of the yeast´s life and give insights to how he is able to 

detect external signals, respond, adapt and prosper in an ever-changing 

environment. 
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In this thesis, we utilised the model organism the budding yeast Saccharomyces cerevisiae to gain 

fundamental knowledge on a variety of molecular mechanisms employed by the cell to respond and 

adapt to external stimuli. In response to increased external osmolarity, the yeast high osmolarity 

glycerol (HOG) MAPK pathway becomes activated to mediate changes to various cellular functions, 

including changes in glycerol accumulation, cell-cycle arrest, re-establishment of ion homeostasis 

and global reprogrammation of transcription and translation of the whole genome, in order to 

achieve adaptation. Upon detection of high external osmolarity, signal is transduced via two 

functionally redundant but mechanistically distinct branches, SLN1 and SHO1, to finally activate the 

effector MAPK Hog1. Although multiple interactions between osmosensors, adaptor proteins and 

signalling components of the SHO1 branch have been previously described, this thesis further 

characterises the complexity of their interaction profiles to elucidate how signal is effectively 

propagated and how signal fidelity is achieved. Here, we utilised the novel M-track method, which 

detects both short-lived and stable protein interactions, and made several interesting observations. 

First, interaction signals between Ste11 and many of its signalling partners can already be detected 

under basal conditions, in which the signals increase after stress exposure. Second, all Ste11 

interactions require the presence of the Ste11-adaptor protein Ste50. Third, the presence of the 

osmosensors Msb2 and Hkr1 is necessary for the interaction of Ste11 to Sho1 and Pbs2. Fourth, our 

results detect, for the first time, an interaction between osmosensor Msb2 and Ste11, and that 

Msb2 may function as an individual Ste11 concentrator at the plasma membrane. Finally, we 

observed the existence of negative feedback systems targeting the protein levels of Ste11 and Msb2 

and also hint at changes in the dissociation rates of intermediate signalling complexes.  

Once the osmostress signal is transduced, activated Hog1 enters the cell nucleus and, amongst its 

most prominent downstream functions, modulates global gene expression changes. Within minutes 

of shock, global transcription rate rapidly decreases by 50 %, however the transcription machinery is 

reallocated to specific genes implicated in osmostress cellular protection and their transcription is 

strongly and rapidly induced. The cap-binding complex (CBC), consisting of mRNA-binding proteins 

Cbc1 and Cbc2, associates with the 5´ mRNA cap co-transcriptionally and has been described to 

function in various aspects of the mRNA life, including transcription. Utilising both genomic and 

molecular biology techniques, we describe Cbc1 as a global transcription regulator, both under 

stress and non-stress conditions, to mediate high and timely gene expression. First, our Genomic 

Run-on (GRO) data suggest that Cbc1 is required for the global reprogrammation of transcription 

following osmotic stress. More specifically, Cbc1 is required for the rapid and high induction of 

osmostress genes during osmotic stress stimulation. Second, Cbc1 mediates the recruitment of the 

Hot1/Hog1 complex to osmostress promoters by interacting with Hog1, which in turn regulates the 



 
 

formation of the pre-initiation complex (PIC) and RNAPII recruitment on the same genes. Third, the 

transcriptional role of Cbc1 also extends to the regulation of ribosomal protein (RP) gene expression 

both during the recovery of RP transcription following osmotic stress and for high transcription 

under normal conditions, where Cbc1 modulates the recruitment of Rap1 to RP promoters, which 

subsequently induces PIC formation. Fourth, utilising genomic data, Cbc1 appears to specifically 

drive the transcription of highly induced genes in contrast to lowly expressed genes. Finally, our 

results also hint at a possible role for Cbc1 in the regulation of signalling shutoff as well as protein 

stability of transcription factors (TFs).  

In response to pheromones of the opposite mating type, the yeast pheromone MAPK pathway is 

activated to mediate a series of physiological changes in preparation for mating; including 

reprogrammation of gene expression, cell-cycle arrest, formation of a sexual projection termed 

¨shmoo¨, and ultimately cell fusion of mating partners. The evolutionarily conserved and essential 

translation factor eIF5A has recently been described to promote translation of proteins containing 

three or more consecutive proline residues (polyPro) by binding to ribosomes and alleviating 

ribosome stalling during the formation of the Pro-Pro peptide bond. The activation of eIF5A requires 

the addition of a unique post-translational modification, a hypusine residue, which is derived from 

spermidine, an essential factor for mammalian fertility and required for yeast mating. Here we 

investigated eIF5A as a regulator of the pheromone response through the translation of polyPro 

proteins with roles in mating. In this thesis, we first show that in response to pheromone, 

hypusinated eIF5A is required for shmoo formation, localisation of polarisome components, 

induction of cell fusion proteins, and assembly of actin cables for polarized cell growth. We also 

show that eIF5A is required for the translation of Bni1, a proline-rich formin involved in actin 

polymerisation during shmoo formation. Our data indicate that translation of the polyPro motifs in 

Bni1 is eIF5A-dependent and this translation dependency is lost upon deletion of the proline 

residues. Moreover, an exogenous increase in Bni1 protein levels partially restores the defect in 

shmoo formation seen in eIF5A mutants.  

In conclusion, our work provides several interesting observations to the yeast cellular response to 

external stimuli. In response to osmotic stress, we have characterised the protein interaction profiles 

of several signalling components of the HOG pathway and provided more insights in how signal is 

rapidly and effectively transduced. Furthermore, we have identified Cbc1 as a transcriptional 

regulator of the osmotic stress response to induce high and timely expressions of osmostress-

protective genes through the recruitment of TFs and PIC components. Additionally, Cbc1 also has 

more general functions to drive the expression of highly transcribed genes under normal non-stress 



 
 

conditions. Finally, our results identify eIF5A as a novel and essential regulator of yeast mating 

through formin translation. Since eIF5A and polyPro formins are conserved across species, our 

results also suggest that eIF5A-dependent translation of formins could regulate polarised growth in 

such processes as fertility and cancer in higher eukaryotes. 
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En esta tesis, se utilizó como organismo modelo la levadura Saccharomyces cerevisiae para obtener 

conocimiento fundamental sobre una variedad de mecanismos moleculares utilizados por la célula 

para responder y adaptarse a los estímulos externos. En respuesta al aumento de la osmolaridad 

externa, la ruta de señalización MAPK High Osmolarity Glycerol (HOG) se activa para mediar cambios 

en diversas funciones celulares, incluyendo cambios en la acumulación de glicerol, la parada del ciclo 

celular, el restablecimiento de la homeostasis de iones y la reprogramación global de la transcripción 

y traducción, con el fin último de lograr la adaptación. Tras la detección de alta osmolaridad externa, 

la señal se transduce a través de dos ramas funcionalmente redundantes pero mecanísticamente 

distintas, SLN1 y SHO1, para finalmente activar el efector MAPK Hog1. Aunque múltiples 

interacciones entre sensores, proteínas adaptadoras y los componentes de señalización de la rama 

SHO1 se han descrito anteriormente, esta tesis caracteriza aún más la complejidad de los perfiles de 

las interacciones para dilucidar cómo se propaga la señal con eficacia y cómo se logra la fidelidad de 

la señal. En este sentido, hemos utilizado el nuevo método M-track que detecta tanto las 

interacciones entre proteínas de corta duración como las estables y hemos realizado varias 

observaciones interesantes. En primer lugar, las señales de interacción entre Ste11 y muchos de los 

componentes de señalización se pueden detectar incluso en condiciones basales, y las señales 

aumentan después de la exposición al estrés. En segundo lugar, todas las interacciones de Ste11 

requieren la presencia de la proteína-adaptadora Ste50. En tercer lugar, la presencia de los 

osmosensores Msb2 y Hkr1 es necesaria para la interacción de Ste11 a Sho1 y a Pbs2. En cuarto 

lugar, nuestros resultados detectan, por primera vez, una interacción entre el osmosensor Msb2 y 

Ste11, y además hemos encontrado que Msb2 puede funcionar como un concentrador adicional de 

Ste11 en la membrana plasmática. Por último, se observó la existencia de sistemas de 

retroalimentación negativos dirigidos a los niveles de las proteínas Ste11 y Msb2 y también hacia los 

cambios en las tasas de disociación de complejos de señalización intermedios.  

Una vez que se transduce la señal de respuesta a estrés, Hog1 activado entra en el núcleo de la 

célula y, entre sus más destacados funciones aguas abajo, modula los cambios de expresión génica 

global. A los pocos minutos de choque osmótico, la tasa de transcripción global disminuye 

rápidamente en un 50%, sin embargo la maquinaria de transcripción se reasigna a genes específicos 

implicados en la protección celular frente al estrés y su transcripción se induce rápida y altamente. El 

complejo de unión a la caperuza CBC (por cap-binding complex), que está formado por las proteínas 

de unión a RNA Cbc1 y Cbc2, se asocia con la caperuza en 5' del mensajero co-transcripcionalmente 

y se ha descrito su función en diversos aspectos de la vida de mensajero, incluyendo la transcripción. 

Utilizando técnicas de biología molecular y genómica, describimos Cbc1 como regulador de la 

transcripción global, tanto en condiciones de estrés y no estrés, para mediar la expresión génica de 



 
 

manera que se consigan niveles altos de una forma rápida. En primer lugar, nuestros datos de 

Genomic Run-On (GRO) sugieren que Cbc1 se requiere para la reprogramación global de la 

transcripción tras el estrés osmótico. Específicamente, Cbc1 se requiere para la inducción rápida y 

alta de los genes de protección frente al estrés osmótico. En segundo lugar, Cbc1 media el 

reclutamiento del complejo activador de la transcripción Hot1-Hog1 a los promotores de estrés, a 

través de una interacción con Hog1, que a su vez regula la formación del complejo de pre-iniciación 

(PIC, por pre-initiation complex) y el reclutamiento de la RNAPII en los mismos genes. En tercer 

lugar, la función transcripcional de Cbc1 se extiende también a la regulación de la expresión génica 

de las proteínas ribosomales (RP), tanto durante la recuperación de la transcripción de los genes RP 

durante el estrés osmótico como para conseguir una alta transcripción en condiciones normales, 

donde Cbc1 modula el reclutamiento de Rap1 a los promotores RP y por lo tanto induce la formación 

del PIC. En cuarto lugar, y utilizando los datos genómicos, Cbc1 parece contribuir específicamente a 

la transcripción de genes altamente expresados, en contraste con genes con bajos niveles de  

expresión. Por último, nuestros resultados también apuntan a un posible papel de Cbc1 en la 

regulación del apagado de la señalización de estrés así como en la regulación de la estabilidad de los 

factores de transcripción.  

En respuesta a feromonas del tipo sexual contrario, la ruta de MAPK de feromonas de células de 

levadura haploides se activa para mediar una serie de cambios fisiológicos en preparación para el 

apareamiento, que incluyen la reprogramación de la expresión génica, la parada del ciclo celular, la 

formación de una proyección sexual denomina ¨shmoo¨, y en última instancia la fusión celular de los 

tipos de células de apareamiento contrario. El factor de traducción eIF5A, esencial y conservado 

evolutivamente, se ha descrito recientemente que funciona en la traducción de proteínas que 

contienen tres o más residuos de prolina consecutivos (polyPro), a través de su unión a ribosomas 

para aliviar el estancamiento del ribosoma durante la formación del enlace péptidico entre prolinas. 

La activación de eIF5A requiere una modificación post-traduccional única, la hipusinación, donde el 

residuo de hipusina se deriva de la espermidina, un factor esencial para la fertilidad de los 

mamíferos y que se requiere para el apareamiento de la levadura. Aquí se investigó eIF5A como 

regulador de la respuesta a feromonas a través de la traducción de proteínas polyPro con funciones 

en el apareamiento. En esta tesis, en primer lugar se demostró que en respuesta a feromonas se 

requiere eIF5A hipusinado para la formación del shmoo, la localización de componentes del 

polarisoma, la inducción de proteínas de fusión celular y para la nucleación de los cables de actina 

durante el crecimiento polarizado. También mostramos que eIF5A se requiere para la traducción de 

Bni1, una formina rica en prolinas implicada en la polimerización de actina durante la formación del 

shmoo. Nuestros datos indican que la traducción de los motivos polyPro de Bni1 es eIF5A-



 
 

dependiente y esta dependencia se pierde cuando se delecionan las poliprolinas. Además, un 

aumento en los niveles de proteína Bni1 exógena restaura parcialmente el defecto en la formación 

del shmoo visto en mutantes de eIF5A.  

En conclusión, nuestro trabajo ofrece varias observaciones interesantes sobre la respuesta celular de 

la levadura a estímulos externos. En respuesta a estrés osmótico, hemos caracterizado los perfiles de 

interacción de proteínas de varios componentes de señalización de la vía de HOG y proporcionado 

más conocimiento sobre cómo se transduce con rapidez y eficacia la señal. Por otra parte, hemos 

identificado Cbc1 como un regulador transcripcional de la respuesta al estrés osmótico que permite 

expresiones altas y rápidas de los genes implicados en la supervivencia al estrés a través del 

reclutamiento de los factores transcriptionales específicos y la consiguiente formación del PIC. 

Además, Cbc1 también es necesario para mediar niveles de expresión génica altos en condiciones 

normales sin estrés. Por último, nuestros resultados identifican eIF5A como un nuevo regulador 

esencial del apareamiento de levadura mediante la traducción de las forminas. Dado que eIF5A y las 

forminas ricas en polyPro se conservan a través de las especies, nuestros resultados también 

sugieren que la traducción de las forminas, dependiente de eIF5A, podría regular el crecimiento 

polarizado en procesos tales como la fertilidad y el cáncer en eucariotas superiores. 

  



 
 

  



 
 

 

 

 

 

 

 

 

Contents 

  



 
 

 



 
 

Glossary ........................................................................................................................... 1 

 

Chapter 1 Introduction ..................................................................................................... 7 

1.1 Saccharomyces cerevisiae as a model organism ........................................................................... 9 

1.1.1 Life cycle of S. cerevisiae ...................................................................................................... 10 

1.1.2 Response to external signals ................................................................................................ 11 

1.2 Regulation of gene expression in S. cerevisiae ........................................................................... 13 

1.2.1 RNAPII transcription cycle .................................................................................................... 14 

1.2.2 Transcription factors ............................................................................................................ 18 

1.2.3 The mRNA life ...................................................................................................................... 20 

1.2.4 Translation ........................................................................................................................... 24 

1.2.5 Coordination of mRNA metabolism ..................................................................................... 26 

1.3 Response to hyperosmotic stress ............................................................................................... 27 

1.3.1 Mechanisms of adaptation .................................................................................................. 27 

1.3.2 The HOG MAPK signalling cascade....................................................................................... 28 

1.3.2.1 The SLN1 branch ........................................................................................................... 29 

1.3.2.2 The SHO1 branch .......................................................................................................... 30 

1.3.2.3 Negative feedback by Hog1 of upstream elements ...................................................... 35 

1.3.2.4 Regulation of signalling between HOG and other pathways ........................................ 36 

1.3.3 Transcriptional response upon osmotic stress .................................................................... 36 

1.3.3.1 Hog1 regulates transcription during osmotic stress ..................................................... 37 

1.3.3.2 Transcriptional activators under control of Hog1 ......................................................... 39 

1.3.4 Post-transcriptional regulation during osmotic stress ......................................................... 42 

1.4 The response to pheromones ..................................................................................................... 44 

1.4.1 MAPK pathway of the pheromone response ....................................................................... 44 

1.4.2 The polarisome .................................................................................................................... 45 

1.5 The RNA cap-binding complex CBC ............................................................................................. 47 

1.5.1 Functional roles of CBC ........................................................................................................ 49 

1.5.2 Role of CBC in transcription ................................................................................................. 50 

1.5.3 Role of CBC in hyperosmotic stress ..................................................................................... 52 

1.6 The role of translation factor eIF5A ............................................................................................ 53 

1.6.1 Isoforms of eIF5A ................................................................................................................. 54 

1.6.2 From spermidine to hypusine .............................................................................................. 55 

1.6.3 Molecular and physiological functions of eIF5A .................................................................. 59 



 
 

Chapter 2 Materials and Methods ................................................................................... 61 

2.1 Media and cultures for Saccharomyces cerevisiae ..................................................................... 63 

2.1.1 Media ................................................................................................................................... 63 

2.1.2 Growth conditions ............................................................................................................... 64 

2.1.3 Treatments ........................................................................................................................... 64 

2.2 S. cerevisiae strains ..................................................................................................................... 64 

2.2.1 Construction of new strains by gene disruption .................................................................. 64 

2.2.2 Construction of new strains by genomic tagging ................................................................. 65 

2.3 Yeast plasmids ............................................................................................................................. 69 

2.3.1 Preparation of plasmids ....................................................................................................... 69 

2.4 Yeast transformations ................................................................................................................. 71 

2.5 Growth and viability analyses ..................................................................................................... 72 

2.5.1 Analysis of cell growth by serial dilutions ............................................................................ 72 

2.5.2 Cell viability assay ................................................................................................................ 72 

2.6 Molecular biology techniques ..................................................................................................... 73 

2.6.1 DNA extraction from yeast cultures..................................................................................... 73 

2.6.2 RNA extraction from yeast cultures ..................................................................................... 73 

2.6.3 Agarose gel electrophoresis ................................................................................................. 74 

2.6.4 Polymerase chain reaction (PCR) ......................................................................................... 74 

2.6.5 Quantitative real-time PCR (qPCR) ...................................................................................... 74 

2.6.6 Western blot analysis ........................................................................................................... 77 

2.6.7 Chromatin Immunoprecipitation (ChIP) .............................................................................. 79 

2.6.8 Beta-galactosidase assay...................................................................................................... 81 

2.7 Microscopy .................................................................................................................................. 81 

2.7.1 Analysis of shmooing efficiency ........................................................................................... 82 

2.7.2 Spa2 localisation .................................................................................................................. 82 

2.7.3 Phalloidine analyses of actin ................................................................................................ 82 

2.8 M-track method .......................................................................................................................... 83 

2.8.1 M-track western blot analyses ............................................................................................. 83 

2.8.2 Preparation of yeast extract for M-track analysis ............................................................... 83 

2.9 Analysis of Genomic Run-On (GRO) data .................................................................................... 84 

 

Chapter 3 Msb2 is a Ste11 membrane concentrator of the HOG pathway ........................ 88 

3.1 Background ................................................................................................................................. 89 



 
 

3.1.1 HOG pathway ....................................................................................................................... 89 

3.1.2 M-track method ................................................................................................................... 91 

3.2 Results ......................................................................................................................................... 92 

3.2.1 Interaction between Ste11 and Pbs2 requires Ste50, Opy2, Msb2/Hkr1 and Sho1 ............ 92 

3.2.2 Sho1-SH3 domain is not required for the Sho1-Ste11 interaction but influences its 

dissociation ................................................................................................................................... 94 

3.2.3 Interaction of Ste11 with Sho1 requires the scaffold Ste50 and osmosensors Msb2/Hkr1 

but not the membrane protein Opy2 ........................................................................................... 96 

3.2.4 Msb2 interacts dynamically with Ste11, and this interaction, as well as Msb2 protein, is 

negatively regulated by Hog1 ....................................................................................................... 98 

3.2.5 Sho1 is not essential for Ste11 interaction with Msb2 ...................................................... 101 

3.2.6 Ste11 binds to Sho1 with high affinity ............................................................................... 104 

3.3 Discussion .................................................................................................................................. 105 

3.3.1 Ste11 interacts with Msb2 and other signalling factors before and during osmotic stress

 .................................................................................................................................................... 106 

3.3.2 Inter-dependency between signalling factors to efficiently recruit Ste11 to the membrane

 .................................................................................................................................................... 106 

3.3.3 Hog1-dependent negative feedback regulates Msb2 and Ste11....................................... 108 

 

Chapter 4 The mRNA cap-binding protein Cbc1 regulates high and timely gene 

 expression ................................................................................................................... 112 

4.1 Background ............................................................................................................................... 113 

4.2 Previous results ......................................................................................................................... 114 

4.2.1 Deletion of Cbc1 deregulates the global transcriptional response to osmotic stress ....... 114 

4.2.2 Function of Cbc1 in osmostress-induced transcription encompasses both Hog1-dependent 

and -independent genes ............................................................................................................. 115 

4.3 Results ....................................................................................................................................... 120 

4.3.1 Defective recruitment of RNA polymerase II to osmo-induced genes in cbc1Δ ................ 120 

4.3.2 Role of Cbc1 in transcription is dependent on Cbc2 .......................................................... 122 

4.3.3 Cbc1 does not require Mot1, but recruits the transcription complex Hot1/Hog1 to 

osmostress promoters to aid PIC formation ............................................................................... 124 

4.3.4 Cbc1 regulates Hog1/Hot1 dephosphorylation and Hot1 and TBP protein levels ............ 126 

4.3.5 Cbc1 modulates RP gene expression through the accumulation of Rap1 and PIC at RP 

promoters ................................................................................................................................... 130 

4.3.6 Cbc1 modulates transcription of highly expressed genes and may be implicated in the 

response to various environmental stresses .............................................................................. 133 



 
 

4.4 Discussion .................................................................................................................................. 135 

4.4.1 Mechanism of Cbc1 regulation of transcription initiation ................................................. 136 

4.4.2 Cbc1 specifically enhances transcription of highly expressed genes ................................. 139 

4.4.3 Impact of Cbc1 on the protein expression of activators .................................................... 140 

4.4.4 Biological relevance of Cbc1 function in gene expression ................................................. 141 

 

Chapter 5 Fertility and polarised cell growth dependents on eIF5A for translation of 

polyproline-rich formins ............................................................................................... 143 

 

5.1 Background ............................................................................................................................... 145 

5.2 Results ....................................................................................................................................... 146 

5.2.1 Pheromone-induced shmoo formation is inhibited in eIF5A mutants .............................. 146 

5.2.2 eIF5A is required to shmoo-localise Spa2, induce FUS1 gene and assemble actin cables 

during pheromone stimulation ................................................................................................... 150 

5.2.3 eIF5A is required for the translation of the polyproline formin Bni1 ................................ 153 

5.2.4 Over-expression of Bni1 protein partially restores the shmoo formation defect of eIF5A 

mutants ....................................................................................................................................... 155 

5.3 Discussion .................................................................................................................................. 157 

5.3.1 Role of eIF5A in polarised cell growth and fertility ............................................................ 157 

5.3.2 Role of eIF5A in polyPro translation .................................................................................. 158 

5.3.3 Implications for higher eukaryotes .................................................................................... 160 

 

Conclusions .................................................................................................................. 164 

 

Publications.................................................................................................................. 167 

 

Bibliography ................................................................................................................. 171 

 



 
 

 

 

 

 

 

 

 

Glossary



2 
 

aa – Amino acid 

ABA – Abscisic acid 

Ac – Acetylation 

ATP – Adenosine triphosphate 

bp – Base pair 

CBC – Cap-binding complex 

CDK – Cyclin-dependent kinase 

ChIP – Chromatin immunoprecipitation 

CK2 – Casein kinase II 

CPE – Core promoter element 

CPSF – Cleavage and polyadenylation specificity factor 

CR – Conserved region 

CstF – Cleavage stimulatory factor 

CTD – Carboxy-terminal domain of RNA polymerase II 

CTIF – CBC-dependent translation initiation factor 

DHS – Deoxyhypusine synthase 

DOHH – deoxyhypusine hydroxylase 

eEF – Eukaryotic elongation factor 

eIF – Eukaryotic initiation factor 

FG – Filamentous growth pathway 

FH – Formin homology domain 

G1 phase – Growth 1 phase of cell cycle 

GDP – Guanosine diphosphate 

GEF – Guanine nucleotide exchange factor 

GMP – Guanine monophosphate 

GO – Gene ontology 

GRO – Genomic Run-on 
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GTF – General transcription factor 

GTP – Guanosine triphosphate 

H – Histone 

HMH – Hkr1-Msb2 homology domain 

HOG – High osmolarity glycerol pathway 

IRES – Internal ribosome entry site 

K – Lysine 

kDa – Kilodalton 

Lys – Lysine 

m7GpppN – N7-methyl guanosine mRNA cap 

MAPK – Mitogen-activated protein kinase 

MAPKK – MAPK kinase 

MAPKKK – MAPK kinase kinase 

MAT – Mating-type locus of Saccharomyces cerevisiae 

me – Methylation 

Met – Methionine 

min – Minutes 

miRNA – MicroRNA 

Mot1 – Modifier of transcription 1 

mRNA – Messenger RNA 

mRNP – Messenger ribonucleoprotein complex 

NMD – Nonsense-mediated decay 

NPC – Nuclear pore complex 

N-terminus – Amino-terminus 

OD – Optic density 

ORF – Open reading frame 

PABP – Poly(A)-binding protein 
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P-body – Processing body 

PCR – Polymerase chain reaction 

PHAX – Phosphorylated adaptor of RNA export 

PIC – Pre-initiation complex 

PKA –Protein kinase A pathway 

poly(A) – Polyadenosine tail 

polyPro – Poly-Proline residues 

Pro – Proline 

p-value – Significance level of a statistical test to reject the null hypothesis 

RA – mRNA amount 

RA – Ras association domain 

Rap1 – Repressor activator protein 1 

RNAP – RNA polymerase  

RP – Ribosomal protein 

rRNA – Ribosomal RNA 

RT-qPCR – Reverse transcription real-time PCR 

S phase – Synthesis phase of cell cycle 

SAM – Steril-α domain 

Ser – Serine 

SG – Stress granule 

SH3 – SRC homology 3 domain 

snRNA – Small nuclear RNA 

STRE – Stress response element 

TAF – TATA-associated factors 

TBP – TATA-binding protein 

TF – Transcription factor 

TM – Transmembrane 
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TOR – Target of rapamycin pathway 

TR – Transcription rate 

tRNA – Transfer RNA 

TSS – Transcription start site 

UAS – Upstream activation sequence 

URS – Upstream repression sequence 

UTR – Untranslated region 
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1.1 Saccharomyces cerevisiae as a model organism 

The use of model organisms for research to gain better understanding of particular biological 

phenomena is a hallmark of scientific endeavour. The attractiveness of the application of such 

organisms stem from several reasons, including: facilitating the optimisation of techniques; 

providing insights into the biological functions of other organisms; and overcoming ethical or 

experimental constraints associated with more complex organisms (Fields and Johnston, 2005). To 

date, the extensive list of model organisms studied ranges from the single-celled prokaryotic 

Escherichia coli and single-celled eukaryotic yeasts to more complex eukaryotic organisms such as 

the roundworm Caenorhabditis elegans, the fruitfly Drosophila melanogaster and the vertebrate 

mouse Mus musculus (Nussbaum-Krammer and Morimoto, 2014, Guisbert et al., 2008, Abmayr and 

Keller, 1998). Several yeasts, including the fission yeast Schizosaccharomyces pombe and the 

budding yeast Saccharomyces cerevisiae comprise some of the most studied model organisms today, 

largely due to their rapid growths and that many of their biological processes are regulated by 

proteins that have homologs in humans (Botstein et al., 1997).   

S. cerevisiae, also known as the baker´s yeast or the budding yeast, is eukaryotic, unicellular, spore-

forming budding yeast belonging to the phylum Ascomycota. Believed to be originally isolated from 

the skin of grapes, it is widely used for fermentation in such alimentation processes as bread baking 

and alcohol brewing (Maraz, 1999). Due to its fermentative properties, early geneticists utilised the 

budding yeast to study underlying mechanisms of metabolism, and simultaneously developed many 

genetic methodologies that were applicable to a wide variety of biological process (Mell, 2002). In 

1996, the entire genome of S. cerevisae, containing more than 6000 genes on 16 chromosomes, was 

sequenced (Cherry et al., 1998). Surprisingly, around 30 per cent of the genes implicated in human 

diseases have functional homologs in yeasts. Yeast genes have very few introns and the intergenic 

regions are relatively short, which facilitates the analyses of gene function (Cherry et al., 1998). 

Overall, in modern day research, S. cerevisiae is utilised as a fundamental tool to study a variety of 

processes: from gene expression to protein interactions in such biological systems as yeast mating 

and responses to environmental stresses.  

In this thesis, we utilise S. cerevisiae as a model organism to study a variety of molecular 

mechanisms, including signal propagation and changes in gene and protein expressions, employed 

by the cell in response to environmental stimuli. 
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1.1.1 Life cycle of S. cerevisiae 

The life cycle of S. cerevisiae can be both asexual and sexual. A haploid yeast cell can reproduce by 

simple mitosis, termed ¨budding¨, where a progenitor or ¨mother¨ cell pinches off a portion of itself  

to yield a genetically identical progeny or ¨daughter¨ cell (Zorgo et al., 2013). Haploid yeast cells can 

be one of two mating types: a or α, in which the mating type is encoded by two different alleles of 

the mating-type (MAT) locus, MATa and MATα, located on chromosome III, and the definitive 

mating type of the cell is dependent on which allele is actively transcribed (Haber, 2012). Non-

laboratory yeast cells are able to switch between the two mating types in alternating mitotic 

divisions, where the mother cell switches during G1 after budding. This process is mediated by the 

enzyme HO endonuclease, where it cleaves the genetic information of a or α from the MAT locus, 

leaving only DNA coding for the opposite mating type to the daughter cell (Mell, 2002, Haber, 2012). 

Most laboratory yeast strains harbour a mutation in the HO endonuclease in order to obtain stable 

cell cultures, and these strains are termed MATa and MATα.    

MATa and MATα cells release pheromones a- and α-factor respectively, which bind to either Ste3 

receptor (in MATα cells) or Ste2 receptor (in MATa cells) expressed in cells of the opposite mating 

type (see Figure 1.1) (Bardwell, 2005).When cells of opposite mating types are in close proximity, 

pheromones produced by the other mating type bind to its receptor, and this initiates a biological 

process called ¨mating¨ (see Figure 1.1). This yields transient cell cycle arrest and the formation of a 

projection called the ¨shmoo¨ towards the pheromone gradient, which results in cell fusion to form 

a diploid. The resulting diploid cell (MATa/α) contains two of each chromosome and can undergo 

mitotic reproduction (see section 1.4 and Figure 1.1) (Herskowitz, 1988). However, during nutrient 

deprivation, the diploid cell is able to reproduce sexually by meiosis through the formation of spores, 

which, upon the reintroduction of nutrients, will germinate to yield four haploid cells (Figure 1.1) 

(Herskowitz, 1988).  

Although termed the ¨budding¨ yeast, both haploid and diploid strains of S. cerevisiae can undergo 

another form of cellular growth: filamentous growth. The filamentous growth pathway is activated 

upon nitrogen starvation and stresses, leading to the formation of pseudohyphaes, which are chains 

of elongated cells formed by unipolar budding where the buds do not separate (Gancedo, 2001). 

Pseudohyphaes are able to penetrate agar in the laboratory, and this ability has been hypothesised 

to be important for yeasts in the wild to facilitate foraging for scarce nutrients or escape from 

harmful environments (Gancedo, 2001). 
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Figure 1.1 Schematic representation of the S. cerevisiae sexual and asexual life cycle. Yeasts undergo both 

mitotic and meiotic cellular divisions. Under nutrient-rich conditions, cells, which can be MATa or MATα, 

undergo mitotic divisions, where a haploid cell form a bud upon entering S phase followed by migration of 

the nucleus, and finally the complete formation of a daughter cell with identical genetic material as the 

mother cell. During the sexual phase, cells of opposite mating types secrete pheromones that arrest each 

other at G1 phase. Cells elongate towards the pheromone gradient to form a sexual projection termed 

shmoo, and eventually fuse to produce a diploid (MATa/α) containing genetic material from both cells. 

Under nutrient-rich conditions, the diploid cell undergoes mitotic divisions, and under nutrient starvation, 

the diploid cell sporulates to germinate four daughter cells. The annotated n indicates the number of 

genetic material the cell contains. Yeast mating type is denoted as MATa or MATα for haploid cells, and 

MATa/α for diploid cells. 

 

1.1.2 Response to external signals 

Yeast cells have evolved to efficiently detect and respond to external signals. In the wild, yeast cells 

must contend with fluctuations in temperature, acidity, osmolarity, oxygen and nutrient availability, 
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and the presence of mating pheromones. Growth under these varying conditions involves changes in 

cellular processes such as signalling, gene expression and protein interactions in order to mediate 

adaptation (Posas et al., 1998a, Gasch et al., 2000). Mechanisms employed by S. cerevisae in 

response to changes in the environment have been subjected to extensive research, as many of 

these processes are also shared in high eukaryotes (Chen and Thorner, 2007, Hohmann and Mager, 

2003). Environmental stimuli, such as pheromones or osmotic stress, are detected by sensors or 

receptors located on the cell surface, which generate specific intracellular signals that are then 

amplified and transmitted to effector molecules. The propagation of signal is carried out by 

dedicated signal transduction pathways, and amongst the most prominent signalling pathways are 

the mitogen-activated protein kinase (MAPK) cascades [reviewed in (Hohmann and Mager, 2003, 

Saito and Posas, 2012, Hohmann, 2009)]. MAPK signalling modules are crucial for many aspects of 

cell physiology and are central elements of phosphorylation cascades that are evolutionarily 

conserved from single-celled yeast to vertebrates. Each MAPK module is composed of three 

sequentially activating kinases: a MAPK kinase kinase (MAPKKK), a MAPK kinase (MAPKK), and a 

MAPK, in which the MAPKKK can be activated either by phosphorylation by an upstream kinase or by 

the binding of an activator protein (see Figure 1.2) [reviewed in (Hohmann and Mager, 2003, Saito 

and Posas, 2012, Hohmann, 2009)]. 

In S. cerevisiae, five functionally distinct MAPK cascades have been identified to date, and these 

cascades function in the pheromone response, filamentous growth, HOG (High Osmolarity Glycerol), 

cell integrity, and spore wall assembly pathways (Chen and Thorner, 2007, Furukawa and Hohmann, 

2013, Saito, 2010). Several common signalling components are shared by two or more of these 

MAPK pathways, and, upon a particular external stimulus, various mechanisms are employed to 

ensure that, in addition to efficient activation of the corresponding pathway, there is no leakage of 

signal to incorrectly activate other pathways (Saito, 2010, Saito and Posas, 2012, O'Rourke and 

Herskowitz, 1998, Posas et al., 1998a). Hence, the budding yeast S. cerevisiae serves as an excellent 

model to study cellular response to environmental stimuli, and in this thesis, we discuss the 

mechanisms by which these response pathways are activated and how they regulate downstream 

molecular and cellular processes. Briefly, in Chapter 3 we characterise the specific protein-protein 

interactions that are required for effective signal propagation through the HOG pathway, Chapter 4 

describes the role of cap-binding protein Cbc1 in downstream gene expression during hyperosmotic 

shock, and Chapter 5 analyses the functional role of the translation factor eIF5A in yeast mating 

during pheromone response. 
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Figure 1.2 Schematic representation of a MAPK signalling module (modified from Saito and Posas, 2012). 

Circles and hexagons represent inactive and active forms of kinases respectively. Yellow circles with 

annotated P represent phosphorylation residues. Green arrows indicate sequential activation of MAPK 

kinase kinase (MAPKKK), MAPK kinase (MAPKK), MAP kinase (MAPK), and downstream substrates (Saito 

and Posas, 2012).  

 

1.2 Regulation of gene expression in S. cerevisiae 

Regulation of gene expression is fundamental in many biological processes, including cellular 

growth, asexual and sexual reproduction, response to environmental changes, and disease. Control 

of the information flow from DNA to functional proteins encompasses many stages, including 

regulation of transcription, post-transcriptional processing and export of mRNA, and translation. 
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1.2.1 RNAPII transcription cycle 

Transcription of DNA is the first stage of many in the process of gene expression, and it constitutes 

as the most important stage that is subjected to control to regulate gene expression (Jovanovic et 

al., 2015, Battle et al., 2015, Li et al., 2014a). Many components of the transcriptional machinery are 

highly conserved amongst the eukaryotic kingdom, and in some cases are functionally 

interchangeable (Struhl, 1995). In eukaryotes, transcription is carried out by three distinct RNA 

polymerases (RNAP): RNAPI transcribes the large ribosomal RNA (rRNA) precursor (Zylber and 

Penman, 1971), RNAPII transcribes protein-coding messenger RNAs (mRNAs) (Zylber and Penman, 

1971), most small nuclear RNA (snRNA) and microRNA (Sims et al., 2004), and RNAPIII transcribes 

transfer RNAs (tRNAs) and the 5s rRNA (Weinmann and Roeder, 1974). The three RNA polymerases 

are structurally similar and share five of the ten core subunits; however RNAPII contains a very 

distinct C-terminal domain (CTD) on its large subunit Rpb1, which is subjected to post-translational 

modifications including phosphorylation, glycosylation and isomerisation, and this has been termed 

the ¨CTD code¨ [reviewed in (Egloff and Murphy, 2008, Liu et al., 2013)]. Post-translational 

modifications of the CTD play an essential role in dictating the coordinated binding of different 

proteins to impose order on the transcription cycle of initiation, elongation and termination, as well 

as presenting a dynamic surface to proteins that carry out co-transcriptional mRNA processing and 

chromatin modifications (Kim et al., 2010, Buratowski, 2003, Zhang et al., 2012). Phosphorylations of 

residues Ser2, Ser5 and Ser7 of the CTD are the best-characterised CTD modifications, and are 

principally catalysed by members of the family of cyclin-dependent kinases (CDK). In S. cerevisiae, at 

least four CDK complexes are found to phosphorylate the CTD: Kin28/Ccl1/Tfb3, Srb10/Srb11, 

Ctk1/Ctk2/Ctk3, and Bur1/Bur2, and the delicate coordination between phosphorylation by kinases 

and dephosphorylation by phosphatases of these CTD serine residues dictate the different stages of 

the transcription cycle, as well as influencing transcription regulation [reviewed in (Egloff and 

Murphy, 2008, Phatnani and Greenleaf, 2006)]. 

Transcription by RNAPII is a precisely timed event that is tightly regulated at many steps, and 

transcriptional regulation becomes fundamental in the maintenance of cellular homeostasis. The 

RNAPII transcription cycle initiates with the recognition of upstream activation sequences (UASs) by 

activated transcription factors, which then serves as a nucleation point for co-regulators and general 

transcription factors (GTFs) to mediate the assembly of the pre-initiation complex (PIC), containing 

RNAPII, at the promoters (see Figure 1.3). Conversely, transcription repression initiates with the 

recognition of upstream repression sequences (URSs) by transcription repressors (Struhl, 1995, Hahn 

and Young, 2011).  
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Generally, genes are categorised based on the presence of specific DNA sequences in its promoter 

termed core promoter elements (CPEs), which is located 50-120 bp upstream of the transcription 

start site (TSS) in yeasts (Zhang and Dietrich, 2005). CPEs can be divided into two main groups: 

promoters that contain a canonical TATA box sequence TATAWAWR (W is A/T, R is A/G) and 

promoters that contain up to two mismatches to the TATA box sequence that is termed ¨TATA-like¨ 

(Rhee and Pugh, 2012, Basehoar et al., 2004, Zhang and Dietrich, 2005). Genome-wide analyses 

revealed that only 10-20 % of total yeast promoters contain the canonical TATA box sequence, and 

these genes are highly regulated and many of them are implicated in the stress response (Huisinga 

and Pugh, 2004, Basehoar et al., 2004). In contrast, majority of yeast promoters (~90 %) are TATA-

like and more constitutively active (Bryant and Ptashne, 2003). Differences in the two groups of 

promoters dictate PIC assembly via two distinct and independent pathways: either via the SAGA 

coactivator complex which recognises the canonical TATA sequence or via the TFIID coactivator 

complex which recognise TATA-like promoters (Qiu et al., 2004, Bryant and Ptashne, 2003, Grunberg 

and Hahn, 2013). Although mechanistically independent, the SAGA and TFIID complexes share 

several common TBP-associated factors (TAFs); however, each complex also contain distinct 

subunits, including Gcn5 in SAGA and TAF145 in TFIID, which dictate their promoter specificity (Han 

et al., 2014, Lee et al., 2000, Grunberg and Hahn, 2013). The binding of coactivators mediates the 

recruitment of the GTF TATA-binding protein (TBP) to all yeast promoters, which exist in the TFIID 

complex or can be recruited independently (Rhee and Pugh, 2012). TBP recruitment is crucial for PIC 

formation and therefore it is tightly regulated, either positively through activators during 

transcriptional activation, or negatively through repressors to decrease TBP-DNA binding ability, and 

many activators and repressors have multiple functions that are gene-specific (Kuras and Struhl, 

1999, Cang et al., 1999, Chymkowitch et al., 2015, Moyle-Heyrman et al., 2012).  

The GTFs TFIIA and TFIIB are then recruited to assist and stabilise TBP binding to the DNA, and in 

turn, TFIIB interacts with and recruits RNAPII, bound to TFIIF (Imbalzano et al., 1994, Buratowski and 

Zhou, 1993, Barberis et al., 1993, Conaway et al., 1991, Fishburn and Hahn, 2012). TFIIE and TFIIH 

join the emerging PIC and mediate promoter opening to create a single-stranded region, allowing 

access of RNAPII to the template strand (Conaway et al., 1991, Fishburn and Hahn, 2012). The 

Mediator is a large multiprotein complex that is subsequently recruited to the PIC, and it interacts 

with the CTD of RNAPII, effectively forming a bridge between the general transcription machinery 

and upstream transcription factors (TFs) (see Figure 1.3) (Hahn and Young, 2011, Bjorklund and 

Gustafsson, 2005, Reeves and Hahn, 2003).  
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The organisation of eukaryotic chromatin poses a significant obstacle for the binding of TFs and PIC 

components to their cognate sequences. During transcription initiation, histone modifying enzymes, 

such as acetyltransferases and methyltransferease are recruited by the gene-specific activator to the 

chromatin, and there, they work in combination with nucleosome remodelers to reorganise the 

chromatin architecture to allow efficient and adequate assembly of the PIC (see Figure 1.3) (Venters 

and Pugh, 2009, Shandilya and Roberts, 2012). 

Once bound to the open promoter, RNAPII scans downstream sequences for a suitable TSS, and 

once found, the CTD is phosphorylated at Ser5 by the TFIIH-associated cyclin-dependent kinase Cdk7 

(Kin28 in yeasts), which mediates the dissociation of RNAPII from PIC to enhance promoter escape 

(Figure 1.3) (Hahn and Young, 2011, Kim et al., 2010). Initially, abortive transcription of short RNAs 

occurs until the transcription of 12-13 bp of nascent RNA, which clashes and releases TFIIB from 

RNAPII, enabling the formation of a stable elongation complex (Sainsbury et al., 2013). Meanwhile, 

Ser5 phosphorylation leads to the recruitment of both Set1, which trimethylates histone H3 at lysine 

4 (H3K4), and SAGA, which acetylates the N-terminal tails of histones H3 and H4, and together, they 

give rise to the histone modification marks of active transcription (Figure 1.3) (Kuo et al., 1996, 

Venters and Pugh, 2009, Ng et al., 2003). Importantly, Ser5 phosphorylation mediates the 

recruitment of the Ceg1 and Abd1 subunits of the mRNA capping enzyme complex, which leads to 

the attachment of the N7-methyl guanosine cap structure to the 5´ end of the nascent RNA 

(Schroeder et al., 2000, Cho et al., 1997). The cap structure, bound by the cap-binding complex 

(CBC), protects the nascent RNA from degradation, and marks the mRNA for nuclear export to be 

ultimately translated in the cytoplasm (Proudfoot et al., 2002, Fortes et al., 2000).  
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Figure 1.3 Transcription cycle (modified from Shandilya and Roberts, 2012). (A) Transcription initiates with 

the binding of an activator to the promoter, which promotes the binding of TBP along with the general 

transcription factors (GTFs) TFIIA, TFIIB, TFIIE and TFIIH, the mediator complex, and RNAPII bound to TFIIF. 

C-terminal domain (CTD) of RNAPII is phosphorylated at Ser5, which recruits histone remodellers to 

catalyse H3K4 methylation and H3 acetylation. (B) Following promoter clearance, RNAPII proceeds to 

elongate the transcript (red line) aided by P-TEFb, while a part of the PIC components remains associated at 

the promoter to form a reinitiation scaffold. The phosphorylation state of RNAPII CTD gradually changes 

from Ser5 to Ser2 phosphorylation during elongation, and Set2 is recruited to trimethylate H3K36. Splicing 

machinery and mRNA capping enzymes associate with the mRNA co-transcriptionally and mediate 

processing. The cap-binding complex (Cbc1/Cbc2) binds the cap during productive elongation. (C) Once 

RNAPII reaches the termination signal, 3´ end processing and termination-specific complexes such as CPSF 

and CstF are recruited. Histone deacetylases (HDACs) are also recruited to deacetylate histones. RNAPII 

dissociates from the gene and this marks the end of the transcription cycle (Shandilya and Roberts, 2012). 
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As RNAPII transcription proceeds towards the 3´ end of genes, Ser2-phosphorylated CTD recruits the 

3´ end RNA processing machinery, including cleavage and polyadenylation specificity factor (CPSF), 

cleavage stimulatory factor (CstF) and Poly (A) polymerase, to cleave the newly synthesised RNA and 

to add a polyadenosine (poly(A)) tail to the 3´ end of the transcript (Figure 1.3). Upon completion of 

mRNA synthesis (transcription termination), RNAPII becomes dephosphorylated and dissociates 

from the gene (Grzechnik et al., 2014, Kuehner et al., 2011, Mischo and Proudfoot, 2013). The 

released, hypo-phosphorylated RNAPII is competent to initiate a new round of transcription. It has 

been previously described that following promoter clearance, some of the GTFs remain at the 

promoter to form the reinitiation scaffold that allows reinitiation by RNAPII during successive rounds 

of transcription, and therefore enabling RNAPII recycling events (Shandilya and Roberts, 2012). In 

yeast, TFIIB, a GTF that forms part of the PIC, is found to interact with CPSF and CstF complexes in 

order to contribute to the juxtaposition of promoter and terminator DNA through a process termed 

¨gene looping¨ (Hampsey et al., 2011, Kuehner et al., 2011). This process aids the close contact 

between a terminating RNAPII and the promoter, hence enables RNAPII recycling and the reinitation 

of a new transcription cycle. 

 

1.2.2 Transcription factors 

All stages of the transcription cycle are tightly regulated, and this regulation initiates with the 

recruitment of transcription factors (TFs) to the gene promoters. In S. cerevisiae, a wide variety of 

transcription activators exists to specifically recognise and bind upstream promoter elements to 

promote transcription (Struhl, 1995). Most transcription activators are present at low intracellular 

concentrations and interact with relatively few promoters. Furthermore, some activators function 

only in a specific cellular process, such as the osmotic stress-specific TF Hot1 which will be discussed 

in detail in 1.3.3, whereas others are more abundant and have more general activities, such as Rap1 

(Struhl, 1995, Gomar-Alba et al., 2013, Knight et al., 2014). Generally, transcription activators 

enhance transcription by direct contact with the basal transcription machinery or by interaction with 

chromatin modification complexes, which results in enhanced PIC formation (Hahn and Young, 

2011). However, many transcription activators require the activity of co-activators, which are 

proteins that do not directly bind promoter elements and are not part of the basal transcription 

machinery but have a specific effect on transcription. In theory, co-activators can stimulate 

transcription by modulating the activities of GTFs and/or RNAPII, or by altering chromatin structure 

(Struhl, 1995, Hahn and Young, 2011, Danino et al., 2015).  
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In contrast, transcription repressors regulate transcription by the prevention of the general 

transcription machinery to initiate transcription, and their activities initiate with the recognition and 

binding to specific DNA sequences in the gene promoter. Repressors can compete with activators by 

binding to overlapping sites and block transcription initiation by steric hindrance, or they can modify 

chromatin by such mechanisms as nucleosome coating of DNA to restrict access of the transcription 

machinery (Struhl, 1995, Gaston and Jayaraman, 2003, Thiel et al., 2004). Moreover, many TFs have 

been described both as transcription activator and repressor with gene-specific activities, and in this 

thesis we have studied some of these TFs, including Rap1 and Mot1.  

In S. cerevisiae, Rap1 (Repressor Activator Protein 1), with a human homolog hRap1, is a key 

multifunctional regulator of transcription and chromosomal integrity and has been described to bind 

approximately 5 % of all yeast genes and participates in the activation of a remarkable ~40 % of total 

downstream mRNA transcripts (Lieb et al., 2001). Rap1 has been shown to directly interact with 

TFIID and has been proposed to bind ~90 % of all yeast ribosomal protein (RP) gene promoters 

(Knight et al., 2014, Lascaris et al., 1999). Expression of RP genes are co-ordinately regulated in 

response to growth stimuli and environmental stress as RP gene transcription is very costly given 

that it occupies approximately 10 % of RNAPII activity (Perez-Ortin et al., 2011), and in response to 

stress, such as amino acid starvation and high osmolarity, RP genes are rapidly down-regulated 

(Wade et al., 2004, Warner, 1999, Canadell et al., 2015). Rap1 plays a crucial role in the global 

transcriptional regulation of RP genes through its association with TFs Hmo1 and Fhl1/Ifh1 to 

enhance PIC formation and transcription initiation, and has been described to bind RP promoter 

150bp to 400bp upstream of transcription start site (TSS) (Knight et al., 2014). In Chapter 5 of this 

thesis, we study the transcriptional regulation of RP genes during osmotic stress and under normal 

conditions utilising both genomic and molecular tools. 

Mot1 (Modifier of Transcription 1), the yeast homolog of the human BTAF1, is an essential yeast 

protein that is part of the evolutionarily conserved family of enzymes Snf2/Swi2 ATPases, whose 

members use ATP hydrolysis to alter protein-DNA interactions (Viswanathan and Auble, 2011, Chicca 

et al., 1998, Auble et al., 1994, Davis et al., 1992). The molecular function of Mot1 is complex as it 

has been described that Mot1 acts both as a repressor and an activator of transcription through its 

function to displace TBP from DNA using ATP hydrolysis, where Mot1-mediated displacement of TBP 

from DNA both increases and decreases gene expression (Viswanathan and Auble, 2011, Pereira et 

al., 2003, Geisberg and Struhl, 2004, Venters et al., 2011, Zentner and Henikoff, 2013). Furthermore, 

depletion of Mot1 has also been observed to reduce TBP association with some promoters 

(Choukrallah et al., 2012, Venters et al., 2011, Zentner and Henikoff, 2013). A recent study by 
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Zentner et al. has elucidated that Mot1 functions to displace TBP from TATA-containing genes, 

through synergic interactions with SAGA, and redistributes TBP to stably associate with TATA-like 

promoters (Zentner and Henikoff, 2013). Furthermore, Mot1 has been found to occupy stress 

promoter with RNAPII only under stress conditions (Geisberg and Struhl, 2004). Collectively, all these 

results seem to suggest that Mot1 drives transcription of RP and stress genes under normal and 

stress conditions, respectively, and in contrast, is able to act as a repressor of stress genes under 

non-stress conditions.  

 

1.2.3 The mRNA life 

During and after synthesis, mRNA undergoes several stages of processing in which at each stage, 

specific proteins associate with the mRNA to form distinct and dynamic ribonucleoprotein (mRNP) 

complexes. mRNA processing initiates co-transcriptionally in the nucleus with capping, splicing, and 

polyadenylation. mRNA can also be targeted for nuclear degradation. Once exported from the 

nucleus to the cytoplasm, the mRNA can undergo translation, stored at specialised cytoplasmic foci, 

including P-bodies and stress granules, or targeted for decapping and cytoplasmic degradation (see 

Figure 1.4). Regulation of gene expression can be realised by regulating mRNA fate, in which each of 

these processes are subjected to elaborate control. 

During nascent RNA synthesis, the N7-methyl guanosine (m7GpppN) cap structure is attached to the 

5´ end of the nascent RNA when it is ~25 nucleotides in length, and this is a signal for productive 

transcription (Shandilya and Roberts, 2012). The capping event occurs in three steps: first, the 5´-

triphosphate of the newly synthesised mRNA is hydrolysed by a triphosphatase, encoded by CET1 in 

S. cerevisiae, to produce a diphosphate terminus; second, the diphosphate end of the nascent mRNA 

is capped with guanine monophosphate (GMP) via 5´-5´ triphosphate linkage, catalysed by a 

guanylyltransferase, which is encoded by CEG1; finally, a methyl group is transferred to the cap by a 

methyltransferase encoded by ABD1, thus generating the m7GpppN cap [reviewed by (Cowling, 

2010)]. The capping enzymes are some of the first processing factors to act on the transcript during 

RNAPII transcription, and their recruitment to the mRNA is mediated by interactions with Ser5-

phosphorylated CTD, however they have also been described to bind Ser2-phosphorylated CTD 

(Figure 1.4) (Cho et al., 1997, McCracken et al., 1997, Yue et al., 1997, Ursic et al., 2008). CTD-

mediated recruitment of capping enzymes may explain why only transcripts transcribed by RNAPII, 

and not RNAPI or RNAPIII, become capped. Furthermore, the relationship between capping enzymes 

and RNAPII has been described as reciprocal, where yeast triphosphatase Cet1 has been found to 
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decrease the accumulation of RNAPII towards the 5´ end of the coding sequence to enhance 

transcription, and the methyltransferase Abd1 is found to contribute to the recruitment of CTD 

kinases Bur1 and Ctk1 to mediate Ser2-phosphorylation of RNAPII during transcription elongation 

(Lahudkar et al., 2014, Lidschreiber et al., 2013). 

Once N7-methyl guanosine cap is attached to the 5´ end of the newly synthesised mRNAs, the cap-

binding complex (CBC), composed of Cbc1 and Cbc2 (Cbp80 and Cbp20, respectively, in humans), 

binds to the cap and protects the mRNA from exonucleases (Figure 1.4) (Gonatopoulos-Pournatzis 

and Cowling, 2014, Topisirovic et al., 2011). It has been suggested that the capping process acts as a 

check-point for transcription elongation, where failure will lead to termination of RNAPII 

transcription and degradation of the nascent RNA by the nuclear exosome (Buratowski, 2009, Seila 

et al., 2009). Later, the cap and the cap-binding complex serves as a binding site for proteins 

involved in the export of mature mRNA into the cytoplasm (Proudfoot et al., 2002). Details of the 

role of CBC in the regulation of mRNA fate and gene expression are described in section 1.5. Once 

the mRNA exits the nucleus and enters the cytoplasm, CBC is replaced by the cap-binding complex 

eIF4F, in which the subunit eIF4E binds the cap, and, through its interaction with scaffold eIF4G, in 

turn recruits translation initiation factors to promote the engagement of ribosomal subunits with the 

mRNA (Figure 1.4) (Sachs et al., 1997, Proudfoot et al., 2002). 

Control of pre-mRNA splicing is a critical part of the eukaryotic gene expression, and extensive 

studies indicate that transcription and splicing are spatiotemporally coordinated [reviewed in 

(Moehle et al., 2014)]. Most splicing events occur co-transcriptionally, where pre-mRNAs are first 

committed to splicing by binding of splicing factors to 5´ and 3´ splice sites (Figure 1.4). In yeast, 

introns are spliced to generate the mature mRNA by the spliceosome, which consists of five small 

nuclear RNAs (snRNAs) (U1, U2, U4, U5 and U6) in association with proteins to form snRNA-protein 

(snRNP) complexes (Cramer et al., 1997, Proudfoot et al., 2002). The functional connection between 

RNAPII transcription and splicing are starting to be elucidated, where one study observed that 

splicing efficiency is sensitive to RNAPII elongation rate with an anti-correlated relationship (Pleiss et 

al., 2007). 

Once the stop codon is reached, the pre-mRNA is cleaved at a specific site by CstFs. The cleavage site 

is then bound by the protein complex CPSF which recruits poly(A) polymerase and together they 

direct the addition of ~200 adenosine residues to the 3´ end of the mRNA, termed the poly(A) tail 

(Figure 1.4) (Murthy and Manley, 1995, Mandel et al., 2006). It has been established that 3´ end 

processing is absolutely required for transcription termination, where binding of CPSF and CstFs 
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displaces elongation factors and consequently rendering RNAPII less processive (Figure 1.4) 

(Buratowski, 2005, Proudfoot, 2004, Richard and Manley, 2009). 

Following mRNA processing, mRNAs existing in correct mRNPs exit the nucleus through the nuclear 

pore complex (NPC) with the support of the TREX (TRanscription-EXport) multiprotein complex 

(Figure 1.4) [reviewed in (Nino et al., 2013, Garcia-Oliver et al., 2012)]. Furthermore, nuclear export 

factors are found to have roles in transcription, as the coactivator SAGA interacts directly with the 

TREX complex to promote transcriptional activation and to ensure efficient mRNA elongation and 

nuclear export through the NPC (Figure 1.4) (Rodriguez-Navarro et al., 2004, Pascual-Garcia et al., 

2008, Faza et al., 2009). 

In the nucleus, defects in nuclear mRNA processing and in the formation of export-competent mRNA 

trigger nuclear mRNA degradation, which is predominatantly exercised by the nuclear exosome 

containing the evolutionary conserved 3´-5´ exonuclease Rrp6 (Figure 1.4) [reviewed in (Perez-Ortin 

et al., 2013)]. In the cytoplasm, several decay pathways of mature mRNAs have been identified to 

date (Coller and Parker, 2004, Garneau et al., 2007, Perez-Ortin et al., 2013). Majority of mRNA 

decay is deadenylation-dependent and initiates with deadenylation to shorten the poly(A) tail, which 

is catalysed by deadenylases. A subset of mRNAs then undergo decapping to remove the m7GpppN 

cap, mediated by decapping enzymes Dcp1 and Dcp2. Decapping stimulates the recruitment of the 

5´-3´ exonuclease Xrn1 to degrade the RNA. mRNAs that do not undergo decapping are degraded by 

the exosome in the direction of 3´ to 5´, and the m7GpppN cap on the remaining oligomer is 

metabolised by the scavenger decapping enzyme DcpS (Figure 1.4) [reviewed in (Garneau et al., 

2007, Coller and Parker, 2004, Perez-Ortin et al., 2013)]. Mechanisms to detect and eliminate faulty 

transcripts also exist in the cytoplasm in order to preserve translational fidelity. The most well-

known pathway, the nonsense-mediated decay (NMD), detects and degrades transcripts that 

contain premature termination codons to avoid translation of proteins with aberrant functions, 

although correct mRNAs can also be degraded via this pathway (Garre et al., 2013). NMD is mainly 

mediated by the highly conserved factors Upf1-3, which triggers, predominantly, deadenylation-

dependent decapping and 5´-3´ decay by Xrn1 (Lejeune et al., 2003, Garneau et al., 2007, Perez-

Ortin et al., 2013).  
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Figure 1.4 Overview of mRNA life in S. cerevisiae. In the nucleus, a 5´ cap is added to the mRNA and is 

bound by the cap-binding complex (CBC), Cbc1/Cbc2, co-transcriptionally. Introns of pre-mRNA are co-

transcriptionally spliced by the spliceosome. Upon transcription termination, mRNA is cleaved by CstF and 

CPSF, which then recruit the poly(A) polymerase that adds the poly(A) tail. Nuclear degradation is exercised 

by the nuclear exosome containing the exonuclease Rrp6. Mature mRNA is exported through the nuclear 

pore complex (NPC) aided by the TREX complex. In the cytoplasm, the mRNA cap is bound by the eIF4F 

complex, eIF4E/eIF4G, and the poly(A) tail is bound by poly(A)-binding protein (PABP), which interacts with 

eIF4F. Translation initiates with the assembly of the 80S ribosome composed of 40S and 60S subunits, along 

with tRNAi
Met

 ternary complex and eIFs. To promote elongation, eIFs dissociate and eEFs bind to the 

ribosome. mRNA undergoes a pioneer round of translation to ensure correct protein synthesis, and 

aberrant mRNA is sent for degradation via the nonsense-mediated decay (NMD) pathway. Other 

cytoplasmic mRNA degradation pathways include deadenylation-dependent pathways, where 

deadenylated decapped mRNA is degraded from 5´ to 3´ by the Xrn1, and deadenylated capped mRNA is 

degraded from 3´ to 5´ by the exosome. Finally, mRNA and associated proteins can accumulate in 

specialised cytoplasmic foci, including stress granules and P-bodies (see text for details). Black solid arrows 

indicate sequential events in the mRNA life. 
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mRNP composition controls every aspect of mRNA life, from pre-mRNA processing to translation and 

mRNA turnover, and transition between these events is accompanied by major mRNP remodelling. 

(Erickson and Lykke-Andersen, 2011, Xing and Bassell, 2013, Decker and Parker, 2012). mRNPs can 

be packaged and stored in distinct classes of RNA granules that ensure regulated translation and 

decay at different phases of the mRNA life cycle (Anderson and Kedersha, 2009, Sunnerhagen, 

2007). Two well-described and highly conserved RNA granules, P-bodies and stress granules (SGs), 

are both formed in response to conditions that result in translation repression, including many types 

of environmental stresses, however, they differ in their mRNP compositions. P-bodies, which are 

present in low numbers under normal conditions, contain translationally-repressed mRNA with 

various proteins of the mRNA decay machinery, whereas stress granules (SGs), which are only 

induced under stress conditions, contain mRNAs that are stalled at translation initiation, along with 

translation initiation factors and ribosomal subunits (see Figure 1.4) (Anderson and Kedersha, 2009, 

Olszewska et al., 2012, Decker and Parker, 2012, Gimenez-Barcons and Diez, 2011, Sunnerhagen, 

2007).  

 

1.2.4 Translation 

Regulation of translation plays an essential role in the mechanisms of controlling gene expression, as 

translational control of existing mRNAs allows for more rapid changes in cellular concentrations of 

proteins in order to modulate transient and permanent responses in cell physiology [reviewed in 

(Sonenberg and Hinnebusch, 2009)]. In eukaryotes, majority of mRNAs are translated in a cap-

dependent manner, although a subset of mRNAs have been described to be translated via an 

internal ribosome entry site (IRES)-dependent manner (Sonenberg and Hinnebusch, 2009, Huch and 

Nissan, 2014, Topisirovic et al., 2011). The translation initiation process starts with the assembly of 

the eIF4F complex on the cap structure, which consists of the initiation factors eIF4E (Cdc33 in 

yeast), eIF4G (Tif4631 and Tif4632) and eIF4A (Tif1 and Tif2). The 43S preinitiation complex, 

composed of the small 40S ribosomal subunit, the eIF2-GTP-methionyl-tRNAi
Met ternary complex and 

additional translation initiation factors eIF3, eIF1, eIF1A and eIF5, binds the eIF4F cap-binding 

complex at the 5´ cap of the mRNA, forming the 48S initiation complex. The 43S complex then scans 

the 5´ untranslated region (5´ UTR), inspecting successive triplets as they enter the P site, to locate 

the initiation codon. Upon the location of the start codon, hydrolysis of GTP-eIF2 occurs to yield 

eIF2-GDP-methionyl-tRNAi
Met ternary complex, which triggers the dissociation of other initiation 

factors, and at the same time, the 60S ribosomal subunit joins the 43S preinitiation complex to form 
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the 80S ribosome (see Figure 1.4) (Sonenberg and Hinnebusch, 2009, Huch and Nissan, 2014, 

Topisirovic et al., 2011, Jackson et al., 2010).  

During translation elongation, cognate aminoacyl-tRNAs are delivered to the A site of the ribosome 

by eEF1A, and once codon/anti-codon match is detected, eEF1A is released from the ribosome. A 

peptide bond is made to elongate the growing polypeptide. eEF2 then catalyses the movement of 

peptidyl-tRNA-mRNA complex from the A site to P site of the ribosome, leaving the A site vacant to 

accept the next aminoacyl-tRNA and the process repeats (Figure 1.4) [reviewed in (Schmeing and 

Ramakrishnan, 2009, Mateyak and Kinzy, 2010)]. However, not all peptide bonds between the donor 

peptidyl-tRNA and the acceptor aminoacyl tRNA are formed with equal efficiency, as certain amino 

acids are poor donors or acceptors. In particular, proline is both a poor acceptor and a poor donor in 

the peptidyl transferase reaction, which causes ribosomes to stall when two or more consecutive 

prolines are encountered (Wohlgemuth et al., 2008, Pavlov et al., 2009). 

More recently, eIF5A (detailed in section 1.6) has been identified as a translation elongation factor, 

as its depletion reduces ribosome transit time, amongst other phenotypes (Saini et al., 2009, Gregio 

et al., 2009, Henderson and Hershey, 2011). In Chapter 5 of this thesis, we will discuss in detail the 

molecular functions of eIF5A, as well as providing insights to its biological role.  

Translational control has been described to occur at several stages in order to preserve translation 

fidelity. Mechanisms regulating initiation fall under two broad categories: regulation of eIFs or 

ribosomes, and regulation of the mRNA itself. First, several eIFs and eIF-binding proteins are 

subjected to direct phosphorylation which may increase or decrease translation efficiency (Ueda et 

al., 2004, Jackson et al., 2010, Dever et al., 2007).  An example for eIF phosphorylation-dependent 

translational control is the phosphorylation of yeast eIF2α by Gcn2 in yeast primarily during amino 

acid starvation, in which phosphorylated eIF2α inhibits eIF2B leading to reduced global translation 

(Castilho et al., 2014). Second, RNA-binding proteins may also regulate translation, for example, 

poly(A)-binding protein (PABP) is essential for translation initiation as it interacts with the eIF4F 

complex via eIF4G subunit in a ¨closed loop¨ configuration (Kahvejian et al., 2005, Kessler and Sachs, 

1998, Imataka et al., 1998). Finally, microRNAs (miRNAs), which are short oligonucleotides, are 

described to either directly inhibit translation or destabilise mRNA or both [reviewed in (Sonenberg 

and Hinnebusch, 2009)]. 
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1.2.5 Coordination of mRNA metabolism  

Although individual events of transcription, mRNA processing, decay and translation were 

discovered independently, emerging evidence has since established that these seemingly separate 

events closely influence one another, and many stages of gene expression are regulated by common 

factors which allow cross-talk to occur between processes. The complexity of cross-talk mechanisms 

utilised by the cell is beginning to be visualised, and their regulation forms a crucial aspect of gene 

expression control. In the nucleus, cross-talk between transcription and mRNA processing 

constitutes one of the most described communication networks. Firstly, the phosphorylation state of 

the CTD is crucial in regulating the association of mRNA processing factors to mRNA, for example, 

the switch from Ser5 to Ser2 phosphorylation serves as a key event in the recruitment of capping 

machinery during transcription elongation (Komarnitsky et al., 2000, Cho et al., 2001). Second, 

several factors of the transcription machinery also function in the correct recruitment and assembly 

of mRNA processing complex, for example the transcription elongation factor TAT-SF1 is able to 

directly recruit factors of the splicing machinery and regulate assembly of splicing complexes (Fong 

and Zhou, 2001, Kim et al., 1999). Furthermore, several mRNA processing steps also loop back and 

regulate transcription, one such example consists of the splicing machinery, where snRNPs are able 

to interact with elongation factors to strongly stimulate RNAPII elongation (Fong and Zhou, 2001). 

In the cytoplasm, cross-talk between translation and mRNA degradation constitutes a crucial aspect 

of gene expression regulation. It has always been evident that both the 5´ mRNA cap and the poly(A) 

tail play essential roles in mRNA fate, however it was later described that the poly(A) tail and Pab1, 

the poly(A) binding protein, serve to enhance translation and inhibit decay (Wilusz et al., 2001, 

Mangus et al., 2003). Furthermore, decay factors can assemble on mRNAs and mediate translational 

repression, for example proteins of the decapping complex Dhh1, Pat1 and Dcp1 have been shown 

to facilitate translational repression in response to various environmental stresses (Coller and 

Parker, 2005, Decourty et al., 2008, Nissan et al., 2010, Holmes et al., 2004) 

Cross-compartmental coordination occurs when a cross-talk factor has roles in more than one 

cellular compartment. Two of the most well-defined cross-compartmental coordinators are the 

RNAPII subunits Rbp4 and Rbp7, which are known to regulate all aspects of transcription, as well as 

being involved in several stages of post-transcriptional processes, including mRNA export, 

translation and mRNA decay (Edwards et al., 1991, Lotan et al., 2005, Farago et al., 2003, Harel-

Sharvit et al., 2010, Dahan and Choder, 2013). Even more recently, a new group of coordinators 

termed synthegradases has been described to uniquely mediate cross-talk between transcription 

and decay. Recent studies have provided novel insights to the functions of the exoribonuclease Xrn1 
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in transcription, where the originally-described cytoplasmic decay factor is shown to bind 

transcribed genes in the nucleus and its deletion causes a marked decrease in the transcription of 

highly induced genes (Haimovich et al., 2013, Medina et al., 2014). 

Chapter 4 of this thesis will provide insights to the relevance of the cap-binding protein Cbc1 as a 

cross-talk factor that functions not only in mRNA fate, but also regulates transcription. 

 

1.3 Response to hyperosmotic stress 

In their natural environment, S. cerevisiae thrive on decomposing fruits where sugar concentration, 

including glucose, fructose and sucrose, is high. At certain stages of decomposition, the 

concentration of sugars may bring unfavourable osmotic conditions, where increased external 

osmolarity induces water efflux, increases internal ion concentration and cell shrinkage, leading to 

cell growth arrest and cell death. Therefore, the solution to prosper in the changing osmotic 

environment is to maintain an appropriate cell volume and a favorable water and ion concentration 

to carry out biochemical reactions. To achieve successful adaption to unfavorable osmotic 

environment, yeast cells undergo a number of biochemical changes in various aspects of cellular 

physiology, including modifications of ion transporters, cytoskeletal reorganisation, cell-cycle arrest, 

metabolic adjustments, global translational changes, as well as profound effects on gene expression 

[reviewed in (Chen and Thorner, 2007, de Nadal and Posas, 2010, Hohmann et al., 2007, Hohmann, 

2009)]. The mechanisms of yeast osmo-adaption has become of great interest to various fields of 

biological studies for two main reasons: first, the key element responsible for osmotic stress 

response, the three-tiered cascade HOG MAPK pathway (refer to Figure 1.5), serves as a signal 

transduction module to provide general knowledge to the functions of all mitogen-activated protein 

kinase signalling pathways in diverse eukaryotic organisms; second, osmo-adaptation also plays an 

essential role in high eukaryotes in regards to cell growth and morphogenesis, and many 

mechanisms to respond to osmotic stress are conserved between yeast and humans [reviewed in 

(Saito and Posas, 2012, Hohmann, 2009, Duch et al., 2012, Sheikh-Hamad and Gustin, 2004)]. 

 

1.3.1 Mechanisms of adaptation 

Upon osmotic shock, the yeast elicits reprogrammation of cellular activities to mediate adaptation in 

HOG-dependent and HOG-independent manners. Immediately after osmotic shock, changes in 
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glycerol accumulation and re-establishment of ion homeostasis occur, accompanied by metabolic 

efflux changes to enhance glycerol production (Dihazi et al., 2004, Albertyn et al., 1994). Successful 

adaptation involves global reprogrammation of transcription and translation of the whole genome. 

Upon initial exposure to osmotic shock, global downregulation of transcription and translation 

occurs, which correlates with an increase in P-bodies containing mRNAs and factors of the decay 

machinery; yet, a small subset of mRNAs encoding stress-protective proteins rapidly associates with 

polysomes to be specifically translated, which is followed by the transcriptional upregulation of 

approximately 300 osmostress-responsive genes (Teixeira et al., 2005, Romero-Santacreu et al., 

2009, Warringer et al., 2010). Activated Hog1 controls the expression of majority of osmo-responsive 

genes by several mechanisms, including regulating transcription factors, associating with chromatin, 

driving transcription initiation and elongation, controlling mRNA processing and stability, and playing 

a role in translation (Saito and Posas, 2012, de Nadal et al., 2011). However, not regulation 

mechanisms targeting gene expression during osmo-adaptation are HOG-dependent. Firstly, a 

subset of genes are upregulated in response to osmotic stress in a hog1Δ mutant (Romero-Santacreu 

et al., 2009). Secondly, severe osmotic shock elicits a global mRNA stabilisation in a HOG-

independent manner (Romero-Santacreu et al., 2009). Finally, osmostress-induced transient 

inhibition of global translation is found to be HOG-independent, however, the pathway is required 

for the recovery of translation initiation during adaptation (Uesono and Toh, 2002, Garre et al., 

2012, Warringer et al., 2010). 

 

1.3.2 The HOG MAPK signalling cascade 

In response to high external osmolarity, the HOG MAP kinase signalling pathway is activated to 

mediate a variety of cellular changes to allow adaptation. This well-studied MAP kinase module 

serves as a model for various signalling features, including cross-talk between pathways and the use 

of scaffolding proteins to insulate components of the different MAP kinase cascades (Yamamoto et 

al., 2010, Harris et al., 2001). At the core of this cascade lies Hog1 MAPK, which is conserved in 

diverse fungal species, with a human functional homolog, p38. In humans, p38 MAPK signalling is 

activated by stress stimuli, including cytokines, ultraviolet radiation, heat and osmotic shock, and its 

deregulation is implicated in a number of diseases such as chronic inflammatory and rheumatic 

diseases, cardiovascular dysfunction and various cancers [reviewed in (Cuenda and Rousseau, 2007, 

Cuadrado and Nebreda, 2010)]. It is interesting to note that the mammalian p38 is able to rescue 

osmosensitivity of the hog1Δ yeast mutant (Gustin et al., 1998, Saito and Posas, 2012).  
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The HOG pathway is activated by two functionally redundant but mechanistically distinct SLN1 and 

SHO1 branches, and the signals generated from the two branches converge at MAPKK Pbs2, which 

then activates Hog1 by phosphorylation (Figure 1.5) (Saito and Posas, 2012, Hohmann, 2002, Chen et 

al., 2001). Activated Hog1 phosphorylates specific targets both in the cytoplasm and, upon nuclear 

import, in the nucleus, which lead to downstream adaptation through the production of the 

osmolyte glycerol, re-organisation of ion transporters and water efflux, control of cell cycle 

progression, and regulation of gene expression (Saito and Posas, 2012). 

 

1.3.2.1 The SLN1 branch 

The SLN1 branch is activated by the osmosensor Sln1 which contains two transmembrane (TM) 

domains and a cytoplasmic histidine kinase domain. Under normal conditions, Sln1 is auto-

phosphorylated and active, and in turn phosphorylates Ssk1 by transferring the phosphate group 

through Ypd1 (see Figure 1.5) (Hohmann, 2002, Zhi et al., 2013). Sln1 and Ypd1 function as negative 

regulators of the HOG pathway as deletions of the genes SLN1 and YPD1 cause lethality due to over-

activation of the pathway (Posas et al., 1996). In vivo, Sln1 is found to respond to turgor pressure, 

and the decrease in turgor caused by high osmolarity inhibits histidine kinase activity, causing 

dephosphorylation of Sln1. Subsequently, unphosphorylated Ssk1 accumulates and activates the 

MAPKKKs Ssk2 and Ssk22 through its binding to the N-terminal regulatory domain of Ssk2 to mediate 

autophosphorylation. The MAPKKKs Ssk2/Ssk22 activates the signalling cascade through the specific 

phosphorylation of Pbs2, which consequently phosphorylates and thereby activates Hog1 

(Hohmann, 2002, Zhi et al., 2013, Saito and Posas, 2012). 
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Figure 1.5 Schematic representation of the yeast HOG signalling pathway (Tatebayashi et al., 2015). High 

external osmolarity activates the SLN1 and the SHO1 branches. Proteins involved in the SLN1 branch are 

coloured blue, proteins involved in the HKR1 sub-branch of the SHO1 branch are coloured lavender, and 

proteins  involved in the MSB2 sub-branch of the SHO1 branch are coloured green. Proteins that share the 

same box represent proteins with redundant functions. Arrows represent activation and T-shaped bars 

represent inhibition. The horizontal yellow line represents the plasma membrane (PM). 

 

1.3.2.2 The SHO1 branch  

Unlike the SLN1 branch, the mode of activation of the SHO1 branch of the HOG pathway is not 

completely understood. Activation of this branch depends on three transmembrane osmosensors, 

Msb2, Hrk1 and Sho1, which were identified mainly based on their mutant phenotypes (Figure 1.6) 

(O'Rourke and Herskowitz, 2002, Takahashi and Pryciak, 2007, Maeda et al., 1995, Tatebayashi et al., 

2007). Msb2 and Hkr1 share redundant functions, as it is necessary to disrupt both genes to 

completely inactivate the SHO1 branch, and both proteins  belong to the conserved protein family of 

mucins, which are characterised as large transmembrane, highly glycosylated glycoproteins that 
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function in signal transduction (see Figure 1.6) (Singh and Hollingsworth, 2006, Cullen, 2011, 

Tatebayashi et al., 2007). Their extracellular domains are highly Ser/Thr rich and contain numerous 

O-glycosylation sites that are glycosylated, which have been shown to have regulatory functions as 

their deletion converts Msb2 and Hkr1 to constitutively active forms (Takahashi and Pryciak, 2007, 

Cullen et al., 2004). Addtionally, a conserved Hkr1-Msb2 homology (HMH) domain also forms part of 

their extracellular domain, and the deletion of this domain inactivates both proteins (Tatebayashi et 

al., 2007). Two distinct modes of osmosensing have been proposed for the osmosensors Msb2 and 

Hkr1: one involves the cleavage of the regulatory glycosylated extracellular domains by the aspartyl 

protease Yps1 (Vadaie et al., 2008); and the second involves stress-induced conformational change 

in the oligosaccharide structure of the extracellular domains (Tatebayashi et al., 2007); however, the 

actual mechanism remains obscure.  

The third osmosensor Sho1 is a relatively small protein of 367 aa and is composed of four TM 

segments with a C-terminal cytoplasmic SH3 domain and exists as an homo-oligomer through 

interactions of the TM domains (Figure 1.6) (Tatebayashi et al., 2015). Osmotic stress is shown to 

induce structural modifications to the TM domains which changes their cross-linking efficiencies and 

this seem to be responsible for signal transduction across the plasma membrane (Tatebayashi et al., 

2015). Furthermore, Sho1 has been demonstrated to be a putative osmosensor through mutational 

studies, as in a mutant lacking Hkr1, Msb2 and Opy2 (combined with inactivation of SLN1 branch), 

Hog1 can be activated by osmotic stress when the expression of hyperactive Ste11, bypassing the 

need for Hkr1, Msb2 and Opy2 who mediate Ste11 activation by Ste20, is coupled with a membrane-

tethered Ste50, bypassing the need for Opy2 (Tatebayashi et al., 2015). The complexity of the 

functional relationships between Msb2, Hkr1 and Sho1 has been documented in various studies. It 

has been shown that both Msb2 and Hkr1 interact with Sho1 through their TM domains (Cullen et 

al., 2004, Tatebayashi et al., 2007). Deletion of Msb2 or Sho1 reduces cross-talk through Ste11, and 

a double mutation in both genes shows additional reduction in cross-talk, indicating that Msb2 and 

Sho1 have partially redundant roles in the activation of Ste11 (O'Rourke and Herskowitz, 2002). 

Recent studies conducted by the Saito laboratory have provided further insights into the inter-

relationship between the three osmosensors. It was observed that signalling by the originally-

identified redundant osmosensors Msb2 and Hkr1 is not equivalent and can be divided into two sub-

branches. In the HKR1 sub-branch, the Hkr1 cytoplasmic domain is required to recruit Ste20 to the 

plasma membrane to activate Ste11. In contrast, the MSB2 sub-branch activates Ste11 through 

either Ste20 or Cla4, which are recruited by the scaffold protein Bem1, a protein that is involved in 

morphogenesis and establishment of cell polarity (Tanaka et al., 2014, Chenevert et al., 1992). 

Furthermore, Sho1 functions as an additional osmosensor in the HKR1 sub-branch (and possibly also 
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in the MSB2 sub-branch), since a Sho1 mutant defective in osmosensing is unable to activate the 

HKR1 sub-branch, and the Sho1-Hkr1 interaction is required for signalling through Sho1 (Figure 1.5) 

(Tatebayashi et al., 2015). 

Apart from its function as a putative osmosensor, Sho1 also plays an essential role as an adaptor to 

assemble Pbs2, Ste50 and Ste11 upon osmotic stress (Figure 1.5). The Sho1 cytoplasm SH3 domain 

binds very specifically to an N-terminal proline rich sequence (KPLPPLPV) of Pbs2 and serves to 

localise Pbs2 to the plasma membrane, and thus mediates the activation of Pbs2 by the MAPKKK 

Ste11 (Maeda et al., 1995, Zarrinpar et al., 2004). Interestingly, following osmostress stimulation, 

membrane localisation of Pbs2 decreases and Sho1-Pbs2 dissociates, and this dissociation is 

hindered in ste20Δ or ste11Δ mutants but not hog1Δ. These observations indicate a negative 

feedback by activated Pbs2 regulating the Sho1-Pbs2 interaction (Reiser et al., 2000). Furthermore, 

the Ste11/Ste50 complex has also been shown to interact with Sho1, independent of the ability of 

the SH3 domain to bind proline-rich motifs, and this interaction is necessary for the efficient 

activation of Pbs2 by Ste11 (Zarrinpar et al., 2004, Saito and Posas, 2012).  

Remarkably, both Msb2 and Sho1 also function at the head of the FG pathway under nutrient-

limiting conditions to activate the MAPKKK Ste11, the MAPKK Ste7 and the MAPK Kss1 (Roberts and 

Fink, 1994). It has been proposed that Msb2 maintains signal fidelity by differential glycosylation of 

its O-glycosylation domain dependent on the type of external signal detected (Yang et al., 2009b, 

Lien et al., 2013). Furthermore, Sho1 shows differential cellular localisation that is signal-dependent, 

as such that FG pathway activation localises Sho1 at highly polarised sites, and in contrast, Sho1 

localises at punctate sites during osmotic stress (Pitoniak et al., 2009). Most importantly, to prevent 

undesirable signal leakage during HOG activation, Sho1 and other osmostress-specific adaptors serve 

as docking proteins to bring Ste11 proximal to its substrate Pbs2 (Tatebayashi et al., 2006, Lamson et 

al., 2006).     

Two important scaffold proteins, Ste50 and Opy2, are necessary for proper signalling through the 

SHO1 branch of the HOG pathway through the effective recruitment of Ste11 to the plasma 

membrane in order to phosphorylate its substrate Pbs2 (Figure 1.5). The Ste50 adaptor is composed 

of an N-terminal steril-α motif (SAM) domain and a C-terminal Ras association (RA) domain, and it 

has been shown that Ste50 binds to Ste11 through the SAM domains present in both proteins 

(Ramezani-Rad, 2003, Posas et al., 1998b). This adaptor protein is essential for the activation of HOG 

pathway through the SHO1 branch, as mutations in the STE50 gene in a strain that also harbours 

ssk2Δssk22Δ is unable to activate Hog1 (Posas et al., 1998b). Furthermore, it was found that the 

Ste50 RA domain is essential for its localisation at the plasma membrane, and a Ste50 mutant lacking 
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Figure 1.6 Schematic representations of four transmembrane proteins from the SHO1 branch  

Posas, 2012). Hkr1, Msb2, Sho1 and Opy2 are represented schematically showing their transmembrane 

domains (green), extracellular O

(blue), and Opy2 Ste50-binding domain (red). Grey line represents the plasma membrane, and size of 

protein is indicated as amino acid units. 
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is unable to signal through the pathway (Wu et al., 2006

Membrane localisation of Ste50 is dependent on the adaptor protein 

ing of the Ste50-ΔRA mutant can activate Hog1 by osmotic stress 

-Opy2 interaction serves to membrane-localise Ste50 through its RA 

Tatebayashi et al., 2007).  

Opy2, another essential adaptor of the SHO1 branch, is a single-path TM protein containing a 

cytoplasmic domain comprised of four well-conserved regions (CR-A to CR-

independent Ste50 binding sites (Figure 1.6) (Yamamoto et al., 2010). The essential function of Opy2 

is to recruit the Ste50/Ste11 complex to the plasma membrane through Opy2-Ste50 interaction

serves as a membrane anchor for the MAPKKK Ste11 to mediate activation of Pbs2 

Recently, it has been described that Opy2 also interact with Hkr1 and Sho1 

through its CR and TM domains, respectively, and the formation of the Sho1-

serves to bring together Ste11, recruited by Sho1 and the binding of Ste50 to Opy2

Ste20, recruited by Hkr1, for efficient Ste11 activation (Tatebayashi et al., 2015).

Schematic representations of four transmembrane proteins from the SHO1 branch  

Hkr1, Msb2, Sho1 and Opy2 are represented schematically showing their transmembrane 

domains (green), extracellular O-glycosylation domains (orange), HMH domain (purple), Sho1 SH3 domain 

binding domain (red). Grey line represents the plasma membrane, and size of 

protein is indicated as amino acid units.  
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The MAKKK Ste11 is a protein of 717 amino acids and is composed of three domains: a SAM domain 

and an auto-inhibitory domain, both located at the N-terminus, and a catalytic kinase domain 

located at the C-terminus (Hartwell, 1980). The activation of Ste11 is carried out by two major 

events: first, the binding of Ste50 to Ste11 via the Ste11 N-terminal SAM domain, which mediates 

the dissociation of the N-terminal inhibitory domain from the C-terminal kinase catalytic domain 

(Wu et al., 1999); second, the phosphorylation of Ste11 by Ste20/Cla4 (Lamson et al., 2006); 

however it was shown that neither of these two events is sufficient for full activation of the HOG 

pathway (Figure 1.5). Constitutively active Ste11 mutants, either by phospho-mimetic substitutions 

at the phosphorylation sites or by mutations in the auto-inhibitory domain, are only sufficient to 

activate the Hog1 MAPK in the absence of stress when overexpressed (Tatebayashi et al., 2006, 

Lamson et al., 2006). Furthermore, hyper-active Sho1 mutants in the SH3 domain are not able to 

induce pathway activation in the absence of stress without an additional hyper-active Ste11 

mutation (Tatebayashi et al., 2006). Thus, taken together, these results suggest that full activation of 

the HOG pathway requires a high concentration of activated Ste11 at the plasma membrane, 

mediated by scaffolds Ste50 and Opy2 (Posas et al., 1998b, Wu et al., 2006, Tatebayashi et al., 2006). 

The specific activation of Pbs2 by Ste11 without aberrant activation of other pathways is possibly 

mediated by three separate events: first, by the membrane recruitment of Pbs2 by Sho1 and the 

membrane recruitment of Ste11-Ste50 complex by Opy2 to membrane-localise both Ste11 and its 

substrate Pbs2 (Maeda et al., 1995, Wu et al., 1999, Yamamoto et al., 2010); second, by the direct 

interaction between Ste11 and the cytoplasmic tail of Sho1, near the binding site of Pbs2 

(Tatebayashi et al., 2006); and finally, through the direct interaction between Ste11 and Pbs2 

(Zuzuarregui et al., 2012). Thus, multiple and dynamic interactions between the Opy2/Ste50/Ste11 

complex and the Sho1/Pbs2 complex bring Ste11 in close contact with Pbs2 to enable efficient 

activation, however, the complexity of the HOG-associated membrane architecture, the relative 

contributions of these interactions, as well as their regulation by osmotic stress, has yet to be 

determined. 

Activated Pbs2 catalyses the dual phosphorylation of the conserved Thr174 and Tyr176 residues in 

the MAPK Hog1, and this event occurs in the cytosol (Figure 1.5) (Brewster et al., 1993, Hohmann, 

2002). Phosphorylation causes a rapid concentration of Hog1 in the nucleus, while non-

phosphorylated Hog1 has an even distribution between the cytoplasm and nucleus (Reiser et al., 

1999). Activated Hog1 phosphorylates a number of targets to elicit, among others, cell cycle arrest, 

activation of ion channels and gene expression changes (see Figure 1.7). In Chapter 3 of this thesis, 
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we provide insights to the interactions of signalling components the SHO1 branch of HOG pathway, 

namely Ste11, Sho1, Pbs2 and Msb2. 

 

1.3.2.3 Negative feedback by Hog1 of upstream elements 

The Hog1 MAPK is only transiently activated following osmotic stress, where Hog1 activation reaches 

a maximal level at around 5 min and is shown to gradually decrease to basal levels within 30 min 

(Maeda et al., 1995). The downregulation of Hog1 activation requires its own kinase activity, as 

catalytically inactive Hog1 mutants show much prolonged persistence of the phosphorylated Hog1 

(Wurgler-Murphy et al., 1997). Several feedback mechanisms have been described to regulate the 

HOG pathway, including direct signal downregulation by glycerol accumulation (Brewster et al., 

1993, Albertyn et al., 1994), and inactivation of signalling kinases by protein phosphatases through 

dephosphorylation [reviewed in Saito and Posas (2012)]. To attenuate Hog1 activity, protein tyrosine 

phosphatases Ptp2/Ptp3 and the type 2 protein phosphatases Ptc1-3 all contribute to its 

dephosphorylation, and a negative feedback loop is known to exist between Hog1 and Ptp2/Ptp3, 

where active Hog1 enhances Ptp2 activities and induces Ptp3 expression (Wurgler-Murphy et al., 

1997, Jacoby et al., 1997, Saito and Tatebayashi, 2004). Furthermore, within the SHO1 branch, the 

inhibition of upstream elements of the HOG pathway by downstream components also seems to 

make major contributions to the attenuation of the system. To date, the direct phosphorylation of 

Sho1 and Ste50 by Hog1 has been described. Activated Hog1 was shown to phosphorylate Sho1 at a 

serine residue within the cytoplasmic linker region between the TM domains and the SH3 domain, 

however the functional role of this phosphorylation is still unknown (Hao et al., 2007). The 

phosphorylation of Ste50 at multiple sites by Hog1 mediates its dissociation from the membrane 

anchor Opy2, thereby reducing Ste11 membrane localisation. The Opy2-Ste50/Ste11 interaction is 

essential for the activation of Hog1, hence, the dissociation of this complex serves to attenuate 

signal transduction (Yamamoto et al., 2010). To further support the functional role of Ste50 

phosphorylation, it is observed that a mutant expressing a phosphorylation-deficient version of 

Ste50 displays an increased duration of Hog1 activation (Yamamoto et al., 2010). Overall, the 

downregulation of the HOG pathway through various negative feedback mechanisms plays an 

essential role in mediating effective cellular adaptation following osmotic stress. 

In Chapter 3 of this thesis, we address the roles of Hog1 and Pbs2 as negative regulators of the SHO1 

branch through several molecular mechanisms.  
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1.3.2.4 Regulation of signalling between HOG and other pathways 

Several of the MAPK pathways in S. cerevisiae share common factors, including the HOG MAPKKK 

Ste11, also shared by the pheromone and FG pathways, and the HOG osmosensor Msb2, shared by 

the FG pathway, yet specific external signals only elicit a specific downstream response, preventing 

undesirable cross-talk between pathways (reviewed in Saito (2010)). Signal fidelity is maintained and 

regulated by several mechanisms: first, signal-specific docking interactions mediate direct binding 

between consecutive components in the pathway, for example, to prevent Ste11-stimulated 

activation of FG and pheromone pathways following osmotic stress, Sho1 acts as a scaffold to dock 

both Ste11 and the osmostress-responsive substrate Pbs2 to mediate specific phosphorylation of 

Pbs2 by Ste11 (Maeda et al., 1995, Zarrinpar et al., 2004); and second, cross-pathway inhibition 

mechanisms are employed, for instance, activated Hog1 readily inhibits FG responses (Pitoniak et al., 

2009). The intricate relationship between the MAPK pathways is highlighted in recent studies where 

Babazadeh et al. were able to generate HOG-independent osmo-adaptation by artificially rerouting 

signalling through the pheromone pathway (Babazadeh et al., 2014). Moreover, in another study it 

was observed that stimulation with pheromone activates the HOG pathway, and that pheromone-

induced HOG activation also facilitates the acute response to hyperosmotic stress (Baltanas et al., 

2013). 

 

1.3.3 Transcriptional response upon osmotic stress 

Changes in external osmolarity have profound effects on gene expression, and regulation of 

transcription is essential for long-term adaptation (de Nadal et al., 2011, de Nadal and Posas, 2010). 

Within minutes of osmotic shock, global transcription rate drops by 50 % (Romero-Santacreu et al., 

2009). Despite this initial reduction in global transcription, expression of hundreds of genes are 

induced, and the most strongly activated genes increase their expression more than 100-fold in 20 

minutes, indicating that yeast cells are evolved to prioritise transcription of a specific subset of genes 

to mediate osmostress cellular protection (see Figure 1.8A) (Capaldi et al., 2008, O'Rourke and 

Herskowitz, 2004). It has, therefore, become of great interest to study the mechanisms and factors 

responsible for the transcriptional changes during osmotic stress response.  
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1.3.3.1 Hog1 regulates transcription during osmotic stress 

In mammalian cells, the Hog1 homologue p38 controls the expression of more than 100 genes once 

activated by environmental stresses (Ono and Han, 2000). In S. cerevisiae, 5-7 % of genes become 

transiently induced following osmotic stress, and among them, between 60-80 % are fully or partially 

dependent on Hog1 activity (Figure 1.8). The involvement of Hog1 kinase in gene expression is 

further emphasised by the observation that genes considered highly induced are more dependent 

on Hog1 than genes that are only moderately induced (Posas et al., 2000, Romero-Santacreu et al., 

2009). Moreover, a large number of these Hog1-dependent osmostress-responsive genes are 

implicated in carbohydrate metabolism, gene stress protection, protein biosynthesis and signal 

transduction (Figure 1.8 and Table 1.1) (Hohmann, 2002, de Nadal et al., 2002).  

Activated Hog1 controls gene expression at all levels of the transcription cycle by regulating 

transcription initiation factors, chromatin modification events, components of the general 

transcription machinery and transcription elongation (see Figure 1.7) (de Nadal et al., 2002, Saito 

and Posas, 2012, De Nadal et al., 2004). One of the well-characterised functions of the MAPK is its 

role in transcription initiation, in which it regulates several TFs through either direct 

phosphorylation, recruitment to chromatin or other mechanisms to control the expression of most 

osmostress-responsive genes. These TFs include transcription activators Hot1 (Gomar-Alba et al., 

2013, Alepuz et al., 2003), Smp1 (de Nadal et al., 2003), the likely redundant Msn2 and Msn4 

(Capaldi et al., 2008), and the transcription activator/repressor Sko1 (Proft and Struhl, 2002, Proft et 

al., 2001). These factors act either independently or in combination with other factors to regulate 

highly specific promoters, and in some cases Hog1 not only regulates these TFs but also regulates its 

associated co-factors (Saito and Posas, 2012, Hohmann, 2002). The relationship between Hog1 and 

osmostress TFs seems to be reciprocal, as some TFs are able to recruit Hog1, and Hog1 associates to 

chromatin during osmotic stressthrough binding of TFs (Cook and O'Shea, 2012, Alepuz et al., 2001). 

However, it has been suggested that Hog1-dependent phosphorylation of TFs is not an absolute 

requirement for transcription initiation, and activated Hog1 may be able to directly recruit the 

RNAPII machinery to osmo-responsive genes by tight association with the largest subunit Rpb1 of 

RNAPII, therefore, these results suggest that Hog1 itself may act as a TF through the binding of other 

TFs (Alepuz et al., 2003, Alepuz et al., 2001). Recently, Hog1 is shown to control the redistribution of 

RNAPII from housekeeping to osmostress-responsive genes upon osmotic shock, in which RNAPII, 

either in a complex with Hog1 or modified by Hog1, has reduced affinity to non-stress genes, 

allowing Hog1 to briefly hijack the transcription machinery and associated factors to carry Hog1-

dependent transcription on Sko1- and Hot1-specific genes (Cook and O'Shea, 2012, Nadal-Ribelles et 

al., 2012, Sole et al., 2011). In addition to its association at gene promoters, Hog1 also associates 
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with the coding region and 3´ end of osmo-responsive genes, where it interacts with components of 

the RNAPII elongation complex (Alepuz et al., 2003, Proft et al., 2006, Pokholok et al., 2006) and 

stimulates chromatin remodelling (Klopf et al., 2009, Mas et al., 2009) (Figure 1.7). 

Overall, activated Hog1 is critical in the cellular response to hyperosmotic stress by playing a role in 

all steps of the transcription cycle to ensure high and timely expression of osmostress-responsive 

genes.  

 

 

 

Figure 1.7 Role of activated Hog1 in gene expression following osmotic stress (modified from Saito et al). 

Upon osmotic stress stimulation, activated Hog1 regulates translation and mRNA degradation in the 

cytoplasm. In addition, phosphorylated Hog1 accumulates in the nucleus and is known to phosphorylate 

and activate transcription factors (TFs). Hog1-TFs are recruited to promoters of stress-responsive genes to 

induce the formation of pre-initiation complex (PIC). Furthermore, Hog1 also regulates transcription 

elongation and chromatin modifications, and has been proposed to regulate mRNA export. The 

compartments represented are the cytoplasm and the nucleus. Each Hog1-dependent process is labelled, 

and an osmo-responsive gene is schematically shown with promoter, ORF and 3´ UTR (Saito and Posas, 

2012). 
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1.3.3.2 Transcriptional activators under control of Hog1 

Hog1 regulates several unrelated TFs, and each of them is responsible for controlling the expression 

of a subset of osmostress-responsive genes, either directly or in combination with other factors (see 

Table 1.2) (Ni et al., 2009, Capaldi et al., 2008, de Nadal and Posas, 2010). Presently, Smp1, 

Msn2/Msn4, Sko1 and Hot1 have been identified to function in HOG-dependent transcription (Ni et 

al., 2009, Capaldi et al., 2008, de Nadal and Posas, 2010). The most important characteristics of each 

of these osmo-TFs are described below. 

Smp1:  a member of the MEF2C family of TFs, was first identified as a factor that induces a LacZ 

reporter attached to STL1, a gene that encodes a glycerol/proton symporter and is identified as the 

strongest induced gene during osmotic stress that is completely dependent on Hog1 activity (de 

Nadal et al., 2003). The mode of activation of Smp1 is dependent on Hog1 kinase activity, where, 

upon osmotic stress, Hog1 phosphorylates Smp1 at multiple sites in its C terminal domain (de Nadal 

et al., 2003). Activated Smp1 then transcriptionally activates a specific subset of genes (Table 1.2) 

(de Nadal et al., 2003).  

Msn2/Msn4: although the TFs Msn2 and Msn4 only share 32 % identify, their zinc finger DNA-

binding domains are so similar that they have been predicted to bind the same stress response 

elements (STREs) on target promoters (Martinez-Pastor et al., 1996). The STRE is characterised by 

the core sequence CCCCT in both orientations and it exists usually in two or more copies upstream 

of Msn2/4 target genes (Treger et al., 1998). Msn2 and Msn4 seem to have redundant functions, 

however, Msn2 generally makes a much bigger contribution in the induction of STRE-dependent 

reporter genes (Schmitt and McEntee, 1996). The activities of Msn2/Msn4 are regulated by the PKA 

(Protein Kinase A), TOR (Target of Rapamycin) and HOG pathways (Gorner et al., 1998, Heinisch et 

al., 1999, Rep et al., 2000). In response to a number of stresses, including osmotic stress, the 

normally cytoplasmic Msn2/4 is translocated into the nucleus, where it binds to a subset of genes, 

including stress-protective genes CTT1 and HSP12, to mediate transcription (Table 1.2) (Martinez-

Pastor et al., 1996). The mechanism by which Msn2/4 is regulated by Hog1 during osmotic stress is 

still unclear, however it has been described that mRNA induction of genes controlled by these 

factors is diminished in a hog1Δ mutant (Rep et al., 2000). Furthermore, using bioinformatic 

approaches, Capaldi et al. has demonstrated that the majority of genes controlled by Msn2/4 are 

also dependent on Hog1. In addition, although osmostress-induced Msn2/4 nuclear import is 

dependent on Hog1, some Msn2 nuclear import is also observed in the absence of Hog1, indicating 

the involvement of other pathways (Capaldi et al., 2008). 
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Sko1: is a member of the ATF/CREB family of AP1-related transcription factors (Nehlin et al., 1992). 

Under normal conditions, Sko1 acts a transcription repressor of osmo-responsive genes via the 

general co-repressor complex Cyc8-Tup1 (Proft and Serrano, 1999). Interestingly, phosphorylation by 

activated Hog1 upon osmotic stress converts Sko1 from a repressor to an activator, and 

phosphorylated Sko1 recruits both Hog1 and the SAGA and SWI/SNF chromatin-modifying 

complexes (Proft and Struhl, 2002). Furthermore, Sko1 is found to co-localise with Hog1 and Hot1 at 

many osmostress promoters and the presence of these three factors recruits Hog1 to the ORFs of 

the same genes to mediate RNAPII transcription (Cook and O'Shea, 2012). A genome-wide study 

revealed that Sko1 binds ~40 target regions and amongst them include GRE2 and HXT5, which 

encode a stress-defense protein and a sugar transporter, respectively (Table 1.2) (Proft et al., 2005). 

Hot1: is a protein of 719 amino acids that was originally identified in a two-hybrid search for proteins 

interacting with Hog1 (Rep et al., 1999b). Hot1 targets a subset of genes which are amongst the 

most highly induced, including the well-studied GPD1, which encodes a NADH-dependent glycerol-3-

phosphate dehydrogenase, and STL1 (Table 1.2) (Capaldi et al., 2008, Cook and O'Shea, 2012). The 

interaction between Hot1 and Hog1 is critical for the recruitment of the kinase to Hot1-dependent 

promoters, and furthermore, the binding of the Hot1/Hog1 complex, together with Sko1, to cis-

promoter elements reallocates RNAPII from housekeeping genes to osmostress-responsive genes 

(Cook and O'Shea, 2012, Alepuz et al., 2003, Alepuz et al., 2001). A recent study conducted by 

Gomar-Alba et al. has characterised the interaction domain of Hot1 with Hog1, as well as identifying 

a specific short sequence that is responsible for Hot1 binding to DNA. Both sequences are required 

for osmo-tolerance as well as appropriate Hog1-mediated recruitment of RNAPII to target genes 

(Gomar-Alba et al., 2013).   

Under normal conditions, Hot1 is phosphorylated at basal levels, and upon osmotic stress, Hot1 

becomes hyper-phosphorylated (Alepuz et al., 2001). The phosphorylation of Hot1 was described by 

Alepuz et al. to be mediated by Hog1, however does not seem to be essential for gene expression 

(Alepuz et al., 2003). Furthermore, residual phosphorylation is observed in a hog1Δ mutant, 

indicating that Hog1 is not the only kinase that phosphorylates Hot1 (Alepuz et al., 2001). Recently, 

it has been described by Burns et al. that Hot1 is also phosphorylated by CK2 (Casein Kinase II), 

however, CK2-dependent phosphorylation negatively regulates Hot1 activity and targets it to 

chromatin to modulate the expression of the Hot1-dependent gene STL1 (Burns and Wente, 2014). 

In Chapter 4 of this thesis, we describe the role of Cbc1 in the regulation of transcription during 

osmotic stress through its interactions with osmostress-TFs. 
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Figure 1.8 Functional categories and Hog1-dependency of genes induced or repressed by osmotic stress. 

All data are taken from Romero-Santacreu (2009). (A) Significantly represented function groups (p-value˂e-

05) of all osmostress-induced and -repressed genes, searched using the Gene Ontology (GO) Term Finder 

tool (Saccharomyces Genome Database), were graphed using the REVIGO tool (Supek et al., 2011). Size of 

circles indicate GO term sizes, searched using UniProt (http://www.uniprot.org/), and grey lines indicate 

semantic similarities between functional groups which is measured using the simRel score (Schlicker et al., 

2006). Colour intensity of the circles indicates their p-value, in which dark and light red represent lower and 

high p-values, respectively. (B) Graphical representation of the number of osmostress-induced and 

repressed genes that are either Hog1-dependent or Hog1-independent. Venn diagrams were generated 

using the Venn Diagram Plotter (Littlefield, 2004). 
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Table 1.1 Over-represented functional categories of genes dependent on Hog1 

Data taken from Romero-Santacreu (2009). 

Category Number of genes GO functional categories p-value 

Hog1-dependent 

induced genes 

 

178 -Response to abiotic stress 

-Response to oxidative stress 

-Carbohydrate biosynthesis process 

1e-05 

7e-04 

7e-03 

Hog1-dependent 

repressed genes 

114 -Ribosome biogenesis 

-RNA processing 

6e-12 

9e-11 

 

 

Table 1.2 Over-represented functional categories of genes dependent on specific transcription 

factors 

Data taken from Romero-Santacreu (2009). 

Category Number of genes GO functional categories p-value 

Hot1-dependent 73 -Response to abiotic stimulus 

-Carbohydrate biosynthetic process 

-Carbohydrate metabolic process 

3e-06 

5e-06 

3e-05 

Msn2-dependent 394 -Asparaginase activity 9e-03 

Msn4-dependent 52 -Peroxidase activity 8e-03 

Smp1-dependent 223 -Structural constituent of cell wall 

-Helicase activity 

1e-07 

1e-02 

Sko1-dependent 33 No significant categories found  

 

1.3.4 Post-transcriptional regulation during osmotic stress 

In addition to transcriptional changes, gene expression is also regulated at the post-transcriptional 

level, including global reprogrammation of translation and mRNA stability, which is critical for re-

adaptation following hyperosmotic shock. The complicated process of post-transcriptional regulation 

ultimately achieves two main outcomes: the reallocation of cellular resources from cellular growth 

to stress adaptation; and the specific and efficient synthesis of proteins that function in osmostress 

cellular protection. Mechanisms employed to dictate translational regulation following osmotic 
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stress is of great importance, as defects in the reprogrammation of translation during the osmotic 

stress response in mammalian cells have been associated with such diseases as cancer, diabetes and 

inflammatory illnesses (Keene, 2007).  

In response to osmotic stress, S. cerevisiae cells undergo an initial global inhibition of translation that 

is associated with a transient reduction in active ribosomes and a decrease of ribosome association 

to mRNAs, which then recovers during adaptation (Warringer et al., 2010, Halbeisen and Gerber, 

2009, Melamed et al., 2008, Uesono and Toh, 2002). During mild osmotic shock, initial rapid global 

inhibition of translation is shown to be faster than the transcriptional response and seems to be 

independent of Hog1 activity, however, Hog1 does play a role in translation recovery as well as 

translation reprogrammation of many genes (Figure 1.7) (Garre et al., 2012, Warringer et al., 2010). 

Importantly, genome-wide studies show that, despite global translation inhibition following stress, 

the translation of a subset of genes is induced, and gene ontology studies describe these genes to 

function in general cellular protection from osmotic stress, including glycerol synthesis (GPD1) and 

sugar transporters (STL1) (Warringer et al., 2010, Garre et al., 2012, Melamed et al., 2008). 

Conversely, a subset of genes is also shown to be translationally downregulated, and a large 

percentage of these genes encode for ribosomal proteins or are associated with other aspects of the 

translational machinery (Melamed et al., 2008, Warringer et al., 2010). The majority of gene 

expression changes are found to be homodirectional, where transcriptional and translational 

changes are complementary; however, many genes are found to display counterdirectional changes, 

where transcription and translation are inversely regulated (Warringer et al., 2010). On the contrary, 

translational regulation under sever osmotic stress is mediated by pathways other than the HOG 

pathway (O'Rourke and Herskowitz, 2004, Melamed et al., 2008).  

mRNA stability, together with transcription, determines transcript steady-state levels, therefore, its 

regulation forms an important part of gene expression control (Perez-Ortin, 2007). Upon osmotic 

stress, a very rapid initial destabilisation of mRNA occurs independently of Hog1 that recovers after a 

short time (Romero-Santacreu et al., 2009, Canadell et al., 2015). In the early phase of adaptation, 

the mRNAs of osmostress-protective genes become transiently stabilised, while those encoding 

ribosomal proteins are destabilised. In contrast, it has been described that during recovery phase, 

there is a Hog1-dependent loss of stability of osmostress-protective mRNAs and a gain of stability of 

growth-relative mRNAs, including RP mRNAs (Figure 1.7) (Molin et al., 2009, Romero-Santacreu et 

al., 2009). Additionally, it has been observed that there is a decrease in RP pre-mRNA levels during 

osmotic stress, which is regulated by NMD (Garre et al., 2013). Hence, this suggests that perhaps 

NMD plays a role in the regulation pre-mRNA stability of other genes during osmotic stress.  
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The response to osmotic shock corresponds to an increase in P-body formation (Romero-Santacreu 

et al., 2009, Teixeira et al., 2005), and it has been suggested that P-bodies harbour non-translating 

mRNPs to provide a way to transiently arrest translation of a subset of mRNA in order to re-establish 

these mRNAs to the translation cycle upon adaptation (Teixeira et al., 2005, Romero-Santacreu et 

al., 2009). Although Hog1 does not appear to be essential for P-body assembly, it has been observed 

that P-bodies assembly is delayed and prolonged in a hog1Δ mutant (Romero-Santacreu et al., 

2009).  

On the other hand, severe osmotic stress produces a global non-specific mRNA stabilisation that is 

independent of Hog1, which correlates with an increase in P-body assembly observed in both wild 

type and hog1Δ mutant, suggesting that stabilised mRNAs are retained in P-bodies (Romero-

Santacreu et al., 2009). These results also correlate with delayed and prolonged global translation 

inhibition during severe osmotic stress that is Hog1-independent (Uesono and Toh, 2002). Taken 

together, it can be envisioned that severe osmotic stress induces a Hog1-independent mechanism 

that yields translation inhibition, mRNA stabilisation, and movement of stabilised mRNAs into P-

bodies. 

 

1.4 The response to pheromones 

In response to mating pheromones, the yeast cell undergoes a series of physiological changes in 

preparation for mating. These include significant changes in gene expression, cell-cycle arrest, 

polarised growth towards the mating partner through the formation of the sexual project, the 

shmoo, and ultimately cell fusion of mating partners.  

 

1.4.1 MAPK pathway of the pheromone response 

The cellular response to pheromones is mediated by the pheromone MAPK signalling pathway, 

which is arguably the most throughly characterised MAPK multi-component signalling network in 

any eukaryote (see Figure 1.9). This pathway is activated through the binding of cell surface G-

coupled receptors Ste2/Ste3 to pheromones a-/α-factor released by cells of the opposite mating 

type. Receptor occupancy activates a coupled G protein on the inner face of the plasma membrane, 

resulting in the dissociation of the βγ subunit complex (Gβγ), which activates the PAK kinase Ste20 

that is anchored to the Rho GTPase Cdc42 at the plasma membrane, and interacts with the core 
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scaffold protein Ste5. After pheromone stimulus, Ste5 is rapidly translocated to the plasma 

membrane by Gβγ, where it initiates and amplifies mating signalling (Mahanty et al., 1999, Pryciak 

and Huntress, 1998). Ste5 simultaneously binds Ste20 and all other components of the MAPK 

module through distinct domains, which results in the transduction of signal through a MAPK 

signalling cascade involving the common MAPKKK Ste11 shared by HOG and FG pathways, the 

MAPKK Ste7 and the MAPK Fus3/Kss1 (Figure 1.9) [ reviewed by (Bardwell, 2005, Merlini et al., 2013, 

Zhou et al., 1993).  

 Fus3 and Kss1 are partially redundant kinases that regulate yeast mating processes, including 

induction of mating-specific genes, cell-cycle arrest and polarised morphogenesis [reviewed by 

Bardwell (2005)]. Activated Fus3 enters the nucleus and phosphorylates Dig1 and Dig2, which are 

negative regulators of the transcription factor Ste12, leading to the transcription of genes required 

for cell and nuclear fusion, including FUS1 (Figure 1.9) (Oehlen et al., 1996, Tedford et al., 1997, 

Errede and Ammerer, 1989). Activated Fus3 also binds and phosphorylates Far1, which is a 

multifunctional regulator of the mating process (Merlini et al., 2013, Gartner et al., 1998). Far1 

induces pheromone-dependent cell-cycle arrest by regulating the cyclin-dependent kinase Cdc28 

(Gartner et al., 1998, Peter et al., 1993). A second, apparently independent, function of Far1 is to 

determine the site of cell polarisation. During mating, Far1 recruits Cdc24, the guanine nucleotide 

exchange factor (GEF) for Cdc42, and translocates it from the nucleus to the cell cortex, where the 

Far1-Cdc24 complex interacts with Gβγ at the site of receptor activation. The complex further 

recruits Cdc42 and the scaffold Bem1 away from the bud site in order to ensure orientated cellular 

polarisation towards a morphogenetic gradient (Figure 1.9) (Arkowitz, 1999, Gulli and Peter, 2001, 

Wiget et al., 2004, Gulli et al., 2000). However, the disruption of FAR1 does not affect the shmooing 

ability of the cell, but impairs the localisation of polarity factors at the shmoo, thus leading to the 

formation of a mislocalised shmoo at the bud site (Nern and Arkowitz, 2000). In contrast, mutations 

in FUS3 cause profound cell fusion defects (Elion et al., 1990, Nelson et al., 2004), indicating that 

polarised cell growth requires other factors regulated by Fus3, and one such factor is the formin Bni1 

(Matheos et al., 2004). 

 

1.4.2 The polarisome 

Bni1, a major contributor to polarised growth during the response to pheromones, belongs to the 

highly conserved family of formins, all characterised by the presence of the FH2 (Formin Homology 

2) domain, which functions in the nucleation of actin filaments and enables barbed end elongation 
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(Pruyne et al., 2002, Faix and Grosse, 2006, Kovar, 2006). Formins are also characterised by the 

presence of proline-rich FH1 domain, which binds profilin, a protein that facilitates actin subunit 

delivery (Kovar, 2006, Evangelista et al., 1997). Bni1 together with Bnr1 constitute the only two 

existing formins in S. cerevisiae, and while Bni1 has roles in both yeast budding and mating, Bnr1 

only functions in budding (Goode and Eck, 2007, Imamura et al., 1997, Qi and Elion, 2005). Following 

pheromone stimulation, the Bni1 protein has been identified to undergo two post-translational 

changes: first, Bni1 is phosphorylated by Fus3 (Matheos et al., 2004); second, Cdc42 binds to Bni1 

and relieves an auto-inhibitory loop to activate the FH2 domain to mediate actin polymerisation 

(Dong et al., 2003). Both Fus3 and Cdc42 have been shown to be required for the localisation of Bni1 

at the shmoo tip (Matheos et al., 2004, Qi and Elion, 2005). In a positive feedback loop, Bni1 

contributes to the polarised recruitment of the MAPK scaffold Ste5, the Cdc42-GEF Cdc24 and Fus3, 

which results in the amplification of signal and efficient Fus3 activation (Qi and Elion, 2005). 

At the shmoo tip, Bni1 constitutes part of a protein complex, termed the polarisome, with Spa2, 

Bud6 and Pea2, and together, the polarisome mediates polarised actin assembly towards the 

pheromone gradient. Bni1 has been found to physically interact with Spa2, through its Spa2-binding 

domain, and Pea2 (Fujiwara et al., 1998, Sheu et al., 1998, Tcheperegine et al., 2005), in which Spa2 

and Pea2 have been described to act upstream of Bni1 to regulate the timing of shmoo formation 

(Bidlingmaier and Snyder, 2004). Finally, the polarisome localises the cell fusion protein Fus1, whose 

expression is induced by pheromone signalling, at the shmoo tip to initiate the process of cell fusion. 

Interestingly, components of the polarisome as well as Fus1 are required for the termination of 

projection growth and delocalisation of actin (Figure 1.9) (Bidlingmaier and Snyder, 2004). 

Moreover, to ensure signal specificity, Fus1 has been found to directly interact with Sho1 to 

downregulate HOG signalling during cellular response to pheromone in order to ensure efficient cell 

fusion (Nelson et al., 2004). 

In Chapter 5 of this thesis, we describe the role of the translation elongation factor eIF5A in the 

yeast pheromone response. 
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Figure 1.9 Schematic representation of the yeast pheromone response. Binding of a or α pheromone to G-

coupled receptors Ste2 or Ste3, respectively, results in the dissociation of the βγ subunit, which initiates the 

signalling cascade involving consecutive phosphorylations of MAP kinases Ste11, Ste7 and Fus3. Activated 

Fus3 translocates to the nucleus and activates transcription of pheromone-responsive genes, such as FUS1, 

through the TF Ste12. Fus3 phosphorylates and activates Far1, which mediates cell cycle arrest in the 

nucleus. In the cytoplasm, Far1 in turn localises Fus3 at the shmoo site, and there Fus3 recruits the 

polarisome, consisting of Pea2, Spa2, Bud6 and Bni1. Formin Bni1 polymerises actin (straight black lines) 

towards the shmoo tip. The cell fusion protein Fus1 is recruited to the shmoo tip by the polarisome. Green 

arrows indicate sequential activation of the pathway components, blue arrows indicate recruitment of 

proteins to be localised at the shmoo tip, and red T signifies inhibition. 

 

1.5 The RNA cap-binding complex CBC 

As nascent pre-mRNA emerges from the RNA exit channel of RNAPII and reaches 22-25 nucleotides 

during transcription, a characteristic 7-methylguanosine (m7GpppN) cap structure is attached co-

transcriptionally to the 5´ end of the nascent mRNA by three sequential enzymatic steps, which are 

catalysed by Cet1, Ceg1 and Abd1 in yeast. This cap structure is recognised and bound by cap-
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binding proteins (Mazza et al., 2001, Mazza et al., 2002, Worch et al., 2005). To date, two cap-

associated complexes have been described: the highly conserved CBC, consisting of a cap-binding 

subunit Cbp20 and an auxiliary protein Cbp80 (termed Cbc2 and Cbc1, respectively, in S. cerevisiae), 

binds the cap in the nucleus; and the eIF4F complex in the cytoplasm (refer to Figure 1.4) 

(Sonenberg and Hinnebusch, 2009, Lewis and Izaurralde, 1997, Topisirovic et al., 2011). The 

m7GpppN cap influences many aspects of mRNA life cycle: including splicing (Izaurralde et al., 1994), 

3´ end formation (Flaherty et al., 1997), nuclear export (Gorlich et al., 1996), stability (Furuichi et al., 

1977, Das et al., 2000), translation (Shatkin, 1985), and, documented more recently, transcription 

(Lahudkar et al., 2011) (see Figure 1.10).  

CBC was first purified from nuclear extracts of HeLa cells based on its affinity for m7GpppN, and it 

was demonstrated to be consisted of 20 kDa and 80 kDa peptides which were termed Cbp20 and 

Cbp80 respectively (Izaurralde et al., 1994, Izaurralde et al., 1995a). Cbp20 is found to be unstable as 

a monomer as its presence is undetectable in Cbc80-depleted extracts (Izaurralde et al., 1995a), and 

in contrast, Cbp20 does not seem to be required for Cbp80 stability (Wong et al., 2007). The two 

subunits of the CBC bind mRNA cap synergistically, as neither has sufficient affinity to the structure 

alone (Izaurralde et al., 1994, Izaurralde et al., 1995a). The cap-binding pocket resides in Cbp20, 

however, Cbp80 is required to increase its affinity to the cap structure in which their interaction 

causes a conformational change in Cbp20. The structure of Cbp80 consists of three helical domains 

connected by two linkers, where the N-terminal helical domain mediates its interaction with Cbp20 

(Calero et al., 2002, Mazza et al., 2001). In addition, Cbp80 contains a nuclear localisation signal 

(NLS) in its N-terminus, and most likely, the two subunits are co-imported into the nucleus 

(Izaurralde et al., 1995b).  

The importance of CBC to cellular function has been extensively described in mammalian, yeast and 

plant cells. Although in S. cerevisiae the CBC1 and CBC2 genes are not essential for cell viability, they 

have been shown to be required for cell growth and proliferation (Fortes et al., 1999). In Arabidopsis 

thaliana, disruption of the CBC genes is not lethal, but results in developmental delays, reduced 

stature and abscisic acid (ABA) hypersensitivity (Hugouvieux et al., 2001). Finally, siRNA knockdown 

of CBC in mammalian cells results in the deregulation of ~400 genes as well as significant reduction 

in cell proliferation (Narita et al., 2007). In all, CBC has been found to play an important role in 

cellular function from plants to mammals.  
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1.5.1 Functional roles of CBC 

The CBC has been described to function in many aspects gene expression, including pre-mRNA 

splicing, RNA export, mRNA stability, translation, non-sense mediated decay (NMD) and various 

stages of transcription, and it can be assumed that many new roles are yet to be elucidated (Figure 

1.10).  

First, in the yeast nucleus CBC forms part of the splicing commitment complex, and its deletion 

causes a reduction in the recruitment of several factors of the splicing machinery to the nascent 

transcript, resulting in inhibition of co-transcriptional spliceosome assembly and reduced splicing 

(Figure 1.10) (Zhang and Rosbash, 1999, Gornemann et al., 2005). In mammalian cells, a direct 

interaction between CBC and U4/U6.5U tri-snRNPs (small non-coding nuclear RNA-protein complex), 

which together form the active site of the spliceosome, has been observed (Pabis et al., 2013). 

Furthermore, CBC has been described to facilitate alternative splicing by engaging with P-TEFb and 

Ser2-phosphorylated RNAPII (Lenasi et al., 2011). 

Second, it was found in Xenopus that CBC was required for the nuclear export of U small nuclear 

RNAs (U snRNAs) through its interaction with PHAX (PHosphorylated Adaptor of RNA eXport) 

(Izaurralde et al., 1995a, Hamm and Mattaj, 1990). In S. cerevisiae, CBC has been found to physically 

interact with SRP1 (importin-α) in the nucleus and once in the cytoplasm, importin-β dissociates CBC 

from RNA, suggesting a role for CBC in the nuclear export of RNA (Gorlich et al., 1996). Furthermore, 

CBC also directly interacts with the RNA-binding protein Npl3, and since Npl3 has been described to 

carry poly(A) mRNA from nucleus to cytoplasm, therefore, this study reinforces the idea that CBC 

may play a role to facilitate mRNA nuclear export (Figure 1.10) (Shen et al., 2000, Lei et al., 2001). 

Third, the cap structure protects RNA from degradation by 5´-3´ exonucleases in both the nucleus 

and the cytosol, in which capped mRNA is far more stable than its uncapped counterpart (Grudzien 

et al., 2006). In part, the stability is mediated by CBC as it competes with decapping complexes for 

binding to the m7GpppN cap (Grudzien et al., 2006, Schwartz and Parker, 2000). Additionally, CBC 

has been found to inhibit the initial step in mRNA degradation by inhibiting the PARN deadenylase 

which catalyses poly(A)-tail removal (Balatsos et al., 2006). Furthermore, Cbc1 has been described in 

yeast to drive a novel nuclear degradation pathway, the DRN (Decay of RNA in the Nucleus) 

pathway, that acts on mRNAs partially retained in the nucleus (Das et al., 2003). 

Fourth, CBC drives the first round of translation, known as the pioneer round of translation, through 

its interaction with the translation machinery; however its mode of function is still unclear. It was 

first discovered, in a yeast synthetic lethality screen, that the deletion of Cbc1 results in lethality 
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when combined with an eIF4G protein deficient in eIF4E binding, which led to the observation that 

CBC physically interact with eIF4G in vitro, suggesting that CBC may play a role in translation 

initiation (Fortes et al., 2000). However, a later study by the same laboratory suggested that the 

eIF4G-CBC interaction is dispensable in yeast and not required for mRNA translation (Baron-

Benhamou et al., 2003). In human cells, CTIF (CBC-dependent Translation Initiation Factor), a factor 

required during the initiation of the pioneer round of translation, is found to interact with Cbp80 to 

mediate the recruitment of the 40S ribosomal subunit to CBC-bound mRNA (Kim et al., 2009, Choe 

et al., 2012). More recently, it has been demonstrated in yeast that Cbc1 displays a synthetic lethal 

relationship with eIF4E. In addition, cells lacking Cbc1 are hypersensitive to the translation inhibitor 

cycloheximide, indicating translational defects, and Cbc1 itself is observed to be associated to 

translating polysomes (Garre et al., 2012). Taken together, these results indicate that Cbc1 indeed 

plays a role in mRNA translation (Figure 1.10).  

Finally, both yeast Cbc1 and mammalian Cbp80 have been implicated in NMD. In mammalian cells, 

during the pioneer round of translation, Cbp80 ensures translation of correct mRNA by targeting 

aberrant mRNA that contains premature translation termination codons to NMD, in which Cbp80 

directly interacts with Upf1, a major facilitator of NMD, and this interaction is required to mediate 

NMD (Figure 1.10) (Maquat et al., 2010, Gao et al., 2005, Ishigaki et al., 2001). In S. cerevisiae, a 

deletion in CBC1 causes a pronounced increase in steady-state levels of some long mRNAs, similar to 

what is observed for mutant lacking Upf1 (Das et al., 2000). However, in contrast to mammalian 

cells, both CBC- and eIF4E-bound transcripts can be targeted to NMD (Culbertson and Neeno-

Eckwall, 2005, Gao et al., 2005) 

Overall, CBC has been demonstrated to play a role in many aspects of gene expression, and finally, 

its role in transcription is starting to be unveiled. 

 

1.5.2 Role of CBC in transcription 

The complex role of CBC in transcription is just beginning to be elucidated, and recent studies 

suggest that CBC functions in various stages of the RNAPII transcription cycle, as well as influencing 

chromatin modifications (Figure 1.10).  

First, Hossain et al. shows that CBC affects the modification state of histone H2B in S. cerevisiae by 

ensuring proper Sus1-mediated deubiquitination. This is of special importance as rounds of 

ubiquitination and deubiquitination of H2B occur during transcription elongation (Hossain et al., 
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2009). Furthermore, this study demonstrates that a dele_on in CBC has a global effect on gene 

expression, affec_ng   2̴0 % of all yeast genes (Hossain et al., 2009). The role of CBC in histone 

modifications is further emphasised in a later study by the same group demonstrating that CBC is 

required for the establishment of proper histone marks during active transcription, where it has 

been observed that CBC mediates Set2-dependent K36 trimethylation of H3, as deletion of either 

Cbc1 or Cbc2 leads to a decrease in H3K36me3 throughout the coding regions of several genes 

(Hossain et al., 2013). Second, two distinct studies describe genetic interactions between CBC and 

kinases that phosphorylate RNAPII CTD at Ser2, Bur1 and Cdk9, in which the deletion of CBC 

markedly reduces the co-transcriptional recruitment of both kinases, leading to abrogated Ser2 

phosphorylation, a hallmark of transcription elongation (Hossain et al., 2013, Lidschreiber et al., 

2013) (Figure 1.10). CBC is also proposed to recruit transcription elongation factors, including Spt6 

(Lidschreiber et al., 2013) and P-TEFb (Lenasi et al., 2011), to promote productive transcription 

elongation. Finally, genetic studies by Lahudkar et al. show that Cbc1 physically interacts with the TF 

Mot1 to promote Mot1 recruitment to several yeast promoters, which in turn stimulates PIC 

formation and hence transcription initiation at these promoters (Figure 1.10) (Lahudkar et al., 2011). 

However, CBC does not seem to regulate promoter clearance or PIC formation in the first round of 

transcription, as RNAPII accumulation at promoters is not observed in a cbc1Δ mutant, indicating 

that CBC stimulates subsequent rounds of transcription (Lahudkar et al., 2011). Furthermore, CBC 

appears to regulate PIC formation following mRNA capping, as defects in mRNA capping events yield 

reduced recruitment of RNAPII and TBP (Lahudkar et al., 2011).  

Despite mounting evidence, other studies indicate that the active role of CBC in transcription is more 

complex. It has been described by Wong et al. that CBC does not play a critical role in promoting the 

rate or processivity of transcription elongation by RNAPII, as both RNAPII runoff and RNAPII 

occupancy experiments show no difference between wild type and a mutant with a deletion in 

CBP80 gene (Wong et al., 2007). 

Overall, recent studies provide evidence for the emerging role of CBC in transcription, and this thesis 

further describes the mechanisms employed by CBC to promote transcription. 
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Figure 1.10 The cap-binding complex (CBC) have roles in various aspects of gene expression. In the 

nucleus, CBC, composed of Cbc1 and Cbc2 (Cbp80 and Cbp20, respectively, in mammalian cells) promotes 

transcription through the recruitment of Mot1 and/or RNAPII kinases Bur1 and Ctk9, as well as promoting 

Set2-dependent trimethylation of H3K36. CBC also participates in pre-mRNA splicing and the degradation of 

nuclear mRNA. CBC interacts with Srp1 and Npl3 and may have a role in RNA nuclear export. In the 

cytoplasm, CBC mediates the pioneer round of translation, from which aberrant mRNAs are sent to non-

sense mediated decay (NMD). After replacement of CBC by eIF4F on correct mRNAs, CBC recycles back to 

the nucleus. 

 

1.5.3 Role of CBC in hyperosmotic stress 

A previous study conducted in our laboratory originally identified the CBC1 gene to be important in 

osmotic stress response through a screening in search for deletion mutants that showed reduced 

tolerance to NaCl, and it was observed that cbc1Δ showed sensitivity and loss of viability under 
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osmotic stress. Cbc1 was further identified as a coordinator of the rapid translational response after 

hyperosmotic stress in S. cerevisiae (Garre et al., 2012). In response to osmotic stress, global 

translation is rapidly inhibited to allow selective translation of osmostress-responsive mRNAs that 

encode stress-protective proteins (Yamasaki and Anderson, 2008, Warringer et al., 2010). Using 

polysome fractioning studies, Cbc1 is shown to be important in the re-initiation of translation after 

osmotic stress, as a strain harbouring a deletion in the CBC1 gene show a delayed recovery of 

polysomes after osmotic shock. The delay in translation recovery observed for cbc1Δ corresponds to 

a delay in P-body disassembly after adaptation, indicating that a role for Cbc1 in P-body disassembly, 

the return of mRNA to polysomes, and reinitiation of translation. Furthermore, Cbc1 is required for 

the rapid translation of specific osmostress-responsive mRNAs, as CBC1 deletion reduces the 

percentage of these mRNA associated to polysomes during osmotic stress (Garre et al., 2012). 

Interestingly, Garre et al. have observed that mRNA induction of osmostress-responsive genes, as 

well as recovery of RP mRNA, is delayed in cbc1Δ mutant in response to osmotic stress (Garre et al., 

2012).  

Another recent study conducted in Arabidopsis thaliana shows that Cbp20 and Cbp80 function in a 

coordinated fashion to modulate the salt stress response (Kong et al., 2014). Their findings show 

that cbp20 and cbp80 mutants exhibit increased sensitivity to salt stress, and that both proteins 

function synergistically to modulate pre-mRNA alternative splicing, as well as protein ubiquitination 

and sumoylation during osmotic stress (Kong et al., 2014). 

In all, yeast and Arabidopsis results indicate that CBC plays a key role in cellular response to osmotic 

stress by regulating several stages of mRNA life, and therefore gene expression, although all precise 

mechanisms involved are still unclear.  

  

1.6 The role of translation factor eIF5A  

The essential protein eIF5A (eukaryotic Translation Initialtion Factor 5A) is evolutionarily conserved 

from archaea to mammals, with a distant ortholog, EF-P, in eubacteria (Park et al., 2010). eIF5A is 

the only known protein to undergo a unique post-translational modification known as hypusination, 

where the amino acid residue hypusine, a derivative of spermidine, is enzymatically added to a 

conserved lysine residue of the protein. This modification has been shown to be essential for eIF5A 

activity (Schnier et al., 1991). Recent studies have identified several cellular functions for eIF5A, 

including the formation of the first peptide bond (Benne and Hershey, 1978), translation initiation 
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and elongation (Benne and Hershey, 1978, Saini et al., 2009), cell wall integrity (Galvao et al., 2013), 

and mRNA degradation (Schrader et al., 2006, Zuk and Jacobson, 1998b). Furthermore, hypusinated 

eIF5A has been implicated in the oncogenesis of several cancer types and has been identified as a 

target for therapeutic research (Cracchiolo et al., 2004, Taylor et al., 2007); however, further 

investigation is required to uncover the complexity and essentiality of eIF5A in cellular processes. 

This thesis will focus mainly on eIF5A as a translation elongation factor and its functional role in the 

yeast response to pheromones. 

 

1.6.1 Isoforms of eIF5A 

In S. cerevisiae, eIF5A is encoded by two highly homologous genes, TIF51A (HYP2) and TIF51B 

(ANB1). The TIF51A gene is essential under normal aerobic conditions in which TIF51B expression is 

not observed, whereas cells under anaerobic conditions will only express TIF51B (Schnier et al., 

1991, Wohl et al., 1993). The two genes are members of a duplicated gene cluster and encode 

proteins that share 90 % amino acid identity, as such that they can substitute each other, indicating 

identical functionality (Kang et al., 1992). All eukaryotes contain a homolog of eIF5A, and while in 

some organisms, such as humans, eIF5A is encoded by two genes, in others, such as Drosophila, it is 

encoded by only one gene (Figure 1.11).  

In humans, two isoforms of eIF5A exist, eIF5A-1 and eIF5A-2, and both harbour the hypusine 

modification (Clement et al., 2006, Caraglia et al., 2013). The first isoform, eIF5A-1, is constitutively 

expressed in all cells and is particularly abundant in proliferating cells. It is, in fact, overexpressed in 

human cancer cells, and its mRNA expression was found to be regulated by the human c-Myc 

oncogenic transcription factor (Caraglia et al., 2013, Coller et al., 2000). In contrast, the expression of 

eIF5A-2 is normally very low and tissue-specific, found mainly in testis and certain parts of the brain. 

Similarly, overexpression of the EIF5A2 gene has been detected in several cancer cell lines, including 

ovarian and colorectal cancer (Clement et al., 2006, Guan et al., 2004), suggesting a role in cancer 

development. Furthermore, in vitro overexpression of eIF5A-2 has been observed to induce cellular 

transformation, as well as associated with a role in tumour metastasis, and clinically, its expression 

has been linked to poor prognosis (Guan et al., 2004, Tang et al., 2010, He et al., 2011). There is 60-

65 % identity between human and yeast eIF5A, where the N-terminal region is highly conserved 

amongst eukaryotes, and in contrast, the C-terminus is less conserved (Figure 1.11).The sequence of 

12 amino acids surrounding the Lys residue that undergoes the hypusine modification 

(STSKTGKHGHAK) is invariable in all eukaryotes (Figure 1.11A), suggesting the importance of 
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hypusination to fundamental cellular function throughout eukaryotic evolution (Joe and Park, 1994). 

In Drosophila melanogaster, eIF5A is encoded by only one gene, whereas in C. elegans, the eIF5A 

homolog is encoded by two genes, IFF-1 and IFF-2 (van Oers et al., 1999, Hanazawa et al., 2004).  

Eukaryotic eIF5A has an ortholog in bacteria, elongation factor P (EF-P), and, although the two 

proteins share no more than 20 % amino acid sequence identity, they share significant structural 

similarities (Figure 1.11A and Figure 1.12A). While yeast eIF5A consists of a two-lobed structure, EF-P 

is composed of three domains, and the N-terminal domains of both proteins superimpose, while 

domains II and III of EF-P are structurally similar to one another as well as to the C-terminal domain 

of eIF5A (Figure 1.12A) (Dever et al., 2014, Rossi et al., 2014). A post-translational modification 

correlated with hypusination occurs on the conserved lysine or arginine residue of EF-P, termed 

lysinylation. Although the hypusine and lysyl-lysine residues are chemically distinct, they are very 

similar structurally and are expected to serve the same functional purpose (Figure 1.12) (Dever et al., 

2014, Rossi et al., 2014).  

 

1.6.2 From spermidine to hypusine 

Hypusine [Nε-(4-amino-2-hydroxybutyl)-L-lysine] is a spermidine-derived amino acid residue that is 

post-translationally added to the eIF5A protein in a process that involves two enzymatic steps. The 

first step involves the enzyme deoxyhypusine synthase (DHS), encoded by the yeast essential gene 

DYS1, transferring an aminobutyl moiety from the polyamine spermidine to a specific lysine group in 

the N-terminus of eIF5A. In the second step, the enzyme deoxyhypusine hydroxylase (DOHH), 

encoded in yeast by the LIA1 gene, yields the mature and active hypusinated eIF5A protein through 

the addition of a hydroxyl group (see Figure 1.12B) (Park et al., 1993, Abbruzzese et al., 1989). It is 

remarkable that both enzymes, which act on just one protein, are evolutionary conserved (Park et 

al., 2010). It is noteworthy that the enzyme DOHH is not essential in budding and fission yeasts 

(Park, 2006, Weir and Yaffe, 2004), however, in contrast the loss of DOHH is recessively lethal in C. 

elegans (Sugimoto, 2004), Drosophila (Patel et al., 2009) and mouse (Sievert et al., 2014), suggesting 

that the hydroxyl group on hypusine is more critical for eIF5A function in higher eukaryotes. 

Furthermore, recent studies showed that recombinant human eIF5A produced in bacteria that are 

either hypusinated or deoxyhypusinated results in equivalent abilities to stimulate translation in 

vitro, indicating that deoxyhypusinated eIF5A appears to be at least partly functional (Park et al., 

2011).  
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Figure 1.11 Evolutionary homologs of eIF5A. (A) Amino acid sequence alignment of genes encoding 

homologs TIF51A (Sc-Hyp2) and TIF51B (Sc-Anb1) in S. cerevisiae, eIF5A-1 (Hs-5A1) and eIF5A-2 (Hs-5A2) in 

H. sapiens, eIF5A in D. melanogaster (Dm) and EF-P in E. coli. Residues in red are identical in all eIF5A and 

EF-P, residues in blue are identical only in eukaryotic eIF5A, and residues in yellow are conserved between 

all eIF5A and EF-P (Dever et al., 2014). The 12 amino acid residues surrounding the lysine residue that 

becomes hypusinated (in black and indicated by a red arrow) are identical in all eIF5A homologs and it is 

marked by a green box. (B) Phylogenic tree alignment of eIF5A homologs in S. cerevisiae (Tif51A and Tif51B; 

yellow circle), Candida albicans (pink circle), H. sapiens (eIF5A-1 and eIF5A-2; green circle), M. musculus 

(eIF5A-1 and eIF5A-2; orange circle), D. melanogaster (blue circle), and C. elegans (IFF-1 and IFF-2; red 

circle) utilising the BLAST Tree View tool (NCBI). The Fast Minimum Evolution algorithm (Desper and 

Gascuel, 2004) was applied, where the evolutionary distance (or dissimilarities) between two sequences is 

modeled as the expected fraction of amino acid substitutions per site given the fraction of mismatched 

amino acids in the aligned region. 

translation elongation factor TIF51A [Saccharomyces cerevisiae]

translation elongation factor TIF51B [Saccharomyces cerevisiae]

IFF-1 [Caenorhabditis elegans]

eukaryotic translation initiation factor 5A [Drosophila melanogaster]

eukaryotic translation initiation factor 5A-2 [Homo sapiens]
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eukaryotic translation initiation factor 5A-1 [Homo sapiens]

eukaryotic translation initiation factor 5A [Candida albicans]

eukaryotic translation initiation factor 5A-2 [Mus musculus]

IFF-2 [Caenorhabditis elegans]
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The bacterial EF-P undergoes lysinylation catalysed by the enzymes YjeK, YjeA and YfcM. YjeK first 

converts α-lysine to β-lysine, which is then added to EF-P by YjeA to form β-lysyl-lysine. Finally, YfcM 

adds a hydroxyl group to complete the post-translational modification of EF-P [reviewed in (Figure 

1.12B) (Dever et al., 2014). Similar to the non-essential nature of yeast DOHH LIA1, loss of yfcM in E. 

coli does not affect growth or antibiotic sensitivity, raising the question to the function of the 

hydroxyl modification on EF-P (Bullwinkle et al., 2013). 

Polyamines (putrescine, spermidine and spermine) are clearly essential for life since inactivation of 

genes encoding early steps in the pathway of their biosynthesis is lethal; however, their exact mode 

of action is far from being resolved (Terui et al., 2007, Pegg and Wang, 2009). In S. cerevisiae, the 

metabolic synthesis of spermidine requires the proteins encoded by genes SPE1, 2 and 3. Under 

spermidine-limiting conditions, yeast spe2Δ mutants show morphological abnormalities and most of 

intracellular spermidine is used for the hypusine modification of eIF5A, suggesting that activation of 

eIF5A is the most important function of spermidine in yeast cells (Chattopadhyay et al., 2008a). In 

mammalian cells, spermidine regulates translation at initiation and elongation steps by unknown 

mechanisms that are partially dependent on eIF5A. These data suggest that the role of polyamines in 

translation can account for their essentiality in cellular proliferation (Landau et al., 2010). 

Spermidine is also indispensable for fertilisation efficiency in eukaryotes, from humans to yeast 

(Lefevre et al., 2011). During the pheromone response of S. cerevisiae, spermidine is essential for the 

formation of the shmoo towards the pheromone gradient in order to mediate cell fusion (Bauer et 

al., 2013). Spermidine is not only crucial for yeast mating but also essential for effective fertilisation 

in C. elegans, suggesting that its role in fusion of haploid gametes is conserved in higher eukaryotes 

(Bauer et al., 2013). 
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Figure 1.12 Bacterial EF-P and eukaryotic eIF5A post-translational modification pathways (Dever et al., 

2014). (A) Structure of bacterial EF-P (left) showing domain I (magenta), domain II (cyan) and domain III 

(blue). Structure of S. cerevisiae eIF5A showing N-terminal domain (orange) and C-terminal domain (green). 

(B top panel) In eukaryotes, n aminobutyl moiety is transferred from spermidine to the ε-amino group of 

the specific lysine residue (Lys50 and Lys51 in human and yeast eIF5A, respectively) by the enzyme 

deoxyhypusine synthase (DHS), encoded by the DYS1 gene in yeast. The enzyme deoxyhypusine 

hydroxylase (DOHH), encoded by the LIA1 gene in yeast,, adds a hydroxyl group to convert the 

deoxyhypusine to hypusine. (B bottom panel) In bacteria, the lysine aminomutase YjeK first converts α-

lysine to β-lysine, followed by the addition of β-lysine to a specific lysine residue (Lys34 in E. coli EF-P). 

Finally, YfcM hydoxylates the lysine residue. Colour scheme used is the same as (A). 

EF-P eIF5A

(DYS1) (LIA1)

YjeK

YjeA YfcM
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1.6.3 Molecular and physiological functions of eIF5A 

eIF5A was originally characterised as a translation initiation factor for its ability to stimulate the 

transfer of methionine from Met-tRNAi in the 80S initiation complex to the aminoacyl-tRNA analog 

puromycin, an in vitro assay that mimics the formation of the first peptide bond (Kemper et al., 

1976). Similarly, the structurally-related bacterial ortholog, EF-P, was also identified by its ability to 

carry out translation in vitro using E. coli (Glick and Ganoza, 1975). To further establish eIF5A as a 

factor of translation, endogenous eIF5A was observed to bind with actively translating 80S 

ribosomes in a RNA- and hypusine-dependent manner (Jao and Chen, 2006). However, it was shown 

that depletion of eIF5A in yeast only causes a partial decrease (30 %) in protein synthesis rate, 

arguing against its role as a general translation initiation factor (Kang and Hershey, 1994). On the 

other hand, evidence for the essentiality of eIF5A to cellular proliferation is clear, as its depletion in 

yeast causes cell cycle arrest at G1 phase, and similarly in mammalian cells, inhibition of 

hypusination lead to G1/S cell cycle arrest (Hanauske-Abel et al., 1994b, Kang and Hershey, 1994). 

Later reports, using polysome analyses, showed that eIF5A may in fact act as a translation elongation 

factor, in which inactivation of a yeast eIF5A temperature-sensitive mutant resulted in polysome 

accumulation in the absence of the translation elongation inhibitor cycloheximide, yielding polysome 

profiles similar to those of elongation factor mutants (Saini et al., 2009). Furthermore, it was shown 

that depletion of eIF5A increases the transit time of ribosomes along mRNAs, and genetic analyses 

revealed a physical interaction between eIF5A and the known elongation factor eEF2 (Saini et al., 

2009, Dias et al., 2012). Recently, it has been shown that active bacterial EF-P is essential for 

translation of proteins with three or more consecutive proline residues by alleviating ribosome 

stalling and stimulating the formation of peptide bonds between two proline residues (Ude et al., 

2013, Doerfel et al., 2013). The relief of ribosome stalling events by eIF5A has also been recently 

described in S. cerevisiae.  It was shown that eIF5A is required for the translation of polyPro-

containing reporters with three or more consecutive proline residues both in vivo and in vitro 

(Gutierrez et al., 2013). Although through recent research, the molecular function eIF5A is beginning 

to be understood, the physiological roles and molecular targets of eIF5A have yet to be elucidated.  

Several functional studies give insights to the physiological role of eIF5A. First, it has been observed 

that depletion of eIF5A in yeast and inhibition of eIF5A hypusination in higher eukaryotes cause cell 

cycle arrest at G1 phase, which suggests a function in the control of cell cycle progression 

(Hanauske-Abel et al., 1994a, Kang and Hershey, 1994). Furthermore, eIF5A has also been linked to 

nucleocytoplasmic transport and mRNA decay, including the nonsense-mediated decay (NMD) 

pathway, although is it unclear whether this is direct or indirect (Zuk and Jacobson, 1998a, Valentini 

et al., 2002, Ruhl et al., 1993, Schrader et al., 2006).   
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In yeast, the overexpression of factors involved in proper actin organisation can suppress the 

temperature-sensitive phenotype of eIF5A mutants (Valentini et al., 2002, Zanelli and Valentini, 

2005). It was also documented that eIF5A temperature-sensitive mutants showed changes in actin 

dynamics at restrictive temperature (Chatterjee et al., 2006). A functional association between eIF5A 

and cell wall integrity has been established from studies showing that growth defects caused by the 

inactivation of eIF5A and deoxyhypusine synthase (DYS1) are partially suppressed in the presence of 

the osmotic stabiliser sorbitol, and additionally, a DYS1 mutant is sensitive to cell wall-perturbing 

compounds (Galvao et al., 2013, Valentini et al., 2002). Furthermore, the overexpression of several 

components of the PKC pathway also restores growth of eIF5A mutants (Valentini et al., 2002). In 

mice, the knockout of eIF5A causes early embryonic lethality, indicating a role in mammalian 

development (Nishimura et al., 2012). In C. elegans, mutation of eIF5A produces slow larval growth, 

structural abnormalities and sterile adults (Hanazawa et al., 2004). In all, eIF5A knockout and 

depletion studies, together with the reported roles of spermidine, suggest that the translation factor 

may play a biological role in the control of cytoskeleton organisation and fertility, which will be 

addressed Chapter 5 of this thesis. 
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2.1 Media and cultures for Saccharomyces cerevisiae 

2.1.1 Media 

S. cerevisiae cells were grown in YPD or synthetic complete (SC) media. YPD was prepared with 1 % 

yeast extract (Pronadisa #1702.00), 2 % bacteriological peptone (Pronadisa #1616.00) and 2 % 

glucose (Panreac #141341-1210).  

SC medium was used for the selection of plasmids, in which the required amino acids, lacking the 

selection marker, were added to a SC-drop out base that lacked the five essential amino acids 

(adenine, uracil, histidine, leucine and tryptophan). SC-drop out medium was prepared with 0.67 % 

yeast nitrogen base (Difco #291940), 2 % glucose, 0.138 % SC-drop out mix (Formedium #DSCK322). 

Filter-sterile amino acids were added to SC-drop out medium as follows with the final concentration 

indicated: adenine (20 mg/L; Sigma #A8626), uracil (20 mg/L; Sigma #V0750), histidine (20 mg/L; 

Sigma #H8000), leucine (60 mg/L; Sigma #L8000) and tryptophan (20 mg/L; Sigma #T3300).  

To induce expression of plasmids driven by the GAL promoter, transformed cells were grown to 

exponential phase in SC selective medium and then transferred to SCgal selective medium [0.67 % 

yeast nitrogen base (Difco #291940), 2 % galactose, 0.138 % SC-drop out mix (Formedium 

#DSCK322)] and incubated for 4 hours.  

For geneticin (G418 sulphate) selective plates, a final concentration of 200 mg/L of geneticin (Roche 

#1464981) was added to YPD after autoclave. For KCl and NaCl salt plates, the salts (KCl VWR 

#726764-1000; NaCl Panreac #131659-1211) were added at the appropriate concentrations as 

powder to YPD media before autoclave. For calcium chloride plates (Chapter 4), CaCl2 was added as 

power to YPD media at the appropriate concentrations in combination with 5 mM succinic acid and 

buffered to pH 5.5.  

LB medium was prepared to grow E. coli and consisted of 1 % NaCl, 1 % tryptone (Pronadisa 

#1612.00), 0.5 % yeast extract. To select plasmid-transformed E. coli, Ampicilin (Sigma #A-9518) was 

added to LB to a final concentration of 50 μg/ml. 

For all agar plates, 2 % agar (Pronadisa #1800-00) was added before autoclave. All media were 

autoclaved for 20 minutes at 121 ºC before use. 
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2.1.2 Growth conditions 

Yeast cellular growth in liquid media was determined by optical density (OD) at 600 nm (OD600). 

OD600 units refer to absorbance at OD600 multiplied by the volume of liquid culture in millilitres. All 

wild type strains and null mutants were grown at 30 ºC (or otherwise indicated). Thermal-sensitive 

mutants were maintained at the permissive temperature of 25 ºC, and at exponential phase, were 

transferred to the the restrictive temperature of 37 ºC to annul gene expression. Yeast strains were 

maintained on YPD agar plates and stored at 4 ºC. For experiments, yeast cells were grown in liquid 

media with shaking at 190 rpm until exponential phase (OD600 0.5-0.6). 

 

2.1.3 Treatments 

For osmotic stress treatment, exponentially growing cells were either treated with KCl in powder to 

a final concentration of 0.6 M for experiments described in Chapter 4 or with liquid stock of 5 M 

NaCl to a final concentration of 0.4 M for experiments described in Chapter 3. Control (or t=0) 

samples were collected before salt treatment. 

For pheromone stimulation experiments described in Chapter 5, exponentially growing cells were 

incubated with α-factor (Sigma #T6901, or kindly provided by Dr Gustav Ammerer, University of 

Vienna, Austria) at a final concentration of 10 μg/ml for 2 hours or otherwise indicated. 

 

2.2 S. cerevisiae strains 

S. cerevisiae strains used in this thesis are described in Table 2.1, and the construction of new yeast 

strains is described below.  

 

2.2.1 Construction of new strains by gene disruption 

To construct the yeast strain PA703 ste11Δmsb2Δ, the strain CF83 msb2Δ was transformed with the 

STE11::ADE2 disruption plasmid (GA2126) following digestion with BamHI (New England Biolabs 

#R3136) for 30 mins at 37 ºC, and transformants were selected on SC-ade plates. Transformants 

were tested for the successful disruption of the STE11 gene by its inability to mate with a wild type 

MATα strain (W303α). To achieve this, transformants were mixed with W303α cells at exponential 
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phase and plated on SC-drop out plates lacking the five essential amino acids, and those that did not 

yield colonies contained successful STE11 gene disruption.  

 

2.2.2 Construction of new strains by genomic tagging 

To genomically tag the C-termini of genes of interest with HA, a PCR-based genomic tagging 

technique described by Knop et al. was employed with changes (Knop et al., 1999). Briefly, the 

plasmid GA2256 HA6-HIS3 served as a template for subsequent PCR reactions to generate a 

cassette, and all PCR reactions were carried out as described in section 2.6.4. Specific primers 

containing 45 bases complementary to the gene of interest with an additional 18 bases 

complementary to the vector were designed as previously described (Knop et al., 1999). For the HA 

genomic tagging of BNI1 wild type (yeast strains PAY723 and PAY725) and C-terminal-truncated 

(yeast strains PAY727 and PAY729) versions used in Chapter 5, the primer pairs BNI1-1/BNI1-2 and 

BNI1-2/BNI1-5 were used respectively (see Table 2.3). For HA genomic tagging of HOT1 (yeast strains 

PAY730 and PAY732) used in Chapter 4, the primer pair HOT1-1HA/HOT1-2HA were utilised (see 

Table 2.3). Size of PCR products were checked by agarose gel electrophoresis (section 2.6.3) and 

DNA was then ethanol precipitated (section 2.6.1). The resulting cassettes were then transformed in 

the corresponding yeast strains and transformants were selected on SC-his plates. Correct 

expression of genomic tags was confirmed by western blot analyses (section 2.6.6).  

To generate the strains PAY739 and PAY742 containing a genomic 6HA tag of a BNI1 mutant 

harboring the deletion of polyPro stretches (amino acids 1239-1307) (BNI1ΔPro) in Chapter 5, the C-

terminus BNI1-HA sequence was amplified from genomic DNA of the strain PAY723 using primers 

BNI1-2 and BNI1-6. The use of the primer BNI1-6 resulted in the deletion of nucleotides 3715 to 

3921 in BNI1, which encode for the polyPro stretches of the Bni1 protein.  The resulting PCR product 

was transformed in tif51A-1
ts and wild type cells and transformants were selected in SC-his. Correct 

tagging of Bni1 proteins were confirmed by protein size using western blot analyses.  

 

Table 2.1 S. cerevisiae strains used in this thesis. 

Strain Genotype Relevant genotype Source 

BY4741 MATa his3Δ leu2Δ met15Δ ura3Δ wild type Euroscarf 

W303 MATa ade2-1 can1-100 his3-11,15 leu2- wild type Dr. G. Ammerer, 



66 
 

3,112 trp1-1 ura3-1  University of Vienna, 

Austria 

W303α MATα ade2-1 can1-100 his3-11,15 leu2-

3,112 trp1-1 ura3-1 

wild type Dr. G. Ammerer, 

University of Vienna, 

Austria 

lia1Δ MATa his3∆ leu2∆ met15∆ ura3∆ 

lia1Δ::KanR 

lia1Δ Euroscarf 

spe2Δ MATa his3∆ leu2∆ met15∆ ura3∆ 

spe2Δ::KanR 

spe2Δ Euroscarf 

tif51BΔ MATa his3∆ leu2∆ met15∆ ura3∆ 

tif51BΔ::KanR 

tif51BΔ Euroscarf 

bnr1Δ MATa his3∆ leu2∆ met15∆ ura3∆ 

bnr1Δ::KanR 

bnr1Δ Euroscarf 

bni1Δ MATa his3∆ leu2∆ met15∆ ura3∆ 

bni1Δ::KanR 

bni1Δ Euroscarf 

tif51A-1 MATa his3∆ leu2∆ met15∆ ura3∆ 

tif51A-1::KanMX 

tif51A-1
ts (Li et al., 2011)  

tif51A-3 MATa his3∆ leu2∆ met15∆ ura3∆ 

tif51A-3::KanMX 

tif51A-3
ts (Li et al., 2011) 

PAY723 MATa his3∆ leu2∆ met15∆ ura3∆ BNI1-

6HA::HIS3 

BY4741 BNI1wt-HA This study 

PAY725 MATa his3∆ leu2∆ met15∆ ura3∆ 

tif51A-1::KanMX BNI1-6HA::HIS3 

tif51A-1
ts

 BNI1wt-HA This study 

PAY727 MATa his3∆ leu2∆ met15∆ ura3∆ 

bni1Δ1240-1954-6HA::HIS3 

BY4741 BNI1ΔCt-HA This study 

PAY729 

 

MATa his3∆ leu2∆ met15∆ ura3∆ 

tif51A-1::KanMX bni1Δ1240-1954-

6HA::HIS3 

tif51A-1
ts BNI1ΔCt-HA This study 

 

PAY739 

 

MATa his3∆ leu2∆ met15∆ ura3∆ 

bni1Δ1239-1307-6HA::HIS3 

BY4741 BNI1ΔPro-HA This study 

 

PAY741 

 

MATa his3∆0 leu2∆0 met15∆0 ura3∆0 

tif51A-1::KanMX bni1Δ1239-1307-

6HA::HIS3 

tif51A-1
ts BNI1ΔPro-HA This study 

 

top2-1 MATa ade2-1 can1-100 his3-11,15 leu2- top2-1
ts
 (Brill and Sternglanz, 
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3,112 trp1-1 ura3-1 top2-1
ts 1988) 

xpo1-1 MATa ade2-1 can1-100 his3-11,15 leu2-

3,112 trp1-1 ura3-1 xpo1::LEU2 pKW457 

(xpo1-1 in pRS313) 

xpo1-1
ts
 (Stade et al., 1997) 

 

YAZ80 MATa ade2-1 can1-100 his3-11,15 leu2-

3,112 trp1-1 ura3-1 ste11Δ::ADE2 

ste11Δ Dr. G. Ammerer, 

University of Vienna, 

Austria 

YAZ82 MATa ade2-1 can1-100 his3-11,15 leu2-

3,112 trp1-1 ura3-1 ste11Δ::ADE2 

sho1Δ::TRP1 

ste11Δsho1Δ Dr. G. Ammerer, 

University of Vienna, 

Austria 

YAZ87 MATa ade2-1 can1-100 his3-11,15 leu2-

3,112 trp1-1 ura3-1 ste11Δ::ADE2 

ste50Δ::KanMX 

ste11Δste50Δ Dr. G. Ammerer, 

University of Vienna, 

Austria 

YAZ120 MATa ade2-1 can1-100 his3-11,15 leu2-

3,112 trp1-1 ura3-1 sho1Δ::KanMX 

sho1Δ Dr. G. Ammerer, 

University of Vienna, 

Austria 

YID196 MATa ade2-1 can1-100 his3-11,15 leu2-

3,112 trp1-1 ura3-1 ssk2Δ::KanMX 

ssk22Δ::KanMX 

ssk2Δssk22Δ Dr. G. Ammerer, 

University of Vienna, 

Austria 

YAZ150 MATa ade2-1 can1-100 his3-11,15 leu2-

3,112 trp1-1 ura3-1 ssk2Δ::KanMX 

ssk22Δ::KanMX sho1Δ::TRP1 

ssk2Δssk22Δsho1Δ Dr. G. Ammerer, 

University of Vienna, 

Austria 

YAZ157 MATa ade2-1 can1-100 his3-11,15 leu2-

3,112 trp1-1 ura3-1 ste11Δ::ADE2 

opy2Δ::KanMX 

ste11Δopy2Δ Dr. G. Ammerer, 

University of Vienna, 

Austria 

YAZ195 MATα his3Δ leu2Δ trp1Δ ura3Δ 

ssk2Δ::LEU2 ssk22Δ::LEU2 

hkr1Δ::NatMX msb2Δ::KanMX 

ssk2Δssk22Δhkr1Δ 

msb2Δ 

Dr. G. Ammerer, 

University of Vienna, 

Austria 

YAZ196 MATα his3Δ leu2Δ trp1Δ ura3Δ 

ssk2::LEU2 ssk22::LEU2 msb2Δ::KanMX 

ssk2Δssk22Δmsb2Δ Dr. G. Ammerer, 

University of Vienna, 

Austria 

YCF7 MATa ade2-1 can1-100 his3-11,15 leu2-

3,112 trp1-1 ura3-1 ste50Δ::KanMX 

ste50Δ Dr. S. Hohmann 

University of 

Gothenburg, Sweden 
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YCF163 MATa ade2-1 can1-100 his3-11,15 leu2-

3,112 trp1-1 ura3-1 opy2Δ::KanMX 

opy2Δ Dr. G. Ammerer, 

University of Vienna, 

Austria 

YCF173 MATa ade2-1 can1-100 his3-11,15 leu2-

3,112 trp1-1 ura3-1 opy2Δ::KanMX 

pbs2Δ::HIS3 

opy2Δpbs2Δ Dr. G. Ammerer, 

University of Vienna, 

Austria 

YCF189 MATa ade2-1 can1-100 his3-11,15 leu2-

3,112 trp1-1 ura3-1 msb2Δ::HIS3 

hkr1Δ::KanMX 

msb2Δhkr1Δ Dr. G. Ammerer, 

University of Vienna, 

Austria 

YCF192 MATa ade2-1 can1-100 his3-11,15 leu2-

3,112 trp1-1 ura3-1 ssk1Δ::HIS3 

ste11Δ::ADE2 

ssk1Δste11Δ Dr. G. Ammerer, 

University of Vienna, 

Austria 

YCF195 MATa ade2-1 can1-100 his3-11,15 leu2-

3,112 trp1-1 ura3-1 ssk1Δ::HIS3 

sho1Δ::TRP1 

ssk1Δsho1Δ Dr. G. Ammerer, 

University of Vienna, 

Austria 

YCF209 MATa ade2-1 can1-100 his3-11,15 leu2-

3,112 trp1-1 ura3-1 ste20Δ::TRP1 

ste20Δ Dr. G. Ammerer, 

University of Vienna, 

Austria 

YCF83 MATa ade2-1 can1-100 his3-11,15 leu2-

3,112 trp1-1 ura3-1 msb2Δ::HIS3 

msb2Δ Dr. G. Ammerer, 

University of Vienna, 

Austria 

KT060 MATα his3Δ leu2Δ trp1Δ ura3Δ 

ssk2Δ::LEU2 ssk22Δ::LEU2 

hkr1Δ::NatMX  

ssk2Δssk22Δhkr1Δ (Tatebayashi et al., 

2007) 

PAY185 MATa ade2-1 can1-100 his3-11,15 leu2-

3,112 trp1-1 ura3-1 hog1Δ::KanMX 

hog1Δ (De Nadal et al., 

2004) 

PAY703 MATa ade2-1 can1-100 his3-11,15 leu2-

3,112 trp1-1 ura3-1 ste11Δ::ADE2 

msb2Δ::HIS3 

ste11Δmsb2Δ This study 

YVR10 MATa ade2-1 can1-100 his3-11,15 leu2-

3,112 trp1-1 ura3-1 pbs2Δ::HIS3 

pbs2Δ (Reiser et al., 1999) 

YID140 MATa ade2-1 can1-100 his3-11,15 leu2-

3,112 trp1-1 ura3-1 ste11Δ::ADE2 

pbs2Δ::HIS3 

ste11Δpbs2Δ Dr. G. Ammerer, 

University of Vienna, 

Austria 
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YID198 MATa ade2-1 can1-100 his3-11,15 leu2-

3,112 trp1-1 ura3-1 ssk2Δ::KanMX 

ssk22Δ:KanMX ste50Δ::KanMX 

ssk2Δssk22Δste50Δ Dr. S. Hohmann 

University of 

Gothenburg, Sweden 

cbc1Δ MATa his3∆ leu2∆ met15∆ ura3∆ 

cbc1Δ::KanMX4 

cbc1Δ Euroscarf 

cbc2Δ MATa his3∆ leu2∆ met15∆ ura3∆ 

cbc2Δ::KanMX4 

cbc2Δ Euroscarf 

mot1 MATa his3∆ leu2∆ met15∆ ura3∆ mot1-

1033::KanMX 

mot1
ts
 Euroscarf 

PAY730 MATa his3∆ leu2∆ met15∆ ura3∆ HOT1-

6HA::HIS3 

BY4741 HOT1-HA This study 

PAY732 MATa his3∆ leu2∆ met15∆ ura3∆ 

cbc1Δ::KanMX4 HOT1-6HA::HIS3 

cbc1Δ HOT1-HA This study 

 

2.3 Yeast plasmids 

All plasmids used in this thesis are listed in Table 2.2. 

 

2.3.1 Preparation of plasmids 

To amplify plasmids, 1 μl of plasmids are transformed in 50 μl of DH5αTM Competent E. coli cells 

(Invitrogen #18265-017) following manufacturer´s instructions. Briefly, cells were mixed with 

plasmids and first incubated on ice for 30 minutes, then heat shock was performed at 42 ºC for 20 

seconds in a water bath, followed by a further incubation on ice for 2 minutes. To cells, 300 μl of 

S.O.C. Medium (Invitrogen #1597798) was added, and samples were incubated at 37 ºC for 1 hour 

with shaking at 225 rpm. 20-200 μl of transformed cells was spread onto LB plates containing 

Ampicillin, which were incubated overnight at 37 ºC. Colonies were selected and incubated in 1.5 ml 

of LB liquid media containing Ampicillin at 37 ºC overnight with shaking at 190 rpm. Finally, for 

plasmid extraction, the GeneJET Plasmid Miniprep Kit (Thermo Scientific #K0502) was utilised 

according to manufacturer´s instructions.  
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Table 2.2 Plasmids used in this thesis 

Plasmid Description Source 

GA2256 HA6-HIS3 Dr. G. Ammerer, University of Vienna, 

Vienna, Austria 

PA283 pRS416 SPA2-GFP, URA3, 2μ Dr. R. Arkowitz, Institute of Biology 

Valrose, France  

GA1815 FUS1-LacZ, URA3 Dr. G. Ammerer, University of Vienna, 

Vienna, Austria 

PA159 YEp368 STL1-LacZ, LEU2, 2μ Dr. E. de Nadal, University Pompeu 

Fabra, Barcelona, Spain (Alepuz et al., 

2003) 

PB1028 GAL-BNI1-4HA, URA3, 2μ Dr. D. Pellman, Dana-Farber Cancer 

Institute and Harvard Medical School, 

Boston, USA 

PAZ56 YEp195 STE11-H3-HA, URA3 Dr. G. Ammerer, University of Vienna, 

Vienna, Austria 

PAZ85 YEp181 STE11-HKMT, LEU2 Dr. G. Ammerer, University of Vienna, 

Vienna, Austria 

PAZ119 YCp33 STE11-4H3-3HA, URA3 Dr. G. Ammerer, University of Vienna, 

Vienna, Austria  

PAZ138 YCp111 PBS2-9MYC-HKMT, LEU2 Dr. G. Ammerer, University of Vienna, 

Vienna, Austria  

PAZ139 YCp111 PBS2-9MYC-HKMTinactive, LEU2 Dr. G. Ammerer, University of Vienna, 

Vienna, Austria 

PAZ140 YCp111 SHO1-HKMTinactive, LEU2 Dr. G. Ammerer, University of Vienna, 

Vienna, Austria 

PAZ187 YCp111 3MYC-HKMT, LEU2 Dr. G. Ammerer, University of Vienna, 

Vienna, Austria 

PAZ218 YCp111 MSB2-3MYC-HKMT, LEU2 Dr. G. Ammerer, University of Vienna, 

Vienna, Austria 

PCF19 YCp111 STE50-HKMTinactive, LEU2 Dr. G. Ammerer, University of Vienna, 

Vienna, Austria 

PCF54 YCp111 SHO1-HKMT, LEU2 Dr. G. Ammerer, University of Vienna, 
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Vienna, Austria  

PID225 YCp33 SHO1-4H3-3HA, URA3 Dr. G. Ammerer, University of Vienna, 

Vienna, Austria  

PID228 YEp195 SHO1-4H3-3HA, URA3 Dr. G. Ammerer, University of Vienna, 

Vienna, Austria  

PID238 YCp33 SHO1ΔSH3-4H3-3HA, URA3 Dr. G. Ammerer, University of Vienna, 

Vienna, Austria 

PID381 YEp195 SHO1ΔSH3-4H3-3HA, URA3 Dr. G. Ammerer, University of Vienna, 

Vienna, Austria 

PSS01012 YCp33 SHO1W338A-4H3-3HA, URA3 Dr. G. Ammerer, University of Vienna, 

Vienna, Austria 

PA115 pRS313 HOT1wt-3HA, HIS3 (Alepuz et al., 2003) 

PA97 pRS316 HOT1wt-3HA, URA3 (Alepuz et al., 2003) 

PA149 YCplac33 3HA-TBP1, URA3 Dr. Kevin Struhl, Harvard Medical 

School, Boston, USA (Arkowitz and 

Lowe, 1997) 

P15 YCplac111 CBC1-3MYC-HKMT, LEU2 Dr. Aurora Zuzuarregui, University of 

Valencia, Spain 

CF1E5 YCplac22 HOG1-4H3-HA, TRP1 Dr. Aurora Zuzuarregui, University of 

Valencia, Spain 

P12 YCplac111 RCK2-3MYC-HKMT, LEU2 Dr. Aurora Zuzuarregui, University of 

Valencia, Spain 

GA2126 STE11::ADE2 disruption plasmid, ADE2 Dr. G. Ammerer, University of Vienna, 

Vienna, Austria 

 

2.4 Yeast transformations 

Yeast transformation with yeast plasmids (listed in Table 2.3) was carried out following the One-Step 

transformation method as described by Chen et al. (Chen et al., 1992). Briefly, freshly-grown yeast 

cells in stationary phase taken directly from agar plates were incubated with approximately 50-200 

ng of plasmids in 150 μl of transformation solution [40 % PEG, 0.2 M LiAc, 0.1 M DTT] at 45 ºC for 45 

mins. Transformants were plated onto SC selective plates. 
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Yeast transformation of PCR cassettes for genomic tagging or gene disruption were performed using 

a lithium acetate-based method described by Gietz et al. with modifications (Gietz and Woods, 

2002). Briefly, 50 ml of exponentially growing cells (OD600 0.8-1) were washed and suspended in 1 ml 

0.1 M LiAc. For each cassette transformation, 50 μl of cells were used. To yeast cells, 5 μl of salmon 

sperm DNA (10 mg/ml; Sigma #D1626), denatured at 95 ºC for 5mins, was added to aid plasmid 

transformation. 50-200 ng of PCR cassettes were added with 300 μl of transformation solution [40 % 

PEG, 0.1 M LiAc] to yeast cells, and the samples were incubated at 42 ºC for 20 mins (15 mins for 

thermal-sensitive strains). Transformants were plated onto SC selective plates.  

 

2.5 Growth and viability analyses 

2.5.1 Analysis of cell growth by serial dilutions 

To evaluate cellular growth (Chapter 4 and 5), cells were grown to exponential phase under 

experimental conditions. Cells were then diluted to OD600 0.3 and 10-fold serial dilutions in the 

growth media were performed (1, 1-10, 1-100 and 1-1000). 3μl of each dilution was plated onto agar 

plates of interest and were then incubated at the indicated temperatures for at least 48 hours.  

 

2.5.2 Cell viability assay 

To test the viability of wild type, tif51A-1
ts and tif51A-3

ts under permissive and restrictive 

temperatures (Chapter 5), cell viability assays were performed as described by Li et al. (Li et al., 

2014b). Briefly, strains were transferred from 25 ºC to 37 ºC during exponential growth phase and 

controls were maintained at 25 ºC. Cell viability was measured at the indicated times using the Muse 

Count & Viability Assay Kit (Millipore #MCH100102) and the Muse™ Cell Analyzer (Millipore) 

according to manufacturer’s instructions, in which the Muse Count & Viability Reagent differentially 

stains viable and non-viable cells based on their membrane permeability to two distinct DNA-binding 

dyes. Approximately 3000 counts were performed for each sample.  
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2.6 Molecular biology techniques 

2.6.1 DNA extraction from yeast cultures 

To extract yeast genomic DNA, 10 ml of cells were grown overnight, and were then washed and 

resuspended in 500 μl of 10prep solution [2 % Triton X-100, 1 % SDS, 100 mM NaCl, 10 mM Tris 

pH=8.0, 1 mM EDTA] with 500 μl of phenol (Amresco #0945):chloroform:isoamyl alcohol 25:24:1. 

Cells were broken mechanically with glass beads using the Precellys® 24 homogeniser (Bertin 

Technologies) in two rounds of 20 seconds at 6500 rpm . Lysates were then washed with 

choloform:isoamyl alcohol 24:1 to eliminate organic residues. To separate aqueous and organic 

phases, samples were repeated centrifuged at 13000 rpm for 5 mins. The aqueous phase containing 

DNA was separated and DNA was precipitated by adding 0.1 volumes of 3 M NaAc and 2.5 volumes 

of 96 % ethanol and was at -80 ºC for 30 mins. The precipitate was isolated by centrifugation at 

13000 rpm for 15 mins and washed with 500 μl of 70 % ethanol. To further pellet DNA, samples were 

centrifuged at 13000 rpm for 5mins and were then resuspended in 50 μl of TE [10 mM Tris, 1 mM 

EDTA, pH 8.0]. To eliminate RNA, samples were treated with 1 μl of RNAse (Roche #109169) by 

incubation at 37 ºC for 30 mins.  

 

2.6.2 RNA extraction from yeast cultures 

RNA extraction from yeast cells were carried out using a phenol-chloroform approach. Briefly, 10 

OD600 units of exponentially growing cells were collected by centrifugation and were frozen in liquid 

nitrogen. Cells were resuspended in 500 μl of LETS buffer [0.1 M LiCl, 10 mM EDTA, 0.2 % SDS, 10 

mM Tris-HCl, pH 7.4] and transferred to a tube containing glass beads and 500 μl of phenol (Amresco 

#0981):chloroform:isoamyl alcohol 125:24:1. Cells were broken mechanically using Precellys® 24 

homogeniser (Bertin Technologies) in two rounds of 20 seconds at 6500 rpm and centrifuged to 

separate the aqueous from organic phase. The aqueous phase was then passed through 500 μl of 

phenol (Amresco #0981):chloroform:isoamyl alcohol 125:24:1, followed by 500 μl of 

chloroform:isoamyl alcohol 24:1 to discard residual organic matter and phenol. RNA was ethanol 

precipitated twice with 2.5 volumes of 96 % ethanol: first by LiCl (0.1 volumes of 5 M) and second by 

NaAc (0.1 volumes of 3 M), and were incubated at -20 ºC overnight. The RNA precipitate was 

isolated by centrifuging at 13000 rpm for 5 mins and washed with 500 μl of 70 % ethanol after each 

precipitation step. Pellet were air-dried and resuspended in 100 μl of water. Quantity and quality of 
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RNA was checked by NanoDrop 2000 (Thermo Scientific) and visualised by agarose gel 

electrophoresis. 

 

2.6.3 Agarose gel electrophoresis 

For fragments size determination and sorting of nucleic acids, horizontal agarose gel electrophoreses 

were carried out in TBE buffer [45 mM Tris-base, 45mM boric acid, 1 mM EDTA]. Agarose was 

dissolved in TBE buffer containing SafeView Nucleic Acid Stain (NBS Biologicals #NBS-SV1) at a 

concentration of 0.05 μl/ml of gel. To visualise nucleic acids, gels were exposed to a UV light source 

using the Molecular Imager Gel DocTM XR+ Imagining System (Bio-Rad).  

 

2.6.4 Polymerase chain reaction (PCR) 

Generally, PCR reactions were carried out using Mastercycler Personal (Eppendorf) and a program 

consisting of an initial denaturing step of 95 ºC for 4 mins, 30 cycles of amplification (95 ºC for 1 min, 

56 ºC for 1 min, 72 ºC for 1min per kb of PCR product), and finally an extension of 7 mins at 72 ºC. 

For each 50 μl of reaction, 50-200 ng of DNA or plasmid, 5 μl of each 10 μM primer pair, 1 μl of 10 

mM dNTPs (Fermentas #R0182), 3 μl of 50 mM MgCl2, 0.5 μl of Taq DNA polymerase (5 u/μl; 

Biotools #10048) and 5 μl of the corresponding 10 X buffer (Biotools #10048) were added. 

 

2.6.5 Quantitative real-time PCR (qPCR) 

qPCR was utilised to quantify expression of mRNAs or to analyse DNA-protein interactions following 

chromatin immunoprecipitation. For mRNA expression, extracted RNA is treated with DNAse and 

then cDNA is synthesis by reverse transcription. For chromatin immunoprecipitation analyses 

(Chapter 4), DNA is purified as described in section 2.6.7 and directly used as template for qPCR.  

For RNA isolation, unwanted DNA is eliminated by treating RNA samples with DNAse. Briefly, for 

each reaction, 2.5 μg of RNA was incubated for 15 mins at 25 ºC with 2.5 μl of RNAse-free DNAse 

(Roche #04716728001) and 2.5 μl of the corresponding 10 X incubation buffer (Roche 

#04716728001) added to a final volume of 25 μl. DNAse enzymatic reaction was terminated by 

adding 0.625 μl of 5 mM EDTA and incubating the samples for 10 mins at 65 ºC.  
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To synthesise cDNA from RNA template, a mix of 5 μl of DNAse-treated RNA, 1 μl of 10 μM Oligo d(T) 

(Thermo Scientific #SO132), 1.6 μl of 10 mM dNTPs pool (Fermentas #R0182) and 4.4 μl of water was 

incubated at 65 ºC for 10 mins. 4 μl of 10 X reverse transcriptase buffer (Thermo Scientific #EP0742) 

and 2 μl of 0.1 M DTT (Roche #70001022) were added to the mix and samples were incubated at 42 

ºC for 2 mins. Finally, 1 μl of reverse transcriptase (Thermo Scientific #EP0742) and 1 μl of water 

were added, and enzymatic reactions were carried out at 42 ºC for 50 mins and reactions were then 

inhibited by incubation at 70 ºC for 15 mins. 

All qPCR reactions were carried out using the CFX96 Real Time System C1000TM Thermal Cycler (Bio-

Rad) and analysed using the program Bio-Rad CFX Manager 2.1 (Bio-Rad). All primers used are listed 

in Table 2.3. For amplification, cDNA or DNA samples were diluted specifically for each primer pair. 

For each reaction of 10 μl, 5 μl of SYBR Premix Ex TaqTM (Takara #RR420A) and 2.5 μl of sample were 

added, and volume and concentration of primers were added depending on the efficiency of primer 

pairs. To generate calibration curves, a pool of all undiluted cDNA samples (for mRNA analyses) or all 

undiluted INPUT samples (for ChIP analyses) were mixed and serial diluted (1/10, 1/50, 1/100, 

1/500, 1/1000, 1/5000), and were then used as qPCR templates for each primer pair. For 

amplification of templates, an initial denaturing step was performed at 95 ºC for 10 secs, followed by 

40 cycles of amplification consisting of annealing (95 ºC for 10 sec) and extension (55 ºC for 15 sec) 

where, after each cycle, plate was read to determine SYBR signal. For larger products, the extension 

time for each cycle at 55 ºC is increased to 20 sec. To generate melting curves of each primer pair, 

plates were incubated at 65 ºC with increment of 0.5 ºC per 0.5 sec until 95 ºC was reached.  

For each reaction, a cycle threshold (Ct) value was determined as the number of cycles required for 

the fluorescent signal to exceed background levels. To determine specific mRNA amount of each 

sample, first, calibration curves for each primer pair were obtained by graphing the Ct of each 

dilution against the log10 of arbitrary units, which was calculated by multiplying an arbitrary number 

by the dilution factor. Second, utilising a line of best fit and linear interpolation, the relative 

template concentration was calculated from the calibration curve formula using the Ct value 

obtained for each sample. Finally, the relative template concentration was then normalised against 

the expression of an internal control and represented as fold change of wild type at time 0.  

qPCR analyses of ChIP data is detailed in section 2.6.7. 
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Table 2.3 List of primers used in this thesis 

Primer Sequence1 Use 

BNI1-1 AGATCCATAGGTGAGGCTAGCACAGGTAACAGGC

TAAGTTTCAAATCCGGTTCTGCTGCTAG 

BNI1 full length genomic tagging 

BNI1-2 GTTTGTTTTGGTATTACTGTTGTCATAATTTTTTGG

TTTAATATTCCTCGAGGCCAGAAGAC 

BNI1 full length, C terminus 

truncated, and proline deletion 

genomic tagging  

BNI1-3 ACATGTGGAAAACGGAAAGC QPCR of BNI1 ORF 

BNI1-4 AGATCTTCTGCGCCATCTGT QPCR of BNI1 ORF 

BNI1-5 GCAGAAGATCTCTCTACTCAATCATCTGTACTCTCC

TCACAGCCGTCCGGTTCTGCTGCTAG 

BNI1 C-truncated genomic 

tagging 

BNI1-6 GGCGCAGAAGATCTCTCTACTCAATCATCTGTACT

CTCCTCACAGCTACCATCTGTATTATCT 

BNI1 proline deletion genomic 

tagging 

M1 TCGTTCCAATTTACGCTGGTT QPCR of ACT1 ORF 

M2 CGGCCAAATCGATTCTCAA QPCR of ACT1 ORF 

HXK2-1 CAATTCCATTGGGTTTCACC QPCR of HXK2 ORF 

HXK2-2 GCAACATTGGAACAACATCG QPCR of HXK2 ORF 

HOT1-1HA AAGAAAAGAACCATTGGCTGGTTGCAAG HOT1 genomic tagging  

HOT1-2HA TTTTCCCTTTTTCGTCGGTGCCAAGCTTG HOT1 genomic tagging  

3-STL1-3c GGGCAAATGGTTAGCAACTC QPCR of STL1 ORF 

3-STL1-5b CCGGAAGAAGTTTGGAGGAA QPCR of STL1 ORF 

GRE3-1 CAAAACCATCCAGGCAGTAC QPCR of GRE3 ORF 

GRE3-2 CTCTCTGAGTTGCCCATCTA QPCR of GRE3 ORF 

3-GPD1-3 ATGGGAAGTCTTCGACAGAG QPCR of GPD1 ORF 

3-GPD1-5 TTCTGCTGCCATCCAAAGAG QPCR of GPD1 ORF 

M11 ACTTCCAGGTGGTAACAACGAA QPCR of RPL30 ORF 

M12 AAATAGAGACAACACCGACTCTGAATAA QPCR of RPL30 ORF 

GRE3-7 GGGGGCCTATCAAGTAAATT QPCR of GRE3 promoter -142F 

5-GRE3-2 GAAGGATTGCACTGACAACT QPCR of GRE3 promoter -80R 

STL1TATA-1 TTTTGTCCCCTTCAACGCTG QPCR of STL1 promoter -181F 

STL1-2 TATGAGTGTGACTACTCCTG QPCR of STL1 promoter -113R 

GPD1-9 TTGCTTCTCTCCCCTTCCTT QPCR of GPD1 promoter -298F 

GPD1-10R CAGCAGCAGCAGACATCTTT QPCR of GPD1 promoter +16R 

FUS1-1F CATGTGGACCCTTTCAAAAC QPCR of non-coding region 
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upstream of FUS1 

FUS1-5 AGACAGCGCGAAAAGTGACA QPCR of non-coding region 

upstream of FUS1 

RPL30-4 TGTGGTGCACAGATGTAACG QPCR of RPL30 promoter -358F 

RPL30-5 CAGCGTGGTTACGTGCTATC QPCR of RPL30 promoter -187R 

RPL30-6 ACCACGCTGGTGTATTTTCA QPCR of RPL30 promoter -195F 

RPL30-7 ACACTCGGTCTGTTTGTT QPCR of RPL30 promoter -42R 

RPL33B-1 GGGGAAAGCAAATGAGAAAA QPCR of RPL33B promoter -605F 

RPL33B-2 GCCGGAAGAAGATGGTGTAA QPCR of RPL33B promoter -307R 

RPL33B-3 GCAGGTGTGACATGTGAAGG QPCR of RPL33B promoter -192F 

RPL33B-4 CAAAGAAACTGTTTTCGGACCT QPCR of RPL33B promoter -46F 

 

2.6.6 Western blot analysis 

To quantify protein expression in yeast cells, protein was extracted from 20 ml of cells that were 

grown to OD600 ~ 0.5 at experimental conditions as previously described (Kushnirov, 2000). To 

prepare protein extracts, ~10 OD600 units of culture were harvested by centrifugation and frozen in 

liquid nitrogen. Upon defrosting, cell pellet was resuspended in 400 μl of 1 % glucose and treated 

with 0.25 M NaOH for 3 mins at room temperature to permeabilise cell membrane. Cells were 

pelleted by centrifugation and were resuspended in SDS lysis buffer [360 mM Tris pH 6.8, 18 % SDS, 

54 % glycerol, 20 % β-mercaptoethanol, 0.12 % bromophenol blue]. Extracts were boiled for 5 mins 

and supernatant was collected and absorbance at OD280 was determined using Nanodrop as an 

indication of relative protein concentration.  

Equal relative protein amounts, estimated using OD280 absorbance, were resolved on SDS-PAGE gel 

[7-10 % acrylamide mix (acrylamide: bis-acrylamide 30:0.8 %; National Diagnostics #EC-890), 0.75 M 

Tris pH 8.8, 0.2 % SDS, 0.001 % ammonium persulfate (VWR #33-603-267), 0.001 % TEMED] 

containing a pre-gel [4 % acrylamide mix (acrylamide: bis-acrylamide 30:0.8 %; National Diagnostics 

#EC-890), 0.25 M Tris pH 6.8, 0.2 % SDS, 0.001 % ammonium persulfate, 0.001 % TEMED]. 

Electrophoresis was carried out in electrophoresis buffer [25 mM Tris pH 8.3, 192 mM glycine, 0.02 

% SDS] using Mini-PROTEAN® Tetra Cell (Bio-Rad #165-8004) at 100 V, room temperature, for 3-4 

hours, depending on the size of proteins of interest.  

Resolved proteins were then transferred onto nitrocellulose membrane (GE Healthcare #10401396) 

using Mini Trans-Blot® Cell (Bio-Rad #170-3930) in transfer buffer [25 mM Tris-Base, 192 mM glycine, 
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0.1 % SDS, 20 % methanol] with a magnetic mixer. Transfer was performed at 100 V for 12 mins, 

then 60 V for 30mins at room temperature for smaller proteins, and at 100 V for 1 h with ice for 

larger proteins. 

Following protein transfer, membranes were visualised by incubation with Ponceau solution [0.1 % 

Ponceau S (Sigma-Aldrich #P3504), 1 % acetic acid]. Blocking was performed by incubation with PBS-

Tween solution [1 X PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4), 0.1 % 

Tween-20 (Sigma-Aldrich #P1379)] containing 5 % skim milk for 1 hour at room temperature. 

Primary and secondary antibodies, listed in Table 2.4, were incubated in blocking solution at 4 ºC for 

1 hour to overnight, depending on the antibody. Membranes were washed three times with PBS-

Tween. Immunoblots were detected using ECL Prime kit (GE Healthcare #RPN2232) and the 

luminescent image analyzer ImageQuant LAS 4000 mini (GE Healthcare). 

To quantify protein expressions, band intensities were analysed using the program ImageQuant TL 

(GE Healthcare) or the program ImageGauge 4.0 (Fuji Software). Protein expressions were 

normalised against loading controls of each samples and then expressed as fold change in respect to 

wild type time 0. 

 

Table 2.4 Antibodies used in this thesis 

Antibody (Source) Detected proteins Working volume or 

concentration 

anti-HA (Dr. G. Ammerer, University of 

Vienna, Vienna, Austria) 

HA-tagged proteins 1/10000 (WB)  

High Affinity anti-HA (Roche 

#11867423001) 

HA-tagged proteins 10μl/sample (ChIP) 

anti-Hxk2 (Dr. F. Rández-Gil, IATA, 

Spain) 

Hxk2 1/20000 (WB) 

anti-eIF5A (S. R. Valentini, Säo Paulo 

State University, Brazil) (Valentini et al., 

2002) 

eIF5A 1/2000 (WB) 

anti-H3K9me3 (Dr. G. Ammerer, 

University of Vienna, Vienna, Austria) 

H3K9 tri-methylation in M-track  1/2000 (WB) 

anti-myc (Millipore #05419) myc-tagged proteins 1/5000 (WB) 

8WG16 (Covance #MMS-126R) Rpb1 of RNAPII 1/10000 (WB) or 
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10μl/sample (ChIP) 

anti-RNA polymerase II (phospho S2; 

Abcam #ab5095) 

Ser2 phosphorylated CTD of RNAPII 1/20000 (WB) 

anti-Rap1 [y-300] (Santa Cruz #sc-20) Rap1 1/2000 (WB) or 

10μl/sample (ChIP) 

anti-phospho-p38 (Cell Signaling #4811) phosphorylated Hog1 1/2000 (WB) 

anti-Pgk1 (Invitrogen #A6457) Pgk1 1/10000 (WB) 

anti-Cdc2 (Santa Cruz #sc-53) Cdc28 1/2000 (WB) 

anti-mouse HRP-conjugated (Promega 

#W4021) 

mouse IgG 1/10000 (WB) 

anti-rabbit HRP-conjugated (Promega 

#W4011) 

rabbit IgG 1/10000 (WB) 

 

2.6.7 Chromatin Immunoprecipitation (ChIP) 

To determine enrichment of proteins bound to specific genes, ChIP experiments were performed as 

previously described with modifications (Alepuz et al., 2001). Approximately 100 ml of OD600 0.5 

exponentially growing yeast culture was fixed with 1 % formaldehyde (Panreac #141328-1211) for 15 

mins at room temperature. Formaldehyde was inactivated by treatment with 125 mM glycine for 5 

mins at room temperature. Cells were then washed 4 times with cold TBS [50 mM Tris pH 7.6, 150 

mM NaCl] and frozen at -20 ºC. Upon defrosting, cells were resuspended in 300 μl of lysis buffer [50 

mM HEPES pH 7.5, 140 mM NaCl, 1 mM EDTA pH 8.0, 1 % Triton X-100 (Sigma #T9284), 0.1 % sodium 

deoxycholate (Sigma #D5670), 1 mM PMSF (Sigma #P-7626), 1 mM benzamidine (Sigma #B6506), 

Protease Inhibitor Cocktail 1 tablet/25 ml (Roche #04693124001)] and mechanically broken by 

Precellys® 24 homogeniser (Bertin Technologies) in two rounds of 20 secs at 6500 rpm using glass 

beads. Following lysis, 150 μl of lysis buffer were added to each sample, and glass beads were 

eliminated by centrifugation. In order to generate short chromatin fragments (200-600 bp), lysates 

were sonicated in an ice bath using Bioruptor (Diagenode) for 2 rounds of 15 mins with cycles of 30 s 

on and 30 s off. Following sonication, 150 μl more of lysis buffer to added to the samples which were 

the centrifuged and 400 μl of supernatant were collected. For each sample, 10 μl of total extract 

were transferred to a new tube as INPUT which was maintained on ice until the reversal of cross-

linking step. 



80 
 

Dynabeads were all provided by Life Technologies and antibodies used are listed in Table 2.4. Mouse 

antibodies were used in combination with Dynabeads Pan Mouse IgG (Life Technologies #11041), 

rabbit antibodies with Dynabeads Protein A (Life Technologies #10002D), and rat antibodies with 

Dynabeads Protein G (Life Technologies #10004D) (antibodies used are in Table 2.4). One day 

previous to cell extract, Dynabeads (50 μl/sample) were first washed with PBS/BSA [137 mM NaCl, 

2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, 0.05 % BSA], then incubated with the corresponding 

antibody overnight at 4 ºC with rotation (termed Dynabeads-Ab). A negative control of only 

Dynabeads without antibody was included. After antibody incubation, Dynabeads-Ab and negative 

control were washed 4 times with PBS/BSA and then resuspended in 30 μl of PBS/BSA per sample, 

which was added to the samples. Samples were incubated with Dynabeads-Ab at 4 ºC for 1.5 hours 

with rotation.   

Following incubation, Dynabeads-Ab now bound with the corresponding proteins of interest were 

washed twice with lysis buffer, twice with lysis buffer containing 360 mM NaCl, twice with wash 

buffer [10 mM Tris pH 8.0, 250 mM NaCl, 0.5 % NP-40 (Fluka #74385), 0.4 % sodium deoxycholate, 1 

mM EDTA pH 8.0], and then once with TE buffer. To elute bound samples, 50 μl of elution buffer [50 

mM Tris pH 8.0, 10 mM EDTA pH 8.0, 1 % SDS] were added to Dynabeads and incubated at 65 ºC for 

10 mins with rotation at 600 rpm. The elution process was repeated one more time and was termed 

IP sample. To both eluted IP samples and INPUT, elution buffer was added to a final volume of 150 

μl, and to reverse cross-linking, all samples were incubated at 65 ºC with rotation at 600 rpm for 6-

15 hours.  

Once cross-linking was reversed, samples were treated with Proteinase K (Roche #03115887001) at 

37 ºC for 1 h 30 mins with rotation at 600 rpm, in which to each sample 139.5 μl of TE, 3 μl of 

glycogen (20 mg/ml; Roche #901393) and 7.5 μl of Proteinase K (20 mg/ml) were added. DNA 

purification was performed using the GeneJET PCR Purification Kit (Fermentas #K0702) according to 

manufacturer’s instructions. To determine enrichment of DNA regions bound to the proteins of 

interest, qPCR was performed as described in section 2.6.5 using specific primers listed in Table 2.3. 

Briefly, calibration curves were generated for each primer pair using a pool of all INPUT samples 

which were serial dilutes as described in 2.6.5. For each qPCR reaction of 10 μl, 5μl of SYBR Premix 

were added to 2.5 μl of either undiluted IP or 1/100 diluted INPUT samples, with specific primers 

whose concentration and volume depends on primer efficiency. qPCR protocols were performed and 

relative template concentrations were calculated as described in section 2.6.5. 

To quantify the relative binding of proteins of interest to genes of interest, relative DNA enrichment 

was determined by, first, normalising the relative template concentrations against an internal 
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control, a region where the protein of interest was known to not bind. In our studies, a non-coding 

region upstream of the FUS1 gene was utilised (primers FUS1-1F and FUS1-5). Second, IP 

enrichments were represented as a percentage of INPUT, and finally, all enrichments were 

represented as fold-change in respect to wild type time 0.  

 

2.6.8 Beta-galactosidase assay 

To investigate gene induction in response to pheromone (Chapter 5), the beta-galactosidase assay 

was employed as previously described with modifications (Garre et al., 2012). The membrane 

protein FUS1 expressed in a fusion plasmid containing the reporter gene LacZ (PA288; see Table 2.2) 

and, as a positive control, osmotic stress-induced gene STL1 coupled with LacZ (PA159; Table 2.2) 

were utilised. Wild type strain, bni1Δ, and thermal sensitive strains tif51A-1ts and tif51A-3ts (Table 

2.1) were transformed using the One-Step lithium acetate-mediated method and selected in 

appropriate synthetic media. Biological triplicates were grown at 25 ºC to the mid-log phase and 

transferred to the non-permissive temperature of 37 ºC for 4 hours and then incubated with 10 

μg/ml of α-factor for 1 or 2 hours, and positive control cells were stressed with 0.6 M KCl for 45 

mins. Upon cell collection, absorbance at OD600 was measured. To determine β-galactosidase 

activity, pellets were washed and resuspended with Buffer Z [60 mM Na2HPO4, 40 mM NaH2PO4, 10 

mM KCl, 1 mM MgSO4, pH 7.0]. For the permeabilisation of cell wall, samples were frozen in liquid 

nitrogen for 1 minute and immediately incubated at 37 ºC for 1 minute. To initiate enzymatic 

activity, samples were resuspended in Buffer Z containing 0.27 % of β-mercaptoethanol and 4 mg/ml 

ONPG (Sigma, #N1127) and were incubated at 30 ºC and the reaction time was recorded when 

samples turned yellow. Reaction was terminated by the addition of Na2CO3 with a final 

concentration of 0.27 M, and absorption of supernatant was measured at OD420. To determine β-

galactosidase activity, absorbance at OD420 was normalised against the time of reaction multiplied by 

the OD units of the culture used for the assay.  

 

2.7 Microscopy 

In Chapter 5, all microscopy were carried out at room temperature using the Axioskop 2 Florescence 

Microscope (Zeiss). Images were taken by the SPOT digital camera (Diagnostic Instruments) and 

viewed using the software Axio Vision Rel. 4.7 (Zeiss). For live-cell imaging, cells were concentrated 

in their respective experimental media and viewed using a Zeiss Plan-Neofluar objective lense with 
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63 X magnification and 1.0 numerical aperture in oil (Cargille). For fluorescent microscopy, the 

power unit AttoArc HBO 100W (Zeiss) was used to visualize the indicated fluorophores. Images were 

processed and sizes adjusted using the software Photoshop and final figures prepared with Power 

Point. 

 

2.7.1 Analysis of shmooing efficiency 

To study the formation of shmoos, null mutants were grown to the exponential phase at 30 ºC and 

temperature-sensitive mutants were transferred from 25 ºC to 37 ºC at the exponential phase and 

maintained at the restrictive temperature for 4 hours. Cultures were incubated with 10 μg/ml of α-

factor for 2 hours at their respective experimental temperatures, and visualized using microscopy. 

Approximately 300 cells were manually counted and percentage of shmoo formation was 

determined based on phenotypic criteria as described by Sette et al. (Sette et al., 2000). 

 

2.7.2 Spa2 localisation 

To specifically visualise the sub-localisation Spa2, an over-expression plasmid PA283, containing 

SPA2-GFP fusion (Table 2.2) and transformed in wild type and mutants. Transformants were grown 

in selective media under experimental conditions and treated with α-factor for 2 h. Spa2-GFP 

fluorescence was visualised by fluorescent microscopy (excitation/emission: 395/509 nm).    

 

2.7.3 Phalloidine analyses of actin 

For the visualisation of actin localisation, cultures were fixed with 4 % formaldehyde for 1 h at the 

respective experimental temperatures. Cells were collected by centrifugation and washed 3 times 

with PBS [140 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.4] containing 0.1 % BSA 

(PBS-BSA). Pellets were incubated with 9 % Alexa Fluor® 488 Phalloidin (Life Technologies #A12379) 

in PBS-BSA overnight at 4 ºC protected from light. To eliminate remaining phalloidin, cells were 

washed 3 times with PBS-BSA and twice with PBS, and resuspended in PBS to be visualised by 

fluorescent microscopy (excitation/emission: 346/442 nm). 
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2.8 M-track method 

In Chapter 3, the M-track method, described by Zuzuarregui et al. (Zuzuarregui et al., 2012), was 

utilised to evaluate protein-protein interactions of the SHO1 branch of the HOG pathway. Strains of 

interest (Table 2.1) were transformed with plasmids encoding fusion proteins of interest (Table 2.2) 

using the One-Step transformation method and selected in SC selective media. Transformants were 

grown in selective media to OD600 0.6-0.8 and stressed, for 30 mins or otherwise indicated, with 0.4 

M NaCl taken from a liquid stock of 5 M NaCl. Cells were collected by centrifugation and frozen in 

liquid nitrogen.  

 

2.8.1 M-track western blot analyses 

Total proteins were extracted and resolved on SDS-PAGE and transfer was performed as described in 

section 2.6.6. To visualise protein-protein interactions, membranes were blocked with blocking 

solution containing PBS-Tween and 1 % skim milk. To detect methylation signals, anti-H3K9me3 

antibody was incubated in PBS-Tween containing 10 % yeast extract (see section 2.8.2) for 1-1.5 

hours at 4 ºC. To detect myc- and HA-tagged fusion protein expressions, anti-myc and anti-HA 

antibodies were respectively used (Table 2.4). Western blots were visualised and analysed as 

described in section 2.6.6. To determine interaction intensities, methylation signal was normalised 

against HA expression for each sample, and this was then represented as a fold-change of the 

control strain without stress. To quantify Msb2 protein expression (Figures 3.8, 3.10-3.12), myc 

signals were normalised against myc signal of the control strain without stress. Figures shown in 

Chapter 3 are representative western blots, and the averages and standard deviations (SD) were 

calculated from 2 to 6 independent experiments. 

 

2.8.2 Preparation of yeast extract for M-track analysis 

To visualise histone methylation signal, anti-H3K9me3 was incubated with a blocking solution 

containing 10 % yeast extract (Chapter 3). For yeast extract preparation (stock of 100 %), 2 L of OD600 

1-1.5 of yeast cultures grown in YPD were collected by centrifugation at 6000 rpm for 15 mins at 4 

ºC. Cells were then washed with water and cell pellets were frozen in liquid nitrogen. Cells were 

broken mechanically in liquid nitrogen using Mixer Mil 301 (Retsch) in 6 rounds of 3 mins. Each gram 

of yeast extract was resuspended in 10 ml of PBS-Tween and was mixed by rotation for 15 mins. 
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Dissolved extract was then centrifuged at 4000 rpm for 15 mins, and cell pellet was discarded. 

Complete Protease Inhibitor Cocktail (Roche #04693124001) was then added at a concentration of 1 

tablet/25 ml.  

 

2.9 Analysis of Genomic Run-On (GRO) data 

In Chapter 4, genomic analyses were performed utilising the technique Genomic Run-On, first 

described by Garcia-Martinez et al. (2004), to determine the role of Cbc1 in transcription. All GRO 

experiments presented in this thesis were performed by Nikki De Clercq as previously described 

(Garcia-Martinez et al., 2004) with changes detailed in Romero-Santacreu (2009) and analysed by 

Daniel A. Medina as described below. Briefly, yeast samples were collected at exponential phase in 

the absence (time 0) or presence of 0.6 M KCl for 8, 15, 30 and 45 minutes for both GRO experiment 

and mRNA amount determination, which were performed as previously described (Romero-

Santacreu, 2009). Three independent experiments were performed for each time point.  

The macroarray images were quantified using Array Vision software (Imaging Research Inc.). Values 

that were at least 1.2 times higher than the local background were taken as valid measurements. 

The TR and RA signal was corrected using a random primer genomic DNA label to correct the 

differences between macroarray chips. An average data set for each time point was created using 

Median Absolute Desviation normalization by ArrayStat software (Imaging Research Inc.).  

mRNA amount (RA) and transcription rate (TR) were analysed as described in Medina (2015). Briefly, 

the RA adjusted by the concentration of total mRNA per cell as described (Garcia-Martinez et al., 

2004, Medina, 2015). Whole genomic wide data sets were processed with Microsoft Excel 2007 

spreadsheet and the R-statistical language (R-Core-Team, 2014). The heatmap cluster was done 

using the gplots R-package, and the gene ontology (GO) enrichment in each cluster group was 

performed using the GOrilla online tool (Eden et al., 2009). The redundant GO categories were 

filtered using the REVIGO online tool (Supek et al., 2011). The list of targets genes regulated by 

transcription factors was obtained from Saccharomyces Genome Data Base (Cherry et al., 2012) for 

Sko1, Msn2 and Msn4 factors, and from Yeastract (Teixeira et al., 2014) for Hot1 and Smp1 factors, 

and for each group, the upregulated genes were then chosen from GRO data obtained from Romero-

Santacreu (2009), where the TR show 2.5-fold or more increase during 0.6 M KCl treatment 

compared to time 0 in wild type. The list of target genes dependent and independent of Hog1 were 
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taken from Romero-Santacreu (2009). The list of RP genes were obtained from Saccharomyces 

Genome Data Base (Cherry et al., 2012). 
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3.1 Background 

3.1.1 HOG pathway 

In response to high external osmolarity, the yeast HOG MAPK signalling pathway is rapidly activated 

to mediate immediate changes to various cellular processes in order to allow adaptation. At the core 

of this cascade lies Hog1 MAPK, which is conserved between eukaryotes, with a functional homolog, 

p38, in humans (Yamamoto et al., 2010, Harris et al., 2001). Upon osmotic stress, Hog1 is activated 

by two independent and functionally distinct upstream branches that converge at the MAPKK Pbs2: 

the SLN1 branch propagated by the redundant MAPKKK Ssk2/Ssk22, and the SHO1 branch by the 

MAPKKK Ste11 (detailed in section 1.3.2 and refer to Figure 1.5) (Maeda et al., 1995, Posas and 

Saito, 1997).  

Activation of the SHO1 branch of the HOG pathway requires the osmosensors Msb2 and Hkr1 which 

seem to act redundantly but via slightly different mechanisms, as well as the osmosensor Sho1 

(O'Rourke and Herskowitz, 2002, Takahashi and Pryciak, 2007, Tatebayashi et al., 2007, Tanaka et al., 

2014). The mode in how these osmosensors function together to effectively propagate signalling is 

still unclear and is beginning to be elucidated. First, O´Rourke et al. showed that Msb2 and Sho1 may 

have partially redundant functions in the activation of Ste11, as a single deletion of Msb2 or Sho1 

reduced cross-talk through Ste11, and a double mutation in both genes shows an additive reduction 

in cross-talk (O'Rourke and Herskowitz, 2002). More recently, it has been elucidated that perhaps 

the signalling generated from SHO1 branch can be divided into two sub-branches: one involving 

osmosensor Msb2 and the other involving Hkr1. In the HKR1 sub-branch, Hkr1 activates Ste11 by 

recruiting Ste20 to the plasma membrane, and in contrast Msb2 activates Ste11 through either 

Ste20 or Cla4, which are recruited by the scaffold Bem1 (Tatebayashi et al., 2015, Tanaka et al., 

2014). Several evidence suggest that efficient signal propagation requires a high membrane 

concentration of Ste11, which is constitutively bound to Ste50 (Ramezani-Rad, 2003), which allows 

the Ste11-Ste50 complex to be recruited to the plasma membrane through the Opy2-Ste50 

interaction (Wu et al., 2006, Tatebayashi et al., 2007). Once at the plasma membrane, Opy2 

interacts with the osmosensors to bring together Ste11 and its kinases Ste20/Cla4 in order to 

mediate efficient phosphorylation and activation of Ste11 (Tatebayashi et al., 2015). 

Ste11, the central MAPKKK of the SHO1 branch, is also shared by two other distinct pathways, the 

pheromone and filamentous growth (FG) pathways. Activation of Ste11 in response to specific 

external stimuli induces, in each case, a specific and appropriate adaptive response (de Nadal et al., 
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2002, Hohmann et al., 2007, Yamamoto et al., 2010, Lefevre et al., 2011, Saito and Posas, 2012). 

During osmotic stress, Ste11 only activates Pbs2 and this signal fidelity is possibly achieved by three 

separate events: first, by the membrane recruitment of Pbs2 by Sho1, through the Sho1-SH3 

domain, and the membrane recruitment of Ste11-Ste50 complex by Opy2 to membrane-localise 

both Ste11 and its substrate Pbs2 (Maeda et al., 1995, Wu et al., 1999, Yamamoto et al., 2010); 

second, by the direct interaction between Ste11 and the cytoplasmic tail of Sho1, near the binding 

site of Pbs2 (Tatebayashi et al., 2006); and finally, through the direct interaction between Ste11 and 

Pbs2 (Zuzuarregui et al., 2012). Thus, multiple and dynamic interactions between the 

Opy2/Ste50/Ste11 complex and the Sho1/Pbs2 complex bring Ste11 in close contact with Pbs2 to 

enable efficient activation. 

Negative feedback mediated by downstream components to regulated upstream elements of the 

HOG pathways has been previously described (Yamamoto et al., 2010). First, as osmo-adaptation 

progresses, Pbs2 dissociates from Sho1, however, this dissociation is hindered in a strain lacking 

Ste11, indicating that phosphorylated Pbs2 mediates its own dissociation from Sho1 in a negative 

feedback loop (Reiser et al., 2000). Second, to attenuate signalling following adaptation, Hog1 is 

known to phosphorylate Ste50 which mediates its dissociation from Opy2, thereby reducing 

Ste11/Ste50 membrane localisation (Yamamoto et al., 2010). Furthermore, Hog1 has also been 

described to phosphorylate Sho1, however, the functional role of this phosphorylation is still 

unknown (Hao et al., 2007). 

In this chapter, we aim to characterise, using the novel M-track method (detailed below) 

(Zuzuarregui et al., 2012), the protein interaction profile of the MAPKKK Ste11 with other 

components of the SHO1 branch during hyperosmotic stress, as well as identify possible feedback 

mechanisms employed by downstream components to regulate upstream signalling. In summary, 

first, we show that majority of Ste11 interactions can be detected at basal levels in the absence of 

stress and augments with osmotic stress treatment. Second, the Ste11-Sho1 interaction is 

independent of the Sho1-SH3 domain, but requires Ste50 and osmosensors Msb2 and Hkr1. Third, 

we have characterised a novel dynamic interaction between Ste11 and osmosensor Msb2, and this 

interaction requires Ste50 but not Sho1. Finally, we observed multiple negative feedback systems 

mediated by downstream factors Pbs2 and Hog1 to regulate protein expressions of upstream 

components as well as Ste11 interactions.  
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3.1.2 M-track method 

A novel method to detect short-lived and stable protein-protein interactions has been described by 

Zuzuarregui et al. (2012). This in vivo assay utilises plasmids containing a bait protein fused to the 

catalytic domain of a mouse histone lysine methylthransferase (HKMT) and a prey protein fused to 

its substrate, epitope repeats of lysine 9 of histone H3 (H3K9). Methylation of H3 occurs when the 

bait and prey proteins come in proximity, and the signal is detected by highly specific antibodies. 

Furthermore, both bait and prey plasmids are tagged with either HA or myc to track plasmid 

expressions by western blotting (detailed in Figure 3.1) (Zuzuarregui et al., 2012).  

 

 

Figure 3.1 Schematic representation of the M-track method. Yeast cells are simultaneously transformed 

with two plasmids, one encoding a bait protein of interest fused to HKMT catalytic subunit with a myc tag, 

and the other encoding a prey protein fused to H3K9 epitope with an HA tag. Upon interaction, either 

transient or stable, H3K9 becomes methylated, which is then detected by a specific antibody. Antibodies 

against the myc and HA tags are hybridised to visualise bait and prey fusion protein expressions, 

respectively. 

 

M-track method presents several advantages over currently-known protein-protein detection 

assays: first, transient interactions are readily detected, as yeasts do not have any counterparts with 

respect to substrate specificity; second, the catalytic epitope of HKMT is a mutant version that 
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possesses more than 20-fold the enzymatic activity of its wild type counterpart, indicating that the 

enzymatic reaction occurs at higher speed than protein interactions, providing high sensitivity to the 

assay; finally, the affinity between HKMT enzyme and the epitope of its substrate H3K9 is 

substantially lower than the affinity between any two interacting proteins, which ensures minimal 

false positives (Zuzuarregui et al., 2012). 

 

3.2 Results 

3.2.1 Interaction between Ste11 and Pbs2 requires Ste50, Opy2, Msb2/Hkr1 and Sho1 

Short-lived protein interactions are difficult to trace biochemically. In this thesis, we followed the 

interactions of several components of the SHO1 branch of the HOG pathway (Figure 1.5) utilising the 

previously described M-track method (Figure 3.1) (Zuzuarregui et al., 2012).  

 

 

Figure 3.2 Stress-regulated Ste11-Pbs2 interaction requires osmosensors and scaffold proteins and is 

negatively regulated by Hog1. (A) Interaction of STE11-H3-HA (PAZ119) and PBS2-HKMT (PAZ138) was 

detected with anti-me3K9H3 antibody in the indicated mutants (YCF189, YAZ120, YCF209, YCF163, YCF7 

and PAY185) and wild type (wt) W303 strain in the absence (no stress) or presence of Na-induced osmotic 

stress (0.4 M NaCl) for 30 mins. Asterisks indicate the specific methylation band. Negative control 

corresponds to the wild type W303 transformed with the plasmids STE11-H3-HA (PAZ119) and Pbs2 fused 

to a catalytically inactive methylase (PAZ139). Immunoblots were also developed with anti-HA antibody to 

detect STE11-H3-HA plasmid expression. (B) Quantification of the methylation signal normalised against HA 

signal and represented as fold-change of wild type in the absence of stress. The average and standard 

deviations (SD) of 2 to 6 independent experiments for each strain are shown. This figure shows one 

representative experiment. 
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Using this assay, the short-lived Ste11-Pbs2 interaction was recently studied and shown to increase 

during osmotic stress (Zuzuarregui et al., 2012). Here, we further investigated the extent to which 

HOG signalling components were found to be necessary for obtaining this kinase-substrate 

interaction (Figure 3.2). As expected, the Ste11-Pbs2 signal was completely dependent on Sho1, the 

scaffold protein responsible for the recruitment of Pbs2. Furthermore, as shown in Figure 3.2, the 

Ste11-adaptor protein Ste50, the transmembrane anchoring protein Opy2, and the osmosensors 

Msb2 and Hkr1 were all necessary for this interaction. An interaction signal, albeit at low level, was 

detected in a strain carrying a deletion in the PAK kinase Ste20. Surprisingly, we observed a higher 

level of methylation in hog1Δ under non-stress conditions, which increased significantly after NaCl 

treatment. The higher Ste11-Pbs2 interaction signal in the absence of Hog1 was partially due to an 

increase in the Ste11 protein level, suggesting a negative feedback on Ste11 protein stability by 

Hog1. Nevertheless, the increase in Ste11 protein concentration alone (1.9 and 1.3 fold in hog1Δ in 

respect to wild type in non-stress and stress, respectively) does not justify the increase in the 

methylation signal (2.5 and 2.8 fold in hog1Δ in respect to wild type in non-stress and stress, 

respectively), and therefore, our results suggest that Hog1 activity might increase the dissociation 

rate of the Ste11-Pbs2 complex either directly or indirectly via other signalling components. 

 

 

 

Figure 3.3 Interaction of Sho1 with Pbs2 is constitutive and independent of Opy2, Hog1 and Msb2/Hkr1. 

Interaction of SHO1-H3-HA (PID225) and PBS2-HKMT (PAZ138) was detected with anti-methylase 

antibodies (anti-meK9H3) in the indicated mutants (YCF189, YCF163 and PAY185) and wild type (K699) in 

the absence (-) or presence (+) of Na-induced osmotic stress. Negative control corresponds to a wild type 

strain expressing the plasmids SHO1-H3-HA (PID225) and a Pbs2 fused to a catalytically inactive methylase 

(PAZ139). Immunoblots were also developed with anti-HA antibody to detect SHO1-H3-HA expression. 
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3.2.2 Sho1-SH3 domain is not required for the Sho1-Ste11 interaction but influences its 

dissociation 

The functional role of Sho1 in osmotic stress signalling is both complex and multi-disciplinary. As an 

adaptor, Sho1 is essential for the recruitment of both Pbs2 and Ste11 to the plasma membrane in 

order to mediate their interaction (Maeda et al., 1995, Zarrinpar et al., 2004). In this study, we 

observed that Sho1-Pbs2 interaction was constitutive and independent of Hog1, Opy2 and the 

Msb2/Hkr1 osmosensors (Figure 3.3), and this interaction has been previously described to be 

completely dependent on the Sho1-SH3 domain (Posas and Saito, 1997, Zarrinpar et al., 2003). On 

the other hand, the interaction between Sho1 and Ste11 has been described to occur independently 

of the Sho1-SH3 domain (Zarrinpar et al., 2004, Tatebayashi et al., 2006). We therefore re-

investigated the role of the SH3 domain of Sho1 in Sho1-Ste11 interaction utilising the M-track 

assay. First, we detected an increase in Ste11 interaction with full-length Sho1 during osmotic stress 

(Figure 3.4A and B). Second, in concordance with previous data (Zarrinpar et al., 2004, Tatebayashi 

et al., 2006), Ste11 was found to interact with a truncated Sho1 lacking the SH3 domain (Sho1SH3Δ), 

and this interaction was stronger than the interaction with full-length Sho1 (Figure 3.4C and D). 

Furthermore, Ste11 interaction showed a similar increase (Figure 3.4E) with a Sho1 version that was 

unable to bind Pbs2 as a result of a mutation in the SH3 domain (Sho1-W338A) (Tatebayashi et al., 

2006). Given that the assay was performed in a background in which it was still possible to induce 

Pbs2 activity via the SLN1 branch, these results collectively suggest that the physical presence of 

Pbs2 in the Ste11-Sho1-Pbs2 complex, and not its kinase activity, negatively regulates Ste11-Sho1 

interaction. 
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Figure 3.4 Ste11 interaction with Sho1 is regulated by stress and through the SH3 domain of Sho1. (A) 

ste11Δ sho1Δ mutant strain (YAZ82) containing the centromeric plasmids STE11-H3-HA (PAZ119) and SHO1-

HKMT (PCF54) was incubated with 0.4 M NaCl at the indicated times. Negative control corresponds to a 

ste11Δ mutant strain (YAZ80) containing STE11-H3-HA (PAZ119) and an empty plasmid. All rows were cut 

from same western. Immunoblot was developed with the indicated antibody. (C) M-track analysis of the 

interaction between STE11-HKMT (PAZ85) and two SHO1-H3-HA versions: with (Sho1wt, PID228) and 

without the SH3 domain (Sho1ΔSH3, PID381) in ste11Δsho1Δ double mutant strain (YAZ82), in non-stress  (-

) or Na-induced osmotic stress (+) conditions. Fusion proteins were expressed from multicopy plasmids. 

Immunoblot was developed with the polyclonal anti-me3K9H3 and anti-HA antibodies. (B) and (D) 

Quantifications of the methylation signals in (A) and (C) respectively, normalised as in Fig. 3.2. The average 

and SD of 3 (B) and 2 (D) independent experiments are shown. The Western blots shown in (A) and (C) are 

representative experiments. (E) M-track analysis of the interaction between STE11-HKMT (PAZ85) and two 

SHO1-H3-HA versions: Sho1wt (PID225) and Sho1W338A (PSS041012) in ste11Δsho1Δ double mutant strain 

(YAZ82) before (-) or after (+) treatment with 0.4 M NaCl. Immunoblots were developed with the indicated 

antibodies. Figure show one representative experiment. All rows are from same western.  
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3.2.3 Interaction of Ste11 with Sho1 requires the scaffold Ste50 and osmosensors Msb2/Hkr1 but 

not the membrane protein Opy2 

It has been previously described that the direct interaction of Ste11 with Sho1 is only observed in 

the presence of the Ste11-adaptor protein Ste50 (Zarrinpar et al., 2004) or in the absence of Ste50 

but in combination with Sho1 hyperactive mutants (Tatebayashi et al., 2006). In this thesis, we 

confirmed that Ste11 was unable to bind Sho1 in the absence of Ste50 (Figure 3.5A and B), 

suggesting that this interaction requires the formation of the Ste11-Ste50 complex, which in itself 

was independent of the presence of Sho1 (Figure 3.6). Furthermore, as seen in Figure 3.6A and B, 

the Ste11-Sho1 interaction was somewhat partially dependent on the presence of Opy2, and the 

interaction signal was detected at wild type levels in a ste20Δ mutant, possibly due to the presence 

of the activity of redundant kinase Cla4 (Lamson et al., 2002). It could be observed that downstream 

factors, Pbs2 and Hog1, were not required for this interaction; however, their deletion resulted in 

the upregulation of the Ste11 protein under osmotic stress (an increase of 1.3 fold in both mutants 

in respect to wild type; Figure 3.5), which confirmed the presence of a Hog1-mediated negative 

feedback, also seen in Figure 3.2, at the level of Ste11 protein. Moreover, the upregulation of Ste11 

protein expression was also observed in the absence of stress (1.3 and 1.6 fold in pbs2Δ and hog1Δ 

respectively compared to wild type), suggesting that basal activation of Hog1 under non-stress 

conditions might be sufficient to mediate negative feedback (Figure 3.5A and B). Since an inhibition 

of negative feedback was observed in a pbs2Δ mutant where the Hog1 protein was present but 

inactive, we could conclude that not only the physical presence of Hog1, but its activity regulates 

Ste11 protein expression. Additionally, coupled deletion of both osmo-sensors, Msb2 and Hkr1, 

abolished the Ste11-Sho1 interaction under non-stress conditions, and only a very weak signal could 

be detected upon stress (Figure 3.5A and B).  
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Figure 3.5 Ste11-Sho1 interaction requires osmosensors Msb2/Hkr1 and scaffold Ste50 but do not require 

Opy2. (A) Interaction of STE11-H3-HA (PAZ119) with SHO1-HKMT (PCF54) in the indicated mutants (YCF189, 

YCF209, YCF163, YCF7, YVR10 and PAY185) and wild type (K699) strain, with (+) or without (-) osmotic 

stress. Immunoblots were developed with the indicated antibodies. (C)  Interaction of overexpressed 

STE11-H3-HA (multicopy plasmid PAZ56) with SHO1-HKMT (PCF54) in wild type (K699), msb2Δhkr1Δ 

(YCF189), ste50Δ (YCF7) and opy2Δ (YCF163) strains, under stress (+) and non-stress (-) conditions. Negative 

control used in (A) and (C) corresponds to a wild type strain transformed with the plasmids STE11-H3-HA 

(PAZ119) and Sho1 fused to a catalytically inactive methylase (PAZ140). (B) and (D) show the 

quantifications of the methylation signals in (A) and (C) respectively, normalised as in Figure 3.2. The 

average and SD of 3 or 4 independent experiments for each strain in (B) and 3 independent experiments in 

(D) are shown. The Western blots shown in (A) and (C) are representative experiments.  
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Figure 3.6 The Ste11-Ste50 interaction is constitutive, independent of Pbs2, Sho1 and Opy2. Interaction of 

STE11-H3-HA (PAZ119) and STE50-HKMT (PCF23) was detected with anti-methylase antibodies (anti-

meK9H3) in the indicated strains (YAZ80, YID140, YAZ82 and YAZ157) in the absence (-) or presence (+) of 

Na-induced osmotic stress. Negative control corresponds to a wild type strain (K699) expressing the 

plasmids with STE11-H3-HA (PAZ119) and non-fused methylase (HKMT, PCF19). Immunoblots were also 

developed with anti-HA antibody to detect STE11-H3-HA expression. All rows are from the same western. 

 

We then investigated whether the loss of Ste11-Sho1 interaction in osmosensors, ste50Δ and opy2Δ 

mutants could be restored by the overexpression of Ste11 protein through the use of a multicopy 

plasmid. In Figure 3.5C and D, we observed that the overexpression of Ste11 was able to restore 

interaction with Sho1 in opy2Δ, indicating that Opy2, although a known membrane anchor of the 

Ste11-Ste50 complex (Wu et al., 2006), was not essential for Ste11-Sho1 interaction. This result 

suggests that Sho1 and Opy2 may have accumulative functions in the recruitment of the Ste11-Ste50 

complex. Contrastingly, overexpression of Ste11 was unable to rescue interaction in mutants that 

lacked osmosensors Msb2/Hkr1 and Ste50. Altogether, these results indicate that the Ste11-Sho1 

interaction is absolutely dependent on the osmosensors Msb2/Hkr1 and Ste50, but not on the 

membrane anchor Opy2.  

 

3.2.4 Msb2 interacts dynamically with Ste11, and this interaction, as well as Msb2 protein, is 

negatively regulated by Hog1 

In order to propagate signal via the SHO1 branch, Ste11 interacts, either directly or through Ste50, 

with several components of the pathway, including Ste20/Cla4, Opy2, Sho1 and Pbs2 (Saito and 

Posas, 2012). Moreover, we have shown in this thesis that the osmosensors Msb2 and Hkr1 are 
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required for the Ste11 interaction with Sho1, indicating a possibility that Ste11 may interact with 

components more upstream in the pathway. We therefore investigated the possible interaction 

between Ste11 and Msb2 using M-track. As shown in Figure 3.7A and B, Ste11 interacted with Msb2 

in both the presence and absence of stress, with a slight increase in interaction during osmotic 

stress. Furthermore, in both hog1Δ and pbs2Δ mutants, we observed an increase in Ste11-Msb2 

interaction normalised against Msb2 protein expression (2.0 ± 0.6 and 2.4 ± 0.7 fold in hog1Δ and 

pbs2Δ, respectively, compared to 1.4 ± 0.3 fold observed in wild type), suggesting that Pbs2 and/or 

Hog1 mediated the dissociation of the Ste11-Msb2 complex in a feedback regulation (Figure 3.7C-H). 

An approximately two fold increase in Msb2 protein expression was also observed in pbs2Δ and 

hog1Δ mutants in both stress and non-stress conditions (Figure 3.7C, E, F, H), and since activated 

Hog1 also has a functional role to mediate changes in transcription during osmotic stress response 

(see section 1.3.3.1), we therefore utilised RT-qPCR to determine whether Hog1 regulated MSB2 

mRNA levels. Interestingly, although MSB2 mRNA expression was found to be upregulated in these 

mutants under stress conditions, no up-regulation was observed under normal conditions (Figure 

3.8B). Additionally, to evaluate HOG signal transduction of these mutants under osmotic stress, we 

analysed the mRNA induction of the Hog1-dependent osmostress gene STL1, and it could be 

observed in Figure 3.8A that no STL1 induction was detected in the strains pbs2Δ, hog1Δ and 

ssk2Δssk22Δsho1Δ, where HOG signalling was impeded. Taken together, these results suggested 

that during osmotic stress, active Hog1 mediated negative feedbacks on Msb2 protein and mRNA 

expression as well as on Ste11-Msb2 complex dissociation. However, under non-stress conditions, 

Hog1 only regulateed Msb2 protein levels, suggesting that basal Hog1 activity may be sufficient to 

this mediate feedback. Furthermore, not only the physical presence of Hog1 but its activity is 

necessary to regulate Msb2, as negative feedback is not observed in a strain where Hog1 was 

present but inactive (pbs2Δ; Figure 3.7).  
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Figure 3.7 Msb2 interacts with Ste11, and Msb2-protein level and relative Ste11-Msb2 interaction are 

negatively regulated by Hog1. (A) STE11-H3-HA (PAZ119) interaction with MSB2-MYC-HKMT (PAZ218) in 

ste11Δmsb2Δ (PAY703) strain at the indicated times of osmotic stress. Immunoblots with the indicated 

antibodies are shown. (C) Ste11-Msb2 M-track interaction in wild type (K699) and hog1Δ mutant (PAY185) 

strains under stress (+) and non-stress (-) conditions. Immunoblots with the indicated antibodies are shown. 

(F) Ste11-Msb2 M-track interaction in wild type (ste11Δ, YAZ80, complemented with the Ste11 plasmid) 

and pbs2Δ mutant (ste11Δpbs2Δ, YID140, complemented with the Ste11 plasmid) strains under stress (+) 

and non-stress (-) conditions. Bands from each row are from the same Western blot.  Immunoblots were 

developed with the indicated antibodies. (B), (D) and (G) Quantifications of the methylation signals in (A), 

(C) and (F) respectively, normalised as in Fig. 3.2. The average and SD of 3 (B), 2 (D) and 3 (G) independent 

experiments are shown. (E) and (H) Quantifications of the myc signals in (C) and (F) respectively, compared 

to wild type signal in the absence of stress. The average and SD of 2 (E) and 3 (H) independent experiments 

are shown. The Western blots shown in (A), (C) and (F) are representative experiments.  
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Figure 3.8 HOG-mediated negative feedback to regulate MSB2 mRNA levels. RT-qPCR analyses of STL1 (A) 

and MSB2 (B) mRNA levels before and after 30 mins of 0.4 M NaCl osmotic stress (only after stress is shown 

for STL1) in wild type and deletion mutants: msb2Δ (CF83), pbs2Δ (YVR10), hog1Δ (PAY185), sho1Δ 

(YAZ120), ssk2Δssk22Δ (YID196) and ssk2Δssk22Δsho1Δ (YAZ150). mRNA levels were normalised against the 

mRNA expression of the endogenous control ACT1, and represented as fold-change of normalised mRNA 

levels in wild type under non-stress conditions. Data shown are the average of two experiments.  

 

3.2.5 Sho1 is not essential for Ste11 interaction with Msb2 

It has been previously described that membrane recruitment of Ste11 is mediated through either 

direct or indirect interactions with the scaffolds Ste50, Opy2 and Sho1 (Saito and Posas, 2012). 

Hence, it was of interest to determine whether these factors were necessary for the binding of Ste11 
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not observed in opy2Δ and ste50Δ, initially indicating that the scaffold proteins Opy2 and Ste50, and 

to a lesser extent Sho1, were required for the Ste11-Msb2 interaction (Figure 3.9).  

 

 

 

Figure 3.9 Ste11-Msb2 interaction requires Ste50 and Opy2, and to a lesser extend Sho1. STE11-H3-HA 

(PAZ119) interaction with MSB2-MYC-HKMT (PAZ218) in the absence of Opy2 (YCF163) (A) and in the 

absence of Ste50 (YAZ87) or Sho1 (YAZ82) (D) under stress (+) and non-stress (-) conditions. Immunoblots 

with the indicated antibodies shown in (A) and (D) were quantified as described in Fig 3.7, with methylation 

signals represented in (B) and (E) respectively, and myc signals in (C) and (F) respectively. All quantifications 

show the average and SD of 3 independent experiments. The Western blots shown in (A) and (D) are 

representative experiments. All rows were from same Western blot. 

 

To check the essentiality of Opy2, Ste50 and Sho1 in Ste11-Msb2 interaction, we then overexpressed 

Msb2 by utilising mutants that were unable to propagate signal via the SLN branch through either a 

double deletion of Ssk2 and Ssk22 osmosensors or through the direct deletion of Pbs2 kinase, 

coupled with a deletion in the genes that encoded these three scaffold proteins. These mutants 

were unable to propagate HOG signalling, as STL1 could not be induced in the ssk2Δssk22Δsho1Δ 

triple mutant (Figure 3.8A), and therefore upregulated Msb2 protein expression (Figure 3.10) due to 

the absence of HOG negative feedback. As shown in Figure 3.10, the overexpression of Msb2 was 

unable to restore the Ste11-Msb2 interaction in ste50 (ssk2Δssk22Δste50Δ) and opy2 (opy2Δpbs2Δ) 

deletion mutants to wild type levels (Figure 3.10A-F). However, the relative increase in Ste11-Msb2 

A

D

- +        - +     

Ste11-H3-HA  

Msb2-myc-HKMT 

wt opy2

anti-me3K9H3

anti-HA

anti-myc

- +        - +    - +

Ste11-H3-HA  

Msb2-myc-HKMT 

wt ste50

anti-me3K9H3

anti-HA

anti-myc

sho1

B

E

C

F
R

e
la

t.
 m

e
th

yl
at

io
n

si
gn

al

R
e

la
t.

 m
yc

si
gn

al

R
e

la
t.

 m
e

th
yl

at
io

n
si

gn
al

R
e

la
t.

 m
yc

si
gn

al

0

1

2

wt opy2

No stress

NaCl

0

1

2

wt opy2

No stress

NaCl

0

1

2

wt ste50 sho1

No stress

NaCl

0

1

2

wt ste50 sho1

No stress

NaCl



103 
 

interaction observed in opy2Δpbs2Δ with respect to opy2Δ was much higher than the increase 

observed in ssk2Δssk22Δste50Δ with respect to ste50Δ (19-fold versus 1.6-fold), suggesting that, 

even though both factors were essential for a physiological Ste11-Msb2 iteraction, Ste50 was 

required to an higher extent than Opy2 (Figure 3.10A-F). On the other hand, Sho1, shown to interact 

with both Msb2 and Ste11 (Cullen et al., 2004, Zarrinpar et al., 2004), was observed to be disposable 

for the Ste11-Msb2 interaction, as the overexpression of Msb2 protein in the triple mutant 

ssk2Δssk22Δsho1Δ was able to fully restore Ste11 binding to Msb2 (Figure 3.10G-I). 

 

 

 

Figure 3.10 Increase in Msb2 protein completely rescues Ste11-Msb2 interaction in sho1Δ, but not in 

ste50Δ and opy2Δ mutants. (A) STE11-H3-HA (PAZ119) interaction with MSB2-MYC-HKMT (PAZ218) in wild 

type (K699), opy2Δ (YCF163) and opy2Δpbs2Δ (YCF173) strains under stress (+) and non-stress (-) 

conditions. (D) Ste11-Msb2 M-track interaction in wild type (K699), ste50Δ (YCF7) and ssk2/22Δste50Δ 

(YID198) strains under stress (+) and non-stress (-) conditions. (G) Ste11-Msb2 M-track interaction in sho1Δ 

(YAZ120) and ssk2/22Δsho1Δ mutant (YAZ150) strains under stress (+) and non-stress (-) conditions. 

Immunoblots with the indicated antibodies shown in (A), (D) and (G) were quantified as described in Fig 3.7 

for methylation signals represented in (B), (E) and (H), respectively, and myc signals represented in (C), (F) 
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and (I), respectively. Quantifications show the average and SD of 3 (B and C) and 2 (E, F, H and I) 

independent experiments. The Western blots shown in (A), (D) and (G) are representative experiments. 

Parts of each row are from the same western. 

 

Taken together, these results suggest that the scaffold protein Ste50 is essential for the interaction 

between the osmosensor Msb2 and the MAPKKK Ste11, and the transmembrane anchor protein 

Opy2 may be required to a lower extent. Importantly, the transmembrane Sho1 is not essential for 

Ste11-Msb2 interaction when Msb2 is over-expressed, but is required for an efficient Msb2-Ste11 

binding in vivo (Figure 3.10). 

 

3.2.6 Ste11 binds to Sho1 with high affinity 

In our studies, we described several Ste11 interactions under different conditions, and one 

observation was evident: different Ste11 interaction partners yielded different strengths in 

methylation signals. It was therefore of interest to evaluate the possible differences in binding 

affinities of Ste11 to its substrate Pbs2, and to osmosensors Sho1 and Msb2. As shown in Figure 

3.11, the Ste11-Pbs2 interaction resulted in the weakest methylation signal, which, in concordance 

with previous studies (Zuzuarregui et al., 2012, Zarrinpar et al., 2004), may be due to its extremely 

transient binding. Ste11 binding to Sho1, on the other hand, resulted in the highest methylation 

signal; in fact, their interaction gave rise to a signal that was 17 times higher than the Ste11-Pbs2 

signal under non-stress conditions, indicating a robust and stable interaction between Ste11 and the 

co-osmosensor/scaffold Sho1. Finally, and most interestingly, the novel interaction between Ste11 

and osmosensor Msb2 also yielded robust methylation signals (8 times higher than the Ste11-Pbs2 

signal) both under stress and non-stress conditions, suggesting that this interaction was a stable and 

direct one.  
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3.11 Ste11 binds to Sho1 with higher affinity than to Msb2 and Pbs2. (A) STE11-H3-HA (PAZ119) 

interaction with PBS2-9MYC-HKMT  (PAZ138), SHO1-HKMT (PCF54) and MSB2-MYC-HKMT (PAZ218) in 

W303 wild type under stress (+) and non-stress (-) conditions. Immunoblots were incubated with the 

indicated antibodies. (B) Relative methylation signals were normalised against both HA and the 

endogenous loading control Pgk1, and represented as fold-change of wild type without stress. Data shown 

are of one experiment. 

 

3.3 Discussion 

The osmotic environment of the budding yeast in the wild oscillates as fruits ripe and glucose 

concentration increases. Survival under hyperosmolarity depends on activation of the HOG pathway, 

for which the outcome is to accumulate compatible osmolites, such as glycerol, to increase internal 

osmolarity, control water efflux and adjust cell cycle progression [reviewed in (Saito and Posas, 

2012, Saito and Tatebayashi, 2004, Hohmann et al., 2007)]. The central element that regulates this 

response is the kinase Hog1, which is phosphorylated at conserved threonine and tyrosine residue 

by the MAPKK Pbs2 upon osmotic stress. However, for this event to occur, a number of upstream 

signalling components interact to mediate signal transduction via several kinases through two 

distinct branches, SLN1 and SHO1 (Saito and Posas, 2012, Posas et al., 1998a). This thesis focuses on 

the interactions between the MAPKKK Ste11 and the sensory system, scaffold proteins and its 

substrate of the SHO1 branch to reveal how these interactions are inter-dependent in their roles to 

first propagate and then shutdown signalling in response to hyperosmotic stress. 
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3.3.1 Ste11 interacts with Msb2 and other signalling factors before and during osmotic stress 

In this thesis, we have studied the interactions of the MAPKKK of the HOG pathway Ste11 with its 

substrate Pbs2, the osmosensor/scaffold Sho1, the Ste11-scaffold protein Ste50 and the membrane 

osmosensor Msb2 using a novel biochemically-based in vivo protein proximity assay (Zuzuarregui et 

al., 2012). In concordance with previous studies (Posas et al., 1998b, Tatebayashi et al., 2006), Ste11 

is observed to form stable interactions with Ste50 and Sho1 in the absence of osmotic stress, and 

the Ste11-Sho1 signal increases with osmotic stress (Figures 3.4-3.6). Furthermore, in agreement 

with a previous study by Zuzuarregui et al. (2012), we show that the short-lived Ste11-Pbs2 is weakly 

detected under normal non-stress conditions, and the signal increases substantially with osmotic 

stress (Figure 3.2). Most notably, we demonstrate that Ste11 comes into close contact with the 

osmosensor Msb2 under both normal and stress conditions (Figure 3.7). Taken together with the 

observation that Sho1-Pbs2 also forms a complex under non-stress conditions (Zuzuarregui et al. 

(2012) and Figure 3.3), our results suggest that the signalling components of the SHO1 branch bind 

or are in close contact with each other before osmotic stress in order to respond and propagate 

signal rapidly upon stress stimulation. However, it should be noted that the M-track assay is a 

proximity assay, and therefore it is not possible to distinguish direct from spatially-close indirect 

interactions. Moreover, it needs to be taken into account that the stoichiometry and overall 

structure of the signalling components is still unclear, and to add to its complexity, it has been 

established that at least Sho1 is able to assemble into multimeric structures (Tatebayashi et al., 

2015). 

 

3.3.2 Inter-dependency between signalling factors to efficiently recruit Ste11 to the membrane 

Investigating which additional factors are required for these interactions, we have made several 

interesting observations that might shed light on the staging and the dynamics of the SHO1 branch 

signalling system. First, all Ste11 interactions studied are fully dependent on the presence of the 

Ste11-adaptor protein Ste50 (Figures 3.2, 3.5, and 3.9), and here, we cannot rule out that all Ste11 

interactions may be mediated indirectly via Ste50. Second, we have characterised a novel Ste50-

dependent Ste11 interaction with the osmosensor Msb2 (Figure 3.9), and we believe that based on 

our genetic analyses, together with other evidence in literature, it can be envisioned that the 

interaction between Ste11 (in a complex with Ste50) and Msb2 may be direct. Although it appears 

that there is some inter-dependency between Sho1 and Msb2 in how effective they produce an 

interaction signal with Ste11, as overexpression of Ste11 does not restore Ste11-Sho1 interaction in 
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the absence of Msb2 and Hkr1 (Figure 3.5C and D), yet, in contrast, overexpression of Msb2 restores 

Ste11-Msb2 interaction in a sho1Δ mutant (Figure 3.10G and H). Thus, Msb2 (with Hkr1) is essential 

for Ste11-Sho1 interaction, but Sho1 is not absolutely required for the binding of Ste11 to Msb2. It is 

also of interest to note that Ste11 appears to bind to Sho1 with higher affinity than to Msb2 (Figure 

3.11), which may suggest that Ste11 is recruited by two distinct modes: first, the Msb2 may function 

as an independent recruitment system for Ste11 to the plasma membrane, not absolutely requiring 

Sho1; second, the weaker binding of Ste11 to Msb2 may be required for the high affinity binding of 

Ste11 to Sho1 in order to form a stable complex encompassing all three factors (Ste11-Msb2-Sho1 

complex). Apart from Sho1, the transmembrane protein Opy2 also seems to be auxiliary for Ste11-

Msb2 interaction, as, similar to Sho1, Ste11-Msb2 signals can be partially restored in opy2Δ when 

Msb2 is overexpressed (Figure 3.10A and B).  

Emerging evidence shows that Hkr1 and Msb2 are not so redundant after all, as Tanaka et al. 

describes several functional differences between the two so-called ¨redundant osmo-sensors¨ 

(Tanaka et al., 2014). First, Hkr1 activates Ste11 uniquely via Ste20, however, Msb2 can activate 

Ste11 via either Ste20 or Cla4. Second, actin cytoskeletion is indispensable for signalling via Msb2 

but not via Hkr1. Finally, Bem1, a SH3 domain-containing scaffold protein functioning in polarised 

growth pathways, is necessary for Msb2 activation, but not Hkr1 activation, of the HOG pathway by 

recruiting Ste20/Cla4 (Tanaka et al., 2014). Altogether, these results suggest that the mechanisms of 

signal transduction of the two osmosensors are distinct, and although our results show that Msb2 

functions as an independent membrane concentrator of Ste11, we cannot extend this observation to 

Hkr1 without further investigation. It may also be entirely possible that Msb2 binding to Ste11 is 

mediated through Bem1, and in effect, the activation of the MAPKKK may be propagated from the 

Msb2-Bem1-Ste20/Cla4 cascade. Nonetheless, the role of Hkr1 in Ste11 activation is of interest for 

further study, as a very recent study by Tatebayashi et al. (2015) suggests that Hkr1 forms a complex 

with Opy2 and Sho1, and the Sho1-Opy2-Hkr1 complex acts as an independent signalling sub-branch 

of the SHO1 branch. This may raise the possibility that Ste11 is recruited to the membrane by two 

distinct complexes: the Sho1-Opy2-Hkr1 complex and the Sho1-Opy2-Msb2 complex, with the 

emphasis that Msb2-mediated recruitment of Ste11 is only partially dependent on Sho1 and Opy2 

and not at all dependent on Hkr1 (data not shown).  

In agreement with many previous studies, Sho1 seems to provide the central hub for connecting the 

sensory system and the activation system of Ste11 (via Opy2 and Ste50) with its target the MAPKK 

Pbs2. While the comparatively weak Ste11-Pbs2 methylation signal decreases in the absence of 

Opy2, Sho1 and Msb2/Hrk1 (Figure 3.2), the Sho1-Pbs2 signal is completely independent of the 
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membrane proteins Msb2/Hkr1 and Opy2 (Figure 3.3). Accordingly, it appears that the interaction 

between Pbs2 and Ste11 might not contribute to the membrane recruitment of Ste11. This 

observation is further strengthened by our finding in which the absence of Pbs2-Sho1 interaction 

increases the Ste11 occupancy at Sho1 (Figures 3.4 and 3.5). We therefore suggest that the 

Msb2/Hkr1 sensory system as well as Opy2 might function as primary concentration machineries for 

the transfer of Ste11 to Sho1. 

 

3.3.3 Hog1-dependent negative feedback regulates Msb2 and Ste11 

A second important observation of this work is the apparent increase of the protein interaction 

signals when a signalling component is deleted. Principally, there are two plausible explanations for 

such a result; one, a defect in a negative feedback system, or two, the accumulation of intermediate 

signalling complexes, the dissociation of which depends on the function or structural presence of the 

deleted downstream component.  

Several negative feedback systems have been proposed as essential for the transience and proper 

dynamics of the stress response mediated by the HOG pathway. Here we showe that at least two of 

them are executed over the protein level of upstream signalling factors: Ste11 (Figure 3.2 and 3.5) 

and Msb2 (Figure 3.7). For both proteins we have found that this regulation also occurs, but to a 

lesser extent, under non-stress conditions. Since the increase in Msb2 levels is not only observed in 

pbs2Δ and hog1Δ mutants but also in ssk2Δssk22Δsho1Δ mutant, we suggest that general Hog1 

activity, and not only the presence of the Hog1 protein, is required for the negative feedback. It also 

confirms that basal Hog1 activity generated by the SLN1 branch (Macia et al., 2009) is sufficient for 

this negative regulation. Furthermore, Msb2 is not only regulated at the protein level but also at 

mRNA level, as a Hog1 deletion upregulates MSB2 expression by almost 4 times during osmotic 

stress (Figure 3.8). However, the contribution of mRNA regulation to protein expression is still 

unclear and requires further investigation, as Msb2 protein levels are regulated in the presence and 

absence of osmotic stress, whereas MSB2 mRNA expression is only dependent on Hog1 during 

osmotic stress.  

Other types of negative feedback mechanisms envisioned and proposed at protein binding levels 

have been detected by our work. Our data suggest that Ste11-Pbs2 and Ste11-Msb2 interactions are 

indeed highly influenced by Hog1 (Figures 3.2 and 3.7). According to previous studies, the effects 

could be caused by direct Hog1-dependent phosphorylation events connected to at least two 

factors: Ste50 and Sho1 (Yamamoto et al., 2010, Hao et al., 2008, Hao et al., 2007). For Ste50, it has 
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been shown that substitutions of the phosphorylation sites not only increases the Opy2-Ste50/Ste11 

interaction but also prolongs Hog1 activation (Yamamoto et al., 2010). Since all Ste11 interactions 

are dependent on the Ste50/Ste11 complex, the phosphorylation state of this important scaffolding 

element alone could explain the changes in the protein interaction profile. 

Our results also hint at the role of downstream components in the dissociation of signalling 

intermediates. One obvious finding to support this observation is the increase in the interaction 

signal between Ste11 and Sho1 when Pbs2 is unable to bind due to the absence of the SH3 domain 

in Sho1 (Figure 3.4). It is possible that the dissociation of Ste11 after activation of Pbs2 might be a 

prerequisite to keep the signalling system in a productive state, and to further emphasise this 

observation is that hog1Δ cells show an extraordinary increase in the Pbs2-Ste11 interaction (Figure 

3.2).  

In conclusion, we have characterised several in vivo interactions of the MAPKKK Ste11 with various 

components of the HOG pathway in order to achieve effective transduction of signal in response to 

hyperosmotic stress. First, the interaction between Ste11 and its substrate Pbs2 requires all upper 

components of the pathway. Second, the Ste11-Sho1 interaction does not require the Sho1-SH3 

domain, and requires Ste50 and Msb2/Hkr1. Third, we have characterised a novel dynamic 

interaction between Ste11 and Msb2, where Msb2 acts as a membrane-concentrator of Ste11 

requiring Ste50 but not Sho1. Finally, we have observed multiple negative feedbacks regulating 

protein levels and Ste11 interactions mediated by downstream components of the pathway, Pbs2 

and Hog1. Our studies have provided further resolution to what is considered to be a complex and 

dynamic signalling system, as well as founding the basis for the use of novel biochemical tools to 

study in vivo protein interactions.      
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4.1 Background 

Cells respond to external osmotic perturbations with changes in gene expression that are 

coordinated in both magnitude and time. Transcriptional regulation encompasses one of the most 

important processes to influence gene expression outcomes, and therefore it is of interest to 

identify underlying mechanisms employed by specific factors to globally regulate transcription under 

normal growth conditions and in response to environmental changes, such as osmotic stress. In this 

chapter, our results, together with previous studies, show strong evidence that Cbc1, amongst its 

numerous functions in mRNA fate, is implicated in global transcription (detailed in section 1.5).  

Cbc1, the auxiliary protein that forms part of the cap-binding complex (CBC) with the cap-binding 

subunit Cbc2, has been implicated in a number of post-transcriptional processes and may be 

considered a global regulator of mRNA fate. First, in the nucleus, CBC regulates pre-mRNA splicing by 

forming part of the splicing commitment complex (Zhang and Rosbash, 1999, Gornemann et al., 

2005, Pabis et al., 2013), and regulates RNA nuclear export (Gorlich et al., 1996) as well as nuclear 

degradation of transcripts retained in the nucleus (Das et al., 2003). Second, the cap structure, in 

combination with CBC, protects RNA from 5´-3´ degradation in both the nucleus and the cytosol 

(Grudzien et al., 2006, Schwartz and Parker, 2000). Third, in the cytoplasm, CBC drives the pioneer 

round of mRNA translation through its interaction with the translation machinery (Fortes et al., 

2000, Gao et al., 2005). Finally, and more recently, a role for CBC in transcription has been 

elucidated, where CBC is found to genetically interact with transcription elongation factors, such as 

RNAPII CTD-Ser2 kinases Bur1 and Cdk9 (Hossain et al., 2013, Lidschreiber et al., 2013, Lenasi et al., 

2011). Furthermore, it has been demonstrated that CBC stimulates the formation of PIC at several 

yeast promoters through its interaction with Mot1 to enhance transcription initiation (Lahudkar et 

al., 2011). Hence, mounting evidence suggests a possible role for CBC in the regulation of 

transcription at both initiation and elongation stages.  

During exponential growth, transcription of RP genes is very costly and occupies approximately 10 % 

of all RNAPII activity, and is driven by the specific TF Rap1 (Lascaris et al., 1999, Pelechano et al., 

2009). Upon increases in external osmolarity, expression of RP genes is rapidly downregulated 

combined with a 50 % decrease in global transcription rate, and the transcription machinery is 

reallocated to transcribe specific osmostress-responsive genes (Cook and O'Shea, 2012, Romero-

Santacreu, 2009, Capaldi et al., 2008, O'Rourke and Herskowitz, 2004). The transcriptional 

upregulation of the majority of these osmostress-responsive genes is dependent on the MAPK Hog1 

and its recruitment of specific transcription activators, including Hot1, to a subset of gene 
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promoters. Once bound to the promoters, the TFs, together with Hog1, mediate PIC formation and 

recruit RNAPII to drive transcription (Posas et al., 2000, de Nadal et al., 2002, Alepuz et al., 2001, 

Saito and Posas, 2012). 

The interest for Cbc1 in the context of osmotic stress arose when the CBC1 gene was identified to be 

required for osmotic stress response through a screening conducted in our laboratory in search for 

deletion mutants that showed reduced tolerance to NaCl (Romero-Santacreu, 2009). Cbc1 was 

further described as an important coordinator for the global re-initiation of translation after osmotic 

stress with additional roles in the translation of specific osmostress-responsive mRNAs (Garre et al., 

2012). Furthermore, Garre and co-workers have observed that induction of some osmostress-

response mRNAs, as well as the recovery of ribosomal protein (RP) mRNAs, is delayed in cbc1Δ 

mutant following osmotic stress (Garre et al., 2012), suggesting that Cbc1 may play a role in the 

transcription kinetics of induced genes. A genomic study was previously carried out in our 

laboratory, which is described in Section 4.2 ¨Previous results¨, and later, more molecular work 

conducted in this thesis is detailed in Section 4.3 ¨Results¨.  

 

4.2 Previous results 

4.2.1 Deletion of Cbc1 deregulates the global transcriptional response to osmotic stress  

In a previous study conducted in our laboratory, we observed that the cbc1Δ mutant was sensitive to 

osmotic stress and Cbc1 was required for the rapid association of osmo-mRNAs to polysomes to be 

actively translated during osmotic stress (Garre et al., 2012). Furthermore, we observed that a 

deletion in CBC1 caused a delay in the mRNA induction kinetics of three osmostress-induced genes 

(Garre et al., 2012). To address whether the role of Cbc1 in osmo-mRNA induction was general or 

gene-specific and whether these observed defects were transcription-dependent, we conducted a 

genomic study utilising the technique Genomic Run-On (GRO), previously described Garcia-Martinez 

et al. (2004) and detailed in Romero-Santacreu (2009). Here, we evaluated the changes in global 

transcription rate (TR) and global mRNA amount (RA) during mild osmotic stress stimulation with 0.6 

M KCl for 8, 15, 30 and 45 minutes. TR for 5868 ORFs was determined as a measurement of the 

density of elongating RNAPII along each gene, and on the other hand, RA of each gene was 

determined by conventional radioactive cDNA-labelling methods. In concordance with previous data 

(Romero-Santacreu et al., 2009), both global TR and RA, analysed as the median of all genes, rapidly 

decreased in the wild type strain upon initial osmotic shock, which recovered during adaptation 
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phase, with global TR recovering earlier than RA (Figure 4.1A). In contrast, a larger decrease in both 

TR and RA was observed in cbc1Δ compared to wild type, followed by a slower and lower recovery, 

indicating that Cbc1 is required for the reprogrammation of global TR and RA following osmotic 

stress (Figure 4.1A).  

We then analysed the TR and RA profiles of individual genes and found that majority of genes 

displayed altered profiles in cbc1Δ compared to wild type (Figure 4.1B). The genes analysed were 

then divided into 11 clusters based on similarities in their TR profiles, and utilising Gene Ontology 

(GO) tool, a number of functional categories were found to be significantly enriched (Figure 4.1B). 

Majority of clusters showed lower TR and RA in cbc1Δ compared to wild type during osmotic stress, 

with clusters 5, encoding genes that function in reproductive and cellular developmental processes, 

and cluster 10, with no significant enrichment of functional categories, showing the most important 

differences (Figure 4.1B). Further analyses show that genes that correspond to stress responses fall 

under cluster 1, including the upregulated osmo-responsive genes STL1 and GPD1, encoding a 

glycerol/proton symporter and a NADH-dependent glycerol-3-phosphate dehydrogenase, 

respectively. The TR and RA kinetics of cluster 1, showing the fastest and highest induction in wild 

type during osmotic stress, were delayed in cbc1Δ. Genes that encode proteins that function 

glycogen synthesis, including GRE3, fell under cluster 4 and was also affected in cbc1Δ in a similar 

manner to cluster 1. Genes involved in RNA processing and translation, such as those encoding 

ribosomal proteins (RP) for example RPL30 and RPL33B, fall under cluster 6, encompassed the most 

significantly enriched functional groups (p-value of e-35.6 and e-30.6, respectively). The TR and RA of 

this cluster initially became repressed upon osmotic stress and then recovered to non-stress levels in 

wild type, however, it could be observed that in cbc1Δ, after the initial repression, the TR and RA of 

these genes do not recover to non-stress levels. Interestingly, genes encoding many osmostress-

responsive transcription factors, including HOG1, MSN2, and HOT1, also show affected TR and RA 

kinetics in cbc1Δ during osmotic stress (Figure 4.1B). In general, all clusters show reduced and/or 

delayed TR and RA profiles in the absence of Cbc1, indicating a global role for Cbc1 in the 

reprogrammation of transcription during osmotic stress. 

 

4.2.2 Function of Cbc1 in osmostress-induced transcription encompasses both Hog1-dependent 

and -independent genes  

The majority of transcriptional regulation under osmostic stress is controlled by the MAP kinase 

Hog1 (de Nadal et al., 2002, de Nadal and Posas, 2011), thus we aimed to determine the inter-
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dependency of Cbc1 and Hog1 by analysing the effect of CBC1 deletion on the transcription of Hog1-

dependent and Hog1-independent genes. The genes that fall under these two groups were selected 

based on criteria of our previous data (Romero-Santacreu et al., 2009), in which the RA of genes that 

were considered to be induced (289 genes) or repressed (442 genes) showed at least a 2.5-fold 

change during osmotic stress stimulation, and were then characterised as Hog1-dependent if they 

showed at least a 2-fold difference between wild type and hog1Δ (see Figure 1.8B). In this study, we 

utilised the GRO data to compare the median TR and RA of wild type and cbc1Δ for each of these 

groups and found that both Hog1-dependent and Hog1-independent clusters showed similar TR 

kinetics, where wild type showed rapid increase in TR at 8 mins following osmotic stress which 

decreased during recovery, whereas in contrast cbc1Δ displayed a delay in TR induction with 

maximum TR levels never reaching wild type levels (Figure 4.2A upper panel). For repressed genes, 

in wild type we observed a rapid decrease in TR following 0.6 M KCl treatment that begun to recover 

after 30 minutes which fully recovered after 45 minutes; yet, in contrast, no TR recovery was 

observed in the strain harbouring a CBC1 deletion (Figure 4.2A lower panel). Again, the difference in 

TR kinetics observed in cbc1Δ extended to both Hog1-dependent and –independent genes. Taken 

together, we could conclude that Cbc1 has roles in TR induction of induced genes and TR recovery of 

repressed genes during osmotic stress, in which at least part of its function is independent of Hog1.  

To date, five transcription factors (TFs) have been described to be involved in Hog1-dependent 

upregulation of genes during osmotic stress (Hohmann, 2002, de Nadal and Posas, 2011). To 

determine how the CBC1 deletion affectes specific transcriptional regulons, we compared the TR and 

RA median of cbc1Δ and wild type of genes that fell under five clusters based on their transcriptional 

regulation by Hot1 (73 genes), Msn2 (394 genes), Msn4 (52 genes), Sko1 (33 genes) and Smp1 (223 

genes), in which the list of genes dependent on these TFs were extrapolated from the YEASTRACT 

database (Teixeira et al., 2014) or Saccharomyces Genome Database (Cherry et al., 2012). In Figure 

4.2B, it could be observed that for all five transcriptional regulon subsets, a deletion in CBC1 resulted 

in delayed and reduced TR kinetics during osmotic stress response. In particular, an initial delay in TR 

induction was observed in cbc1Δ mutant for Hot1-, Msn2-, Msn4- and Sko1-dependent genes, which 

was followed by reduced induction coupled with a delayed downregulation of TR in cbc1Δ compared 

to wild type. For Smp1-dependent genes, while wild type displayed an initial decrease in TR profile 

which later recovered, cbc1Δ showed a larger initial TR decrease with reduced and delayed recovery 

(Figure 4.2B). These results indicate that Cbc1 plays an important role in the upregulation of 

osmostress-responsive gene expression, and its function encompasses all five Hog1-dependent 

transcriptional regulon subsets.  
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Figure 4.1 Effect of CBC1 deletion on changes in TR and RA during the response to osmotic stress. 

Genomic data were obtained from the median of three independent genomic run-on (GRO) experiments 

normalised as described in Section 2.9, where wild type and cbc1Δ were treated with 0.6 M KCl for 8, 15, 30 

and 45 mins or left untreated. (A) Graphical representations of the medians of transcription rate (TR) and 

mRNA amount (RA) for 5868 genes for wild type (blue line) and cbc1Δ (red) treated with 0.6 M KCl or 

untreated. Stressed samples were normalised, in each case, against the non-stressed sample of each 
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experimental group. Error bars represent standard error of all analysed genes. (B) Heat map (left panel) 

demonstrating the classification of all analysed genes based on TR, where each lane corresponds to one 

gene and each column corresponds to a sample treated with 0.6 M KCl for the indicated time for wild type 

and cbc1Δ. Stressed samples were normalised, in each case, against the non-stressed sample of each 

experimental group. Green represents relative TR repression and red represents relative TR induction. The 

middle panel shows graphical representations of the medians of TR and RA of the genes of each cluster for 

wild type and cbc1Δ. Right panel shows significantly enriched GO functional categories of each cluster with 

the p-value indicated. Representative genes studied in this thesis are written in italics.  

 

According to results by Romero-Santacreu Romero-Santacreu (2009), osmostress-induced genes can 

be classified into two distinct clusters: genes that are very rapidly induced and rapidly induced. Very 

rapidly induced cluster contains 49 genes, including STL1 and GPD1, and reaches maximum TR at 15 

mins following osmotic stress stimulation, whereas rapidly induced cluster contains 129 genes, 

including GRE3, and reaches maximum TR later at approximately 30 mins (Figure 4.2C). A marked 

difference could be observed in TR profiles of both clusters for cbc1Δ compared to wild type, where 

in the cluster of very rapidly-induced genes, the TR profile of cbc1Δ was observed to be delayed in its 

induction reaching a higher maximum, and in rapidly induced genes, TR induction in cbc1Δ was 

delayed and never reaching wild type levels (Figure 4.2C). 

Overall, the analyses of TR and RA profiles, utilising the method GRO, indicate that Cbc1 plays a role 

in the initial TR induction of induced genes and TR recovery of repressed genes during osmostic 

stress. Furthermore, the function of Cbc1 is observed to be more general, affecting most genes, and 

regulates transcription independently of Hog1, the TR kinetics of the genes, and the specific TF that 

drives transcription.  
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Figure 4.2 CBC1 deletion influences TR and RA kinetics during osmotic stress of up- and downregulated 

genes and functions independently of Hog1. Genomic data were obtained from the median of three 

independent genomic run-on (GRO) experiments as described in Fig 4.1. (A) Graphical representations of 

the TR medians of all induced and repressed genes (left panel). Middle and left panels show clustering of 

genes that are Hog1-dependent and Hog1-independent, respectively, of both upregulated (upper panels) 

and downregulated genes (lower panels) in response to osmotic stress. Genes of each cluster were selected 

based on previous GRO experiments analysing wild type versus hog1Δ under stress and non-stress 

conditions (Romero-Santacreu, 2009). (B) Graphical representations of the median of upregulated genes 

that were divided into five distinct clusters based on their transcriptional dependency on TFs Hot1, Msn2, 

Msn4, Sko1 and Smp1. Gene classifications were obtained from YEASTRACT database (Teixeira et al., 2014) 

or Saccharomyces Genome Database (Cherry et al., 2012). (C) Medians of upregulated genes that were 

divided into two clusters, very-rapidly and rapidly induced genes, based on criteria described in Romero-

Santacreu (2009).    
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4.3 Results 

4.3.1 Defective recruitment of RNA polymerase II to osmo-induced genes in cbc1Δ 

Recently, several studies have described Cbc1 to be involved in transcription by regulating pre-

initiation complex (PIC) formation at galactose-inducible (GAL) genes (Lahudkar et al., 2011) and 

through the recruitment of transcription elongation kinases (Lidschreiber et al., 2013, Hossain et al., 

2013). To evaluate the molecular mechanisms employed by Cbc1 to induce the upregulation of 

osmostress-responsive genes during osmotic stress and its role in transcription initiation and 

elongation, we then specifically analysed two very rapidly induced genes: STL1 whose gene induction 

is exclusively dependent on Hog1/Hot1 (Alepuz et al., 2001, Bai et al., 2015); and GPD1 whose gene 

induction is partially HOG-dependent, specifically regulated by TFs Msn2/4 and Hot1, as well as 

marginally dependent on the Protein Kinase A (PKA) pathway (Rep et al., 1999a, Boy-Marcotte et al., 

1998, Alepuz et al., 2001). We also included a rapidly induced gene, GRE3, which encodes a protein 

that function in carbon source metabolism (Aguilera and Prieto, 2001) whose gene induction is 

dependent on Hog1 and Msn2/4 (Garay-Arroyo and Covarrubias, 1999). As seen in Figure 4.3, TR of 

STL1, GRE3 and GPD1 were rapidly induced following osmotic stress in the wild type strain, and in 

contrast, a delay was observed in the induction of TR of these genes in cbc1Δ. This delay in TR also 

corresponded to a delay in RA, which could be observed in GRO and confirmed by RT-qPCR data. 

Additionally, delayed recovery of RA levels after osmotic stress stimulation of the ribosomal protein 

(RP) gene RPL30 was also confirmed by RT-qPCR (Figure 4.3 right panels). Next, to evaluate whether 

the delay in TR and RA induction was due to a direct defect in RNAPII occupancy at these genes, 

chromatin immunoprecipitation (ChIP) experiments were performed, and a delayed binding of 

RNAPII to both ORF and promoter of STL1 and GRE3 genes was observed in cbc1Δ during osmotic 

stress. Therefore, it can be concluded that the delayed recruitment of RNAPII to osmostress-genes in 

turn caused a delay in both TR and RA induction, which may directly contribute to the osmostress-

sensitive phenotype observed in cbc1Δ.  

To determine whether the delayed RNAPII recruitment in cbc1Δ was due to a change in total and/or 

active RNAPII protein amount, we measured, utilising western blotting, total and Ser2-

phosphorylated RNAPII in wild type and cbc1Δ during osmotic stress treatment. Here, we observed 

no significant differences in total and the fraction of Ser2-phosphorylated RNAPII between wild type 

and cbc1Δ during treatment with osmotic stress (Figure 4.4). These results suggest that the delayed, 

and sometimes reduced, recruitment of RNAPII to osmostress genes observed in cbc1Δ was not due 

to differences in total or elongating RNAPII protein levels. 
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Figure 4.3 Recruitment of RNA polymerase II to upregulated genes is delayed in cbc1Δ mutant. The left 

panel shows averages of TR (solid line) and RA (dotted line) of 3 independent GRO experiments as 

described in Fig 4.1. Genes STL1, GRE3, GPD1 and RPL30 were analysed under 0.6 M KCl stress for the 

indicated times and non-stress conditions in wild type and cbc1Δ. All data were normalised against wild 

type non-stress and represented as fold-change. The middle panel shows RT-qPCR analyses of STL1, GRE3, 

GPD1 and RPL30 mRNA expression in wild type and cbc1Δ under 0.6 M KCl stress for the indicated times 

and non-stress conditions. Relative mRNA expression was calculated by first normalising against the 

reference gene ACT1 of each sample and then represented as fold-change in respect to wild type non-stress 

of each experiment. Averages and standard deviations of independent experiments are represented 

graphically. The two right panels show ChIP analyses of RNA polymerase II (RNAPII) recruitment to the 

promoters and ORFs of STL1 and GRE3 in wild type and cbc1Δ under 0.6 M KCl stress for the indicated time 

and non-stress. Immunoprecipitation of RNAPII was performed using the antibody 8WG16. Promoters and 

ORFs were amplified by qPCR using specific primers, and signals were normalised against a non-coding 

region upstream of FUS1, and then represented as fold-change in respect to wild type non-stress of each 

experiment. Averages and standard deviations of independent experiments are represented graphically. 

For all graphs, blue line represents wild type and red line represents cbc1Δ.  
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Figure 4.4 Total and elongating RNA polymerase II levels in cbc1Δ mutant. Western blot analyses of 

RNAPII protein expression during 0.6 M KCl treatment for 60 minutes. (A) Representative western blots 

showing protein expressions of total RNAPII and Ser2-phosphorylated RNAPII utilising 8WG16 and anti-

Ser2-P antibodies, respectively. Each Western blot was probed with anti-Pgk1 antibody as a loading control. 

(B) Graphical representations of western blot band intensities from three independent experiments, where 

the blue and red lines represent wild type and cbc1Δ respectively. For each immunoblot, band intensities of 

RNAPII (total or Ser2-phosphorylated) were normalised against the signal of endogenous Pgk1 of each 

sample, which were then represented as fold-change in respect to wild type non-stress of each experiment. 

Ratios of phosphorylated RNAPII in respect to total RNAPII were calculated by dividing the relative signals of 

Ser2-P against 8WG16 for each time point and then normalised against wild type non-stress of each 

experiment.  

 

4.3.2 Role of Cbc1 in transcription is dependent on Cbc2  

As previously established, Cbc1, together with Cbc2, forms the cap-binding complex (CBC), and the 

two subunits bind to the mRNA cap structure synergistically, where neither subunit alone has 

sufficient affinity for the structure (Izaurralde et al., 1994, Izaurralde et al., 1995a). The m7GpppN 

cap-binding pocket resides in the Cbc2 subunit, however, Cbc1 causes a conformational change in 

Cbc2, which has been found to be required for CBC to bind to the cap structure with high affinity 

(Calero et al., 2002, Worch et al., 2009, Gonatopoulos-Pournatzis and Cowling, 2014). Moreover, the 

activities of both subunits are tightly linked and in some cases may be redundant, as cbc1 and cbc2 
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therefore likely that the role of Cbc1 in transcription during osmotic stress is dependent on its ability 

to bind the m7GpppN cap structure, and hence dependent on the presence of Cbc2. Utilising a 

cbc2Δ deletion mutant, we first evaluated its ability to grow under osmotic stress, and as observed 

in Figure 4.5A, cbc2Δ showed similar growth defects as cbc1Δ under both NaCl and KCl osmotic 

stress. Upon evaluation of osmostress-responsive mRNA expression following osmotic stress, we 

observed a delay in RA induction in cbc2Δ compared to wild type (Figure 4.5B), where the gene 

expression profiles were similar to those observed in cbc1Δ (Figure 4.3). These results suggest that 

the role of Cbc1 in transcription of osmostress-responsive genes is dependent on its ability to bind 

the m7GpppN cap structure through Cbc2.   

 

 

 

Figure 4.5 Cbc2 is necessary for Cbc1 regulation of transcription. (A) cbc1Δ and cbc2Δ strains showed 

similar growth phenotypes under both mild and severe osmotic stress. Serial dilutions of the indicated 

yeast strains were grown on YPD agar plates containing 0.4 M or 0.8 M NaCl, and 0.6 M or 1.2 M KCl. (B) RT-

qPCR analyses of STL1, GRE3, and GPD1 mRNA expression in wild type and cbc2Δ during 0.6 M KCl 

treatment for 60 mins. Relative mRNA expression was calculated by first normalising against the reference 

gene ACT1 of each sample and then as fold-change of wild type non-stress of each experiment. Averages 

and standard deviations of independent experiments are represented graphically.  
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4.3.3 Cbc1 does not require Mot1, but recruits the transcription complex Hot1/Hog1 to osmostress 

promoters to aid PIC formation 

It has been previously proposed that Cbc1 drives transcription of GAL genes by recruiting Mot1 

transcription factor to GAL promoters, which in turn facilitates RNAPII binding (Lahudkar et al., 

2011). Mot1 has been described to act as a nucleosome remodeller and TBP regulator, and has been 

described to induce transcription at TATA-like promoters, including RP genes, and repress 

transcription at TATA promoters, which compasses majority of stress genes, under normal growth 

conditions (Zentner and Henikoff, 2013, Wollmann et al., 2011, Topalidou et al., 2004, Sikorski and 

Buratowski, 2009). It was therefore of interest to investigate whether Cbc1 modulates Mot1 binding 

at osmostress gene promoters to drive their transcription during osmotic stress response. Using a 

temperature-sensitive mot1
ts mutant, the inductions of osmo-mRNAs STL1, GRE3 and GPD1 were 

evaluated following Mot1 depletion by incubating at the restrictive temperature of 37 ºC and were 

compared with a CBC1 deletion mutant also at the restrictive temperature. It could be observed in 

Figure 4.6 that the RA induction kinetics of osmo-mRNAs following osmotic stress were more rapid 

at 37 ºC compared to normal growth temperature of 30 ºC and this was in concordance with 

previous studies (Figure 4.6 compared to Figure 4.3) (Miguel et al., 2013). Similarly to what was 

previously observed in Figure 4.3, the induction of osmo-mRNAs following osmotic stress was 

delayed in cbc1Δ in contrast to wild type at 37 ºC, indicating a defect in transcription induction in the 

absence of Cbc1 (Figure 4.6). However, the depletion of Mot1 did not change the induction profiles 

of the osmo-mRNAs, indicating that Mot1, unlike Cbc1, was not required for their rapid transcription 

following osmotic stress, and neither did it appear to function as a transcriptional repressor (Figure 

4.6). Therefore it can be concluded that the function of Cbc1 in transcription activation of 

osmostress-responsive genes is not through the regulation of Mot1 binding to chromatin. 
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Figure 4.6 Function of Cbc1 in transcription regulation upon osmotic stress seems to be Mot1 

independent. RT-qPCR analyses of STL1, GRE3 and GPD1 mRNA expressions in wild type (blue line), mot1
ts

 

(green line, left panel) and cbc1Δ (red line, right panel). Strains were grown at the permissive temperature 

23 ºC until mid-log phase, then transferred to the restrictive temperature 37 ºC for 1 hour and treated with 

0.6 M KCl for the indicated time. Relative mRNA expression was calculated by first normalising against the 

reference gene ACT1 of each sample and then as fold-change of wild type non-stress of each experiment. 

Averages and standard deviations of independent experiments are represented graphically in the case 

where more than one independent experiment has been performed.  
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possibility that the delay in RNAPII recruitment to osmostress-induced genes in cbc1Δ might be a 

consequence of a defect in the recruitment of specific activators, such as the transcription factor 

Hot1 which is required for the transcription of ~70 genes during osmotic stress (YEASTRACT 

database), and whose specific transcriptional regulon is Cbc1-dependent (Figure 4.2B). Upon 

osmotic stress stimulation, Hot1 is hyperphosphorylated by Hog1 and recruited to osmostress 
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housekeeping genes to osmostress-responsive genes (Cook and O'Shea, 2012, Alepuz et al., 2001, 

Alepuz et al., 2003). Therefore, the Hot1/Hog1 transcriptional complex serves as an obvious 

candidate as the molecular link between Cbc1 and osmostress-dependent transcription. Utilising 

chromatin immunoprecipitation, we evaluated Hot1 occupancy at osmostress promoters in the 

presence and absence of Cbc1, and it could be observed in Figure 4.7A that Hot1 enrichment at STL1 

and GPD1 promoters was significantly reduced and delayed in cbc1Δ following osmotic stress. This 

was coupled with reduced and delayed TBP occupancy at the same promoters in cbc1Δ (Figure 4.7A 

right panel).  

Utilising the previously described M-track method (Section 3.1.2) (Zuzuarregui et al., 2012, 

Zuzuarregui et al., 2015), we then assessed the ability of Cbc1 to interact with the Hot1/Hog1 

complex. A robust Cbc1-Hog1 interaction was observed both before and after osmotic stress, in 

which the Cbc1-Hog1 relative methylation signal was 10-fold higher than the background signal 

(Figure 4.8). The observation that the Cbc1-Hog1 interaction signal was higher in hog1Δ compared to 

a wild type strain (Figure 4.8) could be explained by the competitive binding of endogenous Hog1 to 

the plasmid-expressed methylase-fused Cbc1. Furthermore, Cbc1 binding to Hog1 did not 

dependent on Hog1 activation, since Hog1 phosphorylation was only observed after osmotic stress 

(shown as p38 signal), yet interaction signal did not show differences between non-stress and stress 

conditions (Figure 4.9).  

All together, our results suggest that Cbc1 interacts with Hog1 to facilitate the recruitment of the 

Hot1/Hog1 activator complex to osmostress promoters, which results in the recruitment of TBP and 

initiation of transcription by RNAPII of these genes during osmotic stress. Therefore, contrary to 

previous results with GAL genes (Lahudkar et al., 2011), Cbc1 does not appear to function through 

Mot1, but regulates the binding of gene-specific activators to promoters.  

 

4.3.4 Cbc1 regulates Hog1/Hot1 dephosphorylation and Hot1 and TBP protein levels 

Within the first few minutes of osmotic stress, Hog1 is rapidly phosphorylated following HOG 

pathway activation, which in turn rapidly phosphorylates Hot1. Although some Hot1 binds chromatin 

basally under non-stress conditions, osmotic stress-induced phosphorylation of Hot1 by Hog1 causes 

an accumulation of Hot1 at stress promoters (Alepuz et al., 2003, Gomar-Alba et al., 2013, Brewster 

et al., 1993). It is therefore possible that the delayed and reduced Hot1 recruitment to osmostress 

promoters in cbc1Δ is a consequence of defective HOG signalling. Hence, to evaluate correct signal 

activation during osmotic stress, the phosphorylation status of Hog1 and Hot1 was analysed and we 
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observed no delay or reduction in the level of phosphorylation of either proteins in cbc1Δ during the 

first minutes of stress (Figure 4.7B). In contrast, a significant increase in Hot1 protein expression was 

observed in cbc1Δ (Figure 4.7B). These results indicated that the absence of Cbc1 did not cause a 

defect in HOG signalling activation, and additionally, the reduction in Hot1 binding to osomostress 

promoters was not a consequence of reduced Hot1 protein levels. On the other hand, an apparent 

delay in dephosphorylation kinetics of both Hog1 and Hot1 was observed in cbc1Δ during adaptation 

following osmotic stress (Figure 4.7B). We then analysed TBP protein expression in cbc1Δ and 

observed a significant reduction compared to wild type both before and after osmotic stress (Figure 

4.7B bottom panel), and therefore we could not rule out that the decreased TBP enrichment at 

promoters in the absence of Cbc1 was not a consequence of reduced protein expression. However, 

given our observations, coupled with what has been previously described that Hot1/Hog1 recruits 

TBP to osmostress genes, it is more likely that in the absence of Cbc1, TBP recruitment profile 

changes as a direct consequence of defective Hot1/Hog1 recruitment, and therefore the reduction 

of TBP protein may be a due to reduced protein stability of unbound TBP. Furthermore, the stronger 

phosphorylation signals of Hot1 and Hog1 observed during osmotic stress recovery correlate with 

longer transcriptional induction kinetics of osmostress genes in cbc1Δ (Figure 4.3 and 4.7), 

suggesting that dephosphorylation may be related to transcription shutoff and/or chromatin binding 

of these TFs.  

Altogether, our data show that the defective chromatin recruitment of Hot1/Hog1 observed in 

cbc1Δ is not a result of defective HOG signalling activation following osmotic stress, suggesting that 

Cbc1 itself directly mediates Hot1/Hog1 recruitment to promoters. Moreover, Cbc1 also plays a role, 

either directly and/or through changed chromatin-binding profiles, in Hot1 and TBP protein 

expression as well as the dephosphorylation kinetics of Hot1/Hog1 during osmostress recovery.  
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Figure 4.7 CBC1 deletion does not affect rapid signalling upon osmotic stress but delays Hot1 recruitment 

and PIC formation at osmo-gene promoters. (A) Hot1 and TBP recruitment to osmo-promoters is 

deregulated in cbc1Δ. Graphical representations of ChIP analyses of Hot1 and TBP recruitment to the 

promoters of STL1, GPD1 and GRE3 in wild type and cbc1Δ without stress or stressed with 0.6 M KCl at the 

times indicated. Immunoprecipitations of genomically-tagged HOT1-HA (PAY730) and TBP-HA expressed in 

a centromeric plasmid (PA149) were performed using an anti-HA antibody. Promoters were amplified by 
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qPCR using specific primers, and signals were normalised against a non-coding region upstream of FUS1, 

and then represented as fold-change in respect to wild type non-stress of each experiment. Averages and 

standard deviations of independent experiments are represented graphically. (B) CBC1 deletion does not 

delay signalling but changes Hot1 and TBP protein expression. Left panels show representative western 

blots depicting Hot1 (probed with anti-HA antibody), phosphorylated Hog1 (probed with anti-p38 antibody) 

and TBP (probed with anti-HA antibody) protein expressions before and after 0.6 M KCl treatment at the 

times indicated. Loading controls Pgk1 or Cdc28 were detected utilising anti-Pgk1 and anti-Cdc2 antibodies, 

respectively. Right panels show the average and standard deviations of band intensities of at least 3 

independent experiments. Band intensities the protein of interest were normalised against the band 

intensities of loading controls of each sample, and all relative expressions were represented as a fold-

change in respect to wild type non-stress of each experiment.  

 

 

 

Figure 4.8 Cbc1 interacts with Hog1. (A) A representative western blot showing the interaction of HOG1-

4H3-HA (CF1E5) and CBC1-3MYC-HKMT (P15) detected with anti-methylase antibodies (anti-meK9H3) in 

wild type and hog1Δ (PAY185) strains in the absence or presence 0.6 M KCl (15 minutes). Negative control 

corresponds to hog1Δ (PAY185) transformed with HOG1-4H3-HA (CF1E5) and a plasmid containing only the 

myc tag and methylase (PAZ187). Positive control corresponds to hog1Δ (PAY185) transformed with HOG1-

4H3-HA (CF1E5) and its substrate RCK2-3MYC-HKMT (P12) which were known to interact (Bilsland-

Marchesan et al., 2000). Immunoblots were also developed with anti-HA antibody to detect HOG1-4H3-HA 

expression, as well as probed with anti-Cbc2 to detect the endogenous control Cbc28. Myc-tagged plasmids 

were detected with an anti-myc antibody, and phosphorylated Hog1, to observe HOG signalling, was 

detected with the anti-p38 antibody. (B) Quantification of the methylation signals normalised against HA 

signal and compared to the wild type in the absence of stress. The average and standard deviations (SD) of 

2 independent experiments are shown.  
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4.3.5 Cbc1 modulates RP gene expression through the accumulation of Rap1 and PIC at RP 

promoters 

Our genomic data showed that during osmotic stress most genes, not only induced genes, displayed 

a transcriptional defect in cbc1Δ mutant (Figure 4.1 and 4.2), and data from other authors have 

described the role of Cbc1 in the transcription of several genes under non-stress conditions, 

(Lahudkar et al., 2011, Lidschreiber et al., 2013, Hossain et al., 2013), hence it is likely that the role of 

Cbc1 in transcription is not only restricted to osmotic stress genes, but have a more general role in 

regulating the transcription of a number of genes even under normal growth conditions. Utilising our 

genomic data under non-stress conditions (time 0), genes that displayed differential reduction in TR 

in cbc1Δ compared to wild type were most enriched (p-value 5.6e-9) in the GO functional group of 

¨ribosome¨ (Figure 4.9A). Comparing the median TR of all RP genes for both cbc1Δ and wild type 

strains with global TR, it could be observed that while for global TR only a slight difference was 

observed between cbc1Δ and wild type (TR ratio cbc1Δ/wt of 0.9), the TR of RP genes was 

significantly and importantly reduced in cbc1Δ (TR ratio cbc1Δ/wt of 0.612), indicating a specific 

defect in RP transcription in a strain lacking Cbc1 (Figure 4.9B). RP gene transcription occupies 

approximately 10 % of all RNAPII activity under normal growth conditions, and their gene expression 

is rapidly downregulated, followed by recovery, during osmotic stress response (Garre et al., 2013, 

Romero-Santacreu, 2009). A deletion in CBC1 also changed the TR kinetics of RP genes during 

osmotic stress, as it could be observed in Figure 4.9C that the TR of RP genes rapidly decreased and 

then recovered after 45 minutes of stress in wild type, whereas in cbc1Δ the TR of RP genes was 

lower under normal conditions that presented a small reduction with osmotic stress, followed by 

almost no recovery. This result was in concordance with what was previously observed in Figure 4.3 

for the specific RP gene, RPL30. Altogether, our results indicate that Cbc1 does not affect all genes 

equally, and for some specific groups of genes, such as RP genes, Cbc1 is required for their 

transcription both under normal conditions and during osmotic stress adaptation. 

Our results have shown that Cbc1 mediates the high and timely expression of osmostress-induced 

genes by specifically facilitating the accumulation of the activator complex Hot1/Hog1 at 

corresponding promoters, which in turn enhances PIC formation and RNAPII recruitment (section 

4.3.4), therefore it is entirely possible that Cbc1 may also mediate recruitment of the RP gene-

specific TF Rap1 to RP promoters. Furthermore, reduced TBP protein expression has been observed 

in cbc1Δ (Figure 4.7B), which may directly affect RP gene expression. Hence, we investigated the role 

of Cbc1 in the regulation of Rap1 and TBP recruitment to two RP gene promoters, RPL30 and 

RPL33B, under non-stress conditions and during osmotic stress. Firstly, a reduced occupancy of both 

Rap1 and TBP was observed at the RP promoters in cbc1Δ under non-stress conditions (Figure 
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4.10A). Secondly, following osmotic stress treatment, both Rap1 and TBP occupancy at RP promoters 

rapidly reduced in wild type cells, and then enhanced during recovery phase (Figure 4.10A). In 

contrast, lower occupancies of both factors were observed in cbc1Δ under non-stress conditions, 

with an apparent delay in recovery (Figure 4.10A). 

 

 

Figure 4.9 Transcription of RP genes under non-stress and osmotic stress conditions is strongly affected in 

cbc1 mutant. (A) Plot of cbc1Δ TR against wt TR for 5868 genes analyzed by GRO under non-stress 

conditions (time 0). The bisector is indicated as a solid line and the trend line as a dotted line. Dots for RP 

genes are represented in red. (B) Box and whisker plot representations showing medians and quartiles of 

ratios between cbc1Δ TR and wt TR of total yeast genes or only RP genes under non-stress conditions. The 

median of each data set is denoted and the whiskers show the data extremes, where outliers are discarded. 

Total data is compared with RP data and the p-value obtained from t-test is denoted. (C) TR median of all 

RP genes under 0.6 M KCl stress for the indicated times and non-stress conditions in wild type and cbc1Δ. 

Error bars represent standard error of all RP genes analysed. All data were taken from 3 independent GRO 

experiments as described in Figure 4.1. 
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Figure 4.10 Cbc1 regulates recruitment and levels of Rap1 protein. (A) Reduced recruitment of Rap1 and 

TBP to promoters of RP genes in cbc1Δ during osmotic stress. Graphical representations of ChIP analyses of 

Rap1 and TBP recruitment to the promoters of RP genes RPL30 and RPL33B in wild type (blue line) and 

cbc1Δ (red line) during 0.6 M KCl treatment for 60 minutes. Immunoprecipitation of endogenous Rap1 was 

carried out using an anti-Rap1 (clone y-300) antibody. Immunoprecipitation of TBP-HA expressed in a 

centromeric plasmid (PA149) was carried out using an anti-HA antibody. Promoters were amplified by qPCR 

using specific primers, and signals were represented as a percentage of input, and then normalised against 

wild type non-stress of each experiment. Averages and standard deviations of three independent 

experiments are represented graphically. (B) Protein expression of Rap1 is induced in cbc1Δ. Left panel 

shows a representative western blot probed with anti-Rap1 and anti-Pgk1 antibodies to detect endogenous 

protein expressions of Rap1 and loading control Pgk1, respectively, before and after treatment with 0.6 M 

KCl at the indicated times. Right panel shows the average and standard deviations of band intensities from 

three independent experiments. Band intensities of Rap1 were normalised against the band intensity of 

Pgk1 for each sample, and all relative expressions were represented as a fold-change in respect to wild type 

non-stress of each experiment. 
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Finally, we analysed Rap1 protein expression during osmotic stress and we observe no reduction in 

Rap1 protein in the absence of Cbc1 (Figure 4.10B). In fact, we observed a slightly higher Rap1 

protein expression in cbc1Δ compared to wild type, indicating that the reduced binding of Rap1 to 

RP promoters was not a consequence of decreased protein expression (Figure 4.10B). In all, our 

results suggest that, similar to its function in osmostress-induced gene transcription, Cbc1 is 

required for the high expression of RP genes under non-stress conditions and their transcriptional 

recovery during osmotic stress by facilitating the accumulation of specific activator Rap1 and TBP at 

RP promoters. Morever, we also observed changes in protein levels of the transcription activator 

Rap1 in the absence of Cbc1.  

 

4.3.6 Cbc1 modulates transcription of highly expressed genes and may be implicated in the 

response to various environmental stresses 

To date, although Cbc1 has been described to function in the transcription of several genes, the 

transcriptional mechanisms employed by Cbc1 to determine transcript-specificity it is still not clear. 

Here, we hypothesised that Cbc1 might show functional bias towards highly expressed genes based 

on several observations: first, we showed that Cbc1 was required for the transcription of 

osmostress-responsive genes during osmotic stress and RP genes during exponential growth (Figure 

4.3 and 4.9), in which in both instances the TR of these genes were highly induced; second, previous 

studies by other authors have described roles of Cbc1 for the transcription of highly expressed 

genes, such as PMA1 and ADH1, or induced genes, such as GAL1 (Lahudkar et al., 2011, Lidschreiber 

et al., 2013, Hossain et al., 2013); third, our genomic data indicated that Cbc1 does not affect the 

transcription of all genes equally (Figure 4.1 and 4.9). Utilising our genomic data, we analysed the 

median of TR of 10 % highest and lowest expressing genes in wild type under non-stress conditions 

and compared to the corresponding TR median of these genes in cbc1Δ. We observed that, while 

cbc1Δ showed a slight but significant increase in TR for lowest expressing genes, a marked decrease 

in TR for highest expressing genes was observed (Figure 4.11). These results suggest that Cbc1, 

although it may regulate gene repression of low expressing genes, plays an essential role in 

maintaining high TR for genes that are highly transcribed.  

Due to the general role of Cbc1 as a transcription activator and having specific roles in the rapid 

transcription of osmostress genes in response to KCl osmotic stress, it is therefore expected that 

Cbc1, together with Cbc2, may have similar roles in the response to other environmental stresses, 

where rapid and strong upregulation of genes are required for survival and adaptation. Analysing 
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cellular growth of cbc1Δ and cbc2Δ mutants under different environmental stresses, we observed 

that, indeed, both cbc1Δ and cbc2Δ mutants showed similar growth defects under NaCl, CaCl2, cold 

and heat stress, with the growth defects being more pronounced with harsher stresses (Figure 4.12). 

These results suggest that the cellular function of CBC is more general and may play a role in the 

regulation of transcription in response to various environmental stresses. 

 

 

 

Figure 4.11 Cbc1 show functional bias towards highly expressed genes. The box and whisker plots 

represent the median and quartiles of the data belonging to the genes with the lowest 10 % TR (left) and 

the highest 10 % TR (right), which were sorted from low to high in regards to the wild type TR levels under 

normal. The numbers inside the boxes denotes the median value and the whiskers shows the data 

extremes (excluding the outliers which lie beyond 1 times the inter quartile range). The wild type TR (blue 

boxes) was compared to the TR of the same genes in cbc1Δ mutant (red boxes) and the p-values from t-test 

are shown.  
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Figure 4.12 Cbc1 and Cbc2 are necessary for adaptation to other stresses. cbc1Δ and cbc2Δ strains show 

similar growth phenotypes under sodium, calcium, cold and heat stress. Serial dilutions of the indicated 

yeast strains were grown on YPD agar plates containing 0, 0.2, 0.25 and 0.3 M of CaCl2 or 0, 0.4 and 0.8 M 

NaCl and plates were incubated at 30 ºC. For cold and heat stress, serial dilutions of the indicated yeast 

strains were grown on YPD agar plates and were incubated at 22 ºC, 30 ºC, 37 ºC and 39 ºC for 48 hours. 

 

4.4 Discussion 

RNAPII transcription is a complex process involving diverse, yet distinct, stages, such as initiation, 

elongation and termination, which respond to intracellular signalling in such a dynamic manner that 

the mRNA being synthesized is simultaneously modified and imprinted for its subsequent life 

(Venters and Pugh, 2009, Haimovich et al., 2013). Cross-talk between factors involved in all these 

processes will determine the speed, intensity and length of transcription for each particular mRNA 

under each particular cellular condition (Moore and Proudfoot, 2009, Perez-Ortin et al., 2013). In 

this context, interaction between factors of different stages of mRNA life and the existence of 

factors with multifunctional roles will be necessary to achieve this complex coordination.  

The cap-binding protein Cbc1, which forms part of the cap-binding complex (CBC) with Cbc2, 

associates with the 5´ mRNA cap structure co-transcriptionally and has been identified as an 

important multifunctional factor coordinating different steps of co-transcriptional RNA processes, 
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including pre-mRNA splicing (Zhang and Rosbash, 1999, Gornemann et al., 2005, Pabis et al., 2013) 

and regulation of RNA degradation (Grudzien et al., 2006, Schwartz and Parker, 2000). Recent 

studies have also described Cbc1 to regulate several stages of transcription, including PIC formation 

and recruitment of RNAPII to promoters during transcription initiation, and efficient recruitment of 

the RNAPII kinases, Bur1 and Ctk1, to establish high levels of CTD Ser2-phosphorylation during 

transcription elongation of several genes (Lahudkar et al., 2011, Lenasi et al., 2011, Lidschreiber et 

al., 2013). Our work takes a further step to show that Cbc1 mediates the accumulation of gene-

specific activators at promoters, which in turn recruit PIC components and RNAPII, and we have 

identified a physical interaction between the cap-binding protein and the central signalling factor of 

the osmotic stress response, the MAPK Hog1, which itself acts as a chromatin-binding activator by 

promoting the rapid recruitment of RNAPII upon osmotic shock (Alepuz et al., 2001, Alepuz et al., 

2003). Therefore, our results, together with what has been previously described, demonstrate that 

Cbc1 connects RNA processing to all steps of transcription, including the accumulation of the signal-

induced transcription activators at gene promoters.  

 

4.4.1 Mechanism of Cbc1 regulation of transcription initiation 

In this Chapter, we provide evidence for the role of Cbc1 in regulating transcription initiation, more 

specifically in the accumulation of transcription activator at gene promoters to induce transcription, 

obtained from both stress and non-stress results. First, we observed that Cbc1 was required for the 

transcriptional response to osmotic stress, as a deletion in CBC1 caused a change in global TR 

profiles. More specifically, TR and RA induction of osmostress-induced genes were seen to be 

delayed and/or reduced in cbc1Δ, which was coupled with a reduction in TR and RA recoveries of 

repressed genes in response to osmotic stress (Figure 4.1-4.3). Second, our analyses revealed that 

Cbc1 was required for the recruitment of the Hot1/Hog1 activator complex to the osmostress 

promoters and we detected a physical interaction between Cbc1 and Hog1 (Figures 4.7 and 4.8). 

Third, Cbc1 mediated the recruitment of RNAPII and formation of PIC at the promoters during 

osmotic stress, which might be a consequence of the role of Cbc1 in recruitment of the activator 

complex (Figures 4.3 and 4.7). Fourth, no delay in Hot1 and Hog1 phosphorylation by the HOG 

signalling pathway was observed in cbc1Δ mutant; therefore the delayed accumulation of the 

Hot1/Hog1 complex at promoters was not a consequence of defective signalling (Figure 4.7). Fifth, 

under normal growth conditions, Cbc1 was required for the high expression of RP genes and for the 

accumulation of their gene-specific activator Rap1 and PIC at the promoters (Figures 4.9 and 4.10). 

And finally, during osmotic stress, Cbc1 appeared to play a minor role in the rapid downregulation of 
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RP expression; however it was required for the recovery of transcription by accumulating Rap1 and 

TBP at the RP promoters (Figures 4.9 and 4.10).  

The Cbc1/Cbc2 complex binds the RNA 5´ m7GpppN cap during transcription elongation when the 

pre-mRNA is approximately 25 nucleotides in length (Section 1.2.3) (Shandilya and Roberts, 2012, 

Gonatopoulos-Pournatzis and Cowling, 2014), indicating that CBC does not play a role in the pioneer 

rounds of transcription. However it may regulate subsequent rounds of transcription once bound to 

the cap by facilitating the accumulation of transcription activator at the promoter and enhancing 

RNAPII recycling. Indeed, this is also supported by the observation that the deletion of CBC1 does 

not completely abolish transcription of Cbc1-dependent genes, but instead delays and reduces 

induction of these genes. The accumulation of sequence-specific activators at promoters may be 

mediated by Cbc1 through the stabilisation of activator/DNA interaction or the interaction between 

the activator and other components of the PIC. Additionally, we have documented a reduced 

binding of TBP to osmostress-induced promoters and to RP promoters under stress and non-stress 

conditions in the absence of Cbc1 (Figures 4.7 and 4.10), and it has been described that stable 

binding of TBP at promoters facilitates the reinitiation of transcription (Poorey et al., 2010). 

Therefore, a lower level of TBP at promoters caused by the deletion of CBC1 could explain the 

inability to reach high transcription rates in the cbc1Δ mutant. However, since the binding of TBP 

should not affect activator binding to promoters, our observations suggest that reduced TBP binding 

is a consequence of reduced accumulation of activator at promoters. Yet, it is entirely possible that 

Cbc1 may regulate the binding of both activator and TBP in mechanistically distinct manners.  

The previous work by Lahudkar et al. conducted using several galatose-induced GAL genes shows 

that CBC interacts and recruits Mot1, which has been shown to regulate TBP binding to promoters, 

and positively regulates transcription of GAL genes (Lahudkar et al., 2011, Zentner and Henikoff, 

2013), and previously it has also been shown that Mot1 binds stress-regulated promoters (Geisberg 

and Struhl, 2004). However, kinetics of osmostress mRNA upregulation in conditions of Mot1 

depletion did not show delayed induction, whereas under same conditions, depletion of Cbc1 

provoked a clear alteration in osmo-mRNA kinetics (Figure 4.6). Therefore it is likely that the 

transcriptional contribution of Mot1 to the expression of specific genes is not equal, where it is 

required for GAL1 expression but not for osmostress-responsive genes.  
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Figure 4.13 Cbc1 rapidly and strongly induces transcription of highly transcribed genes. CBC binds mRNA 

cap during transcription elongation, and once bound, Cbc1 mediates the promoter-recruitment of the 

transcription activator complex, consisting of gene-specific transcription factor and/or cofactors, which in 

turn induces PIC formation and RNAPII recruitment to carry out high and rapid transcription. On the 

contrary, in the absence of Cbc1, highly transcribed genes are not efficiently induced and show delayed 

and/or reduced accumulation of activators and PIC at the promoter. Furthermore, the absence of Cbc1 

results in altered protein stability of transcription activators. Green arrows indicate positive feedback, and 

shapes with dotted black lines indicate a decrease in protein recruitment. 

 

In our study, we assume that Cbc1 acts on the transcriptional machinery once bound to the 5’ cap of 

the mRNA that is being synthesised. Cbc1 binds to the cap through its dynamic interaction with the 

cap-binding subunit Cbc2, and this interaction is essential for the binding of CBC to the cap (Calero et 

al., 2002). Several lines of evidence suggest that Cbc1 functions in transcription initiation through its 

binding to the capped mRNA: first, we have shown that a CBC2 deletion mutant displays similar 

stress-sensitive phenotypes and gene expression defects as cbc1Δ (Figures 4.5 and 4.12), which is 

also supported by a previous study showing similar induction of GAL genes for cbc1Δ and cbc2Δ 

mutants (Lahudkar et al., 2011); second, in GAL genes, regulation of PIC formation by CBC seems to 

occur after mRNA capping, since depletion of the capping enzymes, Cet1 and Ceg1, also render 
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defects in TBP and RNAPII recruitment (Lahudkar et al., 2011). Third, the deletion of Cbc1 has been 

previously shown to significantly reduce the stability of Cbc2, whereas the stability of Cbc1 is not 

dependent on the presence of Cbc2, indicating that in a cbc2Δ mutant there is sufficient Cbc1 

protein amount but is unable to bind the 5’ mRNA cap (Wong et al., 2007). However, given that 

neither monomeric Cbc1 nor Cbc2 is able to bind the mRNA cap (Izaurralde et al., 1994, Izaurralde et 

al., 1995a), it is therefore more likely that the molecular functions of the two subunits of CBC are 

synergetic and inter-dependent and linked to their association with the mRNA cap structure.  

 

4.4.2 Cbc1 specifically enhances transcription of highly expressed genes  

Interestingly, our work presents Cbc1 as a factor that shows functional bias towards highly 

expressed genes, as such that it is required for the high expression of osmostress-induced genes 

during osmotic stress treatment and RP genes under normal conditions and during the recovery 

phase of osmotic stress response. Furthermore, previous studies showed that Cbc1 regulates 

transcription of highly induced GAL genes and of two constitutive genes, PMA1 and ADH1, with high 

levels of expression under normal conditions (Lidschreiber et al., 2013, Hossain et al., 2013, 

Lahudkar et al., 2011). Most importantly, we show that, under non-stress conditions, transcription of 

the highest transcribed genes is significantly reduced in cbc1Δ mutant, and on the contrary, 

transcription of the lowest transcribed genes is even slightly augmented in cbc1Δ (Figure 4.11). 

These observations suggest that although Cbc1 binds all mRNAs, it does not affect RNAPII 

trasnscription equally in all genes. Previous expression analysis of RNA levels by microarrays have 

shown that Cbc1 deletion leads to a two-fold altered expression of a subset of yeast genes (around 6 

%) (Hossain et al., 2009), and in mammalian cells depletion of the Cbc1 homolog, Cbp80, results in 

the deregulation of around 400 genes (Narita et al., 2007). We propose that the specificity of Cbc1-

mediated transcriptional regulation depends on the gene transcription rate and the velocity of its 

induction kinetics under induced conditions, and therefore, not restricted to one or two specific 

activators. In fact, although Cbc1 is observed to mediate Hot1/Hog1 promoter recruitment to a 

subset of genes, Cbc1 is also found to be required for the transcriptional upregulation of Hog1-

independent genes during osmotic stress (Figure 4.2A), suggesting that Cbc1 may function to 

positively recruit other gene-specific activators to their corresponding promoters of upregulated or 

highly expressed genes. Indeed, this is the case for establishing the high transcription of RP genes, 

which is mediated by Cbc1 through the accumulation of Rap1. Furthermore, although in our work 

we show a physical interaction between Hot1/Hog1 complex and Cbc1, further investigation is 
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needed to understand how Cbc1 is able to regulate the accumulation of different gene-specific 

activators on promoters. 

Taken together, we provide a model in which highly transcribed genes, containing high density of 

RNAPII, recruits more CBC to bind to the mRNA 5´ cap, and once bound, CBC then aids subsequent 

rounds of transcription initiation and formation of PIC through the accumulation at promoters of 

gene-specific activators, which in turn increase the PIC formation to further induce mRNA expression 

of genes in a positive feedback loop.  

 

4.4.3 Impact of Cbc1 on the protein expression of activators  

We have observed that deletion of CBC1 appears to increase or decrease protein expression of the 

Cbc1-dependent chromatin binding activators Hot1, Rap1 and TBP (Figures 4.7 and 4.10). In the case 

of Hot1 and Rap1, a higher protein level is observed in a cbc1Δ mutant, and therefore the reduced 

promoter association of these factors is not caused by reduced protein expression. For TBP, a 

significant lower protein level is observed in cbc1Δ, which could explain the reduced TBP and RNAPII 

promoter enrichment. Alternatively, it is possible that the decreased promoter accumulation of 

these transcription activators in absence of Cbc1 in turn causes a change in their protein stabilities, 

as such that decreased promoter association results in increased Hot1 and Rap1 stability. Similarly, 

TBP protein may be rendered more unstabled due to a decrease in its chromatin association as a 

consequence of decrease Hot1/Hog1 recruitment in cbc1Δ. Our hypothesis is supported by previous 

studies showing that the ubiquitin protease Ubp3, which reverses the ubiquitination of TBP during 

transcriptional activation (Chew et al., 2010), is recruited by Hog1 to osmostress-inducible 

promoters where it modulates transcription, suggesting that Ubp3 could protect promoter-bound 

TBP from degradation (Sole et al., 2011). Moreover, a connection between recruitment of gene-

specific activators to chromatin and enhanced degradation has been established by other studies 

(Molinari et al., 1999, Rosonina et al., 2012), and the attenuation of stress response has been 

connected to nuclear protein modification and degradation of such activators as Msn2 (Bose et al., 

2005, Chi et al., 2001). Furthermore, our results also reveal a delay in HOG signalling downregulation 

in cbc1Δ, as Hot1 and Hog1 remain phosphorylated for longer following osmotic stress exposure, 

which correlate with decreased promoter binding of these factors (Figure 4.7), suggesting that 

dephosphorylation occurs on chromatin-bound proteins.   

 



141 
 

4.4.4 Biological relevance of Cbc1 function in gene expression  

Based on our results, we present a model in which Cbc1 is required for adequate cellular 

transcription, in which its absence may cause growth defects under normal and/or stress conditions. 

Furthermore, we observe that transcription of ribosomal protein genes is reduced by around 40 % in 

cbc1 mutant in respect to wild type (Figure 4.9) and lower RP expression has been shown to 

correlate with lower growth rate both under non-stress and stress conditions (Levy et al., 2007, 

O'Duibhir et al., 2014). Accordingly, we have observed a longer duplication time in cbc1 mutant in 

respect to wild type (2.1 and 1.5 hours, respectively) in rich media under normal conditions. 

Moreover, we have shown that cbc1Δ mutants show growth defects and lower viability under 

osmotic stress (Garre et al., 2012), however, the function of Cbc1 upon osmostress goes beyond its 

role in transcription, since we have previously documented that Cbc1 associates with polyribosomes 

in active translation and, moreover, the absence of Cbc1 reduces the percentage of osmostress 

mRNAs engage in active translation (Garre et al., 2012). Additionally, in Arabidopsis, the cap-binding 

proteins Cbp80 and Cbp20 modulate the response to osmotic stress through the regulation of pre-

mRNA splicing, and hence gene expression, of several genes involved in sugar and proline 

metabolism (Kong et al., 2014). Yeast Cbc1 has also important roles in splicing and specifically in the 

processing of the introns of RP genes (Bragulat et al., 2010), whose pre-mRNAs are also highly 

regulated in response to osmotic stress (Garre et al., 2013). Together, these results suggest that 

Cbc1 has multifunctional roles during osmotic stress, and acts as a key factor coordinating different 

levels of gene expression. The response to other environmental stresses also requires high and 

timely transcription of protective genes coupled with downregulation and later recovery of house-

keeping genes, such as RP genes (Canadell et al., 2015). Our observation that cellular growth under 

various stresses requires Cbc1 and Cbc2 (Figure 4.12), suggest that the multifunctional roles in gene 

expression of the mRNA cap-binding proteins are necessary to attain an adequate response to 

stress. 

In conclusion, we have made several interesting observations in regards to the function of Cbc1 in 

transcription. First, Cbc1 is required for the high and timely induction of osmostress-responsive 

genes by directly recruiting the Hot1/Hog1 activator complex to promoters, which then 

subsequently enhances TBP and RNAPII binding. Second, Cbc1 is specifically required for RP gene 

transcription under non-stress condtions as well as during transcriptional recovery following osmotic 

stress adaptation by directing Rap1 and TBP association to RP promoters. Third, Cbc1 shows 

functional bias towards highly expressed or induced genes compared to lowly expressing genes. 

Finally, Cbc1, together with Cbc2, is required for the response to other environmental stresses. 
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5.1 Background 

The evolutionarily conserved essential eIF5A is the only protein known to undergo hypusination, a 

unique post-translational modification, involving two enzymic steps catalysed in S. cerevisiae by the 

deoxyhypusine synthase Dys1 and the deoxyhypusine hydroxylase Lia1 (Park et al., 1993, Abbruzzese 

et al., 1989). Both eukaryotic eIF5A and its bacterial ortholog, EF-P, were first identified as 

translation factors for their ability to carry out translation in in vitro systems (Kemper et al., 1976, 

Glick and Ganoza, 1975). Additionally, endogenous hypusinated eIF5A was observed to bind with 

actively translating 80S ribosomes in an RNA-dependent manner (Jao and Chen, 2006). However, 

depletion of eIF5A in yeast only causes a 30 % decrease in protein synthesis rate, which does not 

explain its essential nature in yeast and mammalian cells (Kang and Hershey, 1994, Hanauske-Abel et 

al., 1994b). eIF5A was later defined as a translation elongation factor as depletion of eIF5A causes 

polysome accumulation as well as increasing transit time of ribosomes along mRNAs (Saini et al., 

2009, Dias et al., 2012). Most recently, the activity of the bacterial ortholog EF-P is found to be 

required to alleviate ribosome stalling and stimulate peptide bond formation between proline 

residues, being essential for the translation of proteins with three or more consecutive proline 

residues (Ude et al., 2013, Doerfel et al., 2013). In S. cerevisiae, eIF5A has also been demonstrated to 

be required for the translation of polyPro-containing reporters with three or more consecutive 

proline residues both in vivo and in vitro (Gutierrez et al., 2013). Although the molecular role of 

eIF5A is beginning to be elucidated, its essentiality in cellular processes and its biological significance 

are yet to be uncovered (see section 1.6). 

 Several lines of evidence have led us to hypothesise that eIF5A may have a role in yeast fertility 

through the specific translation of proteins with polyPro sequences involved in mating. First, the 

hypusine-derivative spermidine, a member of the polyamine family, is indispensable for fertilisation 

efficiency in all eukaryotes (Lefevre et al., 2011). In S. cerevisiae, spermidine is required for the 

formation of the shmoo during sexual reproduction, and has also been shown to be essential for 

effective fertilisation in C. elegans (Bauer et al., 2013). Second, eIF5A has also been implicated to 

play a role in polarized cellular growth. eIF5A knockout in mice causes early embryonic lethality, and 

in C. elegans, mutation of eIF5A produces slow larval growth, structural abnormalities and sterile 

adults (Nishimura et al., 2012, Hanazawa et al., 2004). Furthermore, in yeast, depletion of eIF5A has 

shown to change actin dynamics (Chatterjee et al., 2006). Third, recent studies have described both 

the bacterial homolog EF-P and the yeast eIF5A to be essential for the specific translation of genes 

containing three or more consecutive proline residues by alleviating ribosome stalling (Ude et al., 
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2013, Doerfel et al., 2013, Gutierrez et al., 2013). Finally, we have conducted a search for the 

number and functional roles of polyPro proteins in S. cerevisiae, and found that many polyPro 

proteins fall under the functional categories of shmoo formation and site of polarised growth (Figure 

3.1). Based on our search results and previous studies, we therefore proposed that hypusinated 

eIF5A may be necessary for the translation of proline-rich proteins implicated in yeast fertility. To 

explore this hypothesis, we utilised temperature-sensitive mutants to deplete eIF5A protein 

expression, and assessed the cellular ability to form shmoo, localise components of the polarisome 

and induce pheromone-dependent genes. Furthermore, we evaluated the translational dependency 

of polyPro proteins on the protein expression of eIF5A. 

Overall, our studies confirm that eIF5A functions in the translation of polyPro proteins, and for the 

first time, we provide a functional role for eIF5A in yeast mating. 

 

5.2 Results 

5.2.1 Pheromone-induced shmoo formation is inhibited in eIF5A mutants  

To investigate the possible functional role of yeast hypusinated eIF5A, we first searched the number 

of polyPro proteins in S. cerevisiae and their functional roles. As shown in Figure 5.1A, 549 yeast 

proteins were found to contain at least one motif of three consecutive proline residues, followed by 

a decreasing number of proteins with increasing number of consecutive prolines. A further search 

using Gene Ontology (GO) tools revealed four significant over-represented categories, including “site 

of polarized growth” and “mating projection (shmoo)” (Figure 5.1B). Furthermore, only two yeast 

proteins, Bnr1 and Bni1, contain 10 or more consecutive prolines. These two proteins are 

evolutionary conserved formins that function in the regulation of actin cytoskeleton during budding 

(Pruyne et al., 2004, Imamura et al., 1997), with Bni1 also involved in shmoo formation during 

mating (detailed in section 1.4) (Evangelista et al., 1997). From these data, we investigated whether 

eIF5A is involved in shmoo formation through the regulation of Bni1. 
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Figure 5.1 Number and functional categories of S. cerevisiae proteins containing three or more 

consecutive prolines. (A) Number of yeast proteins containing polyproline stretches with the indicated 

consecutive prolines. Formins Bni1 and Bnr1 are the only yeast proteins with polyproline stretches with 10 

or more prolines. (B) GO functional categories significantly over-represented in 549 yeast genes containing 

a single polyPro stretch with at least three consecutive prolines. Bars represent the number of genes found 

in each category and the p-value is indicated for each category. 

 

Firstly, we evaluated the ability to form shmoo projections under pheromone-treatment of mutants 

in genes SPE2 (biosynthesis of spermidine), LIA1 (deoxyhypusine hydroxylase of eIF5A), mutants in 

the formins BNR1 and BNI1, and mutant in the non-essential eIF5A gene, TIF51B. lia1Δ was unable to 

form shmoos in the presence of α-factor, whereas, as expected in a rich media where spermidine is 

available, spe2Δ showed a percentage of shmoo formation similar to the wild type (Figure 5.2A). 

Since the only known target of Lia1 is eIF5A, these results suggest that hypusination of eIF5A is 

necessary for shmoo formation and that perhaps the essential requirement of spermidine relies on 

eIF5A activation by hypusination. Furthermore, tif51BΔ was able to shmoo, and, as it has been 

described, the formin Bni1, but not Bnr1, is essential for shmooing (Figure 5.2A).  
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Figure 5.2 Yeast shmoo formation requires hypusinated eIF5A. Representative DIC images of wild type and 

mutants with or without treatment of 10 μg/ml α-factor for 2 h. (A) Null mutants were maintained in 30 ºC, 

and (B) temperature-sensitive mutants were maintained at 25 ºC or transferred to 37 ºC for 4 h. Mutants 

containing temperature sensitive alleles in the essential proteins topoisomerase II (top2-1) and 

karyopherine Crm1/Xpo1 (xpo1-1) were used as controls. Quantification of percentage of cells containing 

shmoos in samples treated with α-factor is indicated. Approximately 300 cells were manually counted for 

each sample from at least two independent experiments.  

 

Secondly, to evaluate the shmoo forming ability of yeast cells lacking in eIF5A, we used temperature-

sensitive strains that harboured mutations in the TIF51A gene as previously described (Valentini et 

al., 2002, Li et al., 2011). Mutants tif51A-1 and tif51A-3 contain a single (Pro83 to Ser) and double 

(Cys39 to Tyr, Gly118 to Asp) mutation respectively in eIF5A protein. Both mutants showed a 

decrease in viability after 8 hours incubation at 37 ºC, with a more severe growth defect in tif51A-3 

(see Figure 5.3A, B and D). Accordingly, eIF5A protein was mostly depleted after 4 h of incubation at 

37 ºC in both mutants (Figure 5.3D and E). Treatment with 10 μg/ml α-factor induced shmoo 

formation in eIF5A mutants and wild type at permissive temperature (25 ºC) (Figure 5.2B). However, 

at restrictive temperature (37 ºC), tif51A-1 yield very low shmooing (7.7 %) and tif51A-3 was unable 

to shmoo, with most cells in both strains appearing ellipsoidal. As previously described, bni1Δ 
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showed a low percentage of shmoo formation at both temperatures (Figure 5.2B). As positive 

control in shmoo formation at 37 ºC, we also used two other temperature-sensitive mutants in 

essential genes (top2-1 mutation in topoisomerase II and xpo1-1 mutation in exportine Crm1/Xpo1) 

and observed that, in both, the percentages of shmoo formation were similar at permissive and 

restrictive temperatures (Figure 5.2B). Taken together, these results indicate that hypusinated eIF5A 

is required for successful shmoo formation. 

 

 

 

Figure 5.3 Depletion of the eIF5A protein results in lethality. (A, B) Percentage of viable cells and number 

of cells per ml in wild type, tif51A-1 and tif51A-3 grown in YPD at 25 ºC or after incubation at non-

permissive 37 ºC at the times indicated. (C) Exponentially growing cultures at 25 ºC of wild type, tif51A-1 

and tif51A-3 were plated onto YPD medium (10-fold serial dilutions) and incubated at 25 ºC, 30 ºC, 34 ºC 

and 37 ºC. (D and E) Immunoblots showing eIF5A protein depletion in tif51A-1 and tif51A-3 after incubation 

at 37 ºC for the indicated times. eIF5A protein expression was also visualized in wild type under the same 

conditions. 
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5.2.2 eIF5A is required to shmoo-localise Spa2, induce FUS1 gene and assemble actin cables during 

pheromone stimulation 

To further investigate the basis for the defect in shmoo formation in tif51A mutants, we tracked, by 

flouresence microscopy, the localisation of Spa2, a known component of the polarisome that 

aggregates at the shmoo tip during mating through its interaction with Bni1 (Liu et al., 2012, 

Fujiwara et al., 1998). Upon pheromone treatment at 25 ºC, wild type and tif51A mutants showed 

Spa2-GFP accumulation at the shmoo tip, meanwhile Spa2 was delocalised in bni1Δ (Figure 5.4). 

Inactivation of eIF5A by incubation at 37 ºC inhibited polarised localisation of Spa2 in tif51A-1 and 

tif51A-3 mutants (Figure 5.4).  

 

 

 

Figure 5.4 Localisation of the polarisome protein Spa2 at the shmoo tip in response to pheromone 

requires eIF5A. Representative GFP and their corresponding DIC images of wild type, bni1Δ, tif51A-1 and 

tif51A-3 mutants overexpressing Spa2-GFP. Cells were maintained at 25 ºC or transferred to 37 ºC for 4 h. 

Cells were examined after treatment with 10 μg/ml α-factor for 2 h. 

 

Furthermore, in order to determine the full activation of the MAP kinase Fus3 with α-factor, we 

examined the expression of the FUS1 gene, which encodes a pheromone-induced transmembrane 

protein involved in cell fusion (Trueheart and Fink, 1989). A FUS1-lacZ fusion protein was induced 

under pheromone treatment in wild type and to a lower level in tif51A mutants at permissive 

temperature. However, no FUS1-lacZ induction was observed in eIF5A mutants at restrictive 

temperature (Figure 5.5A). In bni1Δ, FUS1 gene was not induced at 37 ºC, and surprisingly, FUS1 
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induction was observed at 25 ºC (Figure 5.5A). In contrast to the observed defects in FUS1 induction, 

tif51A mutants were able to induce an osmotic stress gene (STL1) fused to LacZ during osmotic 

stress treatment, indicating that, at  experimental conditions, tif51A mutants maintain the ability to 

induce signalling pathways in response to external stimuli (Figure 5.5B). 

 

 

 

Figure 5.5 Expression of FUS1-lacZ in response to pheromone requires eIF5A. Expression of FUS1-LacZ (A) 

or STL1-LacZ fusion (B) in wild type and mutants. Cells were grown at 25 ºC or 4 h at 37 ºC and then treated 

with 10 μg/ml α-factor for either 1 h or 2 h (A) or stressed with 0.6 M KCl for 45 min (B). Error bars 

represent the standard error of the mean of three or more biological replicates. 

 

It has been previously described that depletion of eIF5A causes changes in the actin cytoskeleton by 

unknown mechanisms (Chatterjee et al., 2006, Zanelli and Valentini, 2007). We therefore 

investigated the role of eIF5A in pheromone-induced polarisation of actin cables by Phalloidine-

staining of actin before and after treatment with pheromone, which was then visualized using 

fluorescent microscopy. At 25 ºC in the absence of α-factor, eIF5A mutants showed a normal pattern 

of actin with patches and cables (Figure 5.6). Addition of α-factor at permissive temperature induced 
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the formation of actin cables from the shmoo tip in tif51A-1 and wild type cells, and actin was 

visualised mainly as patches in tif51A-3. However, at 37 ºC with α-factor, both eIF5A mutants were 

unable to form actin cables, but contained delocalised actin patches. Consistent with previous 

reports (Matheos et al., 2004), actin was observed as intense delocalized patches in all conditions in 

bni1 mutant. Therefore, eIF5A is necessary for the formation of actin cables upon pheromone 

stimulation.  

 

 

Figure 5.6 Polymerisation and localisation of actin cables require eIF5A during shmoo formation. 

Representative fluorescence and their corresponding DIC images of wild type, tif51A-1, tif51A-3 and bni1Δ 

showing F-Actin staining by phalloidin (Alexa Fluor 488®) at 25 ºC or after incubation for 4 h at 37 ºC, in the 

presence or absence of treatment with 10 μg/ml α-factor for 2 h. 
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Taken together, these results indicate that eIF5A controls different outcomes of pheromone 

signalling, including induction of pheromone-responsive genes and localisation of components of the 

polarisome at the shmoo. Given the essential role of actin in the induction of cell polarisation during 

mating (Slaughter et al., 2009), these downstream effects could be a direct result of the essentiality 

of eIF5A in actin polymerization, which may occur through the regulation of Bni1.  

 

5.2.3 eIF5A is required for the translation of the polyproline formin Bni1 

The formin Bni1 is a large protein containing three segments of 10, 12 and 5 consecutive proline 

residues in the formin homology domain 1 (FH1), the domain required for assembly of actin 

filaments (Figure 5.7) (Sagot et al., 2002). Since it has been shown that the bacterial ortholog of 

eIF5A, EF-P, enhances the synthesis of proteins containing polyPro stretches (Ude et al., 2013, 

Doerfel et al., 2013), we hypothesised that yeast eIF5A may be involved in the translation of the 

polyPro motifs of Bni1, and that low levels of Bni1 in eIF5A mutants is the basis for their inability to 

shmoo. To test this, we obtained two genomic HA tagged versions of BNI1 in wild type and tif51A-1; 

a full-length BNI1 with HA after the coding region (BNI1-HA) and a truncated BNI1 with HA fused 

before the first polyPro stretch (BNI1ΔCt-HA) (Figure 5.7A). The shift of wild type cells from 25 ºC to 

37 ºC slightly reduced the protein levels of Bni1-HA and Bni1ΔCt-HA. However, full-length Bni1-HA 

level was importantly reduced in tif51A-1 cells after 2 hours of incubation at 37 ºC, and was almost 

undetectable after 6 hours. Conversely, we only observed a partial reduction in truncated Bni1ΔCt-

HA protein levels in tif51A-1 after the shift to 37 ºC, and this level was sustained up to 6 h (Figure 

5.7B). We then analysed BNI1-HA and BNI1ΔCt-HA mRNA expression in the same cell cultures by RT-

qPCR and calculated the protein/mRNA ratios as an indication of translation efficiency, which was 

normalised to the translation efficiency of a control gene encoding hexokinase 2 (HXK2), a protein 

with no polyPro motifs. After temperature shift, tif51A-1 showed an important decrease in the 

translation efficiency of full length BNI1, reaching almost zero after 6 h. In comparison, the 

translation efficiency of C-terminus truncated BNI1 lacking the polyPro motifs was sustained from 2 

to 6 hours upon eIF5A depletion (Figure 5.7C). These results suggested that eIF5A controls the 

protein expression of the Bni1 formin and is required for the translation of the polyPro motifs. To 

further demonstrate that the polyPro motifs are specifically responsible for the translation 

dependency of BNI1 on eIF5A, we obtained an additional bni1 mutant, in which only a short genomic 

region of the FH1 domain containing the polyPro stretches was deleted, maintaining intact the rest 

of the BNI1 C-terminus (BNI1ΔPro-HA) (Figure 5.7A). In tif51A-1, the translation efficiency of 

Bni1ΔPro also reduced at 37 ºC but was sustained at 4 and 6 hours of incubation at restrictive 
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temperature, with similar efficiencies observed in the wild type strain (Figure 5.7B and C). Hence, 

while the translation of Bni1 containing polyPro motifs is dependent on eIF5A, a Bni1 mutant 

without these motifs is not dependent on eIF5A. This strongly suggests that eIF5A is involved in the 

specific translation of the proline-rich regions of Bni1.   

 

 

 

Figure 5.7 Translation of the proline stretches of the formin BNI1 requires eIF5A. (A) Schematic diagrams 

showing C-terminal HA genomic tagging of full-length (BNI1-HA), C-terminal truncated (Δ1240-1954, 

BNI1ΔCt-HA) and proline-deleted (Δ1239-1307, BNI1ΔPro-HA) Bni1. Formin homology (FH) and protein 

interaction domains are indicated, as well as the polyPro stretches with the number of consecutive prolines 

represented in red. The numbers below the boxes indicate the first amino acid of each domain or stretch. 

(B) Immunoblots with antibodies against HA and hexokinase 2 protein (Hxk2) to show expression of full-

length Bni1, C-terminal truncated Bni1, proline-deleted Bni1 and Hxk2 in wild type and tif51A-1 at 25 ºC or 

37 ºC at the indicated times. (C) Translation efficiency of BNI1-HA, BNI1ΔCt-HA and BNI1ΔPro-HA relative to 

translation efficiency of HXK2 in wild type and tif51A-1. Protein/mRNA ratios for Bni1, Bni1ΔCt-HA, 

Bni1ΔPro-HA and Hxk2 were calculated by Western (B) and quantitative PCR from same samples. 

Translation efficiencies of BNI1-HA, BNI1ΔCt-HA and BNI1ΔPro-HA are calculated relative to translation 

efficiency of HXK2 and represented as a fraction against 25 ºC for each strain. 
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It is noteworthy to mention that the above results could have an alternative interpretation, where 

the differences in protein amount seen between Bni1 wild type and Bni1 mutants are due to 

different protein degradation rates , and it could be that eIF5A is involved in the stabilisation of only 

the wild type Bni1 protein. Although we cannot exclude this possibility, the fact that the specific 

elimination of the Bni1 polyPro stretches renders the protein eIF5A-independent deems the 

interpretation that the eIF5A elongation factor is involved in Bni1 translation rather than in the 

regulation of protein stability to be more reasonable. Bni1 protein stability has been studied in a 

previous work in which it was demonstrated that local cell wall/membrane damage results in the 

PKC-regulated proteosomal degradation of Bni1 (Kono et al., 2012). Moreover, it was described that 

the Bni1 N-terminal region (amino acids 1-642), which does not contain the polyPro motifs, is 

responsible for this regulated degradation that can be provoked by heat-shock at 39 ºC (Kono et al., 

2012). Perhaps, our observation that Bni1 protein levels slightly decrease in all strains during the 

shift from 25 ºC to 37 ºC (Figure 5.7B) could be explained by the regulation of Bni1 degradation 

during a mild heat-shock.  

 

5.2.4 Over-expression of Bni1 protein partially restores the shmoo formation defect of eIF5A 

mutants  

Finally, we addressed the possibility of suppressing the eIF5A mutant shmoo defect by increasing 

cellular levels of Bni1. To do so, we used a multicopy plasmid containing a BNI1-HA fusion under the 

control of the strong GAL promoter (Kono et al., 2012). Given the unessential nature of Bni1 to cell 

viability, the lack of this protein cannot explain the essentiality of eIF5A, and therefore, as expected, 

the growth defect at restrictive temperature of tif51A-1 and tif51A-3 mutant cells was not recovered 

when GAL-BNI1 was expressed in media containing galactose (Figure 5.8A). In over-expression 

conditions, we observed a high increase in Bni1 protein levels in wild type and in tif51A-1 at 

permissive temperature with respect to the genomic endogenous Bni1 levels, however, Bni1 protein 

level increased only slightly in tif51A-1 at restrictive temperature (Figure 5.8B). This result further 

confirms that eIF5A is necessary for the production of Bni1 protein, even when over-expressing the 

BNI1 gene. Nevertheless, a slight increase in Bni1 protein was obtained in eIF5A mutants in 

restrictive temperature, therefore we studied if this increase could improve the shmoo formation of 

eIF5A mutants. As expected, a complete complementation of the shmoo formation defect in bni1 

mutant was observed by inducing GAL-BNI1. We also observed, at restrictive temperature, higher 

percentages of shmoo formation in tif51A-1 (19.5 %) and tif51A-3 (6.9 %; Figure 5.8C) in respect to 

what was observed in these strains without BNI1 over-expression (7.7 % and 0 %, respectively; 
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Figure 5.2B). This partial suppression of the shmoo defect seen in eIF5A mutants by a slight increase 

in Bni1 protein levels further supports that the shmooing defect in these mutants is due to the low 

levels of Bni1 formin. Additionally, since increasing Bni1 protein levels does not produce a total 

restoration of shmoo formation ability in eIF5A mutants, it suggests that more Bni1 protein would be 

necessary for a full complementation or that other proteins involved in shmoo formation might be 

under the translational control of eIF5A.  

 

 

Figure 5.8 Over-expression of the formin BNI1 partially restores the shmoo formation defect of eIF5A 

mutants. (A) Over-expression of BNI1 does not restore the growth defect of eIF5A thermo-sensitive 

mutants at restrictive temperature. Growths of the indicated yeast strains containing a plasmid expressing 

BNI1 under the GAL promoter were tested in Sgal-URA plates incubated at the indicated temperatures. (B) 

Immunoblots with antibodies against HA and hexokinase 2 protein (Hxk2) to show the expression of 

genomic Bni1 (BNI1) or the over-expression of Bni1 under the GAL promoter (GAL-BNI1) at 25 ºC or 37 ºC 

for 4 h. (C) Shmoo formation is partially restored in eIF5A mutants. The indicated strains containing a GAL-

BNI1 plasmid were grown at 25 ºC in Sgal-URA media and then were maintained at 25 ºC or transferred to 

37 ºC for 4 h. Quantification of percentage of cells forming shmoos in samples treated of 10 μg/ml α-factor 

for 3 h are indicated. Approximately 300 cells were manually counted for each sample from at least two 

independent experiments. 
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5.3 Discussion 

5.3.1 Role of eIF5A in polarised cell growth and fertility 

The budding yeast is often used as a model organism to study molecular interactions that generate 

cell polarity in response to external stimuli. During the yeast mating response, pheromones 

produced by partner cells are detected by specific cell-surface receptors, and as a result, a mating 

project, the shmoo, is formed towards the pheromone gradient. Remarkably, many of the genes that 

control cell polarity are conserved between yeast and more complex eukaryotes, making them great 

candidates for genetic study.  

Formins are a group of highly conserved eukaryotic proteins that are involved in several actin-based 

processes, including cell polarisation, cytokinesis, and embryonic development (Ridley, 1999, Zeller 

et al., 1999). In S. cerevisiae, formin Bni1 is required for the formation of actin cables to form a 

shmoo in response to pheromone. Characteristically, Bni1 contains long stretches of consecutive 

prolines located in the formin homology domain 1 (FH1), which has been conserved amongst 

eukaryotic formins (Pruyne et al., 2002, Sagot et al., 2002). In this thesis, we describe the role of 

translation elongation factor eIF5A and its activating enzyme Lia1 in shmoo formation during mating 

through the translation of the proline stretches in Bni1. First, we show that a mutant lacking in eIF5A 

is defective in all downstream events of polarised cell growth, including polarised localisation of 

polarisome component Spa2 at the shmoo tip, induction of the fusion gene FUS1, and the 

polarisation of actin filaments (Figures 5.2-5.6). Since Bni1 is known to be activated by pheromone-

responsive MAP kinase Fus3, and, concurrently, Bni1 is required for fully activation of Fus3 by 

mediating its polarised localisation at the shmoo (Matheos et al., 2004, Qi and Elion, 2005), we went 

on to show that the defect in shmoo formation in eIF5A mutant is a direct consequence of 

dramatically low levels of Bni1 protein upon eIF5A depletion (Figures 5.7 and 5.8). Utilising three 

genomically-tagged BNI1 versions: a full-length wild type Bni1 whose translation is sensitive to 

eIF5A, and two Bni1 mutants, containing either the deletion of the C-terminus (Bni1ΔCt), and by 

effect deleting the polyPro stretches or the specific deletion of the three polyPro motifs (Bni1ΔPro), 

whose translations are eIF5A-independent (Figure 5.7), our results strongly suggest that eIF5A is 

required for the specific translation of proline-rich sequences. Our data concords with previous 

findings (Doerfel et al., 2013, Gutierrez et al., 2013) to establish a clear role for eIF5A in the 

translation of poly-proline motifs; however, for the first time, we discovered a connection between 

its molecular function as a translation factor with a physiological role in yeast mating, as well as 

identifying a specific target Bni1 formin.  
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It is worth mentioning that the defects in shmooing (Figure 5.2) and actin cable formation (Figure 

5.6) are more severe in the eIF5A mutants than in bni1Δ. Additionally, the restoration of shmoo 

formation is only partial when over-expressing Bni1 in eIF5A mutants (Figure 5.8). These results 

suggest that Bni1 may not be the only polyPro potein involved in shmoo formation and actin 

organisation that is under the translational control of eIF5A. In fact, the GO functional category of 

¨mating projection¨ was significantly represented in the group of proteins with three or more 

consecutive prolines (Figure 5.1). More specifically, 38 proteins out of 119 in this functional category 

are polyPro proteins, and five of these proteins contain at least six consecutive prolines. Moreover, 

five yeast proteins that function in actin cable formation and cytoskeleton organisation contain 

polyPro motifs with at least seven consecutive prolines, including the only other yeast formin Bnr1. 

At first described as a functional homolog of Bni1, it was found that these two formins have different 

cellular localisations and contribute to different sets of actin cables (Buttery et al., 2007, Pruyne et 

al., 2004). In fact, we observed that a mutant lacking only Bnr1 is not defective in shmoo formation, 

unlike bni1Δ (Figure 5.2), indicating that  while Bni1 plays a role in yeast mating, its counterpart Bnr1 

may selectively play a role in yeast budding. Therefore, Bnr1 being a putative target of eIF5A, our 

results may provide evidence for another functional role for eIF5A in yeast budding. In all, the formin 

Bnr1 as well as the other polyPro proteins are putative targets of eIF5A that provide interest for 

further investigation. 

 

5.3.2 Role of eIF5A in polyPro translation 

Our study is not the first to describe a role for eIF5A in the translation of polyPro proteins. It has 

been originally described that the bacterial ortholog EF-P alleviates ribosome stalling in polyPro 

motifs, and the lysinylation of EF-P is required for its function (Doerfel et al., 2013, Ude et al., 2013). 

It has also been recently demonstrated in yeast that partial inactivation of eIF5A impairs expression 

of reporters and native proteins containing polyPro sequences in vivo (Gutierrez et al., 2013). 

Furthermore, in the absence of eIF5A, translating ribosomes stall on with the second or third Pro 

codon in the P sites, suggesting that eIF5A promotes synthesis of the Pro-Pro peptide bonds to 

convert diPro to higher order polyPro sequences (Gutierrez et al., 2013). The functional significance 

of polyPro motifs are starting to be visualised, as consecutive proline repeats form a unique 

secondary structure termed poly-L-proline type II (PPII) helix, which is a structural element of fibrillar 

proteins as well as holding functional significance in protein-protein and protein-nucleic acid 

interactions (Adzhubei et al., 2013). Proline-rich regions are predominately localised in solvent-

exposed or intrinsically disordered regions which are normally involved in intermolecular 
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interactions, including actin cytoskeleton organisation and signal transduction (Srinivasan and 

Dunker, 2012, Berisio and Vitagliano, 2012). A recent study by Mandal et al., describing the role of 

eIF5A in eukaryotic evolution through functional classification of polyPro proteins, has observed that 

consecutive polyPro repeats show the highest conservation among all amino acid repeats (Mandal et 

al., 2014). Furthermore, a marked increase in the frequencies of PPP and PPG motifs in higher 

organisms suggest a potential role for eIF5A in eukaryotic evolution (Mandal et al., 2014). More 

importantly, although bacterial EF-P is shown to function in polyPro translation, it is not essential for 

cellular function and nor are its modification enzymes (Doerfel et al., 2013, Ude et al., 2013, Navarre 

et al., 2010). In yeast, eIF5A is essential, however, the gene encoding the deoxyhypusine hydroxylase 

LIA1 is not (Park et al., 2006). In contrast, eIF5A and all its modification enzymes are required for the 

development of multi-cellular eukaryotes (Patel et al., 2009, Sievert et al., 2014). The increasing 

stringency in the requirement for the hypusinated form of eIF5A in the evolutionary tree may have 

evolved along with the increase in proPro proteins with critical functions in higher eukaryotes. 

 

 

 

Figure 5.9 Schematic model of eIF5A stimulating polyPro synthesis (Gutierrez et al., 2013). Ribosome 

stalls on the polyPro sequence with diPro attached to the P site and Pro-tRNA attached to the A site (left). 

Binding of eIF5A (indicated by an arrow), containing the post-translation modification hypusine (indicated), 

leaves the hypusine chain adjacent to the Pro-tRNA which helps to promote peptide bond formation with 

the diPro. 

 



160 
 

5.3.3 Implications for higher eukaryotes 

In humans, two eIF5A isoforms exist that share 84 % identity with each other and 65 % identity with 

yeast eIF5A, which are encoded by two genes, EIF5A1 and EIF5A2 (Jenkins et al., 2001). EIF5A1 is 

constitutively expressed in all human cells, and is especially abundant in proliferating cells. In fact, 

eIF5A-1 mRNA expression is driven by the oncogene c-myc and is over-expressed in cancer tissues 

(Caraglia et al., 2013). In contrast, EIF5A2, encoding the eIF5A-2 protein, is differentially expressed in 

parts of the brain and testis, however, was found to be up-regulated in selective ovarian and 

colorectal cancer cell lines (Clement et al., 2006). Furthermore, the differential over-expression of 

eIF5A-2 has been described to be associated with cellular transformation and metastasis of several 

cancer types including ovarian, colon, liver and bladder cancer (Guan et al., 2004, Xie et al., 2008, 

Yang et al., 2009a, Luo et al., 2009), making this protein particularly attractive as a 

chemotherapeutic target. Both human eIF5A isoforms are able to become hypusinated when 

expressed in yeast and can functionally substitute yeast eIF5A in yeast strains where TIF52A and 

TIF51B are disrupted (Clement et al., 2006, Schnier et al., 1991), indicating high levels of 

conservation from yeast to humans.  

Similarly, formins are also members of a highly conserved family of proteins, in which most members 

contain two C-terminal formin homology domains, FH1 and FH2, that participate in the control of 

cytoskeletal remodelling (DeWard et al., 2010). FH1 domain is particularly proline-rich, and it has 

been described that the number of polyPro stretches present is directly proportional to the rate 

profiling-mediated elongation of actin (Paul and Pollard, 2008), indicating the significance of its 

conservation in the evolutionary tree. Furthermore, several human formins have been directly linked 

to human diseases; for example, the mammalian formin mDia1 has been suggested as a tumour 

suppressor due to its association with APC in colorectal cancer, as well as being implicated in the 

immune response by mediating T cell adhesion and migration (reviewed in (DeWard et al., 2010)), 

and Fmnl2 is upregulated in colorectal cancers and it is associated directly with increased lymph 

node metastasis (Zhu et al., 2008). Most importantly, actin and microtubule cytoskeleton play 

several prominent roles in cancer and disease, including tumour morphogenesis, cancer metastasis 

and cellular migration, where cell movements and alterations in cell shape require spatial and 

temporal reorganisation of the cell cytoskeleton, (reviewed in (Hall, 2009, Fife et al., 2014)). 

Nonetheless, cancer therapeutics targeting actin have been largely unsuccessful due to 

cardiotoxicity. Our results indicate a direct molecular function for eIF5A in actin organisation and 

polarised cell growth through the translation of proline-rich formins in yeasts; it is very possible to 

envision that this role can be extended to higher eukaryotes to better understand their molecular 
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connection in the development of cancer and metastasis, and to aid the search for novel therapeutic 

targets.  

On the other hand, several lines of evidence suggest that the role of eIF5A in yeast mating could be 

extended to fertility in higher eukaryotes. Firstly, the polyamine spermidine is indispensable for 

mammalian reproduction at several stages, including spermatogenesis, oogenesis, embryogenesis, 

and implantation (Bauer et al., 2013). In yeast, being the only known substrate for eIF5A 

hypusination (Park et al., 2010), and similarly, eIF5A hypusination being described as the single most 

important activity requiring spermidine (Chattopadhyay et al., 2008b), it is very possible that eIF5A 

also plays a role in mammalian fertility. Secondly, gamete fusion and fertilisation during 

reproduction requires dynamic interactions between cytoskeletal components such as actin (in the 

form of microvilli) (Primakoff and Myles, 2007), and actin polymerisation is directly mediated by 

formins (Zeller et al., 1999). Finally, it has been described that the mammalian formin homology 

gene, formin-2, is required for the progression through metaphase during meiosis and mouse 

oocytes lacking in this gene is unable to form the first polar body (Leader et al., 2002). 

In conclusion, this thesis provides the first evidence of the functional role of eIF5A in yeast mating 

through the translation of polyPro formins. Since both eIF5A and formins are highly conserved from 

yeast to humans, this work can be the basis to further investigate their connection in the context of 

human diseases and fertility.  
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Chapter 3 

• In response to osmotic stress, signalling components of the HOG pathway come in close 

contact with each other to elicit efficient and appropriate signal transduction. Here, we have 

demonstrated that all Ste11 interactions require the adaptor protein Ste50, and occur under 

non-stress conditions which increase with osmotic stress. 

• The transient Ste11 interaction with its substrate Pbs2, which increases with osmotic stress, 

requires all upper components of the pathway and their dissociation is negatively regulated 

by Hog1. 

• The Ste11-Sho1 interaction does not require the Sho1-SH3 domain, but requires the adaptor 

Ste50 and osmosensors Msb2/Hkr1.  

• We have characterised a novel dynamic interaction between Ste11 and Msb2, in which 

Msb2 acts as a membrane concentrator of Ste11, requiring adaptors Ste50 and Opy2. 

However, the presence of Sho1 is not absolutely required for the Ste11-Msb2 interaction. 

• Comparing the binding affinities of Ste11 with several signalling components, we have seen 

that Ste11 robustly interacts with Sho1 and Msb2 both under stress and non-stress 

conditions, and these two interactions are stronger than the interaction between Ste11 and 

its substrate Pbs2.  

• Multiple negative feedbacks mediated by downstream components, Hog1 and Pbs2, 

regulate protein levels of Ste11 and Msb2 as well as Ste11 protein interactions with Pbs2, 

Sho1 and Msb2.  

 

Chapter 4 

• During osmotic stress response, the cap-binding protein Cbc1 is required for the 

reprogrammation of global transcription, and specifically it is required for the high and 

timely expression of osmostress-responsive genes. 

• Cbc1 is found to recruit the transcription activator complex Hot1-Hog1, through an 

interaction with Hog1, either direct or in close proximity, to appropriate promoters, which in 

turn enhances PIC formation and recruits RNAPII.  
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• Cbc1 also plays a role in ribosomal protein (RP) gene expression under non-stress and during 

the recovery from osmotic stress through the recruitment of RP-specific transcription factor 

(TF) Rap1 and formation of PIC. 

• We have found that Cbc1 has specific roles in driving the transcription of highly expressed 

genes compared to lowly expressed genes. 

• The function of Cbc1 appears to require Cbc2, and both factors are implicated not only in 

osmotic stress, but in heat, cold and calcium stress. 

• Our results also hint that Cbc1 may regulate protein expression of TBP and Hot1, and 

additionally it appears that Cbc1 has roles in the shutoff of Hog1 and Hot1 signalling during 

osmotic stress recovery. 

 

Chapter 5 

• The evolutionarily conserved translation factor eIF5A, described to promote the translation 

of proteins containing poly-proline (polyPro) motifs, has a number of potential genetic 

targets in yeast functioning in various molecular processes, in which four functional 

categories are over-represented: cellular bud, shmoo, site of polarised growth, and 

retotransposons. 

• In this work, eIF5A is found to play a role in the yeast pheromone response, where activated 

eIF5A, by hypusination, is required for the formation of the sexual projection shmoo towards 

a mating partner, the localisation of polarisome components at the shmoo tip, polarised 

actin assembly, and induction of cell fusion genes. 

• eIF5A is found to necessary for the translation of Bni1, a formin containing stretches of 10, 

12 and 5 consecutive proline residues, which is involved in polarised cell growth during 

shmoo formation. Furthermore, the exogenous overexpression of Bni1 also partially 

suppresses the shmooing defect observed in eIF5A mutants. 

• More specifically, the translation of the poly-proline motifs in Bni1 is eIF5A-dependent, and 

this translation dependency is lost upon deletion of the poly-prolines. 



 
 

 

 

 

 

 

 

Publications 



 
 



169 
 

• Tianlu Li, Nikki De Clercq, Daniel A. Medina, Elena Garre, Per Sunnerhagen, José E. Pérez-

Ortín, and Paula Alepuz, ¨The cap-binding protein Cbc1 is required for the high and timely 

expression of genes by stabilizing gene-specific activators and the pre-initiation complex at 

promoters¨, in draft. 

 

• Aurora Zuzuarregui*,  Tianlu Li*, Christina Friedmann, Gustav Ammerer, and Paula Alepuz, 

¨Msb2 is a Ste11 membrane concentrator required for full activation of the HOG pathway¨, 

Biochim Biophys Acta. 2015 June; 1849(6): 722-30. (IF=5.44) 

*These authors contributed equally to this work 

 

• Tianlu Li, Borja Belda-Palázon, Alejandro Ferrando, and Paula Alepuz. “Fertility and polarized 

cell growth depends on eIF5A for translation of polyproline-rich formins in Saccharomyces 

cerevisiae”, Genetics. 2014 Aug; 197: 1191-1200. (IF=4.87) 

 

• Ana Miguel, Fernando Montón, Tianlu Li, Fernando Gómez-Herreros, Sebastián Chávez, 

Paula Alepuz, and José E. Pérez-Ortín. “External conditions inversely change the RNA 

polymerase II elongation rate and density in yeast”, Biochim Biophys Acta. 2013 Nov; 

1829(11): 1248-55. (IF=4.66) 

 



 
 



 
 

 

 

 

 

 

 

Bibliography 



 
 



173 
 

ABBRUZZESE, A., PARK, M. H., BENINATI, S. & FOLK, J. E. 1989. Inhibition of deoxyhypusine 
hydroxylase by polyamines and by a deoxyhypusine peptide. Biochim Biophys Acta, 997, 
248-55. 

ABMAYR, S. M. & KELLER, C. A. 1998. Drosophila myogenesis and insights into the role of nautilus. 
Curr Top Dev Biol, 38, 35-80. 

ADZHUBEI, A. A., STERNBERG, M. J. & MAKAROV, A. A. 2013. Polyproline-II helix in proteins: 
structure and function. J Mol Biol, 425, 2100-32. 

AGUILERA, J. & PRIETO, J. A. 2001. The Saccharomyces cerevisiae aldose reductase is implied in the 
metabolism of methylglyoxal in response to stress conditions. Curr Genet, 39, 273-83. 

ALBERTYN, J., HOHMANN, S., THEVELEIN, J. M. & PRIOR, B. A. 1994. GPD1, which encodes glycerol-3-
phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces 
cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. 
Mol Cell Biol, 14, 4135-44. 

ALEPUZ, P. M., DE NADAL, E., ZAPATER, M., AMMERER, G. & POSAS, F. 2003. Osmostress-induced 
transcription by Hot1 depends on a Hog1-mediated recruitment of the RNA Pol II. EMBO J, 
22, 2433-42. 

ALEPUZ, P. M., JOVANOVIC, A., REISER, V. & AMMERER, G. 2001. Stress-induced map kinase Hog1 is 
part of transcription activation complexes. Mol Cell, 7, 767-77. 

ANDERSON, P. & KEDERSHA, N. 2009. RNA granules: post-transcriptional and epigenetic modulators 
of gene expression. Nat Rev Mol Cell Biol, 10, 430-6. 

ARKOWITZ, R. A. 1999. Responding to attraction: chemotaxis and chemotropism in Dictyostelium 
and yeast. Trends Cell Biol, 9, 20-7. 

ARKOWITZ, R. A. & LOWE, N. 1997. A small conserved domain in the yeast Spa2p is necessary and 
sufficient for its polarized localization. J Cell Biol, 138, 17-36. 

AUBLE, D. T., HANSEN, K. E., MUELLER, C. G., LANE, W. S., THORNER, J. & HAHN, S. 1994. Mot1, a 
global repressor of RNA polymerase II transcription, inhibits TBP binding to DNA by an ATP-
dependent mechanism. Genes Dev, 8, 1920-34. 

BABAZADEH, R., FURUKAWA, T., HOHMANN, S. & FURUKAWA, K. 2014. Rewiring yeast osmostress 
signalling through the MAPK network reveals essential and non-essential roles of Hog1 in 
osmoadaptation. Sci Rep, 4, 4697. 

BAI, C., TESKER, M. & ENGELBERG, D. 2015. The yeast Hot1 transcription factor is critical for 
activating a single target gene, STL1. Mol Biol Cell, 26, 2357-74. 

BALATSOS, N. A., NILSSON, P., MAZZA, C., CUSACK, S. & VIRTANEN, A. 2006. Inhibition of mRNA 
deadenylation by the nuclear cap binding complex (CBC). J Biol Chem, 281, 4517-22. 

BALTANAS, R., BUSH, A., COUTO, A., DURRIEU, L., HOHMANN, S. & COLMAN-LERNER, A. 2013. 
Pheromone-induced morphogenesis improves osmoadaptation capacity by activating the 
HOG MAPK pathway. Sci Signal, 6, ra26. 



174 
 

BARBERIS, A., MULLER, C. W., HARRISON, S. C. & PTASHNE, M. 1993. Delineation of two functional 
regions of transcription factor TFIIB. Proc Natl Acad Sci U S A, 90, 5628-32. 

BARDWELL, L. 2005. A walk-through of the yeast mating pheromone response pathway. Peptides, 
26, 339-50. 

BARON-BENHAMOU, J., FORTES, P., INADA, T., PREISS, T. & HENTZE, M. W. 2003. The interaction of 
the cap-binding complex (CBC) with eIF4G is dispensable for translation in yeast. RNA, 9, 
654-62. 

BASEHOAR, A. D., ZANTON, S. J. & PUGH, B. F. 2004. Identification and distinct regulation of yeast 
TATA box-containing genes. Cell, 116, 699-709. 

BATTLE, A., KHAN, Z., WANG, S. H., MITRANO, A., FORD, M. J., PRITCHARD, J. K. & GILAD, Y. 2015. 
Genomic variation. Impact of regulatory variation from RNA to protein. Science, 347, 664-7. 

BAUER, M. A., CARMONA-GUTIERREZ, D., RUCKENSTUHL, C., REISENBICHLER, A., MEGALOU, E. V., 
EISENBERG, T., MAGNES, C., JUNGWIRTH, H., SINNER, F. M., PIEBER, T. R., FROHLICH, K. U., 
KROEMER, G., TAVERNARAKIS, N. & MADEO, F. 2013. Spermidine promotes mating and 
fertilization efficiency in model organisms. Cell Cycle, 12, 346-52. 

BENNE, R. & HERSHEY, J. W. 1978. The mechanism of action of protein synthesis initiation factors 
from rabbit reticulocytes. J Biol Chem, 253, 3078-87. 

BERISIO, R. & VITAGLIANO, L. 2012. Polyproline and triple helix motifs in host-pathogen recognition. 
Curr Protein Pept Sci, 13, 855-65. 

BIDLINGMAIER, S. & SNYDER, M. 2004. Regulation of polarized growth initiation and termination 
cycles by the polarisome and Cdc42 regulators. J Cell Biol, 164, 207-18. 

BILSLAND-MARCHESAN, E., ARINO, J., SAITO, H., SUNNERHAGEN, P. & POSAS, F. 2000. Rck2 kinase is 
a substrate for the osmotic stress-activated mitogen-activated protein kinase Hog1. Mol Cell 

Biol, 20, 3887-95. 

BJORKLUND, S. & GUSTAFSSON, C. M. 2005. The yeast Mediator complex and its regulation. Trends 

Biochem Sci, 30, 240-4. 

BOSE, S., DUTKO, J. A. & ZITOMER, R. S. 2005. Genetic factors that regulate the attenuation of the 
general stress response of yeast. Genetics, 169, 1215-26. 

BOTSTEIN, D., CHERVITZ, S. A. & CHERRY, J. M. 1997. Yeast as a model organism. Science, 277, 1259-
60. 

BOY-MARCOTTE, E., PERROT, M., BUSSEREAU, F., BOUCHERIE, H. & JACQUET, M. 1998. Msn2p and 
Msn4p control a large number of genes induced at the diauxic transition which are 
repressed by cyclic AMP in Saccharomyces cerevisiae. J Bacteriol, 180, 1044-52. 

BRAGULAT, M., MEYER, M., MACIAS, S., CAMATS, M., LABRADOR, M. & VILARDELL, J. 2010. RPL30 
regulation of splicing reveals distinct roles for Cbp80 in U1 and U2 snRNP cotranscriptional 
recruitment. RNA, 16, 2033-41. 

BREWSTER, J. L., DE VALOIR, T., DWYER, N. D., WINTER, E. & GUSTIN, M. C. 1993. An osmosensing 
signal transduction pathway in yeast. Science, 259, 1760-3. 



175 
 

BRILL, S. J. & STERNGLANZ, R. 1988. Transcription-dependent DNA supercoiling in yeast DNA 
topoisomerase mutants. Cell, 54, 403-11. 

BRYANT, G. O. & PTASHNE, M. 2003. Independent recruitment in vivo by Gal4 of two complexes 
required for transcription. Mol Cell, 11, 1301-9. 

BULLWINKLE, T. J., ZOU, S. B., RAJKOVIC, A., HERSCH, S. J., ELGAMAL, S., ROBINSON, N., SMIL, D., 
BOLSHAN, Y., NAVARRE, W. W. & IBBA, M. 2013. (R)-beta-lysine-modified elongation factor P 
functions in translation elongation. J Biol Chem, 288, 4416-23. 

BURATOWSKI, S. 2003. The CTD code. Nat Struct Biol, 10, 679-80. 

BURATOWSKI, S. 2005. Connections between mRNA 3' end processing and transcription termination. 
Curr Opin Cell Biol, 17, 257-61. 

BURATOWSKI, S. 2009. Progression through the RNA polymerase II CTD cycle. Mol Cell, 36, 541-6. 

BURATOWSKI, S. & ZHOU, H. 1993. Functional domains of transcription factor TFIIB. Proc Natl Acad 

Sci U S A, 90, 5633-7. 

BURNS, L. T. & WENTE, S. R. 2014. Casein kinase II regulation of the Hot1 transcription factor 
promotes stochastic gene expression. J Biol Chem, 289, 17668-79. 

BUTTERY, S. M., YOSHIDA, S. & PELLMAN, D. 2007. Yeast formins Bni1 and Bnr1 utilize different 
modes of cortical interaction during the assembly of actin cables. Mol Biol Cell, 18, 1826-38. 

CALERO, G., WILSON, K. F., LY, T., RIOS-STEINER, J. L., CLARDY, J. C. & CERIONE, R. A. 2002. Structural 
basis of m7GpppG binding to the nuclear cap-binding protein complex. Nat Struct Biol, 9, 
912-7. 

CANADELL, D., GARCIA-MARTINEZ, J., ALEPUZ, P., PEREZ-ORTIN, J. E. & ARINO, J. 2015. Impact of 
high pH stress on yeast gene expression: A comprehensive analysis of mRNA turnover during 
stress responses. Biochim Biophys Acta, 1849, 653-64. 

CANG, Y., AUBLE, D. T. & PRELICH, G. 1999. A new regulatory domain on the TATA-binding protein. 
EMBO J, 18, 6662-71. 

CAPALDI, A. P., KAPLAN, T., LIU, Y., HABIB, N., REGEV, A., FRIEDMAN, N. & O'SHEA, E. K. 2008. 
Structure and function of a transcriptional network activated by the MAPK Hog1. Nat Genet, 
40, 1300-6. 

CARAGLIA, M., PARK, M. H., WOLFF, E. C., MARRA, M. & ABBRUZZESE, A. 2013. eIF5A isoforms and 
cancer: two brothers for two functions? Amino Acids, 44, 103-9. 

CASTILHO, B. A., SHANMUGAM, R., SILVA, R. C., RAMESH, R., HIMME, B. M. & SATTLEGGER, E. 2014. 
Keeping the eIF2 alpha kinase Gcn2 in check. Biochim Biophys Acta, 1843, 1948-68. 

CHATTERJEE, I., GROSS, S. R., KINZY, T. G. & CHEN, K. Y. 2006. Rapid depletion of mutant eukaryotic 
initiation factor 5A at restrictive temperature reveals connections to actin cytoskeleton and 
cell cycle progression. Molecular genetics and genomics : MGG, 275, 264-76. 

CHATTOPADHYAY, M. K., PARK, M. H. & TABOR, H. 2008a. Hypusine modification for growth is the 
major function of spermidine in Saccharomyces cerevisiae polyamine auxotrophs grown in 



176 
 

limiting spermidine. Proceedings of the National Academy of Sciences of the United States of 

America, 105, 6554-9. 

CHATTOPADHYAY, M. K., PARK, M. H. & TABOR, H. 2008b. Hypusine modification for growth is the 
major function of spermidine in Saccharomyces cerevisiae polyamine auxotrophs grown in 
limiting spermidine. Proc Natl Acad Sci U S A, 105, 6554-9. 

CHEN, D. C., YANG, B. C. & KUO, T. T. 1992. One-step transformation of yeast in stationary phase. 
Curr Genet, 21, 83-4. 

CHEN, R. E. & THORNER, J. 2007. Function and regulation in MAPK signaling pathways: lessons 
learned from the yeast Saccharomyces cerevisiae. Biochim Biophys Acta, 1773, 1311-40. 

CHEN, Z., GIBSON, T. B., ROBINSON, F., SILVESTRO, L., PEARSON, G., XU, B., WRIGHT, A., 
VANDERBILT, C. & COBB, M. H. 2001. MAP kinases. Chem Rev, 101, 2449-76. 

CHENEVERT, J., CORRADO, K., BENDER, A., PRINGLE, J. & HERSKOWITZ, I. 1992. A yeast gene (BEM1) 
necessary for cell polarization whose product contains two SH3 domains. Nature, 356, 77-9. 

CHERRY, J. M., ADLER, C., BALL, C., CHERVITZ, S. A., DWIGHT, S. S., HESTER, E. T., JIA, Y., JUVIK, G., 
ROE, T., SCHROEDER, M., WENG, S. & BOTSTEIN, D. 1998. SGD: Saccharomyces Genome 
Database. Nucleic Acids Res, 26, 73-9. 

CHERRY, J. M., HONG, E. L., AMUNDSEN, C., BALAKRISHNAN, R., BINKLEY, G., CHAN, E. T., CHRISTIE, 
K. R., COSTANZO, M. C., DWIGHT, S. S., ENGEL, S. R., FISK, D. G., HIRSCHMAN, J. E., HITZ, B. 
C., KARRA, K., KRIEGER, C. J., MIYASATO, S. R., NASH, R. S., PARK, J., SKRZYPEK, M. S., 
SIMISON, M., WENG, S. & WONG, E. D. 2012. Saccharomyces Genome Database: the 
genomics resource of budding yeast. Nucleic Acids Res, 40, D700-5. 

CHEW, B. S., SIEW, W. L., XIAO, B. & LEHMING, N. 2010. Transcriptional activation requires 
protection of the TATA-binding protein Tbp1 by the ubiquitin-specific protease Ubp3. 
Biochem J, 431, 391-9. 

CHI, Y., HUDDLESTON, M. J., ZHANG, X., YOUNG, R. A., ANNAN, R. S., CARR, S. A. & DESHAIES, R. J. 
2001. Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent 
kinase. Genes Dev, 15, 1078-92. 

CHICCA, J. J., 2ND, AUBLE, D. T. & PUGH, B. F. 1998. Cloning and biochemical characterization of TAF-
172, a human homolog of yeast Mot1. Mol Cell Biol, 18, 1701-10. 

CHO, E. J., KOBOR, M. S., KIM, M., GREENBLATT, J. & BURATOWSKI, S. 2001. Opposing effects of Ctk1 
kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes 

Dev, 15, 3319-29. 

CHO, E. J., TAKAGI, T., MOORE, C. R. & BURATOWSKI, S. 1997. mRNA capping enzyme is recruited to 
the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal 
domain. Genes Dev, 11, 3319-26. 

CHOE, J., OH, N., PARK, S., LEE, Y. K., SONG, O. K., LOCKER, N., CHI, S. G. & KIM, Y. K. 2012. 
Translation initiation on mRNAs bound by nuclear cap-binding protein complex CBP80/20 
requires interaction between CBP80/20-dependent translation initiation factor and 
eukaryotic translation initiation factor 3g. J Biol Chem, 287, 18500-9. 



177 
 

CHOUKRALLAH, M. A., KOBI, D., MARTIANOV, I., PIJNAPPEL, W. W., MISCHERIKOW, N., YE, T., HECK, 
A. J., TIMMERS, H. T. & DAVIDSON, I. 2012. Interconversion between active and inactive 
TATA-binding protein transcription complexes in the mouse genome. Nucleic Acids Res, 40, 
1446-59. 

CHYMKOWITCH, P., NGUEA, P. A., AANES, H., KOEHLER, C., THIEDE, B., LORENZ, S., MEZA-ZEPEDA, L., 
KLUNGLAND, A. & ENSERINK, J. M. 2015. Sumoylation of Rap1 mediates the recruitment of 
TFIID to promote transcription of ribosomal protein genes. Genome Res. 

CLEMENT, P. M., JOHANSSON, H. E., WOLFF, E. C. & PARK, M. H. 2006. Differential expression of 
eIF5A-1 and eIF5A-2 in human cancer cells. FEBS J, 273, 1102-14. 

COLLER, H. A., GRANDORI, C., TAMAYO, P., COLBERT, T., LANDER, E. S., EISENMAN, R. N. & GOLUB, T. 
R. 2000. Expression analysis with oligonucleotide microarrays reveals that MYC regulates 
genes involved in growth, cell cycle, signaling, and adhesion. Proc Natl Acad Sci U S A, 97, 
3260-5. 

COLLER, J. & PARKER, R. 2004. Eukaryotic mRNA decapping. Annu Rev Biochem, 73, 861-90. 

COLLER, J. & PARKER, R. 2005. General translational repression by activators of mRNA decapping. 
Cell, 122, 875-86. 

CONAWAY, R. C., GARRETT, K. P., HANLEY, J. P. & CONAWAY, J. W. 1991. Mechanism of promoter 
selection by RNA polymerase II: mammalian transcription factors alpha and beta gamma 
promote entry of polymerase into the preinitiation complex. Proc Natl Acad Sci U S A, 88, 
6205-9. 

COOK, K. E. & O'SHEA, E. K. 2012. Hog1 controls global reallocation of RNA Pol II upon osmotic shock 
in Saccharomyces cerevisiae. G3 (Bethesda), 2, 1129-36. 

COWLING, V. H. 2010. Regulation of mRNA cap methylation. Biochem J, 425, 295-302. 

CRACCHIOLO, B. M., HELLER, D. S., CLEMENT, P. M., WOLFF, E. C., PARK, M. H. & HANAUSKE-ABEL, H. 
M. 2004. Eukaryotic initiation factor 5A-1 (eIF5A-1) as a diagnostic marker for aberrant 
proliferation in intraepithelial neoplasia of the vulva. Gynecol Oncol, 94, 217-22. 

CRAMER, P., PESCE, C. G., BARALLE, F. E. & KORNBLIHTT, A. R. 1997. Functional association between 
promoter structure and transcript alternative splicing. Proc Natl Acad Sci U S A, 94, 11456-
60. 

CUADRADO, A. & NEBREDA, A. R. 2010. Mechanisms and functions of p38 MAPK signalling. Biochem 

J, 429, 403-17. 

CUENDA, A. & ROUSSEAU, S. 2007. p38 MAP-kinases pathway regulation, function and role in human 
diseases. Biochim Biophys Acta, 1773, 1358-75. 

CULBERTSON, M. R. & NEENO-ECKWALL, E. 2005. Transcript selection and the recruitment of mRNA 
decay factors for NMD in Saccharomyces cerevisiae. RNA, 11, 1333-9. 

CULLEN, P. J. 2011. Post-translational regulation of signaling mucins. Curr Opin Struct Biol, 21, 590-6. 



178 
 

CULLEN, P. J., SABBAGH, W., JR., GRAHAM, E., IRICK, M. M., VAN OLDEN, E. K., NEAL, C., DELROW, J., 
BARDWELL, L. & SPRAGUE, G. F., JR. 2004. A signaling mucin at the head of the Cdc42- and 
MAPK-dependent filamentous growth pathway in yeast. Genes Dev, 18, 1695-708. 

DAHAN, N. & CHODER, M. 2013. The eukaryotic transcriptional machinery regulates mRNA 
translation and decay in the cytoplasm. Biochim Biophys Acta, 1829, 169-73. 

DANINO, Y. M., EVEN, D., IDESES, D. & JUVEN-GERSHON, T. 2015. The core promoter: At the heart of 
gene expression. Biochim Biophys Acta. 

DAS, B., BUTLER, J. S. & SHERMAN, F. 2003. Degradation of normal mRNA in the nucleus of 
Saccharomyces cerevisiae. Mol Cell Biol, 23, 5502-15. 

DAS, B., GUO, Z., RUSSO, P., CHARTRAND, P. & SHERMAN, F. 2000. The role of nuclear cap binding 
protein Cbc1p of yeast in mRNA termination and degradation. Mol Cell Biol, 20, 2827-38. 

DAVIS, J. L., KUNISAWA, R. & THORNER, J. 1992. A presumptive helicase (MOT1 gene product) affects 
gene expression and is required for viability in the yeast Saccharomyces cerevisiae. Mol Cell 

Biol, 12, 1879-92. 

DE NADAL, E., ALEPUZ, P. M. & POSAS, F. 2002. Dealing with osmostress through MAP kinase 
activation. EMBO Rep, 3, 735-40. 

DE NADAL, E., AMMERER, G. & POSAS, F. 2011. Controlling gene expression in response to stress. 
Nat Rev Genet, 12, 833-45. 

DE NADAL, E., CASADOME, L. & POSAS, F. 2003. Targeting the MEF2-like transcription factor Smp1 by 
the stress-activated Hog1 mitogen-activated protein kinase. Mol Cell Biol, 23, 229-37. 

DE NADAL, E. & POSAS, F. 2010. Multilayered control of gene expression by stress-activated protein 
kinases. EMBO J, 29, 4-13. 

DE NADAL, E. & POSAS, F. 2011. Elongating under Stress. Genet Res Int, 2011, 326286. 

DE NADAL, E., ZAPATER, M., ALEPUZ, P. M., SUMOY, L., MAS, G. & POSAS, F. 2004. The MAPK Hog1 
recruits Rpd3 histone deacetylase to activate osmoresponsive genes. Nature, 427, 370-4. 

DECKER, C. J. & PARKER, R. 2012. P-bodies and stress granules: possible roles in the control of 
translation and mRNA degradation. Cold Spring Harb Perspect Biol, 4, a012286. 

DECOURTY, L., SAVEANU, C., ZEMAM, K., HANTRAYE, F., FRACHON, E., ROUSSELLE, J. C., FROMONT-
RACINE, M. & JACQUIER, A. 2008. Linking functionally related genes by sensitive and 
quantitative characterization of genetic interaction profiles. Proc Natl Acad Sci U S A, 105, 
5821-6. 

DESPER, R. & GASCUEL, O. 2004. Theoretical foundation of the balanced minimum evolution method 
of phylogenetic inference and its relationship to weighted least-squares tree fitting. Mol Biol 

Evol, 21, 587-98. 

DEVER, T. E., DAR, A. C. & SICHERI, F. 2007. Translational control in biology and medicine. Cold Spring 

Harbor Laboratory Press, New York, 2007, 319-344. 



179 
 

DEVER, T. E., GUTIERREZ, E. & SHIN, B. S. 2014. The hypusine-containing translation factor eIF5A. Crit 

Rev Biochem Mol Biol, 49, 413-25. 

DEWARD, A. D., EISENMANN, K. M., MATHESON, S. F. & ALBERTS, A. S. 2010. The role of formins in 
human disease. Biochim Biophys Acta, 1803, 226-33. 

DIAS, C. A., GREGIO, A. P., ROSSI, D., GALVAO, F. C., WATANABE, T. F., PARK, M. H., VALENTINI, S. R. 
& ZANELLI, C. F. 2012. eIF5A interacts functionally with eEF2. Amino Acids, 42, 697-702. 

DIHAZI, H., KESSLER, R. & ESCHRICH, K. 2004. High osmolarity glycerol (HOG) pathway-induced 
phosphorylation and activation of 6-phosphofructo-2-kinase are essential for glycerol 
accumulation and yeast cell proliferation under hyperosmotic stress. J Biol Chem, 279, 
23961-8. 

DOERFEL, L. K., WOHLGEMUTH, I., KOTHE, C., PESKE, F., URLAUB, H. & RODNINA, M. V. 2013. EF-P is 
essential for rapid synthesis of proteins containing consecutive proline residues. Science, 
339, 85-8. 

DONG, Y., PRUYNE, D. & BRETSCHER, A. 2003. Formin-dependent actin assembly is regulated by 
distinct modes of Rho signaling in yeast. J Cell Biol, 161, 1081-92. 

DUCH, A., DE NADAL, E. & POSAS, F. 2012. The p38 and Hog1 SAPKs control cell cycle progression in 
response to environmental stresses. FEBS Lett, 586, 2925-31. 

EDEN, E., NAVON, R., STEINFELD, I., LIPSON, D. & YAKHINI, Z. 2009. GOrilla: a tool for discovery and 
visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics, 10, 48. 

EDWARDS, A. M., KANE, C. M., YOUNG, R. A. & KORNBERG, R. D. 1991. Two dissociable subunits of 
yeast RNA polymerase II stimulate the initiation of transcription at a promoter in vitro. J Biol 

Chem, 266, 71-5. 

EGLOFF, S. & MURPHY, S. 2008. Cracking the RNA polymerase II CTD code. Trends Genet, 24, 280-8. 

ELION, E. A., GRISAFI, P. L. & FINK, G. R. 1990. FUS3 encodes a cdc2+/CDC28-related kinase required 
for the transition from mitosis into conjugation. Cell, 60, 649-64. 

ERICKSON, S. L. & LYKKE-ANDERSEN, J. 2011. Cytoplasmic mRNP granules at a glance. J Cell Sci, 124, 
293-7. 

ERREDE, B. & AMMERER, G. 1989. STE12, a protein involved in cell-type-specific transcription and 
signal transduction in yeast, is part of protein-DNA complexes. Genes Dev, 3, 1349-61. 

EVANGELISTA, M., BLUNDELL, K., LONGTINE, M. S., CHOW, C. J., ADAMES, N., PRINGLE, J. R., PETER, 
M. & BOONE, C. 1997. Bni1p, a yeast formin linking cdc42p and the actin cytoskeleton during 
polarized morphogenesis. Science, 276, 118-22. 

FAIX, J. & GROSSE, R. 2006. Staying in shape with formins. Dev Cell, 10, 693-706. 

FARAGO, M., NAHARI, T., HAMMEL, C., COLE, C. N. & CHODER, M. 2003. Rpb4p, a subunit of RNA 
polymerase II, mediates mRNA export during stress. Mol Biol Cell, 14, 2744-55. 



180 
 

FAZA, M. B., KEMMLER, S., JIMENO, S., GONZALEZ-AGUILERA, C., AGUILERA, A., HURT, E. & PANSE, V. 
G. 2009. Sem1 is a functional component of the nuclear pore complex-associated messenger 
RNA export machinery. J Cell Biol, 184, 833-46. 

FIELDS, S. & JOHNSTON, M. 2005. Cell biology. Whither model organism research? Science, 307, 
1885-6. 

FIFE, C. M., MCCARROLL, J. A. & KAVALLARIS, M. 2014. Movers and shakers: cell cytoskeleton in 
cancer metastasis. Br J Pharmacol, 171, 5507-23. 

FISHBURN, J. & HAHN, S. 2012. Architecture of the yeast RNA polymerase II open complex and 
regulation of activity by TFIIF. Mol Cell Biol, 32, 12-25. 

FLAHERTY, S. M., FORTES, P., IZAURRALDE, E., MATTAJ, I. W. & GILMARTIN, G. M. 1997. Participation 
of the nuclear cap binding complex in pre-mRNA 3' processing. Proc Natl Acad Sci U S A, 94, 
11893-8. 

FONG, Y. W. & ZHOU, Q. 2001. Stimulatory effect of splicing factors on transcriptional elongation. 
Nature, 414, 929-33. 

FORTES, P., INADA, T., PREISS, T., HENTZE, M. W., MATTAJ, I. W. & SACHS, A. B. 2000. The yeast 
nuclear cap binding complex can interact with translation factor eIF4G and mediate 
translation initiation. Mol Cell, 6, 191-6. 

FORTES, P., KUFEL, J., FORNEROD, M., POLYCARPOU-SCHWARZ, M., LAFONTAINE, D., TOLLERVEY, D. 
& MATTAJ, I. W. 1999. Genetic and physical interactions involving the yeast nuclear cap-
binding complex. Mol Cell Biol, 19, 6543-53. 

FUJIWARA, T., TANAKA, K., MINO, A., KIKYO, M., TAKAHASHI, K., SHIMIZU, K. & TAKAI, Y. 1998. 
Rho1p-Bni1p-Spa2p interactions: implication in localization of Bni1p at the bud site and 
regulation of the actin cytoskeleton in Saccharomyces cerevisiae. Mol Biol Cell, 9, 1221-33. 

FURUICHI, Y., LAFIANDRA, A. & SHATKIN, A. J. 1977. 5'-Terminal structure and mRNA stability. 
Nature, 266, 235-9. 

FURUKAWA, K. & HOHMANN, S. 2013. Synthetic biology: lessons from engineering yeast MAPK 
signalling pathways. Mol Microbiol, 88, 5-19. 

GALVAO, F. C., ROSSI, D., SILVEIRA WDA, S., VALENTINI, S. R. & ZANELLI, C. F. 2013. The 
deoxyhypusine synthase mutant dys1-1 reveals the association of eIF5A and Asc1 with cell 
wall integrity. PLoS One, 8, e60140. 

GANCEDO, J. M. 2001. Control of pseudohyphae formation in Saccharomyces cerevisiae. FEMS 

Microbiol Rev, 25, 107-23. 

GAO, Q., DAS, B., SHERMAN, F. & MAQUAT, L. E. 2005. Cap-binding protein 1-mediated and 
eukaryotic translation initiation factor 4E-mediated pioneer rounds of translation in yeast. 
Proc Natl Acad Sci U S A, 102, 4258-63. 

GARAY-ARROYO, A. & COVARRUBIAS, A. A. 1999. Three genes whose expression is induced by stress 
in Saccharomyces cerevisiae. Yeast, 15, 879-92. 



181 
 

GARCIA-MARTINEZ, J., ARANDA, A. & PEREZ-ORTIN, J. E. 2004. Genomic run-on evaluates 
transcription rates for all yeast genes and identifies gene regulatory mechanisms. Mol Cell, 
15, 303-13. 

GARCIA-OLIVER, E., GARCIA-MOLINERO, V. & RODRIGUEZ-NAVARRO, S. 2012. mRNA export and 
gene expression: the SAGA-TREX-2 connection. Biochim Biophys Acta, 1819, 555-65. 

GARNEAU, N. L., WILUSZ, J. & WILUSZ, C. J. 2007. The highways and byways of mRNA decay. Nat Rev 

Mol Cell Biol, 8, 113-26. 

GARRE, E., ROMERO-SANTACREU, L., BARNEO-MUNOZ, M., MIGUEL, A., PEREZ-ORTIN, J. E. & 
ALEPUZ, P. 2013. Nonsense-mediated mRNA decay controls the changes in yeast ribosomal 
protein pre-mRNAs levels upon osmotic stress. PLoS One, 8, e61240. 

GARRE, E., ROMERO-SANTACREU, L., DE CLERCQ, N., BLASCO-ANGULO, N., SUNNERHAGEN, P. & 
ALEPUZ, P. 2012. Yeast mRNA cap-binding protein Cbc1/Sto1 is necessary for the rapid 
reprogramming of translation after hyperosmotic shock. Mol Biol Cell, 23, 137-50. 

GARTNER, A., JOVANOVIC, A., JEOUNG, D. I., BOURLAT, S., CROSS, F. R. & AMMERER, G. 1998. 
Pheromone-dependent G1 cell cycle arrest requires Far1 phosphorylation, but may not 
involve inhibition of Cdc28-Cln2 kinase, in vivo. Mol Cell Biol, 18, 3681-91. 

GASCH, A. P., SPELLMAN, P. T., KAO, C. M., CARMEL-HAREL, O., EISEN, M. B., STORZ, G., BOTSTEIN, D. 
& BROWN, P. O. 2000. Genomic expression programs in the response of yeast cells to 
environmental changes. Mol Biol Cell, 11, 4241-57. 

GASTON, K. & JAYARAMAN, P. S. 2003. Transcriptional repression in eukaryotes: repressors and 
repression mechanisms. Cell Mol Life Sci, 60, 721-41. 

GEISBERG, J. V. & STRUHL, K. 2004. Cellular stress alters the transcriptional properties of promoter-
bound Mot1-TBP complexes. Mol Cell, 14, 479-89. 

GIETZ, R. D. & WOODS, R. A. 2002. Transformation of yeast by lithium acetate/single-stranded 
carrier DNA/polyethylene glycol method. Methods Enzymol, 350, 87-96. 

GIMENEZ-BARCONS, M. & DIEZ, J. 2011. Yeast processing bodies and stress granules: self-assembly 
ribonucleoprotein particles. Microb Cell Fact, 10, 73. 

GLICK, B. R. & GANOZA, M. C. 1975. Identification of a soluble protein that stimulates peptide bond 
synthesis. Proc Natl Acad Sci U S A, 72, 4257-60. 

GOMAR-ALBA, M., ALEPUZ, P. & DEL OLMO, M. 2013. Dissection of the elements of osmotic stress 
response transcription factor Hot1 involved in the interaction with MAPK Hog1 and in the 
activation of transcription. Biochim Biophys Acta, 1829, 1111-25. 

GONATOPOULOS-POURNATZIS, T. & COWLING, V. H. 2014. Cap-binding complex (CBC). Biochem J, 
457, 231-42. 

GOODE, B. L. & ECK, M. J. 2007. Mechanism and function of formins in the control of actin assembly. 
Annu Rev Biochem, 76, 593-627. 



182 
 

GORLICH, D., KRAFT, R., KOSTKA, S., VOGEL, F., HARTMANN, E., LASKEY, R. A., MATTAJ, I. W. & 
IZAURRALDE, E. 1996. Importin provides a link between nuclear protein import and U snRNA 
export. Cell, 87, 21-32. 

GORNEMANN, J., KOTOVIC, K. M., HUJER, K. & NEUGEBAUER, K. M. 2005. Cotranscriptional 
spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. 
Mol Cell, 19, 53-63. 

GORNER, W., DURCHSCHLAG, E., MARTINEZ-PASTOR, M. T., ESTRUCH, F., AMMERER, G., HAMILTON, 
B., RUIS, H. & SCHULLER, C. 1998. Nuclear localization of the C2H2 zinc finger protein Msn2p 
is regulated by stress and protein kinase A activity. Genes Dev, 12, 586-97. 

GREGIO, A. P., CANO, V. P., AVACA, J. S., VALENTINI, S. R. & ZANELLI, C. F. 2009. eIF5A has a function 
in the elongation step of translation in yeast. Biochem Biophys Res Commun, 380, 785-90. 

GRUDZIEN, E., KALEK, M., JEMIELITY, J., DARZYNKIEWICZ, E. & RHOADS, R. E. 2006. Differential 
inhibition of mRNA degradation pathways by novel cap analogs. J Biol Chem, 281, 1857-67. 

GRUNBERG, S. & HAHN, S. 2013. Structural insights into transcription initiation by RNA polymerase 
II. Trends Biochem Sci, 38, 603-11. 

GRZECHNIK, P., TAN-WONG, S. M. & PROUDFOOT, N. J. 2014. Terminate and make a loop: regulation 
of transcriptional directionality. Trends Biochem Sci, 39, 319-27. 

GUAN, X. Y., FUNG, J. M., MA, N. F., LAU, S. H., TAI, L. S., XIE, D., ZHANG, Y., HU, L., WU, Q. L., FANG, 
Y. & SHAM, J. S. 2004. Oncogenic role of eIF-5A2 in the development of ovarian cancer. 
Cancer Res, 64, 4197-200. 

GUISBERT, E., YURA, T., RHODIUS, V. A. & GROSS, C. A. 2008. Convergence of molecular, modeling, 
and systems approaches for an understanding of the Escherichia coli heat shock response. 
Microbiol Mol Biol Rev, 72, 545-54. 

GULLI, M. P., JAQUENOUD, M., SHIMADA, Y., NIEDERHAUSER, G., WIGET, P. & PETER, M. 2000. 
Phosphorylation of the Cdc42 exchange factor Cdc24 by the PAK-like kinase Cla4 may 
regulate polarized growth in yeast. Mol Cell, 6, 1155-67. 

GULLI, M. P. & PETER, M. 2001. Temporal and spatial regulation of Rho-type guanine-nucleotide 
exchange factors: the yeast perspective. Genes Dev, 15, 365-79. 

GUSTIN, M. C., ALBERTYN, J., ALEXANDER, M. & DAVENPORT, K. 1998. MAP kinase pathways in the 
yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev, 62, 1264-300. 

GUTIERREZ, E., SHIN, B. S., WOOLSTENHULME, C. J., KIM, J. R., SAINI, P., BUSKIRK, A. R. & DEVER, T. 
E. 2013. eIF5A promotes translation of polyproline motifs. Mol Cell, 51, 35-45. 

HABER, J. E. 2012. Mating-type genes and MAT switching in Saccharomyces cerevisiae. Genetics, 191, 
33-64. 

HAHN, S. & YOUNG, E. T. 2011. Transcriptional regulation in Saccharomyces cerevisiae: transcription 
factor regulation and function, mechanisms of initiation, and roles of activators and 
coactivators. Genetics, 189, 705-36. 



183 
 

HAIMOVICH, G., MEDINA, D. A., CAUSSE, S. Z., GARBER, M., MILLAN-ZAMBRANO, G., BARKAI, O., 
CHAVEZ, S., PEREZ-ORTIN, J. E., DARZACQ, X. & CHODER, M. 2013. Gene expression is 
circular: factors for mRNA degradation also foster mRNA synthesis. Cell, 153, 1000-11. 

HALBEISEN, R. E. & GERBER, A. P. 2009. Stress-dependent coordination of transcriptome and 
translatome in yeast. PLoS Biol, 7, e1000105. 

HALL, A. 2009. The cytoskeleton and cancer. Cancer Metastasis Rev, 28, 5-14. 

HAMM, J. & MATTAJ, I. W. 1990. Monomethylated cap structures facilitate RNA export from the 
nucleus. Cell, 63, 109-18. 

HAMPSEY, M., SINGH, B. N., ANSARI, A., LAINE, J. P. & KRISHNAMURTHY, S. 2011. Control of 
eukaryotic gene expression: gene loops and transcriptional memory. Adv Enzyme Regul, 51, 
118-25. 

HAN, Y., LUO, J., RANISH, J. & HAHN, S. 2014. Architecture of the Saccharomyces cerevisiae SAGA 
transcription coactivator complex. EMBO J, 33, 2534-46. 

HANAUSKE-ABEL, H. M., PARK, M. H., HANAUSKE, A. R., POPOWICZ, A. M., LALANDE, M. & FOLK, J. E. 
1994a. Inhibition of the G1-S transition of the cell cycle by inhibitors of deoxyhypusine 
hydroxylation. Biochimica et biophysica acta, 1221, 115-24. 

HANAUSKE-ABEL, H. M., PARK, M. H., HANAUSKE, A. R., POPOWICZ, A. M., LALANDE, M. & FOLK, J. E. 
1994b. Inhibition of the G1-S transition of the cell cycle by inhibitors of deoxyhypusine 
hydroxylation. Biochim Biophys Acta, 1221, 115-24. 

HANAZAWA, M., KAWASAKI, I., KUNITOMO, H., GENGYO-ANDO, K., BENNETT, K. L., MITANI, S. & 
IINO, Y. 2004. The Caenorhabditis elegans eukaryotic initiation factor 5A homologue, IFF-1, is 
required for germ cell proliferation, gametogenesis and localization of the P-granule 
component PGL-1. Mech Dev, 121, 213-24. 

HAO, N., BEHAR, M., PARNELL, S. C., TORRES, M. P., BORCHERS, C. H., ELSTON, T. C. & DOHLMAN, H. 
G. 2007. A systems-biology analysis of feedback inhibition in the Sho1 osmotic-stress-
response pathway. Curr Biol, 17, 659-67. 

HAO, N., ZENG, Y., ELSTON, T. C. & DOHLMAN, H. G. 2008. Control of MAPK specificity by feedback 
phosphorylation of shared adaptor protein Ste50. The Journal of biological chemistry, 283, 
33798-802. 

HAREL-SHARVIT, L., ELDAD, N., HAIMOVICH, G., BARKAI, O., DUEK, L. & CHODER, M. 2010. RNA 
polymerase II subunits link transcription and mRNA decay to translation. Cell, 143, 552-63. 

HARRIS, K., LAMSON, R. E., NELSON, B., HUGHES, T. R., MARTON, M. J., ROBERTS, C. J., BOONE, C. & 
PRYCIAK, P. M. 2001. Role of scaffolds in MAP kinase pathway specificity revealed by custom 
design of pathway-dedicated signaling proteins. Curr Biol, 11, 1815-24. 

HARTWELL, L. H. 1980. Mutants of Saccharomyces cerevisiae unresponsive to cell division control by 
polypeptide mating hormone. J Cell Biol, 85, 811-22. 

HE, L. R., ZHAO, H. Y., LI, B. K., LIU, Y. H., LIU, M. Z., GUAN, X. Y., BIAN, X. W., ZENG, Y. X. & XIE, D. 
2011. Overexpression of eIF5A-2 is an adverse prognostic marker of survival in stage I non-
small cell lung cancer patients. Int J Cancer, 129, 143-50. 



184 
 

HEINISCH, J. J., LORBERG, A., SCHMITZ, H. P. & JACOBY, J. J. 1999. The protein kinase C-mediated 
MAP kinase pathway involved in the maintenance of cellular integrity in Saccharomyces 
cerevisiae. Mol Microbiol, 32, 671-80. 

HENDERSON, A. & HERSHEY, J. W. 2011. Eukaryotic translation initiation factor (eIF) 5A stimulates 
protein synthesis in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A, 108, 6415-9. 

HERSKOWITZ, I. 1988. Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiol Rev, 52, 
536-53. 

HOHMANN, S. 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev, 
66, 300-72. 

HOHMANN, S. 2009. Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae. 
FEBS Lett, 583, 4025-9. 

HOHMANN, S., KRANTZ, M. & NORDLANDER, B. 2007. Yeast osmoregulation. Methods Enzymol, 428, 
29-45. 

HOHMANN, S. & MAGER, W. H. 2003. Yeast Stress Responses, Springer Berlin Heidelberg. 

HOLMES, L. E., CAMPBELL, S. G., DE LONG, S. K., SACHS, A. B. & ASHE, M. P. 2004. Loss of 
translational control in yeast compromised for the major mRNA decay pathway. Mol Cell 

Biol, 24, 2998-3010. 

HOSSAIN, M. A., CHUNG, C., PRADHAN, S. K. & JOHNSON, T. L. 2013. The yeast cap binding complex 
modulates transcription factor recruitment and establishes proper histone H3K36 
trimethylation during active transcription. Mol Cell Biol, 33, 785-99. 

HOSSAIN, M. A., CLAGGETT, J. M., NGUYEN, T. & JOHNSON, T. L. 2009. The cap binding complex 
influences H2B ubiquitination by facilitating splicing of the SUS1 pre-mRNA. RNA, 15, 1515-
27. 

HUCH, S. & NISSAN, T. 2014. Interrelations between translation and general mRNA degradation in 
yeast. Wiley Interdiscip Rev RNA, 5, 747-63. 

HUGOUVIEUX, V., KWAK, J. M. & SCHROEDER, J. I. 2001. An mRNA cap binding protein, ABH1, 
modulates early abscisic acid signal transduction in Arabidopsis. Cell, 106, 477-87. 

HUISINGA, K. L. & PUGH, B. F. 2004. A genome-wide housekeeping role for TFIID and a highly 
regulated stress-related role for SAGA in Saccharomyces cerevisiae. Mol Cell, 13, 573-85. 

IMAMURA, H., TANAKA, K., HIHARA, T., UMIKAWA, M., KAMEI, T., TAKAHASHI, K., SASAKI, T. & 
TAKAI, Y. 1997. Bni1p and Bnr1p: downstream targets of the Rho family small G-proteins 
which interact with profilin and regulate actin cytoskeleton in Saccharomyces cerevisiae. 
EMBO J, 16, 2745-55. 

IMATAKA, H., GRADI, A. & SONENBERG, N. 1998. A newly identified N-terminal amino acid sequence 
of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent 
translation. EMBO J, 17, 7480-9. 



185 
 

IMBALZANO, A. N., ZARET, K. S. & KINGSTON, R. E. 1994. Transcription factor (TF) IIB and TFIIA can 
independently increase the affinity of the TATA-binding protein for DNA. J Biol Chem, 269, 
8280-6. 

ISHIGAKI, Y., LI, X., SERIN, G. & MAQUAT, L. E. 2001. Evidence for a pioneer round of mRNA 
translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by 
CBP80 and CBP20. Cell, 106, 607-17. 

IZAURRALDE, E., LEWIS, J., GAMBERI, C., JARMOLOWSKI, A., MCGUIGAN, C. & MATTAJ, I. W. 1995a. 
A cap-binding protein complex mediating U snRNA export. Nature, 376, 709-12. 

IZAURRALDE, E., LEWIS, J., MCGUIGAN, C., JANKOWSKA, M., DARZYNKIEWICZ, E. & MATTAJ, I. W. 
1994. A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell, 78, 657-68. 

IZAURRALDE, E., MCGUIGAN, C. & MATTAJ, I. W. 1995b. Nuclear localization of a cap-binding protein 
complex. Cold Spring Harb Symp Quant Biol, 60, 669-75. 

JACKSON, R. J., HELLEN, C. U. & PESTOVA, T. V. 2010. The mechanism of eukaryotic translation 
initiation and principles of its regulation. Nat Rev Mol Cell Biol, 11, 113-27. 

JACOBY, T., FLANAGAN, H., FAYKIN, A., SETO, A. G., MATTISON, C. & OTA, I. 1997. Two protein-
tyrosine phosphatases inactivate the osmotic stress response pathway in yeast by targeting 
the mitogen-activated protein kinase, Hog1. J Biol Chem, 272, 17749-55. 

JAO, D. L. & CHEN, K. Y. 2006. Tandem affinity purification revealed the hypusine-dependent binding 
of eukaryotic initiation factor 5A to the translating 80S ribosomal complex. J Cell Biochem, 
97, 583-98. 

JENKINS, Z. A., HAAG, P. G. & JOHANSSON, H. E. 2001. Human eIF5A2 on chromosome 3q25-q27 is a 
phylogenetically conserved vertebrate variant of eukaryotic translation initiation factor 5A 
with tissue-specific expression. Genomics, 71, 101-9. 

JOE, Y. A. & PARK, M. H. 1994. Structural features of the eIF-5A precursor required for 
posttranslational synthesis of deoxyhypusine. J Biol Chem, 269, 25916-21. 

JOVANOVIC, M., ROONEY, M. S., MERTINS, P., PRZYBYLSKI, D., CHEVRIER, N., SATIJA, R., RODRIGUEZ, 
E. H., FIELDS, A. P., SCHWARTZ, S., RAYCHOWDHURY, R., MUMBACH, M. R., EISENHAURE, T., 
RABANI, M., GENNERT, D., LU, D., DELOREY, T., WEISSMAN, J. S., CARR, S. A., HACOHEN, N. & 
REGEV, A. 2015. Immunogenetics. Dynamic profiling of the protein life cycle in response to 
pathogens. Science, 347, 1259038. 

KAHVEJIAN, A., SVITKIN, Y. V., SUKARIEH, R., M'BOUTCHOU, M. N. & SONENBERG, N. 2005. 
Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts 
via multiple mechanisms. Genes Dev, 19, 104-13. 

KANG, H. A. & HERSHEY, J. W. 1994. Effect of initiation factor eIF-5A depletion on protein synthesis 
and proliferation of Saccharomyces cerevisiae. J Biol Chem, 269, 3934-40. 

KANG, H. A., SCHWELBERGER, H. G. & HERSHEY, J. W. 1992. The two genes encoding protein 
synthesis initiation factor eIF-5A in Saccharomyces cerevisiae are members of a duplicated 
gene cluster. Mol Gen Genet, 233, 487-90. 



186 
 

KEENE, J. D. 2007. RNA regulons: coordination of post-transcriptional events. Nat Rev Genet, 8, 533-
43. 

KEMPER, W. M., BERRY, K. W. & MERRICK, W. C. 1976. Purification and properties of rabbit 
reticulocyte protein synthesis initiation factors M2Balpha and M2Bbeta. J Biol Chem, 251, 
5551-7. 

KESSLER, S. H. & SACHS, A. B. 1998. RNA recognition motif 2 of yeast Pab1p is required for its 
functional interaction with eukaryotic translation initiation factor 4G. Mol Cell Biol, 18, 51-7. 

KIM, H., ERICKSON, B., LUO, W., SEWARD, D., GRABER, J. H., POLLOCK, D. D., MEGEE, P. C. & 
BENTLEY, D. L. 2010. Gene-specific RNA polymerase II phosphorylation and the CTD code. 
Nat Struct Mol Biol, 17, 1279-86. 

KIM, J. B., YAMAGUCHI, Y., WADA, T., HANDA, H. & SHARP, P. A. 1999. Tat-SF1 protein associates 
with RAP30 and human SPT5 proteins. Mol Cell Biol, 19, 5960-8. 

KIM, K. M., CHO, H., CHOI, K., KIM, J., KIM, B. W., KO, Y. G., JANG, S. K. & KIM, Y. K. 2009. A new 
MIF4G domain-containing protein, CTIF, directs nuclear cap-binding protein CBP80/20-
dependent translation. Genes Dev, 23, 2033-45. 

KLOPF, E., PASKOVA, L., SOLE, C., MAS, G., PETRYSHYN, A., POSAS, F., WINTERSBERGER, U., 
AMMERER, G. & SCHULLER, C. 2009. Cooperation between the INO80 complex and histone 
chaperones determines adaptation of stress gene transcription in the yeast Saccharomyces 
cerevisiae. Mol Cell Biol, 29, 4994-5007. 

KNIGHT, B., KUBIK, S., GHOSH, B., BRUZZONE, M. J., GEERTZ, M., MARTIN, V., DENERVAUD, N., 
JACQUET, P., OZKAN, B., ROUGEMONT, J., MAERKL, S. J., NAEF, F. & SHORE, D. 2014. Two 
distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein 
gene transcription. Genes Dev, 28, 1695-709. 

KNOP, M., SIEGERS, K., PEREIRA, G., ZACHARIAE, W., WINSOR, B., NASMYTH, K. & SCHIEBEL, E. 1999. 
Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical 
routines. Yeast, 15, 963-72. 

KOMARNITSKY, P., CHO, E. J. & BURATOWSKI, S. 2000. Different phosphorylated forms of RNA 
polymerase II and associated mRNA processing factors during transcription. Genes Dev, 14, 
2452-60. 

KONG, X., MA, L., YANG, L., CHEN, Q., XIANG, N., YANG, Y. & HU, X. 2014. Quantitative proteomics 
analysis reveals that the nuclear cap-binding complex proteins arabidopsis CBP20 and CBP80 
modulate the salt stress response. J Proteome Res, 13, 2495-510. 

KONO, K., SAEKI, Y., YOSHIDA, S., TANAKA, K. & PELLMAN, D. 2012. Proteasomal degradation 
resolves competition between cell polarization and cellular wound healing. Cell, 150, 151-64. 

KOVAR, D. R. 2006. Molecular details of formin-mediated actin assembly. Curr Opin Cell Biol, 18, 11-
7. 

KUEHNER, J. N., PEARSON, E. L. & MOORE, C. 2011. Unravelling the means to an end: RNA 
polymerase II transcription termination. Nat Rev Mol Cell Biol, 12, 283-94. 



187 
 

KUO, M. H., BROWNELL, J. E., SOBEL, R. E., RANALLI, T. A., COOK, R. G., EDMONDSON, D. G., ROTH, S. 
Y. & ALLIS, C. D. 1996. Transcription-linked acetylation by Gcn5p of histones H3 and H4 at 
specific lysines. Nature, 383, 269-72. 

KURAS, L. & STRUHL, K. 1999. Binding of TBP to promoters in vivo is stimulated by activators and 
requires Pol II holoenzyme. Nature, 399, 609-13. 

KUSHNIROV, V. V. 2000. Rapid and reliable protein extraction from yeast. Yeast, 16, 857-60. 

LAHUDKAR, S., DURAIRAJ, G., UPRETY, B. & BHAUMIK, S. R. 2014. A novel role for Cet1p mRNA 5'-
triphosphatase in promoter proximal accumulation of RNA polymerase II in Saccharomyces 
cerevisiase. Genetics, 196, 161-76. 

LAHUDKAR, S., SHUKLA, A., BAJWA, P., DURAIRAJ, G., STANOJEVIC, N. & BHAUMIK, S. R. 2011. The 
mRNA cap-binding complex stimulates the formation of pre-initiation complex at the 
promoter via its interaction with Mot1p in vivo. Nucleic Acids Res, 39, 2188-209. 

LAMSON, R. E., TAKAHASHI, S., WINTERS, M. J. & PRYCIAK, P. M. 2006. Dual role for membrane 
localization in yeast MAP kinase cascade activation and its contribution to signaling fidelity. 
Curr Biol, 16, 618-23. 

LAMSON, R. E., WINTERS, M. J. & PRYCIAK, P. M. 2002. Cdc42 regulation of kinase activity and 
signaling by the yeast p21-activated kinase Ste20. Mol Cell Biol, 22, 2939-51. 

LANDAU, G., BERCOVICH, Z., PARK, M. H. & KAHANA, C. 2010. The role of polyamines in supporting 
growth of mammalian cells is mediated through their requirement for translation initiation 
and elongation. The Journal of biological chemistry, 285, 12474-81. 

LASCARIS, R. F., MAGER, W. H. & PLANTA, R. J. 1999. DNA-binding requirements of the yeast protein 
Rap1p as selected in silico from ribosomal protein gene promoter sequences. Bioinformatics, 
15, 267-77. 

LEADER, B., LIM, H., CARABATSOS, M. J., HARRINGTON, A., ECSEDY, J., PELLMAN, D., MAAS, R. & 
LEDER, P. 2002. Formin-2, polyploidy, hypofertility and positioning of the meiotic spindle in 
mouse oocytes. Nat Cell Biol, 4, 921-8. 

LEE, T. I., CAUSTON, H. C., HOLSTEGE, F. C., SHEN, W. C., HANNETT, N., JENNINGS, E. G., WINSTON, 
F., GREEN, M. R. & YOUNG, R. A. 2000. Redundant roles for the TFIID and SAGA complexes in 
global transcription. Nature, 405, 701-4. 

LEFEVRE, P. L., PALIN, M. F. & MURPHY, B. D. 2011. Polyamines on the reproductive landscape. 
Endocrine reviews, 32, 694-712. 

LEI, E. P., KREBBER, H. & SILVER, P. A. 2001. Messenger RNAs are recruited for nuclear export during 
transcription. Genes Dev, 15, 1771-82. 

LEJEUNE, F., LI, X. & MAQUAT, L. E. 2003. Nonsense-mediated mRNA decay in mammalian cells 
involves decapping, deadenylating, and exonucleolytic activities. Mol Cell, 12, 675-87. 

LENASI, T., PETERLIN, B. M. & BARBORIC, M. 2011. Cap-binding protein complex links pre-mRNA 
capping to transcription elongation and alternative splicing through positive transcription 
elongation factor b (P-TEFb). J Biol Chem, 286, 22758-68. 



188 
 

LEVY, S., IHMELS, J., CARMI, M., WEINBERGER, A., FRIEDLANDER, G. & BARKAI, N. 2007. Strategy of 
transcription regulation in the budding yeast. PLoS One, 2, e250. 

LEWIS, J. D. & IZAURRALDE, E. 1997. The role of the cap structure in RNA processing and nuclear 
export. Eur J Biochem, 247, 461-9. 

LI, J. J., BICKEL, P. J. & BIGGIN, M. D. 2014a. System wide analyses have underestimated protein 
abundances and the importance of transcription in mammals. PeerJ, 2, e270. 

LI, T., BELDA-PALAZON, B., FERRANDO, A. & ALEPUZ, P. 2014b. Fertility and polarized cell growth 
depends on eIF5A for translation of polyproline-rich formins in Saccharomyces cerevisiae. 
Genetics, 197, 1191-200. 

LI, Z., VIZEACOUMAR, F. J., BAHR, S., LI, J., WARRINGER, J., VIZEACOUMAR, F. S., MIN, R., 
VANDERSLUIS, B., BELLAY, J., DEVIT, M., FLEMING, J. A., STEPHENS, A., HAASE, J., LIN, Z. Y., 
BARYSHNIKOVA, A., LU, H., YAN, Z., JIN, K., BARKER, S., DATTI, A., GIAEVER, G., NISLOW, C., 
BULAWA, C., MYERS, C. L., COSTANZO, M., GINGRAS, A. C., ZHANG, Z., BLOMBERG, A., 
BLOOM, K., ANDREWS, B. & BOONE, C. 2011. Systematic exploration of essential yeast gene 
function with temperature-sensitive mutants. Nature biotechnology, 29, 361-7. 

LIDSCHREIBER, M., LEIKE, K. & CRAMER, P. 2013. Cap completion and C-terminal repeat domain 
kinase recruitment underlie the initiation-elongation transition of RNA polymerase II. Mol 

Cell Biol, 33, 3805-16. 

LIEB, J. D., LIU, X., BOTSTEIN, D. & BROWN, P. O. 2001. Promoter-specific binding of Rap1 revealed 
by genome-wide maps of protein-DNA association. Nat Genet, 28, 327-34. 

LIEN, E. C., NAGIEC, M. J. & DOHLMAN, H. G. 2013. Proper protein glycosylation promotes mitogen-
activated protein kinase signal fidelity. Biochemistry, 52, 115-24. 

LITTLEFIELD, K., MONROE, M. 2004. Venn Diagram Plotter. 1.5.5228.29250 ed. Richland, WA: 
Department of Energy. 

LIU, W., SANTIAGO-TIRADO, F. H. & BRETSCHER, A. 2012. Yeast formin Bni1p has multiple 
localization regions that function in polarized growth and spindle orientation. Mol Biol Cell, 
23, 412-22. 

LIU, X., BUSHNELL, D. A. & KORNBERG, R. D. 2013. RNA polymerase II transcription: structure and 
mechanism. Biochim Biophys Acta, 1829, 2-8. 

LOTAN, R., BAR-ON, V. G., HAREL-SHARVIT, L., DUEK, L., MELAMED, D. & CHODER, M. 2005. The RNA 
polymerase II subunit Rpb4p mediates decay of a specific class of mRNAs. Genes Dev, 19, 
3004-16. 

LUO, J. H., HUA, W. F., RAO, H. L., LIAO, Y. J., KUNG, H. F., ZENG, Y. X., GUAN, X. Y., CHEN, W. & XIE, 
D. 2009. Overexpression of EIF-5A2 predicts tumor recurrence and progression in pTa/pT1 
urothelial carcinoma of the bladder. Cancer Sci, 100, 896-902. 

MACIA, J., REGOT, S., PEETERS, T., CONDE, N., SOLE, R. & POSAS, F. 2009. Dynamic signaling in the 
Hog1 MAPK pathway relies on high basal signal transduction. Science signaling, 2, ra13. 

MAEDA, T., TAKEKAWA, M. & SAITO, H. 1995. Activation of yeast PBS2 MAPKK by MAPKKKs or by 
binding of an SH3-containing osmosensor. Science, 269, 554-8. 



189 
 

MAHANTY, S. K., WANG, Y., FARLEY, F. W. & ELION, E. A. 1999. Nuclear shuttling of yeast scaffold 
Ste5 is required for its recruitment to the plasma membrane and activation of the mating 
MAPK cascade. Cell, 98, 501-12. 

MANDAL, A., MANDAL, S. & PARK, M. H. 2014. Genome-wide analyses and functional classification 
of proline repeat-rich proteins: potential role of eIF5A in eukaryotic evolution. PLoS One, 9, 
e111800. 

MANDEL, C. R., KANEKO, S., ZHANG, H., GEBAUER, D., VETHANTHAM, V., MANLEY, J. L. & TONG, L. 
2006. Polyadenylation factor CPSF-73 is the pre-mRNA 3'-end-processing endonuclease. 
Nature, 444, 953-6. 

MANGUS, D. A., EVANS, M. C. & JACOBSON, A. 2003. Poly(A)-binding proteins: multifunctional 
scaffolds for the post-transcriptional control of gene expression. Genome Biol, 4, 223. 

MAQUAT, L. E., HWANG, J., SATO, H. & TANG, Y. 2010. CBP80-promoted mRNP rearrangements 
during the pioneer round of translation, nonsense-mediated mRNA decay, and thereafter. 
Cold Spring Harb Symp Quant Biol, 75, 127-34. 

MARAZ, A. 1999. Impact of yeast genetics and molecular biology on traditional and new 
biotechnology. Acta Microbiol Immunol Hung, 46, 289-95. 

MARTINEZ-PASTOR, M. T., MARCHLER, G., SCHULLER, C., MARCHLER-BAUER, A., RUIS, H. & 
ESTRUCH, F. 1996. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are 
required for transcriptional induction through the stress response element (STRE). EMBO J, 
15, 2227-35. 

MAS, G., DE NADAL, E., DECHANT, R., RODRIGUEZ DE LA CONCEPCION, M. L., LOGIE, C., JIMENO-
GONZALEZ, S., CHAVEZ, S., AMMERER, G. & POSAS, F. 2009. Recruitment of a chromatin 
remodelling complex by the Hog1 MAP kinase to stress genes. EMBO J, 28, 326-36. 

MATEYAK, M. K. & KINZY, T. G. 2010. eEF1A: thinking outside the ribosome. J Biol Chem, 285, 21209-
13. 

MATHEOS, D., METODIEV, M., MULLER, E., STONE, D. & ROSE, M. D. 2004. Pheromone-induced 
polarization is dependent on the Fus3p MAPK acting through the formin Bni1p. J Cell Biol, 
165, 99-109. 

MAZZA, C., OHNO, M., SEGREF, A., MATTAJ, I. W. & CUSACK, S. 2001. Crystal structure of the human 
nuclear cap binding complex. Mol Cell, 8, 383-96. 

MAZZA, C., SEGREF, A., MATTAJ, I. W. & CUSACK, S. 2002. Large-scale induced fit recognition of an 
m(7)GpppG cap analogue by the human nuclear cap-binding complex. EMBO J, 21, 5548-57. 

MCCRACKEN, S., FONG, N., ROSONINA, E., YANKULOV, K., BROTHERS, G., SIDEROVSKI, D., HESSEL, A., 
FOSTER, S., SHUMAN, S. & BENTLEY, D. L. 1997. 5'-Capping enzymes are targeted to pre-
mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. 
Genes Dev, 11, 3306-18. 

MEDINA, D. A. 2015. Análisis genómico de la interacción entre la transcripción y la degradación 

durante el recambio del mRNA en S. cerevisiae. Ph. D. in Biotechnology, Universitat de 
València. 



190 
 

MEDINA, D. A., JORDAN-PLA, A., MILLAN-ZAMBRANO, G., CHAVEZ, S., CHODER, M. & PEREZ-ORTIN, J. 
E. 2014. Cytoplasmic 5'-3' exonuclease Xrn1p is also a genome-wide transcription factor in 
yeast. Front Genet, 5, 1. 

MELAMED, D., PNUELI, L. & ARAVA, Y. 2008. Yeast translational response to high salinity: global 
analysis reveals regulation at multiple levels. RNA, 14, 1337-51. 

MELL, J. C., BURGESS, S.M. 2002. Yeast as a model genetic organism. Encyclopedia of Life Sciences. 

MERLINI, L., DUDIN, O. & MARTIN, S. G. 2013. Mate and fuse: how yeast cells do it. Open Biol, 3, 
130008. 

MIGUEL, A., MONTON, F., LI, T., GOMEZ-HERREROS, F., CHAVEZ, S., ALEPUZ, P. & PEREZ-ORTIN, J. E. 
2013. External conditions inversely change the RNA polymerase II elongation rate and 
density in yeast. Biochim Biophys Acta, 1829, 1248-55. 

MISCHO, H. E. & PROUDFOOT, N. J. 2013. Disengaging polymerase: terminating RNA polymerase II 
transcription in budding yeast. Biochim Biophys Acta, 1829, 174-85. 

MOEHLE, E. A., BRABERG, H., KROGAN, N. J. & GUTHRIE, C. 2014. Adventures in time and space: 
splicing efficiency and RNA polymerase II elongation rate. RNA Biol, 11, 313-9. 

MOLIN, C., JAUHIAINEN, A., WARRINGER, J., NERMAN, O. & SUNNERHAGEN, P. 2009. mRNA stability 
changes precede changes in steady-state mRNA amounts during hyperosmotic stress. RNA, 
15, 600-14. 

MOLINARI, E., GILMAN, M. & NATESAN, S. 1999. Proteasome-mediated degradation of 
transcriptional activators correlates with activation domain potency in vivo. EMBO J, 18, 
6439-47. 

MOORE, M. J. & PROUDFOOT, N. J. 2009. Pre-mRNA processing reaches back to transcription and 
ahead to translation. Cell, 136, 688-700. 

MOYLE-HEYRMAN, G., VISWANATHAN, R., WIDOM, J. & AUBLE, D. T. 2012. Two-step mechanism for 
modifier of transcription 1 (Mot1) enzyme-catalyzed displacement of TATA-binding protein 
(TBP) from DNA. J Biol Chem, 287, 9002-12. 

MURTHY, K. G. & MANLEY, J. L. 1995. The 160-kD subunit of human cleavage-polyadenylation 
specificity factor coordinates pre-mRNA 3'-end formation. Genes Dev, 9, 2672-83. 

NADAL-RIBELLES, M., CONDE, N., FLORES, O., GONZALEZ-VALLINAS, J., EYRAS, E., OROZCO, M., DE 
NADAL, E. & POSAS, F. 2012. Hog1 bypasses stress-mediated down-regulation of 
transcription by RNA polymerase II redistribution and chromatin remodeling. Genome Biol, 
13, R106. 

NARITA, T., YUNG, T. M., YAMAMOTO, J., TSUBOI, Y., TANABE, H., TANAKA, K., YAMAGUCHI, Y. & 
HANDA, H. 2007. NELF interacts with CBC and participates in 3' end processing of 
replication-dependent histone mRNAs. Mol Cell, 26, 349-65. 

NAVARRE, W. W., ZOU, S. B., ROY, H., XIE, J. L., SAVCHENKO, A., SINGER, A., EDVOKIMOVA, E., 
PROST, L. R., KUMAR, R., IBBA, M. & FANG, F. C. 2010. PoxA, yjeK, and elongation factor P 
coordinately modulate virulence and drug resistance in Salmonella enterica. Mol Cell, 39, 
209-21. 



191 
 

NEHLIN, J. O., CARLBERG, M. & RONNE, H. 1992. Yeast SKO1 gene encodes a bZIP protein that binds 
to the CRE motif and acts as a repressor of transcription. Nucleic Acids Res, 20, 5271-8. 

NELSON, B., PARSONS, A. B., EVANGELISTA, M., SCHAEFER, K., KENNEDY, K., RITCHIE, S., PETRYSHEN, 
T. L. & BOONE, C. 2004. Fus1p interacts with components of the Hog1p mitogen-activated 
protein kinase and Cdc42p morphogenesis signaling pathways to control cell fusion during 
yeast mating. Genetics, 166, 67-77. 

NERN, A. & ARKOWITZ, R. A. 2000. G proteins mediate changes in cell shape by stabilizing the axis of 
polarity. Mol Cell, 5, 853-64. 

NG, H. H., ROBERT, F., YOUNG, R. A. & STRUHL, K. 2003. Targeted recruitment of Set1 histone 
methylase by elongating Pol II provides a localized mark and memory of recent 
transcriptional activity. Mol Cell, 11, 709-19. 

NI, L., BRUCE, C., HART, C., LEIGH-BELL, J., GELPERIN, D., UMANSKY, L., GERSTEIN, M. B. & SNYDER, 
M. 2009. Dynamic and complex transcription factor binding during an inducible response in 
yeast. Genes Dev, 23, 1351-63. 

NINO, C. A., HERISSANT, L., BABOUR, A. & DARGEMONT, C. 2013. mRNA nuclear export in yeast. 
Chem Rev, 113, 8523-45. 

NISHIMURA, K., LEE, S. B., PARK, J. H. & PARK, M. H. 2012. Essential role of eIF5A-1 and 
deoxyhypusine synthase in mouse embryonic development. Amino acids, 42, 703-10. 

NISSAN, T., RAJYAGURU, P., SHE, M., SONG, H. & PARKER, R. 2010. Decapping activators in 
Saccharomyces cerevisiae act by multiple mechanisms. Mol Cell, 39, 773-83. 

NUSSBAUM-KRAMMER, C. I. & MORIMOTO, R. I. 2014. Caenorhabditis elegans as a model system for 
studying non-cell-autonomous mechanisms in protein-misfolding diseases. Dis Model Mech, 
7, 31-9. 

O'DUIBHIR, E., LIJNZAAD, P., BENSCHOP, J. J., LENSTRA, T. L., VAN LEENEN, D., GROOT KOERKAMP, 
M. J., MARGARITIS, T., BROK, M. O., KEMMEREN, P. & HOLSTEGE, F. C. 2014. Cell cycle 
population effects in perturbation studies. Mol Syst Biol, 10, 732. 

O'ROURKE, S. M. & HERSKOWITZ, I. 1998. The Hog1 MAPK prevents cross talk between the HOG and 
pheromone response MAPK pathways in Saccharomyces cerevisiae. Genes Dev, 12, 2874-86. 

O'ROURKE, S. M. & HERSKOWITZ, I. 2002. A third osmosensing branch in Saccharomyces cerevisiae 
requires the Msb2 protein and functions in parallel with the Sho1 branch. Mol Cell Biol, 22, 
4739-49. 

O'ROURKE, S. M. & HERSKOWITZ, I. 2004. Unique and redundant roles for HOG MAPK pathway 
components as revealed by whole-genome expression analysis. Mol Biol Cell, 15, 532-42. 

OEHLEN, L. J., MCKINNEY, J. D. & CROSS, F. R. 1996. Ste12 and Mcm1 regulate cell cycle-dependent 
transcription of FAR1. Mol Cell Biol, 16, 2830-7. 

OLSZEWSKA, M., BUJARSKI, J. J. & KURPISZ, M. 2012. P-bodies and their functions during mRNA cell 
cycle: mini-review. Cell Biochem Funct, 30, 177-82. 



192 
 

ONO, K. & HAN, J. 2000. The p38 signal transduction pathway: activation and function. Cell Signal, 
12, 1-13. 

PABIS, M., NEUFELD, N., STEINER, M. C., BOJIC, T., SHAV-TAL, Y. & NEUGEBAUER, K. M. 2013. The 
nuclear cap-binding complex interacts with the U4/U6.U5 tri-snRNP and promotes 
spliceosome assembly in mammalian cells. RNA, 19, 1054-63. 

PARK, J. H., ARAVIND, L., WOLFF, E. C., KAEVEL, J., KIM, Y. S. & PARK, M. H. 2006. Molecular cloning, 
expression, and structural prediction of deoxyhypusine hydroxylase: a HEAT-repeat-
containing metalloenzyme. Proc Natl Acad Sci U S A, 103, 51-6. 

PARK, J. H., DIAS, C. A., LEE, S. B., VALENTINI, S. R., SOKABE, M., FRASER, C. S. & PARK, M. H. 2011. 
Production of active recombinant eIF5A: reconstitution in E.coli of eukaryotic hypusine 
modification of eIF5A by its coexpression with modifying enzymes. Protein Eng Des Sel, 24, 
301-9. 

PARK, M. H. 2006. The post-translational synthesis of a polyamine-derived amino acid, hypusine, in 
the eukaryotic translation initiation factor 5A (eIF5A). J Biochem, 139, 161-9. 

PARK, M. H., NISHIMURA, K., ZANELLI, C. F. & VALENTINI, S. R. 2010. Functional significance of eIF5A 
and its hypusine modification in eukaryotes. Amino Acids, 38, 491-500. 

PARK, M. H., WOLFF, E. C. & FOLK, J. E. 1993. Hypusine: its post-translational formation in eukaryotic 
initiation factor 5A and its potential role in cellular regulation. Biofactors, 4, 95-104. 

PASCUAL-GARCIA, P., GOVIND, C. K., QUERALT, E., CUENCA-BONO, B., LLOPIS, A., CHAVEZ, S., 
HINNEBUSCH, A. G. & RODRIGUEZ-NAVARRO, S. 2008. Sus1 is recruited to coding regions 
and functions during transcription elongation in association with SAGA and TREX2. Genes 

Dev, 22, 2811-22. 

PATEL, P. H., COSTA-MATTIOLI, M., SCHULZE, K. L. & BELLEN, H. J. 2009. The Drosophila 
deoxyhypusine hydroxylase homologue nero and its target eIF5A are required for cell 
growth and the regulation of autophagy. J Cell Biol, 185, 1181-94. 

PAUL, A. S. & POLLARD, T. D. 2008. The role of the FH1 domain and profilin in formin-mediated actin-
filament elongation and nucleation. Curr Biol, 18, 9-19. 

PAVLOV, M. Y., WATTS, R. E., TAN, Z., CORNISH, V. W., EHRENBERG, M. & FORSTER, A. C. 2009. Slow 
peptide bond formation by proline and other N-alkylamino acids in translation. Proc Natl 

Acad Sci U S A, 106, 50-4. 

PEGG, A. E. & WANG, X. 2009. Mouse models to investigate the function of spermine. Commun 

Integr Biol, 2, 271-4. 

PELECHANO, V., JIMENO-GONZALEZ, S., RODRIGUEZ-GIL, A., GARCIA-MARTINEZ, J., PEREZ-ORTIN, J. 
E. & CHAVEZ, S. 2009. Regulon-specific control of transcription elongation across the yeast 
genome. PLoS Genet, 5, e1000614. 

PEREIRA, L. A., KLEJMAN, M. P. & TIMMERS, H. T. 2003. Roles for BTAF1 and Mot1p in dynamics of 
TATA-binding protein and regulation of RNA polymerase II transcription. Gene, 315, 1-13. 

PEREZ-ORTIN, J. E. 2007. Genomics of mRNA turnover. Brief Funct Genomic Proteomic, 6, 282-91. 



193 
 

PEREZ-ORTIN, J. E., ALEPUZ, P., CHAVEZ, S. & CHODER, M. 2013. Eukaryotic mRNA decay: 
methodologies, pathways, and links to other stages of gene expression. J Mol Biol, 425, 
3750-75. 

PEREZ-ORTIN, J. E., MEDINA, D. A. & JORDAN-PLA, A. 2011. Genomic insights into the different layers 
of gene regulation in yeast. Genet Res Int, 2011, 989303. 

PETER, M., GARTNER, A., HORECKA, J., AMMERER, G. & HERSKOWITZ, I. 1993. FAR1 links the signal 
transduction pathway to the cell cycle machinery in yeast. Cell, 73, 747-60. 

PHATNANI, H. P. & GREENLEAF, A. L. 2006. Phosphorylation and functions of the RNA polymerase II 
CTD. Genes Dev, 20, 2922-36. 

PITONIAK, A., BIRKAYA, B., DIONNE, H. M., VADAIE, N. & CULLEN, P. J. 2009. The signaling mucins 
Msb2 and Hkr1 differentially regulate the filamentation mitogen-activated protein kinase 
pathway and contribute to a multimodal response. Mol Biol Cell, 20, 3101-14. 

PLEISS, J. A., WHITWORTH, G. B., BERGKESSEL, M. & GUTHRIE, C. 2007. Transcript specificity in yeast 
pre-mRNA splicing revealed by mutations in core spliceosomal components. PLoS Biol, 5, 
e90. 

POKHOLOK, D. K., ZEITLINGER, J., HANNETT, N. M., REYNOLDS, D. B. & YOUNG, R. A. 2006. Activated 
signal transduction kinases frequently occupy target genes. Science, 313, 533-6. 

POOREY, K., SPROUSE, R. O., WELLS, M. N., VISWANATHAN, R., BEKIRANOV, S. & AUBLE, D. T. 2010. 
RNA synthesis precision is regulated by preinitiation complex turnover. Genome Res, 20, 
1679-88. 

POSAS, F., CHAMBERS, J. R., HEYMAN, J. A., HOEFFLER, J. P., DE NADAL, E. & ARINO, J. 2000. The 
transcriptional response of yeast to saline stress. J Biol Chem, 275, 17249-55. 

POSAS, F. & SAITO, H. 1997. Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: 
scaffold role of Pbs2p MAPKK. Science, 276, 1702-5. 

POSAS, F., TAKEKAWA, M. & SAITO, H. 1998a. Signal transduction by MAP kinase cascades in 
budding yeast. Curr Opin Microbiol, 1, 175-82. 

POSAS, F., WITTEN, E. A. & SAITO, H. 1998b. Requirement of STE50 for osmostress-induced 
activation of the STE11 mitogen-activated protein kinase kinase kinase in the high-
osmolarity glycerol response pathway. Mol Cell Biol, 18, 5788-96. 

POSAS, F., WURGLER-MURPHY, S. M., MAEDA, T., WITTEN, E. A., THAI, T. C. & SAITO, H. 1996. Yeast 
HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-
YPD1-SSK1 "two-component" osmosensor. Cell, 86, 865-75. 

PRIMAKOFF, P. & MYLES, D. G. 2007. Cell-cell membrane fusion during mammalian fertilization. FEBS 

Lett, 581, 2174-80. 

PROFT, M., GIBBONS, F. D., COPELAND, M., ROTH, F. P. & STRUHL, K. 2005. Genomewide 
identification of Sko1 target promoters reveals a regulatory network that operates in 
response to osmotic stress in Saccharomyces cerevisiae. Eukaryot Cell, 4, 1343-52. 



194 
 

PROFT, M., MAS, G., DE NADAL, E., VENDRELL, A., NORIEGA, N., STRUHL, K. & POSAS, F. 2006. The 
stress-activated Hog1 kinase is a selective transcriptional elongation factor for genes 
responding to osmotic stress. Mol Cell, 23, 241-50. 

PROFT, M., PASCUAL-AHUIR, A., DE NADAL, E., ARINO, J., SERRANO, R. & POSAS, F. 2001. Regulation 
of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress. 
EMBO J, 20, 1123-33. 

PROFT, M. & SERRANO, R. 1999. Repressors and upstream repressing sequences of the stress-
regulated ENA1 gene in Saccharomyces cerevisiae: bZIP protein Sko1p confers HOG-
dependent osmotic regulation. Mol Cell Biol, 19, 537-46. 

PROFT, M. & STRUHL, K. 2002. Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor complex into an 
activator that recruits SAGA and SWI/SNF in response to osmotic stress. Mol Cell, 9, 1307-17. 

PROUDFOOT, N. 2004. New perspectives on connecting messenger RNA 3' end formation to 
transcription. Curr Opin Cell Biol, 16, 272-8. 

PROUDFOOT, N. J., FURGER, A. & DYE, M. J. 2002. Integrating mRNA processing with transcription. 
Cell, 108, 501-12. 

PRUYNE, D., EVANGELISTA, M., YANG, C., BI, E., ZIGMOND, S., BRETSCHER, A. & BOONE, C. 2002. 
Role of formins in actin assembly: nucleation and barbed-end association. Science, 297, 612-
5. 

PRUYNE, D., GAO, L., BI, E. & BRETSCHER, A. 2004. Stable and dynamic axes of polarity use distinct 
formin isoforms in budding yeast. Mol Biol Cell, 15, 4971-89. 

PRYCIAK, P. M. & HUNTRESS, F. A. 1998. Membrane recruitment of the kinase cascade scaffold 
protein Ste5 by the Gbetagamma complex underlies activation of the yeast pheromone 
response pathway. Genes Dev, 12, 2684-97. 

QI, M. & ELION, E. A. 2005. Formin-induced actin cables are required for polarized recruitment of the 
Ste5 scaffold and high level activation of MAPK Fus3. J Cell Sci, 118, 2837-48. 

QIU, H., HU, C., YOON, S., NATARAJAN, K., SWANSON, M. J. & HINNEBUSCH, A. G. 2004. An array of 
coactivators is required for optimal recruitment of TATA binding protein and RNA 
polymerase II by promoter-bound Gcn4p. Mol Cell Biol, 24, 4104-17. 

R-CORE-TEAM 2014. R: A language and environment for statistical computing. Vienna, Austria.: R 
Foundation for  Statistical Computing. 

RAMEZANI-RAD, M. 2003. The role of adaptor protein Ste50-dependent regulation of the MAPKKK 
Ste11 in multiple signalling pathways of yeast. Curr Genet, 43, 161-70. 

REEVES, W. M. & HAHN, S. 2003. Activator-independent functions of the yeast mediator sin4 
complex in preinitiation complex formation and transcription reinitiation. Mol Cell Biol, 23, 
349-58. 

REISER, V., RUIS, H. & AMMERER, G. 1999. Kinase activity-dependent nuclear export opposes stress-
induced nuclear accumulation and retention of Hog1 mitogen-activated protein kinase in the 
budding yeast Saccharomyces cerevisiae. Mol Biol Cell, 10, 1147-61. 



195 
 

REISER, V., SALAH, S. M. & AMMERER, G. 2000. Polarized localization of yeast Pbs2 depends on 
osmostress, the membrane protein Sho1 and Cdc42. Nat Cell Biol, 2, 620-7. 

REP, M., ALBERTYN, J., THEVELEIN, J. M., PRIOR, B. A. & HOHMANN, S. 1999a. Different signalling 
pathways contribute to the control of GPD1 gene expression by osmotic stress in 
Saccharomyces cerevisiae. Microbiology, 145 ( Pt 3), 715-27. 

REP, M., KRANTZ, M., THEVELEIN, J. M. & HOHMANN, S. 2000. The transcriptional response of 
Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the 
induction of subsets of high osmolarity glycerol pathway-dependent genes. J Biol Chem, 275, 
8290-300. 

REP, M., REISER, V., GARTNER, U., THEVELEIN, J. M., HOHMANN, S., AMMERER, G. & RUIS, H. 1999b. 
Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and 
the novel nuclear factor Hot1p. Mol Cell Biol, 19, 5474-85. 

RHEE, H. S. & PUGH, B. F. 2012. Genome-wide structure and organization of eukaryotic pre-initiation 
complexes. Nature, 483, 295-301. 

RICHARD, P. & MANLEY, J. L. 2009. Transcription termination by nuclear RNA polymerases. Genes 

Dev, 23, 1247-69. 

RIDLEY, A. J. 1999. Stress fibres take shape. Nat Cell Biol, 1, E64-6. 

ROBERTS, R. L. & FINK, G. R. 1994. Elements of a single MAP kinase cascade in Saccharomyces 
cerevisiae mediate two developmental programs in the same cell type: mating and invasive 
growth. Genes Dev, 8, 2974-85. 

RODRIGUEZ-NAVARRO, S., FISCHER, T., LUO, M. J., ANTUNEZ, O., BRETTSCHNEIDER, S., LECHNER, J., 
PEREZ-ORTIN, J. E., REED, R. & HURT, E. 2004. Sus1, a functional component of the SAGA 
histone acetylase complex and the nuclear pore-associated mRNA export machinery. Cell, 
116, 75-86. 

ROMERO-SANTACREU, L. 2009. Respuestas transcripcionales y postranscripcionales al estrés 

osmótico en Saccharomyces cerevisiae. Función de la MAPK Hog1p. Ph. D. Thesis, Universitat 
de València. 

ROMERO-SANTACREU, L., MORENO, J., PEREZ-ORTIN, J. E. & ALEPUZ, P. 2009. Specific and global 
regulation of mRNA stability during osmotic stress in Saccharomyces cerevisiae. RNA, 15, 
1110-20. 

ROSONINA, E., DUNCAN, S. M. & MANLEY, J. L. 2012. Sumoylation of transcription factor Gcn4 
facilitates its Srb10-mediated clearance from promoters in yeast. Genes Dev, 26, 350-5. 

ROSSI, D., KUROSHU, R., ZANELLI, C. F. & VALENTINI, S. R. 2014. eIF5A and EF-P: two unique 
translation factors are now traveling the same road. Wiley Interdiscip Rev RNA, 5, 209-22. 

RUHL, M., HIMMELSPACH, M., BAHR, G. M., HAMMERSCHMID, F., JAKSCHE, H., WOLFF, B., 
ASCHAUER, H., FARRINGTON, G. K., PROBST, H., BEVEC, D. & ET AL. 1993. Eukaryotic 
initiation factor 5A is a cellular target of the human immunodeficiency virus type 1 Rev 
activation domain mediating trans-activation. J Cell Biol, 123, 1309-20. 



196 
 

SACHS, A. B., SARNOW, P. & HENTZE, M. W. 1997. Starting at the beginning, middle, and end: 
translation initiation in eukaryotes. Cell, 89, 831-8. 

SAGOT, I., RODAL, A. A., MOSELEY, J., GOODE, B. L. & PELLMAN, D. 2002. An actin nucleation 
mechanism mediated by Bni1 and profilin. Nat Cell Biol, 4, 626-31. 

SAINI, P., EYLER, D. E., GREEN, R. & DEVER, T. E. 2009. Hypusine-containing protein eIF5A promotes 
translation elongation. Nature, 459, 118-21. 

SAINSBURY, S., NIESSER, J. & CRAMER, P. 2013. Structure and function of the initially transcribing 
RNA polymerase II-TFIIB complex. Nature, 493, 437-40. 

SAITO, H. 2010. Regulation of cross-talk in yeast MAPK signaling pathways. Curr Opin Microbiol, 13, 
677-83. 

SAITO, H. & POSAS, F. 2012. Response to hyperosmotic stress. Genetics, 192, 289-318. 

SAITO, H. & TATEBAYASHI, K. 2004. Regulation of the osmoregulatory HOG MAPK cascade in yeast. J 
Biochem, 136, 267-72. 

SCHLICKER, A., DOMINGUES, F. S., RAHNENFUHRER, J. & LENGAUER, T. 2006. A new measure for 
functional similarity of gene products based on Gene Ontology. BMC Bioinformatics, 7, 302. 

SCHMEING, T. M. & RAMAKRISHNAN, V. 2009. What recent ribosome structures have revealed 
about the mechanism of translation. Nature, 461, 1234-42. 

SCHMITT, A. P. & MCENTEE, K. 1996. Msn2p, a zinc finger DNA-binding protein, is the transcriptional 
activator of the multistress response in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A, 
93, 5777-82. 

SCHNIER, J., SCHWELBERGER, H. G., SMIT-MCBRIDE, Z., KANG, H. A. & HERSHEY, J. W. 1991. 
Translation initiation factor 5A and its hypusine modification are essential for cell viability in 
the yeast Saccharomyces cerevisiae. Mol Cell Biol, 11, 3105-14. 

SCHRADER, R., YOUNG, C., KOZIAN, D., HOFFMANN, R. & LOTTSPEICH, F. 2006. Temperature-
sensitive eIF5A mutant accumulates transcripts targeted to the nonsense-mediated decay 
pathway. J Biol Chem, 281, 35336-46. 

SCHROEDER, S. C., SCHWER, B., SHUMAN, S. & BENTLEY, D. 2000. Dynamic association of capping 
enzymes with transcribing RNA polymerase II. Genes Dev, 14, 2435-40. 

SCHWARTZ, D. C. & PARKER, R. 2000. mRNA decapping in yeast requires dissociation of the cap 
binding protein, eukaryotic translation initiation factor 4E. Mol Cell Biol, 20, 7933-42. 

SEILA, A. C., CORE, L. J., LIS, J. T. & SHARP, P. A. 2009. Divergent transcription: a new feature of active 
promoters. Cell Cycle, 8, 2557-64. 

SETTE, C., INOUYE, C. J., STROSCHEIN, S. L., IAQUINTA, P. J. & THORNER, J. 2000. Mutational analysis 
suggests that activation of the yeast pheromone response mitogen-activated protein kinase 
pathway involves conformational changes in the Ste5 scaffold protein. Mol Biol Cell, 11, 
4033-49. 



197 
 

SHANDILYA, J. & ROBERTS, S. G. 2012. The transcription cycle in eukaryotes: from productive 
initiation to RNA polymerase II recycling. Biochim Biophys Acta, 1819, 391-400. 

SHATKIN, A. J. 1985. mRNA cap binding proteins: essential factors for initiating translation. Cell, 40, 
223-4. 

SHEIKH-HAMAD, D. & GUSTIN, M. C. 2004. MAP kinases and the adaptive response to hypertonicity: 
functional preservation from yeast to mammals. Am J Physiol Renal Physiol, 287, F1102-10. 

SHEN, E. C., STAGE-ZIMMERMANN, T., CHUI, P. & SILVER, P. A. 2000. 7The yeast mRNA-binding 
protein Npl3p interacts with the cap-binding complex. J Biol Chem, 275, 23718-24. 

SHEU, Y. J., SANTOS, B., FORTIN, N., COSTIGAN, C. & SNYDER, M. 1998. Spa2p interacts with cell 
polarity proteins and signaling components involved in yeast cell morphogenesis. Mol Cell 

Biol, 18, 4053-69. 

SIEVERT, H., PALLMANN, N., MILLER, K. K., HERMANS-BORGMEYER, I., VENZ, S., SENDOEL, A., 
PREUKSCHAS, M., SCHWEIZER, M., BOETTCHER, S., JANIESCH, P. C., STREICHERT, T., 
WALTHER, R., HENGARTNER, M. O., MANZ, M. G., BRUMMENDORF, T. H., BOKEMEYER, C., 
BRAIG, M., HAUBER, J., DUNCAN, K. E. & BALABANOV, S. 2014. A novel mouse model for 
inhibition of DOHH-mediated hypusine modification reveals a crucial function in embryonic 
development, proliferation and oncogenic transformation. Dis Model Mech, 7, 963-76. 

SIKORSKI, T. W. & BURATOWSKI, S. 2009. The basal initiation machinery: beyond the general 
transcription factors. Curr Opin Cell Biol, 21, 344-51. 

SIMS, R. J., 3RD, MANDAL, S. S. & REINBERG, D. 2004. Recent highlights of RNA-polymerase-II-
mediated transcription. Curr Opin Cell Biol, 16, 263-71. 

SINGH, P. K. & HOLLINGSWORTH, M. A. 2006. Cell surface-associated mucins in signal transduction. 
Trends Cell Biol, 16, 467-76. 

SLAUGHTER, B. D., SMITH, S. E. & LI, R. 2009. Symmetry breaking in the life cycle of the budding 
yeast. Cold Spring Harbor perspectives in biology, 1, a003384. 

SOLE, C., NADAL-RIBELLES, M., KRAFT, C., PETER, M., POSAS, F. & DE NADAL, E. 2011. Control of 
Ubp3 ubiquitin protease activity by the Hog1 SAPK modulates transcription upon 
osmostress. EMBO J, 30, 3274-84. 

SONENBERG, N. & HINNEBUSCH, A. G. 2009. Regulation of translation initiation in eukaryotes: 
mechanisms and biological targets. Cell, 136, 731-45. 

SRINIVASAN, M. & DUNKER, A. K. 2012. Proline rich motifs as drug targets in immune mediated 
disorders. Int J Pept, 2012, 634769. 

STADE, K., FORD, C. S., GUTHRIE, C. & WEIS, K. 1997. Exportin 1 (Crm1p) is an essential nuclear 
export factor. Cell, 90, 1041-50. 

STRUHL, K. 1995. Yeast transcriptional regulatory mechanisms. Annu Rev Genet, 29, 651-74. 

SUGIMOTO, A. 2004. High-throughput RNAi in Caenorhabditis elegans: genome-wide screens and 
functional genomics. Differentiation, 72, 81-91. 



198 
 

SUNNERHAGEN, P. 2007. Cytoplasmatic post-transcriptional regulation and intracellular signalling. 
Mol Genet Genomics, 277, 341-55. 

SUPEK, F., BOSNJAK, M., SKUNCA, N. & SMUC, T. 2011. REVIGO summarizes and visualizes long lists 
of gene ontology terms. PLoS One, 6, e21800. 

TAKAHASHI, S. & PRYCIAK, P. M. 2007. Identification of novel membrane-binding domains in multiple 
yeast Cdc42 effectors. Mol Biol Cell, 18, 4945-56. 

TANAKA, K., TATEBAYASHI, K., NISHIMURA, A., YAMAMOTO, K., YANG, H. Y. & SAITO, H. 2014. Yeast 
osmosensors Hkr1 and Msb2 activate the Hog1 MAPK cascade by different mechanisms. Sci 

Signal, 7, ra21. 

TANG, D. J., DONG, S. S., MA, N. F., XIE, D., CHEN, L., FU, L., LAU, S. H., LI, Y., LI, Y. & GUAN, X. Y. 
2010. Overexpression of eukaryotic initiation factor 5A2 enhances cell motility and promotes 
tumor metastasis in hepatocellular carcinoma. Hepatology, 51, 1255-63. 

TATEBAYASHI, K., TANAKA, K., YANG, H. Y., YAMAMOTO, K., MATSUSHITA, Y., TOMIDA, T., IMAI, M. 
& SAITO, H. 2007. Transmembrane mucins Hkr1 and Msb2 are putative osmosensors in the 
SHO1 branch of yeast HOG pathway. EMBO J, 26, 3521-33. 

TATEBAYASHI, K., YAMAMOTO, K., NAGOYA, M., TAKAYAMA, T., NISHIMURA, A., SAKURAI, M., 
MOMMA, T. & SAITO, H. 2015. Osmosensing and scaffolding functions of the oligomeric 
four-transmembrane domain osmosensor Sho1. Nat Commun, 6, 6975. 

TATEBAYASHI, K., YAMAMOTO, K., TANAKA, K., TOMIDA, T., MARUOKA, T., KASUKAWA, E. & SAITO, 
H. 2006. Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG 
MAPK pathway. EMBO J, 25, 3033-44. 

TAYLOR, C. A., SUN, Z., CLICHE, D. O., MING, H., ESHAQUE, B., JIN, S., HOPKINS, M. T., THAI, B. & 
THOMPSON, J. E. 2007. Eukaryotic translation initiation factor 5A induces apoptosis in colon 
cancer cells and associates with the nucleus in response to tumour necrosis factor alpha 
signalling. Exp Cell Res, 313, 437-49. 

TCHEPEREGINE, S. E., GAO, X. D. & BI, E. 2005. Regulation of cell polarity by interactions of Msb3 and 
Msb4 with Cdc42 and polarisome components. Mol Cell Biol, 25, 8567-80. 

TEDFORD, K., KIM, S., SA, D., STEVENS, K. & TYERS, M. 1997. Regulation of the mating pheromone 
and invasive growth responses in yeast by two MAP kinase substrates. Curr Biol, 7, 228-38. 

TEIXEIRA, D., SHETH, U., VALENCIA-SANCHEZ, M. A., BRENGUES, M. & PARKER, R. 2005. Processing 
bodies require RNA for assembly and contain nontranslating mRNAs. RNA, 11, 371-82. 

TEIXEIRA, M. C., MONTEIRO, P. T., GUERREIRO, J. F., GONCALVES, J. P., MIRA, N. P., DOS SANTOS, S. 
C., CABRITO, T. R., PALMA, M., COSTA, C., FRANCISCO, A. P., MADEIRA, S. C., OLIVEIRA, A. L., 
FREITAS, A. T. & SA-CORREIA, I. 2014. The YEASTRACT database: an upgraded information 
system for the analysis of gene and genomic transcription regulation in Saccharomyces 
cerevisiae. Nucleic Acids Res, 42, D161-6. 

TERUI, Y., HIGASHI, K., TANIGUCHI, S., SHIGEMASA, A., NISHIMURA, K., YAMAMOTO, K., KASHIWAGI, 
K., ISHIHAMA, A. & IGARASHI, K. 2007. Enhancement of the synthesis of RpoN, Cra, and H-NS 
by polyamines at the level of translation in Escherichia coli cultured with glucose and 
glutamate. J Bacteriol, 189, 2359-68. 



199 
 

THIEL, G., LIETZ, M. & HOHL, M. 2004. How mammalian transcriptional repressors work. Eur J 

Biochem, 271, 2855-62. 

TOPALIDOU, I., PAPAMICHOS-CHRONAKIS, M., THIREOS, G. & TZAMARIAS, D. 2004. Spt3 and Mot1 
cooperate in nucleosome remodeling independently of TBP recruitment. EMBO J, 23, 1943-
8. 

TOPISIROVIC, I., SVITKIN, Y. V., SONENBERG, N. & SHATKIN, A. J. 2011. Cap and cap-binding proteins 
in the control of gene expression. Wiley Interdiscip Rev RNA, 2, 277-98. 

TREGER, J. M., MAGEE, T. R. & MCENTEE, K. 1998. Functional analysis of the stress response element 
and its role in the multistress response of Saccharomyces cerevisiae. Biochem Biophys Res 

Commun, 243, 13-9. 

TRUEHEART, J. & FINK, G. R. 1989. The yeast cell fusion protein FUS1 is O-glycosylated and spans the 
plasma membrane. Proceedings of the National Academy of Sciences of the United States of 

America, 86, 9916-20. 

UDE, S., LASSAK, J., STAROSTA, A. L., KRAXENBERGER, T., WILSON, D. N. & JUNG, K. 2013. Translation 
elongation factor EF-P alleviates ribosome stalling at polyproline stretches. Science, 339, 82-
5. 

UEDA, T., WATANABE-FUKUNAGA, R., FUKUYAMA, H., NAGATA, S. & FUKUNAGA, R. 2004. Mnk2 and 
Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation 
factor 4E but not for cell growth or development. Mol Cell Biol, 24, 6539-49. 

UESONO, Y. & TOH, E. A. 2002. Transient inhibition of translation initiation by osmotic stress. J Biol 

Chem, 277, 13848-55. 

URSIC, D., FINKEL, J. S. & CULBERTSON, M. R. 2008. Detecting phosphorylation-dependent 
interactions with the C-terminal domain of RNA polymerase II subunit Rpb1p using a yeast 
two-hybrid assay. RNA Biol, 5, 1-4. 

VADAIE, N., DIONNE, H., AKAJAGBOR, D. S., NICKERSON, S. R., KRYSAN, D. J. & CULLEN, P. J. 2008. 
Cleavage of the signaling mucin Msb2 by the aspartyl protease Yps1 is required for MAPK 
activation in yeast. J Cell Biol, 181, 1073-81. 

VALENTINI, S. R., CASOLARI, J. M., OLIVEIRA, C. C., SILVER, P. A. & MCBRIDE, A. E. 2002. Genetic 
interactions of yeast eukaryotic translation initiation factor 5A (eIF5A) reveal connections to 
poly(A)-binding protein and protein kinase C signaling. Genetics, 160, 393-405. 

VAN OERS, M. M., VAN MARWIJK, M., KWA, M. S., VLAK, J. M. & THOMAS, A. A. 1999. Cloning and 
analysis of cDNAs encoding the hypusine-containing protein eIF5A of two lepidopteran 
insect species. Insect Mol Biol, 8, 531-8. 

VENTERS, B. J., IRVIN, J. D., GRAMLICH, P. & PUGH, B. F. 2011. Genome-wide transcriptional 
dependence on conserved regions of Mot1. Mol Cell Biol, 31, 2253-61. 

VENTERS, B. J. & PUGH, B. F. 2009. How eukaryotic genes are transcribed. Crit Rev Biochem Mol Biol, 
44, 117-41. 

VISWANATHAN, R. & AUBLE, D. T. 2011. One small step for Mot1; one giant leap for other Swi2/Snf2 
enzymes? Biochim Biophys Acta, 1809, 488-96. 



200 
 

WADE, J. T., HALL, D. B. & STRUHL, K. 2004. The transcription factor Ifh1 is a key regulator of yeast 
ribosomal protein genes. Nature, 432, 1054-8. 

WARNER, J. R. 1999. The economics of ribosome biosynthesis in yeast. Trends Biochem Sci, 24, 437-
40. 

WARRINGER, J., HULT, M., REGOT, S., POSAS, F. & SUNNERHAGEN, P. 2010. The HOG pathway 
dictates the short-term translational response after hyperosmotic shock. Mol Biol Cell, 21, 
3080-92. 

WEINMANN, R. & ROEDER, R. G. 1974. Role of DNA-dependent RNA polymerase 3 in the 
transcription of the tRNA and 5S RNA genes. Proc Natl Acad Sci U S A, 71, 1790-4. 

WEIR, B. A. & YAFFE, M. P. 2004. Mmd1p, a novel, conserved protein essential for normal 
mitochondrial morphology and distribution in the fission yeast Schizosaccharomyces pombe. 
Mol Biol Cell, 15, 1656-65. 

WIGET, P., SHIMADA, Y., BUTTY, A. C., BI, E. & PETER, M. 2004. Site-specific regulation of the GEF 
Cdc24p by the scaffold protein Far1p during yeast mating. EMBO J, 23, 1063-74. 

WILUSZ, C. J., WORMINGTON, M. & PELTZ, S. W. 2001. The cap-to-tail guide to mRNA turnover. Nat 

Rev Mol Cell Biol, 2, 237-46. 

WOHL, T., KLIER, H., AMMER, H., LOTTSPEICH, F. & MAGDOLEN, V. 1993. The HYP2 gene of 
Saccharomyces cerevisiae is essential for aerobic growth: characterization of different 
isoforms of the hypusine-containing protein Hyp2p and analysis of gene disruption mutants. 
Molecular & general genetics : MGG, 241, 305-11. 

WOHLGEMUTH, I., BRENNER, S., BERINGER, M. & RODNINA, M. V. 2008. Modulation of the rate of 
peptidyl transfer on the ribosome by the nature of substrates. J Biol Chem, 283, 32229-35. 

WOLLMANN, P., CUI, S., VISWANATHAN, R., BERNINGHAUSEN, O., WELLS, M. N., MOLDT, M., WITTE, 
G., BUTRYN, A., WENDLER, P., BECKMANN, R., AUBLE, D. T. & HOPFNER, K. P. 2011. Structure 
and mechanism of the Swi2/Snf2 remodeller Mot1 in complex with its substrate TBP. 
Nature, 475, 403-7. 

WONG, C. M., QIU, H., HU, C., DONG, J. & HINNEBUSCH, A. G. 2007. Yeast cap binding complex 
impedes recruitment of cleavage factor IA to weak termination sites. Mol Cell Biol, 27, 6520-
31. 

WORCH, R., JANKOWSKA-ANYSZKA, M., NIEDZWIECKA, A., STEPINSKI, J., MAZZA, C., 
DARZYNKIEWICZ, E., CUSACK, S. & STOLARSKI, R. 2009. Diverse role of three tyrosines in 
binding of the RNA 5' cap to the human nuclear cap binding complex. J Mol Biol, 385, 618-
27. 

WORCH, R., NIEDZWIECKA, A., STEPINSKI, J., MAZZA, C., JANKOWSKA-ANYSZKA, M., 
DARZYNKIEWICZ, E., CUSACK, S. & STOLARSKI, R. 2005. Specificity of recognition of mRNA 5' 
cap by human nuclear cap-binding complex. RNA, 11, 1355-63. 

WU, C., JANSEN, G., ZHANG, J., THOMAS, D. Y. & WHITEWAY, M. 2006. Adaptor protein Ste50p links 
the Ste11p MEKK to the HOG pathway through plasma membrane association. Genes Dev, 
20, 734-46. 



201 
 

WU, C., LEBERER, E., THOMAS, D. Y. & WHITEWAY, M. 1999. Functional characterization of the 
interaction of Ste50p with Ste11p MAPKKK in Saccharomyces cerevisiae. Mol Biol Cell, 10, 
2425-40. 

WURGLER-MURPHY, S. M., MAEDA, T., WITTEN, E. A. & SAITO, H. 1997. Regulation of the 
Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 
protein tyrosine phosphatases. Mol Cell Biol, 17, 1289-97. 

XIE, D., MA, N. F., PAN, Z. Z., WU, H. X., LIU, Y. D., WU, G. Q., KUNG, H. F. & GUAN, X. Y. 2008. 
Overexpression of EIF-5A2 is associated with metastasis of human colorectal carcinoma. 
Hum Pathol, 39, 80-6. 

XING, L. & BASSELL, G. J. 2013. mRNA localization: an orchestration of assembly, traffic and 
synthesis. Traffic, 14, 2-14. 

YAMAMOTO, K., TATEBAYASHI, K., TANAKA, K. & SAITO, H. 2010. Dynamic control of yeast MAP 
kinase network by induced association and dissociation between the Ste50 scaffold and the 
Opy2 membrane anchor. Mol Cell, 40, 87-98. 

YAMASAKI, S. & ANDERSON, P. 2008. Reprogramming mRNA translation during stress. Curr Opin Cell 

Biol, 20, 222-6. 

YANG, G. F., XIE, D., LIU, J. H., LUO, J. H., LI, L. J., HUA, W. F., WU, H. M., KUNG, H. F., ZENG, Y. X. & 
GUAN, X. Y. 2009a. Expression and amplification of eIF-5A2 in human epithelial ovarian 
tumors and overexpression of EIF-5A2 is a new independent predictor of outcome in 
patients with ovarian carcinoma. Gynecol Oncol, 112, 314-8. 

YANG, H. Y., TATEBAYASHI, K., YAMAMOTO, K. & SAITO, H. 2009b. Glycosylation defects activate 
filamentous growth Kss1 MAPK and inhibit osmoregulatory Hog1 MAPK. EMBO J, 28, 1380-
91. 

YUE, Z., MALDONADO, E., PILLUTLA, R., CHO, H., REINBERG, D. & SHATKIN, A. J. 1997. Mammalian 
capping enzyme complements mutant Saccharomyces cerevisiae lacking mRNA 
guanylyltransferase and selectively binds the elongating form of RNA polymerase II. Proc 

Natl Acad Sci U S A, 94, 12898-903. 

ZANELLI, C. F. & VALENTINI, S. R. 2005. Pkc1 acts through Zds1 and Gic1 to suppress growth and cell 
polarity defects of a yeast eIF5A mutant. Genetics, 171, 1571-81. 

ZANELLI, C. F. & VALENTINI, S. R. 2007. Is there a role for eIF5A in translation? Amino acids, 33, 351-
8. 

ZARRINPAR, A., BHATTACHARYYA, R. P., NITTLER, M. P. & LIM, W. A. 2004. Sho1 and Pbs2 act as 
coscaffolds linking components in the yeast high osmolarity MAP kinase pathway. Mol Cell, 
14, 825-32. 

ZARRINPAR, A., PARK, S. H. & LIM, W. A. 2003. Optimization of specificity in a cellular protein 
interaction network by negative selection. Nature, 426, 676-80. 

ZELLER, R., HARAMIS, A. G., ZUNIGA, A., MCGUIGAN, C., DONO, R., DAVIDSON, G., CHABANIS, S. & 
GIBSON, T. 1999. Formin defines a large family of morphoregulatory genes and functions in 
establishment of the polarising region. Cell Tissue Res, 296, 85-93. 



202 
 

ZENTNER, G. E. & HENIKOFF, S. 2013. Mot1 redistributes TBP from TATA-containing to TATA-less 
promoters. Mol Cell Biol, 33, 4996-5004. 

ZHANG, D. & ROSBASH, M. 1999. Identification of eight proteins that cross-link to pre-mRNA in the 
yeast commitment complex. Genes Dev, 13, 581-92. 

ZHANG, D. W., RODRIGUEZ-MOLINA, J. B., TIETJEN, J. R., NEMEC, C. M. & ANSARI, A. Z. 2012. 
Emerging Views on the CTD Code. Genet Res Int, 2012, 347214. 

ZHANG, Z. & DIETRICH, F. S. 2005. Mapping of transcription start sites in Saccharomyces cerevisiae 
using 5' SAGE. Nucleic Acids Res, 33, 2838-51. 

ZHI, H., TANG, L., XIA, Y. & ZHANG, J. 2013. Ssk1p-independent activation of Ssk2p plays an 
important role in the osmotic stress response in Saccharomyces cerevisiae: alternative 
activation of Ssk2p in osmotic stress. PLoS One, 8, e54867. 

ZHOU, Z., GARTNER, A., CADE, R., AMMERER, G. & ERREDE, B. 1993. Pheromone-induced signal 
transduction in Saccharomyces cerevisiae requires the sequential function of three protein 
kinases. Mol Cell Biol, 13, 2069-80. 

ZHU, X. L., LIANG, L. & DING, Y. Q. 2008. Overexpression of FMNL2 is closely related to metastasis of 
colorectal cancer. Int J Colorectal Dis, 23, 1041-7. 

ZORGO, E., CHWIALKOWSKA, K., GJUVSLAND, A. B., GARRE, E., SUNNERHAGEN, P., LITI, G., 
BLOMBERG, A., OMHOLT, S. W. & WARRINGER, J. 2013. Ancient evolutionary trade-offs 
between yeast ploidy states. PLoS Genet, 9, e1003388. 

ZUK, D. & JACOBSON, A. 1998a. A single amino acid substitution in yeast eIF-5A results in mRNA 
stabilization. The EMBO journal, 17, 2914-25. 

ZUK, D. & JACOBSON, A. 1998b. A single amino acid substitution in yeast eIF-5A results in mRNA 
stabilization. EMBO J, 17, 2914-25. 

ZUZUARREGUI, A., KUPKA, T., BHATT, B., DOHNAL, I., MUDRAK, I., FRIEDMANN, C., SCHUCHNER, S., 
FROHNER, I. E., AMMERER, G. & OGRIS, E. 2012. M-Track: detecting short-lived protein-
protein interactions in vivo. Nat Methods, 9, 594-6. 

ZUZUARREGUI, A., LI, T., FRIEDMANN, C., AMMERER, G. & ALEPUZ, P. 2015. Msb2 is a Ste11 
membrane concentrator required for full activation of the HOG pathway. Biochim Biophys 

Acta. 

ZYLBER, E. A. & PENMAN, S. 1971. Products of RNA polymerases in HeLa cell nuclei. Proc Natl Acad 

Sci U S A, 68, 2861-5. 

 

  



203 
 

 


