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Abstract 

International trade disputes often involve the WTO as a third party that generates impartial opinions of 
potential violations when countries receive imperfect and private signals of violations.  To identify the 
role that the WTO plays in enforcing trade agreements, this paper first characterizes what countries can 
achieve alone in a repeated bilateral trade relationship in which they can secretly raise their protection 
levels through concealed trade barriers.  In particular, countries adopt “private trigger strategies (PTS)” 
under which each country triggers a punishment phase by imposing an explicit tariff based on its 
privately observed imperfect signals of such barriers.  This paper identifies the condition under which 
countries can restrain the use of concealed barriers based on simple PTS, where each country imposes its 
static optimal tariff in all periods under any punishment phase: The sensitivity of private signals rises in 
response to an increase in concealed protection.  Any equilibrium payoff under almost strongly 
symmetric PTS will be identical to the one under simple PTS, as long as the initial punishment is 
triggered by a static optimal tariff, justifying the paper’s focus on simple PTS.  With countries 
maximizing their expected payoffs under the optimal PTS, they will not push down the cooperative 
protection level to its minimum attainable level, thus not setting it to the free trade level even when it is 
attainable.  To analyze a possible role of the WTO, this paper considers “third-party trigger strategies 
(TTS)” under which the WTO allows each country to initiate a punishment phase based on the WTO’s 
judgment (signals) about potential violations.  The WTO changes the nature of punishment-triggering 
signals from private into public, enabling countries to use punishment phases of any length under TTS, 
which in turn facilitates a better cooperative equilibrium.  The optimal TTS will involve an asymmetric 
and minimum punishment if the probability of a punishment phase being triggered is low enough, but it 
will entail punishments involving a permanent Nash tariff war if the probability of a punishment being 
triggered is high enough.  A numerical comparison of the optimal TTS and optimal PTS indicates that 
the contribution of the WTO is likely to be significant when the signals of potential violations are 
relatively accurate.  The WTO enables countries to adopt a more efficient punishment, such as the 
asymmetric and minimum punishment, which in turn enables countries to be less tolerant of potential 
violations and attain a higher level of cooperation as a result. 
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1. Introduction 
 

Enforcing international trade agreements often entails disputes in which countries present 

different opinions about potential deviations from the agreements.  Differences in opinion may 

take various forms, such as disagreement over the existence of concealed trade barriers as in 

disputes between the U.S. and Japan during 1980s, or disagreement over the legitimacy of 

antidumping duties, a frequent theme in the dispute settlement procedure of the World Trade 

Organization (WTO).  These disagreements reflect imperfectness of information about 

deviations from trade agreements.  In addition to being imperfect, each country’s opinion of 

potential violations can be private in the sense that the country’s true opinion is not known to 

other countries.  For example, when the United States Trade Representative (USTR) engages in 

a negotiation with China to curtail piracy and counterfeiting that impede the U.S. intellectual 

property rights, China and the USTR may not know each other’s true belief regarding the 

Chinese government’s effort level to curtail such practices, which in turn may contribute to a 

breakdown in the negotiation.1

Trade disputes typically involve the WTO as a third party that generates impartial opinions 

of potential violations when countries receive imperfect private signals of violations.2  To 

identify the role that the WTO plays in facilitating the enforcement of trade agreements, this 

paper first assumes away the presence of the WTO and characterizes what countries can 

achieve alone in a repeated bilateral trade relationship where each country can secretly raise its 

protection level through concealed trade barriers.  In particular, this paper explores the 

possibility that countries adopt “private trigger strategies (PTS)” under which each country 

triggers a punishment phase by imposing an explicit tariff based on its privately observed 

imperfect signals of such barriers.  The analysis identifies the condition under which countries 

                                                 
1 The signals that the USTR receives regarding potential deviations from trade agreements often come from the 
U.S. companies whose interests are affected by deviations.  Such signals may involve the companies’ private 
information.  Public revelation of the private information can be costly for those companies, forcing the signals to 
be private.  There exist many U.S. antidumping cases in which foreign companies under investigation decide not 
to provide costs and sales related “private” information despite the fact that such nondisclosure often leads to 
excessive dumping duties based on “best information available.”
2 When countries bring a disputed case to the WTO presenting different opinions about potential violations, the 
Dispute Settlement Procedure of the WTO encourages them to solve disputes through a consultation stage prior to 
initiating a panel stage where a third-party panel provides a ruling on the disputed case.  Countries can appeal the 
panel’s ruling to have the case examined by an Appellate Body.  Once the case has been determined by the 
Appellate Body, the losing “defendant” must comply with the ruling or face the possibility of trade sanctions by 
the complaining side. 
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can restrain the use of concealed trade barriers based on simple PTS where each country 

imposes its static optimal tariff in all periods under any punishment phase.  The condition is 

that the sensitivity of private signals rises in response to an increase in concealed protection.  

This paper then establishes that the equilibrium payoff of any almost strongly symmetric PTS 

will be identical to the one under simple PTS, as long as the initial punishment is triggered by a 

static optimal tariff.  Given this generality result, it characterizes the optimal PTS that 

maximize symmetric countries’ expected payoffs under simple PTS.  The analysis shows that it 

is not optimal to push down the cooperative protection level to its minimum attainable level, 

thus not setting it to the free trade level even when it is attainable.    

To analyze a possible role that the WTO can play in enforcing trade agreements, this paper 

analyzes “third-party trigger strategies (TTS)” under which the WTO decides upon whether a 

violation has occurred and tells each country to initiate a punishment phase based on its 

decision as an impartial third party.  The WTO under TTS changes the nature of punishment-

triggering signals from private into public, enabling countries to employ punishment phases of 

any length, which in turn can help countries to attain a better cooperative equilibrium.  The 

comparison between the optimal TTS and optimal PTS illustrates how and to what degree that 

the WTO can help countries to enforce international trade agreements beyond what countries 

can achieve alone under PTS.  The analysis establishes that the optimal TTS will involve an 

asymmetric and minimum punishment if the probability of a punishment phase being triggered 

is low enough, but it will entail punishments involving a permanent Nash tariff war if the 

probability of a punishment being triggered is high enough.  A numerical comparison of the 

optimal TTS and optimal PTS indicates that the contribution of the WTO is likely to be 

significant when the signals of potential violations are relatively accurate.  Under such 

circumstances, the WTO enables countries to adopt a more efficient punishment, such as the 

asymmetric and minimum punishment, which in turn enables countries to be less tolerant of 

potential violations.  As a result, a higher level of cooperation is attained compared to the 

situation without the WTO.  

This paper contributes to the literature on two levels.  First, it provides a new way of 

understanding the role that the WTO plays in enforcing international trade agreements in the 

presence of potential violations of which countries receive imperfect and private signals.  

Because the enforcement of trade agreements ultimately rely on the threat of invoking trade 

 2



sanctions against violations, previous studies have also analyzed the enforcement issue using 

trigger strategies in a repeated game setup.3  Earlier models on this issue, such as Dixit (1987), 

Bagwell and Staiger (1990), and Riezman (1991) suggest that the WTO may serve the role of 

helping countries coordinate on more efficient equilibria among multiple equilibria that 

typically arise in a repeated game setup.  To model a more explicit role of the WTO, Kovenoch 

and Thursby (1993) assume that the Dispute Settlement Procedure (DSP) of the WTO has an 

informational superiority (over trading countries) of distinguishing between true violations and 

mistaken perceptions, which in turn assists the workings of a reputation mechanism to support 

cooperation.4  In a multilateral trading environment, Maggi (1999) shows that the WTO may 

facilitate cooperation enhancing third-country retaliations by disseminating information about 

deviations. 5   While these models introduce more specific roles for the WTO to play in 

coordinating a cooperative equilibrium, the literature has not resolved the question of why the 

WTO is necessary for coordination because these previous studies offer no theory of why 

countries could not coordinate a cooperative equilibrium in the no-WTO environment.6   

This paper represents the emergence of the WTO as a change in the observation structure 

of the repeated game.  The presence of the WTO changes the nature of punishment-triggering 

signals from private into public.  This enables countries to employ punishment phases of any 

length, and as a result countries can attain a better cooperative equilibrium.  As emphasized in 

the analysis of PTS, the private nature of signals of potential violations limits the flexibility of 

punishment phases that countries can use in the absence of the WTO because they need to 

provide countries with the incentive for truthful revelation of private signals in triggering 

punishment phases.  The WTO can publicize its opinions of potential violations, which relaxes 

                                                 
3 Bagwell and Staiger (2002) provide a comprehensive review of studies analyzing international trade agreements 
as a subgame perfect equilibrium in a repeated trade relationship.    
4 Hungerford (1991) develops a model where the WTO plays a negative role in enforcing trade agreements 
because the model assumes that the DSP of the WTO involves uninformative and costly investigation.  
5  As pointed out by a referee, third-party retaliation is rarely observed, and Maggi (1999) does not model 
information transmission directly and offers no theory as to why information could not be shared in the absence of 
the WTO. 
6  Bagwell and Staiger (2005) and more recently Bagwell (2008) analyze the issue of implementing trade 
agreements when each government is privately informed about its own domestic political pressure for protection.  
Their analysis differs from this paper’s because it focuses on identifying the structure of trade agreements that can 
induce the truthful revelation of private political pressure rather than analyzing the enforcement of trade 
agreements when countries privately observe imperfect signals of potential deviations.   
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such a constraint in developing an optimal punishment mechanism, enabling a better 

cooperative equilibrium even in the absence of any informational superiority of the WTO.7   

The other contribution of this paper is more generally toward the literature on repeated 

games with imperfect private monitoring.  It is well known that analyzing repeated games with 

imperfect private monitoring is difficult because utilization of privately observed signals in 

determining continuation plays can destroy the recursive structure of repeated games.8  Kandori 

and Matsushima (1998) and Compte (1998) demonstrate that communication can serve as a 

public signal that restores the recursive structure and enables players to achieve cooperation in 

such a repeated game. 9   In the absence of communication, PTS in this paper show an 

alternative way to restore a recursive structure to repeated games with imperfect private 

monitoring.10  If players can choose explicit actions as well as concealed actions as in the case 

of governments’ choosing their protection levels, then players can avoid confusion between 

punishment phases and non-punishment phases by requiring players to signal an initiation of 

punishments by their explicit, thus public actions.11  This can ensure a recursive structure of the 

                                                 
7 Ludema (2001) emphasizes that the DSP of the WTO may require trade agreements to be renegotiation-proof by 
promoting communication among countries prior to starting punishments.  This negatively affects cooperation by 
forcing countries to rely on weaker (renegotiation-proof) punishments.  In contrast to his analysis in a repeated 
game with perfect monitoring, an optimal trade agreement with imperfect monitoring would not typically involve 
the lowest levels of protection with the most severe credible threat because punishments do occur.  With imperfect 
private monitoring, the WTO can help countries to achieve better cooperation by enabling countries to adopt 
weaker punishments, as shown in this paper.        
8 Kandori (2002) discusses this point and recent developments in repeated games with private monitoring in detail.  
9 In these studies, the communication among players entails no cost (so that it is “cheap talk”) and each country’s 
revealed private information does not affect its own continuation payoff in order to ensure truthful revelation of 
private information.  As pointed out by a referee, however, they are unable to show what communication “does” 
though, since they were unable to show what would happen in the no-communication setting.  
10 A referee points out that communication is not illegal in the context of international trade agreements, different 
from communication in the context of price-fixing oligopolists.  It suggests the possibility of using communication 
to achieve cooperation in the absence of the WTO.  For example, one may consider applying the communication 
mechanism developed by Kandori and Matsushima (1998) to sustain international trade agreements.  There are 
two reasons why such mechanism may not work well among countries.  First, in the context of an international 
relationship, it is not easy to allege potential violations when violations do not affect the alleging country, 
especially when such allegations will negatively affect the alleged country.  In fact, the DSP of the WTO reduces 
the burden for countries of playing the third-party role of “alleging” potential wrong doings of another country by 
making the DSP to be a kind of legal procedure primarily run by experts.  Second, the use of transfers is rarely 
observed between countries, especially as compensation for potential violations of international trade agreements.  
If countries need to rely on imposition of tariffs in punishing potential deviations as they do in practice, then 
“communication” will face a similar incentive constraint as the one under PTS because “alleging your trading 
partner’s wrong doings” needs to be supported by the “action” of punishing such behavior with tariffs.
11 In the context of collusion among firms engaging in secret-price cuttings, for example, firms can employ 
advertised (thus public) sales to initiate a punishment phase against potential defections from collusive pricing.  
Similar to Green and Porter (1984), then occasional “explicit” price wars will occur as dynamic equilibrium 
behaviors to sustain collusion overtime.  Different from the model of Green and Porter where firms would always 
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repeated game along the equilibrium path.  The analysis of PTS specifies the condition under 

which such trigger strategies can restrain the deviatory use of concealed actions. 

The use of explicit actions to initiate punishment phases, however, does not simplify 

everything.  If each player triggers a punishment phase based on its private signals as it does 

under PTS, then in any period after a cooperative one, players need to choose their actions 

knowing only the probability of a punishment phase being triggered by other players.  Because 

an action taken by each player in a current (cooperative) period affects the probability of a 

punishment being triggered in a next period, an optimal action in the next period depends on an 

action taken in the current period, and an optimal action in a period after the next period 

depends on an action taken in the next period, and so on until a punishment phase is triggered.  

Therefore, the use of PTS necessitates a complete characterization of optimal and potentially 

deviatory action sequences that each player may take in checking incentive compatibility for 

such strategies.12  Using a dynamic programming method, this paper establishes that countries 

can use simple PTS in achieving cooperation as long as the private signals satisfy some 

sensitivity constraints.  With regard to the possibility of proving a folk theorem result under 

PTS, this paper generates yet another anti-folk theorem result within a class of private trigger 

strategies, namely almost strongly symmetric PTS, when private monitoring is far from being 

perfect.13

The paper is organized as follows.  Section 2.1 develops a bilateral trade model where each 

country receives imperfect private signals of the other country’s use of concealed trade barriers 

and specifies simple PTS.  Section 2.2 describes incentive constraints under simple PTS, 

providing conditions under which those incentive constraints are satisfied.  Section 3.1 shows 

                                                                                                                                                 
start a price war concurrently, each firm may unilaterally initiate a price war phase by lowering its explicit price 
(and gains from it in that period) under such private trigger strategies and the lengths of price war phases will be 
endogenously determined.     
12 This aspect of PTS does not allow one to apply dynamic programming techniques develops by Abreu et al. 
(1986) to characterize the set of equilibrium payoffs under PTS because those techniques rely on the “one-stage 
deviation principle.” For further discussion of the “one-stage deviation principle,” see footnote 21 in Section 2.2.  
13 Ely and Välimäki (2002) provide a concise discussion of why many of the strategies to prove folk theorems with 
public monitoring fail when monitoring is private and conditionally independent.  This paper also analyses the 
case where monitoring is private and conditionally independent and shows that countries cannot attain the 
symmetric efficient frontier under almost strongly symmetric PTS if the monitoring is far from perfect (Corollary 
1 to Proposition 2).  This anti-folk theorem result, however, may rely on the countries’ use of distortional 
measures like tariffs to punish potential violations.  For example, Horner and Jamison (2007) show that full 
collusion can be approximated under minimal information in private strategies where punishment phases are 
carefully designed so that no loss occurs (collectively) for colluding firms.  Such punishments are possible because 
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that countries can support simple PTS in the repeated protection-setting game, achieving a 

certain level of cooperation.  It also establishes that the equilibrium payoff under any almost 

strongly symmetric PTS will be identical to the payoff under simple PTS as long as each 

country starts the initial punishment phase by imposing its static optimal tariff.  Section 3.2 

then characterizes optimal simple PTS under which countries maximize their joint expected 

discounted payoffs.  To demonstrate a role that the WTO may play in enforcing international 

trade agreements, Section 4 characterizes optimal TTS and provides a numerical comparison 

between the optimal PTS and optimal TTS.  Section 5 discusses some additional factors that 

may severely limit the use of PTS and summarizes results.  It concludes with a discussion of a 

possible extension of this paper’s analysis towards further understanding of the Dispute 

Settlement Procedure of the WTO. 

 
 

2. Private Trigger Strategies 

 
2.1. A Trade Model with Concealed Trade Barriers and Private Trigger Strategies   

The basic bilateral trade model comes from Dixit (1987) with concealed trade barriers 

being introduced in a way similar to Riezman (1991).  There exist two countries, home (H) and 

foreign (F), producing and trading two products, good 1 and good 2, under perfect competition.  

H imports good 2 and F imports good 1.  In each period each country simultaneously chooses 

its action, , where both elements of iiii Aea ∈≡ ),(τ iA  may take any non-negative real 

number.  Total import protection level and explicit tariff level are given by  and , 

respectively, with i = 

iτ ie

* or none.  Variables with and without superscripts * denote foreign and 

home variables, respectively.  I assume that 0≥− eτ  and , representing the 

concealed protection levels of H and F, respectively.  The local prices , , , and  are 

related as follows:  and .

0≥− ∗∗ eτ

1p 2p ∗
1p ∗

2p

)1(22 τ+= ∗pp )1(11
∗∗ += τpp 14   Given the assumption of perfect 

competition, I can define each country’s one-period payoff function as a function of the terms 

                                                                                                                                                 
firms can avoid collective losses as long as any low-cost firm ends up selling its product at a monopoly price, a 
special feature that countries in a trade relationship may not replicate easily in their punishment phases.   
14 Thus, this paper does not consider the possibility of using negative or prohibitive protection.    
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of trade, represented by , and its own total protection level, .  Such a payoff 

function, denoted by , induces a corresponding import demand function, .  

)/( 21
∗≡ pp π iτ

),( iiw τπ ),( iim τπ

 In the absence of uncertainty (no random element) in this world, each country’s amount of 

imports is a deterministic function of its own total protection level and the terms of trade.  This 

implies that each country may figure out the exact level of the other country’s protection based 

on the information about the terms of trade and the amount of imports, even in the presence of 

concealed trade barriers.  However, when I introduce uncertainty into the model as a way of 

representing shocks to technology or preferences, exact derivation of other countries’ 

protection levels based on the amount of imports and the terms of trade may become 

impossible.  Uncertainty caused by random shocks can be modeled into random components in 

the import demand functions as follows: 

(1)  , ),,( i
t

i
tt

ii
t mm θτπ=

where  denotes each country’s random components affecting its import demand at 

period t, which follow a joint density function, f(

ii
t Θ∈θ

tθ , ) that is iid across periods.  Subscript t 

denotes the variables determined in period t.  In equilibrium, the following balance of payment 

condition should be satisfied:  

∗
tθ

(2)  . ),,(),,( ∗∗∗=⋅ ttttttt mm θτπθτππ

This determines the equilibrium values for tπ , , and  as functions of tm ∗
tm tτ , , ∗

tτ tθ , and . ∗
tθ

 Given that each country sets its total protection level prior to the realization of random 

shocks, each country’s one-period expected payoff, denoted by ui, is a function of both 

countries’ total protection levels:  

 (3)  , ( )∫∫
∗∗ ΘΘ∈

∗∗∗∗=
),(),(

),(;),,,,(),(
tt

tttt
i
t

i
tttttt

ij
t

i
t

i ddfwu
θθ

θθθθθτθθττπττ

where  represents each country’s one-period payoff function that is affected by 

random shocks, , and where i ≠ j.  

);,( iiiw θτπ
iθ

This paper focuses on the analysis of symmetric equilibria of a repeated protection-setting 

game between symmetric countries.  Thus, I assume that  for all non-

negative, real values of  and .  Regarding derivatives of  and  with 

respect to 

),(),( 2121 ττττ ∗= uu
1τ 2τ )( ∗ττ ,u )( ττ ,u ∗∗

τ  and , I assume that the following standard trade-theoretic results continue to ∗τ
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hold in the presence of random variables: 0>∂∂ τu  at 0=τ  (each country has an incentive to 

raise its protection level above zero); 0<∂∂ ∗ τu  (such protection hurts the other country); 

τ∂∂u  0<∂∂+ ∗ τu  (such protection also reduces the total payoff to H and F as it creates 

distortional losses).  For analytical simplicity, I introduce the following additional assumptions: 

022 <∂∂ τu  (the marginal gain from protection decreases as the protection level increases); 

02 =∂∂∂ ∗ττu  (the marginal gain from protection is not affected by the other country’s 

protection level).15  These additional assumptions guarantee the existence of a unique static 

optimal protection level for H, which I denote by h (> 0).  The one-shot protection-setting game 

between H and F then generates a Nash equilibrium where  = (h, h),( ∗ττ *) with h = h* by 

symmetry.    

Private monitoring is specified as follows.  At the end of period t, each country privately 

observes realized values of its payoff and own random variable, , and both countries 

observe a pair of explicit tariffs, .  Denote the privately observed signal by  

∈ 

),( i
t

i
tu θ

),( ∗
tt ee ),( i

t
i
t

i
t u θω =

iΩ .  I assume that the probability distribution of private signal profile conditional on action 

profile has full support, that is 0),,( * >∗
tttt aaPr ωω  for each Ωω ∈t , , ∗∗ ∈Ωωt Aat ∈  and 

.  Note that while each country cannot infer the exact level of the other country’s 

concealed protection even after observing its private signal (because it does not know the 

realized value of the other random variable), the privately observed information can serve as a 

measure for detecting the other country’s potential use of concealed protection.

∗∗ ∈ Aat

16   More 

specifically, H can choose a subset of its private signals, ΩΩ ∈D , so that 

> 0, with 

∗∂∈∂ t
D

tωPr τΩ /)(  

),()( ∗∈≡∈ tt
D

t
D

t aaωPrωPr ΩΩ  denoting the probability that H’s private signal 

belongs to DΩ  conditional on an action profile.  For example, H can assign values of  that 

are less than a critical value as the payoff part of 

tu

DΩ .  This can induce  0 ∗∂∈∂ t
D

tωPr τΩ /)(  >

                                                 
15 These properties of a social utility function can be derived from a two good, partial equilibrium model of trade 
with linear demand and supply curves.  See Bond and Park (2002) for derivation of such properties. 
16 Once H observes ut, θt, and τt, for example, H can calculate the probability of τt

* ≤ l (a certain protection level) 

by Pr(τt
*≤ l | ut,θt,τt) = where Θ∫ ∫ ∗

∈

∗∗
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∗∗∗

l

u
t ddf

ttt0 ),,(
),( τθθθ

ττθΘθ

*(ut,θt,τt,τ*) = {θ* ∈ Θ* | u(τt,τ*,θt,θ*) = ut}. 
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because , and the sensitivity of  against  can improve once it is properly 

controlled for 

0/ <∂∂ ∗
ttu τ tu ∗

tτ

tθ .  With regard to the relationship between tω  and , I assume conditional 

independence, meaning that for each action profile, countries’ private signals are independen

∗
tω

tly 

distributed of one another.  This implies that each country cannot infer the other country’s 

private signal based on its own private signal.17  For symmetry between H and F, I also assume 

that  for all  ∈ A = A)()( * D
t

D
t ωPrωPr ΩΩ ∈=∈ ),(),( ∗∗= tttt ee ττ * and ∗=∈ ΩΩΩ D . 

Given the stage game and associated private monitoring depicted as above, I can describe 

an infinitely repeated protection-setting game between H and F as follows.  A strategy for each 

country is defined by  with  ∞
== 1))(( t

ii tss

(4)       , itjtitii AEAts →×× −−− 111 )()()(:)( Ω

where jE denotes the set of possible explicit tariffs that each country can impose in a period 

with  and j ≠ i.   assigns each country’s current action  based on the history 

of its own previous actions, , the history of its own private 

information, , and the history of the other country’s explicit 

tariffs,  with j ≠ i.  If each country conforms to its strategy 

defined in (4), then the expected discounted payoff is given by: 

jj Ee ∈ )(ts i ),( i
t

i
t eτ

1
121

1 )(),,()( −
−

− ∈⋅⋅⋅≡ tii
t

iiti Aaaaa

1
121

1 )(),,()( −
−

− ∈⋅⋅⋅≡ tii
t

iiti Ωωωωω

1
121

1 )(),,,()( −
−

− ∈⋅⋅⋅≡ tjj
t

jjtj Eeeee

(5)   ssuEssV
t

tCj
t

i
t

ijii
⎥
⎦

⎤
⎢
⎣

⎡
= ∑

∞

=

− ),())(,(),( *

1

1δττ , 

where E[⋅⏐(s, s*)] is the expectation with respect to the probability measure on histories 

induced by the strategy profile (s, s*), and where  ∈ [0, 1) denotes the common discount 

factor with i ≠ j.  Now, I define a supergame equilibrium in this infinitely repeated protection-

setting game as follows: 

Cδ

 
                                                 

17  Matsushima (1991) analyzes repeated play of stage games with a unique static Nash equilibrium and 
conditionally independent private signals, a problem that is similar to the repeated protection-setting game of this 
paper, and shows that any pure-strategy equilibrium other than the static Nash equilibrium should involve 
conditioning on payoff-irrelevant history.  As discussed by Ely and Välimäki (2002), repeated games with 
imperfect private monitoring, especially with conditionally independent private signals, limit the use of strategies 
that are often useful for repeated games with public monitoring under which each player typically has a strict 
incentive to follow her equilibrium strategy after every history.  Private trigger strategies considered in this paper 
will be subject to similar constraints, but differ from previous works by considering the use of explicit actions, like 
tariffs, as a punishment coordination device.    
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Definition 1.18  A strategy profile  is a supergame equilibrium in the repeated game 

between H and F, if  and  for all  and .  

),( ∗ss

),(),( / ∗∗ ≥ ssVssV ),(),( / ssVssV ∗∗∗∗ ≥ ss ≠/ ∗∗ ≠ ss /

     
To explore the possibility of supporting a cooperative protection level, denoted by l, that is 

lower than the one-shot Nash protection level (h > l) as a symmetric supergame equilibrium of 

the repeated game described above, I consider “private trigger strategies” under which each 

country uses its private signal, ω and ω*, as a device to trigger a punishment phase against the 

other country’s potential use of concealed protections.19  Focusing on symmetric strategies 

with  for all  and t ≥ 1, I describe H’s 

strategy s (and accordingly, F’s strategy ) as follows: 

)()( tsts ∗= 111111 )()()( −−∗−∗−∗−− ××=×× tttttt eaea ωω

∗s

(i) Given that period t − 1 was a “cooperative” period with  = (0, 0), H continues 

cooperating by setting  = (l, 0) if , but it initiates a punishment phase by 

setting  = (h, h) if .  

),( 11
∗
−− tt ee

)( tt e,τ D
t Ωω ∉−1

)( tt e,τ D
t Ωω ∈−1

(ii) Given that a “punishment” phase was initiated in period t − 1 with  ≠ (0, 0), H sets ),( 11
∗
−− tt ee

)( e,τ = (h, h) for the following (T − 2) periods and it continues to do so one more period 

with probability λ if  and ; H sets 01 >−te 01 =
∗
−te )( e,τ = (h, h) for the following (TS − 2) 

periods and it continues to do so one more period with probability λS if  and , 

where T and T

01 >−te 01 >
∗
−te

S are integer numbers that are greater than or equal to 2, and λ and λS belong 

to [0, 1].  H knows these variables (T, TS, λ, λS) when it initiates a punishment phase.  The 

actual length of a punishment phase is determined by some public randomizing device 

(determining λ and λS) after the punishment phase has been initiated.     

(iii) In period 1 and other “initial” periods right after the end of any punishment phase, H sets 

)( e,τ  = (l, 0) with probability (1 − Pr) but initiates a punishment phase by setting = 

(h, h) with probability Pr, where Pr ≡ Pr( ) with 

),( ii eτ

D
t Ωω ∈ ),( tt eτ = (l, 0) and = (l, 0).  ),( ∗∗

tt eτ

                                                 
18 This definition of a supergame equilibrium of a repeated game with privately observed signals of other players’ 
actions follows Matsushima (1991).  
19 One trivial supergame equilibrium strategy profile is to assign the one-shot Nash protection level for all periods 
because that would assign the static optimal behavior for each country.    
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Note that the absence or presence of explicit tariffs classifies any period into either a 

“cooperative” period (with no explicit tariffs) or a “punishment” period (with some positive 

tariffs).  While H and F cannot observe each other’s concealed protection levels, they use their 

explicit tariffs as public signals to coordinate punishment phases as described in (i) and (ii).  

Extending a punishment phase one more period with a certain probability as specified in (ii) is 

an instrument to make the expected discounted payoff from invoking a punishment phase vary 

smoothly so that it can be set to equal the expected discounted payoff from not invoking a 

punishment phase, which is an important requirement for incentive constraints considered in 

the following section.  Also note that the actions for period 1 and other “initial” periods 

described in (iii) are designed to mimic those in a period that immediately follows a 

“cooperative” one, which in turn simplifies the analysis of the trigger strategies defined 

above.20  Finally, note that the set of private signals that trigger a punishment phase ( DΩ ), the 

lengths of different punishment phases (T − 1 if a single country triggers and TS − 1 if H and F 

trigger simultaneously), and the corresponding probabilities of extending the punishment 

phases (λ, λS) characterize the strategy profile defined by (i), (ii) and (iii), together with the 

cooperative protection level, l.  I define simple private trigger strategies as follows: 

      
Definition 2.  If (i), (ii), and (iii) describe a symmetric strategy profile (s, s*) with )()( tsts ∗=  

for all  and t ≥ 1, then (111111 )()()( −−∗−∗−∗−− ××=×× tttttt eaea ωω s, s*) are simple private trigger 

strategies (simple PTS) with  as characterizing parameters. ),,,,,( SSD TTl λλΩ

 
Given this definition, I can derive H’s expected discounted payoff under (s, s*) with 

, denoted by ),,,,,( SSD TTl λλΩ )( ∗s,sV , as follows: 

(6)  
,

1
),(

)())(1(21
)],(),()[1()],(),()[1(              

)())(1(21
)],(),()[1(),(

2

2

2

CSCCC

SCCC

hhu
PrPrPr

llulhuPrPrlluhluPrPr
PrPrPr
hhulluPrssV

δδδδδδ

δδδδδ

−
+

−+−−+−
−−+−−

+

−+−−+−
−−

=∗

 

                                                 
20 If, for example, Pr = 0 ≠ Pr(ωt∈ΩD) with (τt, et) = (l, 0) and (τt

*
, et

*) = (l, 0), then the expected one-period 
payoffs for period 1 and other “initial” periods will be different from those for any period immediately following a 
cooperative one, making the expected discounted payoffs along the equilibrium path more complicated than those  
in (6).  Furthermore, having actions in period 1 and in other “initial” periods different from those in periods 
immediately following a cooperative period will make deviation incentives different across these periods, which in 
turn complicates characterization of the optimal protection sequence in Section 2.2.2.   
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where with K = s or none.   and  

respectively represent the relative length of the punishment phase initiated by H or F alone and 

by H and F simultaneously.  Because  uniquely defines  as shown above, I 

will describe simple PTS using  instead of using  henceforth.    

1))(1()( −−+=
KK TCKTCKK δλδλδ )( δδ −C )( SC δδ −

),,,( SSTT λλ ),( Sδδ

),,,( SDl δδΩ ),,,,,( SSD TTl λλΩ

Note that simple PTS defined above is simple in the sense that each country imposes its 

static optimal tariff in all periods under any punishment phase.  More generally, PTS may 

involve more complex punishment phases such as imposing lower tariffs if the signal indicates 

weaker violations or/and employing a stronger punishment, such as autarky, against 

presumably more severe violations.  As shown later, the equilibrium payoff of any (“almost 

strongly”) symmetric PTS will be identical to the one under simple PTS defined above, as long 

as the initial punishment is triggered by a static optimal tariff.  From now on, I abbreviate 

simple PTS to PTS unless it is necessary to distinguish them.   

 
2.2. Incentive Constraints under Private Trigger Strategies 

In this section, I analyze incentive constraints for PTS to be a supergame equilibrium in 

the repeated game defined in Section 2.1.  The private nature of signals that trigger 

punishments under PTS makes such incentive constraints different from the incentive 

constraints for trigger strategies under which public signals trigger punishments in two 

distinctive ways.  First, the private nature of signals imposes restrictions on the lengths of 

punishment phases under PTS, which contrasts with the repeated game with public information 

where countries can choose any length for their punishment phases.  Section 2.2.1 analyzes 

such limits on the lengths of punishment phases under PTS.  Second, to check the absence of 

)(/ ss ≠  or )(/ ∗∗ ≠ ss  such that ),(),( **/ ssVssV >  and ),(),( / ssVssV ∗∗∗∗ > , one needs to 

check not only one-time deviations from the specified strategy, but whole deviation paths that 

each country may take.21  If private signals trigger punishments as under PTS, any deviatory 

action that each country might have taken in a previous period can influence its optimal 

deviatory action in a current period: The previous period defection affects the probability of a 

                                                 
21 When a public signal triggers a punishment phase, any deviatory actions that each country might have taken in 
any previous periods will not affect its optimal deviatory action in the current period for a given history of public 
signals up to the current period.  This is because one country’s defections in the previous periods affect the other 
country’s current and future actions only through affecting the history of public signals.  Therefore, we can apply 
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punishment phase being initiated in the current period, which in turn influences the current-

period optimal action.  This necessitates characterization of an optimal (potentially deviatory) 

protection sequence that each country may take against ),( ∗ss  in analyzing the incentive 

constraints for PTS.  Section 2.2.2 characterizes such a sequence for H under PTS, and shows 

that H’s optimal protection sequence can be a stationary one of setting τ at l (the cooperative 

protection level) in all periods until a punishment phase starts, which is a prerequisite for PTS 

to be a supergame equilibrium.   

 
2.2.1. Constraints on Lengths of Punishment Phases  

In any period that immediately follows a cooperative period with (e, e*) = (0, 0) and in any 

initial periods (period 1 and a period right after the end of any punishment phase), each country 

faces the choice of whether or not to initiate a punishment phase by imposing its static optimal 

tariff.  To eliminate the incentive to misrepresent private signals in such periods, the expected 

payoff from initiating a punishment phase should be identical to the expected payoff from not 

initiating it for each country.  Denote the condition that equates those expected payoffs by ICP 

for H (with the same condition applying for F by symmetry).  Then,  

ICP: 

(7)          
 ],)(),([])(),()[1(

])(),([)]),()[1(

C
S

N
SC

CN
C

CN
C

C
C

VVhhuPrVVlhuPr

VVhluPrVlluPr

δδδδδδ

δδδδ

+−+++−+−

=+−+++−

where ),( ∗≡ ssVVC  and .  The left side of the equality in (7) represents 

the expected discounted payoff from not initiating a punishment phase but continuing to set (τ,

)1/(),( C
N hhuV δ−≡

 

e) = (l, 0).  The right side of the equality represents the expected discounted payoff from 

initiating a punishment phase, setting (τ, e) = (h, h).  In calculating these expected discounted 

payoffs in (7), it is assumed that the other country initiates a punishment phase with a 

probability that conforms PTS, denoted by Pr. 

Using u(l, l) − u(l, h) = u(h, l) − u(h, h) implied by ∂u/∂τ∂τ∗ = 0, I simplify (7) into 

(ICP)  . ))](()[())((),(),( NC
SC

NC
C VVPrVVlhullu −−−−=−−+− δδδδδδ

                                                                                                                                                 
the logic of one-stage-deviation principle for the subgame perfect equilibrium with observable actions (Theorem 
4.1. and Theorem 4.2 in Fudenberg and Tirole, 1991) to the perfect public equilibrium (with unobservable actions). 
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For any given cooperative protection level (l) and any given range of private signals that trigger 

punishment phases ( DΩ ), I have two variables ( ) to be determined with one equation 

(ICP), potentially having infinite combinations of ( ) that satisfies ICP.  However, Lemma 

1 (a) below establishes that  and ICP are the necessary conditions for each 

country to truthfully represent its private signals under PTS.   

Sδδ ,
Sδδ ,

)(2 δδδδ −=− CSC

 
Lemma 1. 

(a)   = [u(h, l) − u(l, l)]/(Vδδ −C
C − VN) and  are necessary conditions for 

each country to truthfully represent its private signals under PTS, triggering a punishment 

phase iff  its private signal belongs to 

)(2 δδδδ −=− CSC

DΩ .  

(b)  If H and F value their future payoffs high enough ( ) and the probability of a 

punishment phase being triggered along the equilibrium path is low enough (Pr ≈ 0), then, 

for any given combination of (l, 

1≈Cδ

DΩ ) with l < h, there exists a unique combination of 

( ) that satisfies the necessary condition for truthful revelation of private signals in 

Lemma 1 (a).  (See Appendix for proof.)  

Sδδ ,

 
Recall that  and  respectively represent the length of a punishment phase 

that H or F can initiate alone 

δδ −C SC δδ −

),( λT  and the length of a punishment phase that H and F initiate 

concurrently  as  and .  

Thus, for a given combination of (l, 

),( SST λ 1))(1()( −−+= TCTC δλδλδ 1))(1()( −−+=
SS TCSTCSS δλδλδ

DΩ ), ICP with  determines  = 

[u(h, l) − u(l, l)]/(V

)(2 δδδδ −=− CSC δδ −C

C − VN).  Note that the length of a punishment phase that each country 

initiates by itself ( ) increases in its expected gain in the initial period of the punishment 

phase by imposing its static optimal tariff unilaterally (u(h, l) − u(l, l)) but decreases in its 

expected loss in the tariff-war periods that will follow (V

δδ −C

C − VN).  The expected gain in the 

initial period of a punishment phase provides each country with the incentive to start a 

punishment phase despite the expected loss from engaging in a tariff war that follows under a 

punishment phase.  Thus, the larger the expected gain in the initial period, the longer a 

punishment phase that H can tolerate (without violating ICP) and the larger the expected loss 

from a tariff war, the shorter a punishment phase that H can tolerate (without violating ICP). 
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Even when ICP is satisfied so that each country has no (strict) incentive to untruthfully 

represent its private signal after a “real” cooperative period, it may still have an incentive to 

misrepresent its private signal after a “pseudo” cooperative period under which it deviates by 

setting l≠τ (or ) with its explicit tariff being zero.  The proof for Lemma 1 (a) in the 

Appendix shows that  is indeed a necessary condition for each country not 

to misrepresent its private signals in a period following a pseudo cooperative period.  For 

example, if   so that the length of a punishment phase that H and F initiate 

concurrently is shorter than what it is supposed to be, then each country will have an incentive 

to set its protection level higher than l in a cooperative period and then initiate a punishment 

phase in the following period regardless of its private signal.  Such a deviation strategy may 

pay off because an increase in the protection level in a cooperative period raises the probability 

of a punishment phase being triggered by the other country in the foll

l≠∗τ

)(2 δδδδ −=− CSC

<− SC δδ )(2 δδ −C

owing period, which 

would then lead to a short punishment phase (  being small) when the deviatingSC δδ −  country 

initiates a punishment regardless of its private signals. 

 
2.2.2. Optimal Protection Sequence and Existence of a Stationary Protection Level   

To characterize the optimal protection sequence, I analyze the dynamic optimization 

problem in which H maximizes its expected discounted payoff by choosing a protection 

sequence , given that F follows its specified strategy under PTS.  The dynamic 

optimization problem for H is  

∞
=+ 01}{ ddτ

(8)   [ ]∑ Π
∞

=
+

−

= ⎭
⎬
⎫

⎩
⎨
⎧

⋅⎥⎦
⎤

⎢⎣
⎡ −⋅

∞
=+ 0

1

1

0}{
),()(1)(

01 d
ddt

d

t

dC FPrSup
dd

τττδ
τ

where  with  = 1; 

 given (

)](1[)](1[)](1[)](1[ 110

1

0
−

−

=

−×⋅⋅⋅×−×−=−Π dt

d

t
PrPrPrPr ττττ )](1[

1

0
t

t
Pr τ−Π

−

=

)()( tt PrPr Ωωτ ∈≡ D∗ ∗ ∗
tτ , te ) = (l, 0) and ( tτ , te ) = (l, 0), and  = l; and 0τ

≡+ ),( 1ddF ττ ),()](1[])(),()[( 11 luPrVVhuPr ddCONdd ++ −++−+ ττδδδττ C

∞

 with VCO = VC.  Note 

that the protection sequence  in (8) specifies protection levels only until F triggers an 

initial punishment phase.  The optimization in (8) assumes that H will follow its specified 

strategy under PTS once F triggers an initial punishment phase with V

=+ 01}{ ddτ

CO = VC ≡ ),( ssV * .  The 
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full optimization problem should characterize the optimal protection sequence after the end of 

each punishment phase that may occur in the future periods.  Characteristics of the optimal 

protection sequence derived from (8), however, will be qualitatively identical to those of the 

full optimization problem.  This is because the optimal sequence resulting from (8) will be 

identical to the one from the full optimization problem if VCO in (8) is set equal to the 

maximized expected discounted payoff of the full problem, having H face an identical 

optimization problem in determining the protection sequence after the end of each punishment 

phase in the future.22  Also note that the optimal protection sequence considered in (8) excludes 

the possibility of using explicit tariffs as a part of its path.  As shown in Lemma 4 (b) of this 

section, however, once the lengths of punishment phases satisfy the necessary conditions for 

truthful revelation of private signals given in Lemma 1 (a), then H cannot increase its payoff by 

using explicit tariffs along its deviation path.  Hence, there is no loss of generality in analyzing 

the optimal protection sequence for H through the optimization problem defined in (8).23  

Even though the optimization problem in (8) does not take a standard form for which a 

dynamic programming method is typically applied, Lemma 2 (a) below establishes equivalency 

between (8) and the following (non-standard) dynamic programming problem:24

(9)  { })()](1[),()( 11
],0[

1 ττδτττ
τ

VPrFSupV C

h
−−

∈
− −+=  for all τ−1 ∈ [0, h],  

                                                 
22 The discounted payoff of the full optimization problem can be obtained by applying the following iterative 
process to the optimization problem in (8).  Initially set VCO in (8) to be VC defined in (6) and solve the 
optimization in (8), obtaining a discounted payoff as an outcome of this initial optimization problem.  Then, set the 
value of VCO in (8) to have the value of this initially generated discounted payoff, supposedly higher than (or equal 
to) the initial VCO (= VC), which redefines the optimization problem in (8).  This redefined optimization problem 
will generate another discounted payoff as an outcome of this second optimization problem.  Then, set VCO in (8) 
to have the value of this newly generated discounted payoff and continue this iterative process until the discounted 
payoff generated through this process reaches its limit.  As the sequence of the discounted payoffs generated 
through this process is monotonically increasing and bounded, there exists such a limit.  This limit will be equal to 
the discounted payoff of the full optimization problem. 
23 While I focus on characterizing the optimal protection sequence for H under PTS in this section, the same 
characterization can be applied to the optimal protection sequence for F.  
24 (8) is not a standard problem in the sense that the component that corresponds to the return function of a 

standard problem, , depends not only on the current choice variable and the choice 

made in the immediate prior period (as in the case of a usual return function of a typical dynamic programming 
problem) but also on all the choices made since the initial period.  The dynamic programming problem in (9) is not 
a standard form because the current state variable, τ

),()]](1[[ 1

1

0
+

−

=
−Π ddt

d

t
FPr τττ

−1, affects not only the current return function part, F(τ−1,τ), 
but also the future discounted payoff part through [1 – Pr(τ−1)].  
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where τ−1 and τ, respectively denote a previous-period and a current-period protection level of 

H.25  Given a solution V(⋅) to (9), the optimal policy correspondence G: [0, h] → [0, h] is 

defined by:  

(10)  G(τ−1) = {τ ∈ [0, h]: V(τ−1) = F(τ−1, τ) + δC[1 – Pr(τ−1)]⋅V(τ)}, 

which contains values of τ  that maximize V(τ−1) for each τ−1 ∈ [0, h].  Despite the fact that the 

dynamic optimization problem in (8) and the corresponding dynamic programming problem in 

(9) take non-standard forms, Lemma 2 establishes the following standard results on V and G:  

 
Lemma 2.   

(a) Define )( 0τSV be the supremum function that is generated by (8).  Then, (i)  satisfies 

(9); (ii) the solution to (9) is 

SV

)()( 11 −− = ττ SVV ; (iii) every optimal protection sequence 

solving (8) is generated from G in (10); (iv) any protection sequence generated by G in 

(10) is an optimal protection sequence that solves (8).  

(b)  There exists a unique continuous function V that satisfies (9). 

(c)  The optimal policy correspondence G defined by (10) is compact-valued and upper hemi-

continuous. (See Appendix for Proof) 

 
Given Lemma 2, I can characterize the optimal protection sequence of H by characterizing 

G(⋅) in (10) because any protection sequence generated by G with the initial τ−1 being set at l is 

an optimal protection sequence that solves (8).  Utilizing one of the generalized envelope 

theorems of Milgrom and Segal (2002) and a general result on the differentiability of the value 

function of Cotter and Park (2006), I can characterize V and G as follows: 26   

 
Lemma 3. Assume that the lengths of punishment phases satisfy the conditions in Lemma 1 (a).  

                                                 
25 Note that limiting H’s protection choice to be equal or less than h as in (9) does not affect the generality of the 
optimization problem because H has no incentive to raise its protection level above its static optimal protection 
level, h.  
26 In characterizing V and G, I cannot use the well-known result of Benveniste and Scheinkman (1979) on the 
differentiability of the value function.  While Benveniste and Scheinkman established that concavity of the return 
function on the state and choice variables is sufficient to guarantee the differentiability of the resulting value 
function of a typical dynamic programming problem, the dynamic problem of choosing an optimal protection 
sequence analyzed in this paper does not belong to the typical dynamic programming problem, as explained earlier.  
Recently, Milgrom and Segal (2002) developed generalized envelope theorems for arbitrary choice sets, and 
Cotter and Park (2006) established differentiability of the value function on the range of the optimal policy 
correspondence, regardless of the curvature of the return function.  I apply these results in characterizing V and G, 
as shown in the proof of Lemma 3.    
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(a) V(τ−1) is strictly decreasing in τ−1 ∈ [0, h]. 

(b) G(τ−1) is strictly increasing in τ−1 in the sense that g( ) > g( ) for all  >  ∈ [0, h] 

with g( ) ∈ G( ) and g( ) ∈ G( ). (See Appendix for Proof) 

//
1−τ

/
1−τ

//
1−τ

/
1−τ

//
1−τ

//
1−τ

/
1−τ

/
1−τ

 
Because a higher τ−1 (a higher protection level in the cooperative previous period) implies a 

higher probability that F triggers a punishment phase in the current period, a higher τ−1 also 

implies a more hostile environment for H to maximize its discounted payoff.  Therefore, the 

outcome of the maximization problem, V(τ−1), will get smaller as τ−1 increases (Lemma 3 (a)).  

To understand Lemma 3 (b), first note that choosing τ (a current-period protection level) 

must balance the current period’s loss from setting the protection level below h (the static 

optimal one) against the future periods’ gain from reducing the probability of a punishment 

phase being triggered.  Figure 1 demonstrates this.  Given the pervious-period protection level 

τ−1 is equal to , setting τ = h maximizes  

 because it maximizes the expected current period payoff, 

 and τ does not affect the future expected discounted payoff 

contingent upon a punishment phase being initiated in the current period,   

By reducing τ below h, however, H can increase its expected discounted payoff,  

 because V(τ) strictly decreases in τ by Lemma 3 (a).  As shown in Figure 1, 

if H lowers τ from h,  strictly increases.  Therefore, g( ), the optimal 

current-period protection with  being the previous-period protection level, is lower than h.      

/
1−τ +−+= −−− ),()](1[),()(),( /

1
/
1

/
1 luPrhuPrF ττττττ

]))[(( /
1 CN

C VVPr δδδτ +−−

),()](1[),()( /
1

/
1 luPrhuPr ττττ −− −+

CN
C VV δδδ +− )( .

+− ),( /
1 ττF

)()](1[ /
1 ττδ VPrC
−−

)()](1[ /
1 ττδ VPrC
−− /

1−τ

/
1−τ

Given this understanding of the optimal choice over τ, I can explain why G(τ−1) strictly 

increases in τ−1 using Figure 1.  When τ−1 increases from  to , it may shift  

upwards as shown in Figure 1 but it will not affect  = , implying 

that the static incentive to raise τ closer to h stays the same; for example, 

 in Figure 1.  An increase in τ

/
1−τ

//
1−τ ),( 1 ττ −F

τττ ∂∂ − /),( 1F ττ ∂∂ ∗ /),( lu

))(,(),())(,(),( /
1

/
1

/
1

/
1

//
1

//
1 −−−−−− −=− ττττττ gFhFgFhF −1, however, 

weakens the dynamic incentive for lowering τ to avoid a punishment phase in a future period 

because it increases the likelihood of a punishment phase starting in the current period.  Figure 

1 illustrates this:  with  > )]()(()][Pr(1[)]())(()][(1[ /
1

/
1

/
1

//
1 hVgVhVgVPr −−<−− −−−− ττττ )( //

1−τPr
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)( /
1−τPr .  The dynamic gains from reducing τ from h to  decreases as τ)( /

1−τg −1 increases from 

 to .  As a result, a higher τ/
1−τ

//
1−τ −1 moves the balance for choosing an optimal τ  towards a 

higher current period protection level so that g( ) > g( ) as shown in Figure 1.  //
1−τ

/
1−τ

The fact that G(τ−1) is strictly increasing in τ−1 may entail both an increasing protection 

sequence and a decreasing one as shown in Figure 2; if , then the optimal protection 

sequence will be increasing with ; and if , then the optimal protection 

sequence will be decreasing with .

/
00 ττ =

⋅⋅⋅<<< /
2

/
1

/
0 τττ //

00 ττ =

⋅⋅⋅>>> //
2

//
1

//
0 τττ 27   If Sττ =0 , however, the resulting 

optimal protection sequence will be stationary with ⋅⋅⋅=== 210 τττ .  If there exists such a 

stationary protection level, τS ∈ [0, h) under PTS with G(τS) = τS and l = τS, then H would 

continue to set its protection level at l until a punishment phase begins.  Therefore, the 

existence of such a stationary protection level, τS, is a prerequisite for PTS to be a supergame 

equilibrium of the repeated game.  An increasing optimal policy correspondence (Lemma 3 (b)) 

itself, however, does not rule out the possibility that the only stationary protection level of the 

dynamic problem in (9) is h, as demonstrated by G/(τ−1) in Figure 2.   

To address the existence issue of a stationary protection level τS ∈ [0, h) with G(τS) = τS, I 

analyze a necessary condition for such τS.  If V(τ) is differentiable with respect to τ, then τS 

should satisfy the following first order condition for a stationary equilibrium, denoted by IC: 

(11) IC:  ∂F(τS, τS)/∂τ  + δC[1 − Pr(τS)]⋅[∂V(τS)/∂τ] = 0, 

where ∂F(τS, τS)/∂τ = ∂u(τS, l)/∂τ and ∂V(τS)/∂τ = –[∂Pr(τS)/∂τ ]{u(τS, l) + δCV(τS) – [u(τS, h) + 

(δC – δ)VN  + δVC]}.  While I cannot assume differentiability of V(τ) on τ ∈ [0, h] as explained 

earlier, V(τ) is differentiable on any τ ∈ G(τ−1) and τ ∈ (0, h) for each τ−1∈ [0, h], according to 

a generalized differentiability result of Cotter and Park (2006).  Therefore, (11) is indeed a 

necessary condition for any stationary protection level that belongs to (0, h).  Thus it serves as 

an incentive constraint (IC) for H to sustain the cooperative protection level, l = τS under PTS.         

                                                 
27 If the cooperative protection level is set too low under PTS with l = τ0

/, then H would keep raising the protection 
level above the cooperative one until it reaches a stationary level, τS, and the opposite is true if the cooperative 
protection level is too high with l = τ0

//.  Blonigan and Park (2004) identify that a similar dynamic behavior 
emerges in the context of an exporting firm’s dynamic pricing problem in the presence of antidumping policy; 
once an exporting firm becomes subject to an antidumping duty, it would either continue to decrease its export 
price (thus, having the duty increase over time) or continue to increase its export price (thus, having the duty 
lowered over time) depending on whether the initial export pricing is higher or lower than a stationary pricing. 
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For τS to be a stationary protection level for H, the static incentive to raise the protection 

level, ∂F(τS, τS)/∂τ > 0 in (11), needs be balanced by the dynamic incentive to avoid a costly 

punishment phase in the future, δC[1 − Pr(τS)]⋅[∂V(τS)/∂τ] < 0 in (11).  Lemma 4 (a) below 

provides a sufficient condition for the existence of such τS ∈ (0, h) with G(τS) = τS, and Lemma 

4 (b) shows that H does not have any incentive to utilize explicit tariffs as part of its deviation 

path if l = τS.  

 
Lemma 4. Assume that the lengths of punishment phases satisfy the conditions in Lemma 1 (a). 

(a) If ∂2Pr(τ)/(∂τ)2 > 0 with [∂2Pr(τ)/(∂τ)2][1 – Pr(τ)] – {1 + δC[1 – Pr(τ)]}[∂Pr(τ)/∂τ ]2 > 0 

for all τ ∈ [0, h] and ∂Pr(τ)/∂τ ≈ 0 at τ = 0, then there exists a unique stationary 

equilibrium protection level τS ∈ (0, h) with G(τS) = τS.  τS is also a globally stable 

equilibrium with G(τ) > τ  for τ ∈ [0, τS)  and G(τ) < τ  for τ ∈ (τS, h).28       

(b)  If l = τS, then H cannot increase its discounted payoff above ),( *ssV  by taking any 

(deviatory) protection sequence that involves initiating punishment phases by imposing 

explicit tariffs.  (See Appendix for Proof) 

 
 According to Lemma 4 (a), it is possible to have IC in (11) satisfied for some τS < h if the 

sensitivity of F’s private information in detecting a rise in H’s concealed protection, ∂Pr(τS)/∂τ, 

increases as H’s concealed protection level rises with ∂2Pr(τ)/(∂τ)2 > 0.  On the one hand, H’s 

static incentive to raise its protection level, ∂F(τS, τS)/∂τ  = ∂u(τS, l)/∂τ in (11), diminishes as τS 

increases with ∂2u(τS, l)/∂τ2 < 0, reaching zero atτS = h.  On the other hand, H’s dynamic 

incentive to avoid a future punishment phase, δC[1 − Pr(τS)]⋅[∂V(τS)/∂τ] in (11), may diminish 

or intensify in response to an increase in τS, depending on the value that ∂2Pr(τS)/∂τ2 takes.  A 

higher τS reduces H’s weight on its dynamic incentive to avoid a punishment phase, 1 − Pr(τS), 

by increasing the probability of a punishment phase being triggered in the current period.  If 

∂2Pr(τS)/∂τ2 > 0, an enhanced sensitivity of F’s private information in detecting a rise in H’s 

protection can offset such a reduction in H’s incentive to avoid a punishment phase.  The 

absolute value of δC[1 − Pr(τS)]⋅[∂V(τS)/∂τ] rises in response to a rise in τS if [∂2Pr(τ)/(∂τ)2][1 – 

                                                 
28 τS being a globally stable protection level is a contributing factor to the stability of PTS as an equilibrium of the 
repeated game.  This is because H will eventually return to its globally stable behavior of setting τ  = τS (= l) after 
any arbitrary perturbations (possibly caused by errors) in its protection level choices.  
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Pr(τ)] – {1 + δC[1 – Pr(τ)]}[∂Pr(τ)/∂τ ]2 > 0 for all τ ∈ [0, h], as assumed in Lemma 4 (a).  

This in turn guarantees the existence of a unique τS ∈ (0, h) that satisfies IC in (11) with 

∂Pr(τ)/∂τ ≈ 0 at τ = 0.  

 Having the sensitivity of private information rise against increasing concealed protection 

can be crucial in discouraging the use of concealed protection under PTS.  If ∂2Pr(τ)/(∂τ)2 = 0, 

for example, the dynamic incentive for lowering τ below h to avoid a tariff war in a future 

punishment phase, δC[1 − Pr(τS)]⋅[∂V(τS)/∂τ] in (11), decreases as τS gets higher, entailing the 

possibility of IC in (11) not being satisfied for any τS < h. 

While Lemma 4 specifies the condition under which H (and F) would follow PTS by 

keeping its protection at a cooperative level until a punishment phase is triggered, note that 

Lemma 4 “assumes” that the lengths of punishment phases satisfy the conditions in Lemma 1 

(a).  Because such lengths of punishment phases “vary” with the cooperative protection level to 

sustain under PTS, it still remains to be shown whether there exist PTS that satisfy the 

conditions in Lemma 1 (a) and IC simultaneously.  The following section provides an 

affirmative answer.  

 
 
3. Optimal Private Trigger Strategies  

 
This section establishes that symmetric countries can sustain a symmetric cooperative 

protection level under simple PTS defined in the previous section if the sensitivity of their 

private information satisfies certain conditions.  In addition, this section proves that any 

equilibrium payoff under (“almost strongly”) symmetric trigger strategies that start an initial 

punishment phase by imposition of a static optimal tariff based on each country’s imperfect 

private signal should be identical to the payoff under simple PTS. 29   After proving the 

existence and the uniqueness (in terms of payoffs, at least among a certain class of trigger 

strategies) of symmetric PTS as a supergame equilibrium in Section 3.1, I characterize optimal 

symmetric PTS under which H and F maximize their joint expected discounted payoffs in 

Section 3.2. 

  
3.1. Private Trigger Strategies and Uniqueness Results  
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This section first proves the existence of simple PTS that satisfy the conditions in Lemma 1 

(a) and IC simultaneously.  Assume that there exists τS that satisfies IC in (11) with τS = l.  This 

implies that V(τS) = VC, and I can rewrite IC in (11) as follows: 

(12)  ∂u(τS, l)/∂τ  = δC[∂Pr(τS)/∂τ ][1 − Pr(τS)][u(τS, l) – u(τS, h) + (δC – δ )(VC – VN)]. 

As discussed in the previous section, (12) is a necessary condition for H to have no incentive to 

change its protection level away from the cooperative one until a punishment phase starts.  I 

also assume that the lengths of punishment phases are determined by the conditions in Lemma 

1 (a);  = [u(h, l) − u(l, l)]/(Vδδ −C
C − VN) and .  IC in (12) then can be 

rewritten into the following implicit function, I(l):   

)(2 δδδδ −=− CSC

(13) I(l) ≡ ∂u(l, l)/∂τ  − δC[∂Pr(l)/∂τ ][1 − Pr(l)][u(h, l) – u(l, h)] = 0, 

by substituting  with [u(h, l) − u(l, l)]/(Vδδ −C
C − VN).  Using I(l), Proposition 1 provides a 

sufficient condition for the existence of simple PTS that countries can sustain as a supergame 

equilibrium of their repeated protection-setting game: 

 
Proposition 1. If ∂2Pr(l)/(∂l)2 > 0 with [∂2Pr(l)/(∂l)2][1 – Pr(l)] – {1 + δC[1 – Pr(l)]}[∂Pr(l)/∂l]2 

> 0 for all l ∈ [0, h], ∂Pr(l)/∂l ≈ 0 at l = 0, and there exists at least one protection level,  < hSl  

such that I( ) = 0, then, H and F can employ simple PTS with l = ,  = [u(h, ) − 

u( , )]/(V

Sl Sl δδ −C
Sl

Sl Sl C − VN), and  as a supergame equilibrium of the repeated 

protection-setting game.  (See Appendix for Proof) 

)(2 δδδδ −=− CSC

 
Proposition 1 assumes the same condition regarding the sensitivity of private information 

as the one in Lemma 4 (a), ensuring that there exists a unique stationary equilibrium protection 

level τS ∈ (0, h) with G(τS) = τS.  In addition, it requires I(l) = 0 for at least one value of l < h, 

denoting it by .  With l = ,  = [u(h, ) − u( , )]/(VSl Sl δδ −C
Sl Sl Sl C − VN) and  

, I( ) = 0 guarantees that IC and the conditions in Lemma 1 (a) are simultaneously 

satisfied under such PTS.  According to Lemma 4,   is the unique stationary protection level 

with G( ) =  and countries have no incentive to deviate from such PTS.     

=− SC δδ

)(2 δδ −C
Sl

Sl

Sl Sl

                                                                                                                                                 
29 Definition 3 below provides a formal definition of “almost strongly symmetric private trigger strategies.”  
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The sufficient condition in Lemma 4 (a) does not necessarily imply that the second term of 

I(l) in (13), δC[∂Pr(l)/∂τ ][1 − Pr(l)][u(h, l) – u(l, h)], representing H’s dynamic incentive to 

avoid a tariff war, increases in response to a rise in l.30  Thus, one may consider the case where 

multiple values of l satisfy I(l) = 0 as illustrated in Figure 3; l = lmax as well as l = lmin satisfy I(l) 

= 0.  Denoting the minimum of such l by lmin, then simple PTS with l = lmin will Pareto-

dominate the others when Pr(l) is small enough.31

While the above result establishes that symmetric countries may employ simple PTS 

characterized by Proposition 1 (and Definition 2) in restraining the use of concealed trade 

barriers, one may wonder whether there exist other (symmetric) private trigger strategies that 

may outperform this simple one.  Surprisingly, the following result shows that there is no loss 

of generality in focusing on this simple PTS to characterize the optimal symmetric private 

trigger strategies as long as the explicit tariff that starts an initial punishment phase is the static 

optimal tariff of each country.  The first part of the following result applies to a larger class of 

trigger strategies: any symmetric private trigger strategies where each country can start an 

initial punishment phase with an explicit tariff of any level. 

Denote the level of τ (total protection) that initiates the first (or initial) punishment phase 

with e (explicit tariff) > 0 by d0 and the cooperative protection level for the initial cooperative 

periods (prior to any punishment being triggered) by l0, thus focusing on the symmetric private 

trigger strategies where the cooperative protection level and the protection level that starts an 

initial punishment phase are stationary at least prior to an initial punishment phase.  Then, I can 

represent the expected discounted payoff of H of employing such symmetric private trigger 

strategies as follows, denoting it by V(l0; d0): 

(14)  
],),([]),()[1(               

]),()[1(]),()[1)(1();(

00
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00

000000

SD
C
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C

D
C

C
C

VdduPrVlduPrPr

VdluPrPrVlluPrPrdlV

δδ

δδ

+++−+

+−++−−= ∗

where Pr ≡ Pr(l0) = Pr(ω ∈ DΩ ) given (τ, e) = (l0, 0) and (τ*
, e*) = (l0, 0), and VC ≡ V(l0; d0).  

,  and  denote the expected discounted payoff of H after an initial punishment phase 

has been by triggered, respectively by H alone, by F alone, and by H and F simultaneously in a 

DV ∗D
V SD

V

                                                 
30 For the proof of this claim, see the proof for Proposition 1 in Appendix. 
31 Note that u(lmin, lmin) > u(lmax, lmax) and Pr(lmin) < Pr(lmax) imply a higher cooperative-period payoff and a lower 
probability of punishment phases with l = lmin than with l = lmax.  While the lengths of punishment phases may be 
longer with l = lmin than with l = lmax, an increase in l will lower the expected discounted payoff under simple PTS 
if Pr(l) is close enough to 0, as shown in (18) of the following section.   
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previous period.  Given these notations, the following definition defines “almost strongly 

symmetric PTS”: 

 
Definition 3. Among the set of symmetric strategies with  for all 

  and t ≥ 1, almost strongly symmetric PTS with (l

)()( tsts ∗=

=×× −∗−− 111 )( ttt ea ω 111 )()( −−∗−∗ ×× ttt ea ω 0; 

d0) are private trigger strategies under which each country starts its initial punishment phase by 

imposing an explicit tariff (e > 0) with its τ = d0, and the initial cooperative protection level is 

l0 with  = .DV ∗D
V  

 
It is “almost strongly symmetric” strategies rather than “strongly symmetric” strategies 

under which  for all t ≥ 1 because  may occur when  or 

, and  =  does not necessarily entail  after such contingencies.  

The payoff function in (14) implicitly assumes that each country sets its initial cooperative 

explicit tariff to be zero.  Relaxing this assumption by allowing e > 0 in the initial cooperative 

periods would not raise the payoff in (14) as long as the sensitivity of private information of 

concealed trade barriers improves with a higher level of concealed trade barriers.

)()( tsts ∗= )()( tsts ∗≠ D
t Ωω ∈−1

D
t Ωω ∈∗
−1 DV ∗D

V )()( tsts ∗=

32   For 

simplicity, I will abbreviate almost strongly symmetric PTS by symmetric PTS henceforward.  

For symmetric PTS defined by Definition 3 to be incentive-compatible (so that they can be 

supported as equilibrium behaviors), the following analysis establishes that the payoff in (14) 

needs to be equal to the following expression: 

(15) 
C

0
C
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);( 000
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Note that the payoff in (15) depends only on the values of l0 and d0.  Once established, the 

above result remarkably simplifies the job of characterizing the payoff frontier attainable under 

any symmetric PTS that rely on triggering a punishment phase with some explicit tariffs: one 

only needs to find l0 and d0 that are incentive-compatible, which in turn maximize the payoff in 

(15).  

                                                 
32 e  = e * = 0 forces each country to raise its protection level all through concealed trade barriers.  If the sensitivity 
of private information improves with a higher level of such barriers, the effectiveness of private trigger strategies 
against the incentive to raise protection levels should improve with such constraints of setting e  = e * = 0 in the 
(initial) cooperative periods. 
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To prove (15), I use three incentive-compatibility conditions: (i) a generalized version of 

ICP, (ii) IC for setting the initial cooperative protection level to be l0 and continuing to set τ = 

l0 in the following period upon the contingency of no punishment phase being initiated, and (iii) 

IC for setting the initial cooperative protection level to be l0 and starting an initial punishment 

phase by setting τ = d0 in the following period upon the contingency of no punishment phase 

being initiated.  First, note that any symmetric PTS triggering the initial punishment phase 

withτ  = d0 and e > 0 should satisfy the following ICPG: 

(ICPG)  
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which equalizes the payoff of initiating the (initial) punishment phase with the payoff of not 

initiating it, similarly to ICP in the previous section.  Using u(l0, l0) − u(l0, d0) = u(d0, l0) − u(d0, 

d0) implied by ∂2u/∂τ∂τ* = 0, I can simplify (ICPG) as follows: 

(ICPG)    . )]()()[()(),(),( 0000 SDCDCDC
C

DC
C VVVVVVPrVVldullu −−−+−=−+− ∗∗ δδ

To identify incentive constraints for setting the initial cooperative protection level to be l0, I 

can write the expected discounted payoff of H setting τ to be Iτ in an initial period (prior to any 

punishment phase being triggered) as 
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0 or τ = d0, respectively, in the following period upon the 

contingency of no punishment phase being initiated after setting τ = Iτ  as the initial 

cooperative protection level.  To be able to support Iτ  = l0 as an equilibrium behavior, the 

following ICG need to be satisfied:   

(ICG) 

)],(),(),([
)(

)1(
),(

and

)],(),(),([
)(

)1(
),(

0000
0

000

*0000
0

000

SDD
CC

DC
CC

VVdduldu
l

lPr
Pr

llu

VVdlullu
l

lPr
Pr

llu

−+−
∂

∂
−=

∂
∂

−+−
∂

∂
−=

∂
∂

δδ
τ

δδ
τ

 

 25



implying that   Using 

this last equality together with the simplified ICP

).(),(),()(),(),( 00000000 SDD
C

DC
C VVddulduVVldullu −+−=−+− ∗ δδ

P

G and ∗=
DD VV , one can show that 

,0)()()( =−−−+− ∗ SDCDCDC VVVVVV  thus   Given these 

equalities, one can rewrite V(l ; d ) in (14) into the one in (15) using the following steps: 
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where the second line through the forth in (16) all take zero values and the last line in (16) 

generates (15) using .  I can summarize this result in the following proposition:  CVdlV =);( 00

 
Proposition 2.  The equilibrium payoff of any symmetric PTS (defined by Definition 3) with the 

initial cooperative protection level being l0 and the level of total protection that starts the initial 

punishment phase being d0, denoted by V(l0; d0), is a function of only l0 and d0 with 
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where Pr(l0) = Pr( ∈∗tω DΩ ) given ( tτ , te ) = (l0, 0) and ( ∗
tτ ,

∗
te ) = (l0, 0). 

 
The above proposition establishes that one can fully characterize the equilibrium payoff of 

any symmetric PTS only with the information about l0 and d0 that are incentive-compatible.  

Given , the necessary condition for an incentive-compatible 

choice of l

)(),(),( 0000 DC
C VVlluldu −=− δ

0 is  
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This condition is identical to IC for simple PTS characterized in (13) if d0 = h, the static optimal 

protection level.  ICG and Proposition 2 together imply that countries cannot attain the 

symmetric efficient frontier where VC = u(l , l )/(1 − δ )0 0
C  with l0 = 0 as their equilibrium payoffs 

under any symmetric PTS if their private signals entail non-negligible errors in detecting the use 

of concealed trade barriers.  If l0 = 0, then 0/),( 00 >∂∂ τllu , which in turn requires 
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),(),( 0000 dluldu −  > 0 to satisfy ICG.  Given that Pr(l0) > 0 due to non-negligible errors in the 

private information, Proposition 2 implies that  

 with l

−=−− ),()[();()1/(),( 0000000 ldulPrdlVllu Cδ

0)1/()],( 00 >− Cdlu δ 0 = 0.  The following corollary to Proposition 2 states this finding: 

 
Corollary 1 to Proposition 2.  Under any symmetric PTS, countries cannot attain the symmetric 

efficient frontier where VC = u(l , l )/(1 − δ )0 0
C  with l0 = 0 as their equilibrium payoffs if their 

private signals entail non-negligible errors in detecting concealed trade barriers with Pr(l0) > 0. 

 
This anti-folk theorem result under symmetric PTS demonstrates an aspect of private 

trigger strategies considered in this paper: To have each country properly trigger a punishment 

phase under which it may gain in the initial punishment period, such a punishment-initiating 

country needs to be penalized later in the punishment phase, a costly process for all countries 

involved.  Also note that this anti-folk theorem result is attained under symmetric PTS, a subset 

of private trigger strategies that countries can employ, thus it is still an open question whether 

one can obtain a folk theorem result under a more general private trigger strategies.  

Beyond proving the above anti-folk theorem result under symmetric PTS, a further 

characterization of symmetric PTS is not a simple matter.  While Proposition 1 guarantees the 

existence of incentive-compatible symmetric PTS with d0 = h = e, characterizing the necessary 

condition for an incentive compatible choice of d0 ≠ h is far from being an easy task.  Once d0 ≠ 

h, each country would have an incentive to start an initial punishment phase by choosing τ ≠ d0 

such as τ = h, necessitating a punishment scheme against such a deviation incentive.  Note that 

the punishment scheme against a deviatory initiation of an initial punishment phase generates 

yet another private monitoring problem, which can be different from the one for the initial 

periods.  This process of having an additional and different private monitoring issue against 

deviatory uses of punishment phases may continue forever, making a general characterization 

of it a very difficult task.33  

                                                 
33 If PTS are strongly symmetric with s(t) = s*(t) for all t ≥ 1, except for unilateral initiations of punishment phases 
against potential violations, and if PTS do not allow each country to start another (new) punishment phase right 
after its initiation of an initial punishment phase, then one can show that the only incentive compatible choice of d0 
is h.  This is possibly another way of justifying the paper’s focus on simple PTS, but this approach seems to 
impose rather stringent constraints on PTS. 
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Even when one ignores the issue of finding an incentive-compatible d0 and pretends that 

one can choose any value for d0, it is not clear whether choosing d0 < h would increase the 

expected discounted payoff in comparison with the choice of setting d0 = h.  For example, 

setting d0 < h would raise V(l0; d0) by decreasing u(d0, l0) – u(l0, d0) with ∂[u(d0, l0) – u(l0, 

d0)]/∂d0 > 0.  However, lowering d0 weakens the ICG by lowering the right hand side value of 

ICG shown above, thus decreasing V(l0; d0) by raising the value for l0.  The optimality of 

choosing d0 ≠ h, even when it is incentive-compatible, therefore, depends on the trade-off 

between its direct effect on the payoff through changing u(d0, l0) – u(l0, d0) and its indirect 

effect through changing the incentive-compatible l0, which in turn requires further 

characterization of the private information of concealed trade barriers.  

In the following characterization of the optimal symmetric PTS, I will focus on the optimal 

symmetric PTS with d0 = h.  Note that this constraint of setting d0 = h still allows full flexibility 

over the choice of strategies that each government can take once an initial punishment phase 

starts.  With regard to the issue of characterizing the efficient frontier among this subset of 

symmetric PTS with d0 = h, one can focus on simple PTS characterized in Proposition 1 as the 

following corollary clarifies. 

 
Corollary 2 to Proposition 2.  The equilibrium payoff of any symmetric PTS (defined by 

Definition 3) with the initial cooperative protection level being l and the level of total 

protection that starts the initial punishment phase being h, is identical to the payoff of simple 

PTS characterized in Proposition 1 with  
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where Pr(l) = Pr( ∈∗tω DΩ ) given ( tτ , te ) = (l, 0) and ( ∗
tτ ,

∗
te ) = (l, 0).34   

 
3.2 Optimal Private Trigger Strategies 

Up to this point, I have assumed that the range of private signals that trigger a punishment 

phase, DΩ , is fixed.  Countries can change the (initial) cooperative protection level by 

changing the range of punishment-phase-triggering private signals, DΩ , because it affects the 

probability of a punishment phase being triggered against the potential use of concealed trade 
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barriers.  This section characterizes the optimal simple PTS, or equivalently the optimal 

symmetric PTS with l0 = l and d0 = h (Corollary 2 to Proposition 2), focusing its analysis on the 

choice of DΩ  that maximizes the expected discounted payoffs of countries.  Once again I 

abbreviate optimal simple PTS by optimal PTS hereafter, unless it is necessary to distinguish 

them. 

The private signal ω ∈Ω has two distinctive yet related quality dimensions as a measure 

that detects the potential use of concealed protection.  One is the sensitivity of the signal in 

detecting possible defections, which links a higher protection to a higher probability of a 

punishment phase being triggered.  The other is the stability of the signal that rewards 

cooperative behaviors with a lower probability of a punishment phase.  I can represent the 

sensitivity by Pr/(τ) ≡ ∂Pr(τ)/∂τ > 0 and the stability by 1 − Pr(τ) measured at τ = l .   

A change in the range of private signals that trigger a punishment phase may affect these 

qualities of signals in different directions.  In particular, countries may raise the sensitivity by 

properly expanding the range of punishment-phase-triggering private signals, DΩ , but at the 

cost of undermining the stability.  By denoting the degree of such expansion with a parameter 

ωD, to be termed “a trigger control variable,” I can formalize this trade-off that countries face 

in choosing ωD by assuming ∂Pr/(τ)/∂ωD > 0 and ∂Pr(τ)/∂ωD > 0.  

The analysis of optimality in this section focuses on simple PTS identified in Proposition 1, 

with the cooperative protection level being determined by a choice over ωD.  Assuming that ωD 

uniquely determines l with I(l) = 0, I can represents l as a function of ωD; l = l(ωD).  Then, as 

shown by Corollary 2 to Proposition 2, 

(17) 
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where (s, s*) are simple PTS defined in Definition 2.  Note that the expected discounted payoff 

in (17) is no longer depending on the lengths of punishment phases.  Therefore, I can describe 

the optimal choice for ωD using the following first order condition: 
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34 One can derive H’s expected discounted payoff under symmetric PTS shown in the above corollary, from (6), 
using δC − δ = [u(h, l) − u(l, l)]/(VC − VN) and δC − δS = 2(δC − δ). 
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where I = I(l) is the implicit function defined in (13).  The first order condition is informative 

about the trade-off that countries face in choosing an optimal ωD.  Raising the trigger control 

variable (ωD) will have a positive effect on the expected discounted payoff (VC) by lowering the 

cooperative protection level (l) since ∂l/∂ωD < 0 and ∂VC/∂l < 0, but it also has a negative effect 

on the expected payoff by raising the probability of a punishment phase being invoked, as 

shown by ∂VC /∂ωD < 0 in (18).  Thus, the optimal ωD should balance the gain from raising the 

sensitivity of the private signal (thus achieving a lower l) against the loss from reducing the 

stability of the cooperative equilibrium with a higher punishment phase probability.    

When the initial ωD is at a very low level, then, it is generally possible to lower l by raising 

the trigger control variable.  For example, if DΩ  = ∅, then l = h and Pr(l) = Pr/(l) = 0, implying 

∂l/∂ωD < 0 with ∂Pr/(l)/∂ωD > 0 from (18).  If countries continue to raise ωD, the marginal 

increase in the sensitivity of private signals in response to an increase in ωD is likely to get 

smaller.  To formalize this decreasing return to raising the trigger control variable, I assume 

that ∂2Pr/(l)/∂(ωD)2 < 0 and ∂2Pr(l)/∂(ωD)2 = 0, with the latter assumption making the effect of a 

higher ωD on Pr(l) to be constant.  Then, it is possible to have ∂2l/∂(ωD)2 > 0 and ∂l/∂ωD = 0 for 

a high enough ωD.   

Even when it is possible to raise ωD to such a point that the countries would no longer be 

able to lower the cooperative protection level any further (∂l/∂ωD = 0), note that it is never 

optimal to do so.  If countries were to raise ωD in this way, then the first order condition for the 

optimal ωD in (18) will be violated with ∂VC /∂ωD = (∂VC /∂Pr)(∂Pr(l)/∂ωD) < 0, implying that 

countries can increase their payoffs by lowering the trigger control variable.  One can use a 

similar argument to show that setting l = 0 cannot be optimal when ∂u(l, l) /∂l = 0 at l = 0 and 
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∂Pr(l)/∂l ≈ 0 at l = 0, as assumed in Proposition 1.  I summarize these characterizations of 

optimal simple PTS in the following proposition. 

 
Proposition 3.  Assume that the sufficient conditions for the existence of equilibrium simple 

PTS in Proposition 1 are satisfied.  In addition, assume that ∂Pr/(l)/∂ωD > 0, ∂Pr(τ)/∂ωD > 0, 

∂2Pr/(l)/∂(ωD)2 < 0, and ∂2Pr(l)/∂(ωD)2 = 0 where ωD denotes the trigger control variable 

associated with an expansion of DΩ .  Then, under the optimal PTS, countries do not raise the 

trigger control variable to the level that pushes down the cooperative protection level to its 

minimum attainable level where ∂l/∂ωD = 0.  In particular, the optimal PTS will not set l = 0 

with ∂u(l, l) /∂l = 0 at l = 0.35

 
The characterization of optimal PTS in Proposition 3 emphasizes the need for tolerating 

some level of concealed trade barriers under PTS.  For example, setting the concealed trade 

barriers to zero in the cooperative period is not optimal: a slightly higher cooperative protection 

level (by choosing a slightly lower ωD) would cause no first order loss as free trade is efficient 

with ∂u(l, l) /∂l = 0 at l = 0 and would decrease the likelihood of a costly punishment phase 

being triggered.  One cannot directly apply PTS for understanding the working of Section 301 

of the U.S. under which the United States Trade Representative (USTR) follows an elaborate 

procedure prior initiating a punishment against potential deviatory actions of other countries.  

However, the following practice of Special Section 301 to protect U.S. intellectual property 

rights (IPR) in foreign markets does illustrate the U.S. government’s willingness to tolerate 

some level of deviations from agreements, reserving retaliatory sanctions mainly against 

considerable deviations.  In applying Special Section 301, the USTR specifies not only 

“Priority Foreign Countries” who are “pursuing the most onerous or egregious policies that 

have the greatest adverse impact on U.S. right holders or products, and are subject to 

accelerated investigations and possible sanctions,” but also “Priority Watch List” of countries 

“who do not provide an adequate level of IPR protection or enforcement, or market access for 

persons relying on intellectual property protection.”36  Such a practice may not lead to the 

maximal protection of the U.S. IPR, but may reduce the probability of costly tariff wars 

invoked by Special Section 301.        

                                                 
35 A similar characterization has been drawn for optimal cartel trigger price strategies by Porter (1983).  
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4. A Possible Role for the WTO: Optimal Third Party Trigger Strategies 
 

Regarding the issue of enforcing international trade agreements, this paper focuses on a 

phenomenon that the trade literature has not fully explored; countries may form different 

opinions about potential violations of trade agreements.  In the absence of a third party like the 

WTO that can generate supposedly impartial opinions about such violations, Section 2 and 3 of 

this paper explore the possibility of countries’ adopting private trigger strategies, under which 

each country initiates punishment phases based on its own imperfect private signals of the other 

country’s potential use of concealed trade barriers.  In particular, this paper characterizes the 

optimal PTS as an attempt to describe what countries can achieve with regard to trade policy 

coordination in the absence of the WTO, a prerequisite for analyzing how the WTO can 

facilitate improved coordination, especially when the WTO can simply generate its opinion of 

potential violations without any coercive power to impose its opinions upon countries.  

To understand a possible role that the WTO can play under imperfect private monitoring of 

potential violations of trade agreements, this section analyzes “third-party trigger strategies” 

under which a third party, such as the WTO, decides upon whether a violation has occurred and 

allows each country to initiate a punishment phase based on its decision.  Given the 

characterization of optimal PTS of the previous section, the comparison between the optimal 

third-party trigger strategies and optimal PTS will illustrate how and to what degree the WTO 

can help countries to enforce international trade agreements beyond what countries can do 

alone.   

This paper, however, does not attempt to build a model that can proxy the actual operation 

of the WTO in dealing with potential violations and associated trade disputes: Though as I 

discuss in the conclusion, this in itself would be a meaningful research direction.  Instead, this 

section will consider third-party trigger strategies under which the only role that the WTO 

plays is providing an impartial third-party (thus, public) opinion of violations so that trigger 

strategies are no longer subject to constraints imposed by the private nature of countries’ 

signals of violations under private triggers strategies, such as ICP.  This analysis thus 

                                                                                                                                                 
36 These quoted definitions come from the USTR website (http://www.ustr.gov). 
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illustrates the minimum role that the WTO can play in facilitating countries to improve their 

trade policy coordination.  

To make a direct comparison between third-party trigger strategies and PTS characterized 

in Section 3, I make the following assumptions in this section.  The stage-game payoffs and 

action variables of H and F are the same as those described in Section 2.  In addition to these 

two players, there exists the WTO, a third party supposedly neutral with regard to the issue of 

enforcing international trade agreements.  At the end of period t, the WTO obtains  ∈ tω Ω  

and  ∈ ∗
tω ∗Ω , the same private signals that each country receives of the other country’s 

potential violations.  One may model a mechanism under which each country truthfully reports 

its private signals to the WTO in a non-public manner if the WTO can verify the reported 

signals.  For simplicity, this section simply assumes that the WTO has an access to such signals.  

Given the setup of Section 2, then the WTO would have complete information of tτ  and  

because the WTO knows all the random components of the model.  Even when one introduces 

additional random components into the model, the WTO may still have an informational 

superiority over countries given the access to private signals of both countries.  The analysis of 

how the WTO may utilize such an informational superiority, which itself is attributable to the 

WTO’s neutrality, is an interesting topic.  As mentioned earlier, this paper assumes away such 

a possibility, simply focusing on the possible role of the WTO in relaxing the constraints on the 

lengths of punishment phases imposed by the private nature of signals that trigger punishments, 

namely the conditions specified in Lemma 1 (a).  Therefore, the following analysis will 

characterize how changing “private” trigger strategies into “third-party” ones through the 

WTO may improve the enforcement of international trade agreements, controlling the quality 

of available information about potential deviations.  

∗
tτ

Once again DΩ  denotes the range of private signals that triggers H (F) to initiate a 

punishment phase by imposing an explicit tariff, but it is the WTO that tells each country to 

initiate such a punishment phase in third-party trigger strategies.  The infinitely repeated 

protection-setting game between H and F stays the same as before, except that now the WTO 

tells or does not tell each country to initiate a punishment phase by imposing an explicit tariff 

based on its own (the WTO’s) signals of potential deviations.  Note that these signals remain 

“not public” unless the WTO decides to make them “public.”  For simplicity, I denote the 
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WTO’s decision to tell H to initiate a punishment phase in period t based on its signals received 

at the end of period t − 1 by μt-1 ∈ Μ  ≡ {1, 0}, with μt-1 being 1 iff ω t-1 ∈ DΩ , denoting its 

similar decision for F by μ*
t-1 ∈ ≡ {1, 0}.  Then, a strategy for each country is defined by 

, similarly to the ones in Section 2, with  

∗Μ

∞
== 1))(( t

iWiW tss

(19)        and  AEAts ttttW →×××
−−∗−− 1*211:)( ΜΜ ∗−−−∗−∗∗

→××× AEAts ttttW 1211:)( ΜΜ

where  and , respectively denote the history of the WTO’s decision of telling H and 

F to initiate a punishment phase up to period t − 1.  Note that strategies defined in (19) allow 

each country to observe the WTO’s decision for the other country to initiate a punishment 

phase only afterwards.  This strategy specification under which each country chooses its current 

action without knowing the WTO’s current decision on the other country’s initiation of a 

punishment phase may seem unnatural.  This specification, however, enables a direct 

comparison between third-party trigger strategies and PTS of Section 2 by making these two 

types of strategies differ only in their ability in selecting the lengths of punishment phases.  

1−tΜ
1−∗tΜ

Henceforth, the analysis will focus on third-party trigger strategies defined in Definition 4 

below. 

(i) Given that period t − 1 was a “cooperative” period with = (0, 0), each country 

keeps cooperating by setting = (l, 0) as long as the WTO does not tell it to initiate 

to a punishment phase by having μ

),( 11
∗
−− tt ee

),( i
t

i
t eτ

t-1
i = 0 with i = * or none. 

(ii)  Given that period t − 1 was a “cooperative” period with = (0, 0), the WTO tells 

H to initiate a punishment phase by setting  = (h, 0) iff  and it tells F to 

initiate a punishment phase by setting = (h, 0) iff . 

),( 11
∗
−− tt ee

),( tt eτ D
t Ωω ∈−1

),( ∗∗
tt eτ D

t Ωω ∈∗
−1

(iii) Given that a “punishment phase” was initiated in period t − 1 by only one country, 

countries set ),( eτ  = (h, h) and  = (h, h) for the following (T− 2) periods and they 

continue to do so one more period with probability λ.  Given that a “punishment phase” 

was initiated in period t − 1 simultaneously by both countries, countries set 

),( ∗∗ eτ

),( eτ  = (h, h) 

and = (h, h) for the following (T),( ∗∗ eτ S − 2) periods and they continue to do so one more 

period with probability λS.  T and TS are integers that are greater than or equal to 2 with λ 

and λS belonging to [0, 1].  Each country knows these variables (T, TS, λ, λS) when it 
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initiates a punishment phase and the actual length of a punishment phase is determined by 

some public randomizing device (determining λ and λS) after a punishment phase being 

initiated. 

(iv) In period 1 and other “initial” periods right after the end of any punishment phase, with 

probability Pr the WTO tells each country to initiate a punishment phase by setting 

= (h, h), and with probability (1 − Pr) the WTO does not tell each country to initiate 

a punishment phase so that it sets = (l, 0), where Pr = Pr( ) with 

),( ii eτ

),( ii eτ Di
t Ωω ∈ ),( tt eτ = (l, 

0), = (l, 0), and i = * or none. ),( ∗∗
tt eτ

 
Definition 4.  If (i), (ii), (iii), (iv) describe (sW, sW*), then (sW, sW*) are third-party trigger 

strategies (TTS) with (l, ΩD, T, TS, λ, λS) as characterizing parameters. 

 
Given this definition, it is easy to check that the expected discounted payoff under (sW, sW*) 

with (l,ΩD, T, TS, λ λS), denoted by VW(sW, sW*), is identical to V(s, s*) in (6).  Once again, I 

have  and  respectively represent the (relative) length of the punishment 

phase initiated by one country and by both countries simultaneously.   

)( δδ −C )( SC δδ −

 While the expression for the expected discounted payoff is same under TTS defined above 

and under PTS defined in Definition 2, there exists an important distinction between these two 

types of trigger strategies: The WTO has no incentive to lie about its private signals so that TTS 

are not subject to the ICP.  This implies that one can choose any values for the lengths of 

punishment phases,  and  ∈ [0, ].  Recall that  = [u(h, l)( δδ −C )( SC δδ − Cδ δδ −C c) − u(lc, 

lc)]/(VC − VN) and  under PTS.  To make the comparison between the TTS 

and the PTS even simpler, I make one more assumption that  holds under 

TTS, thus allowing full flexibility only over the choice of , the length of a single-

country-initiated punishment phase.  This assumption enables one to tell whether the lengths of 

punishment phases under the optimal PTS are too short or too long (com

)(2)( δδδδ −=− CSC

)(2)( δδδδ −=− CSC

)( δδ −C

pared with the optimal 

TTS) by comparing the endogenously determined value for  under the optimal PTS 

with the optimal choice of  under the TTS.  Given this assumption of  

)( δδ −C

)( δδ −C =− )( SC δδ
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)(2 δδ −C , one can simplify VW(sW, sW*)  into VC
W ≡ VW(sW, sW*) = (1 − Pr)[u(l, l) − u(h, h)]/[1 

− δC + 2Pr(δC− δ)]  + VN  with VN = u(h, h)/(1 − δC).  

 To be able to support TTS as an equilibrium of the repeated protection-setting game 

between H and F, TTS need to satisfy the following incentive constraint, denoted by ICW:  

(ICW)  IW(l) ≡ ∂u(l, l)/∂τ −{δC[∂Pr(l)/∂τ ][1−Pr(l)][u(l, l) – u(l, h)+(δC–δ)(VC
W – VN)]} = 0. 

Note that ICW is identical to IC in (12) under PTS as long as δ under TTS is the same as under 

PTS.  This equivalence results from constructing TTS in the way that it may only differ from 

PTS in its flexibility to choose the single-country-initiated punishment phase to last for any 

length.  The intuition behind this equivalence between IC under PTS and ICW under TTS is 

quite simple: Each country chooses its cooperative-period protection level, knowing that raising 

the protection level increases the probability of a punishment phase being triggered in the same 

manner under both trigger strategies.  

 In addition to ICW, there is one more incentive constraint that TTS needs to satisfy: Each 

country has an incentive to follow the WTO’s decision on initiating a punishment phase.  

Because the WTO’s decision becomes public (known to all players) with a one period lag, one 

may construct a (off-equilibrium-path) punishment strategy, such as a permanent Nash tariff 

war, against the behavior of not following the WTO’s decision on triggering a punishment 

phase.  Given that the expected discounted payoff under TTS is strictly greater than the 

discounted payoff of playing the static Nash tariff war forever, it is easy (and standard in the 

literature) to show that each country has an incentive to follow the WTO’s decision as long as 

the discount factor (δC) is high enough.  I assume that this standard result is valid for the 

following analysis with a high enough value for δC.    

 For the analytical simplicity, one can represent a choice of (T, λ) by a real number TW ∈ [1, 

∞) with = .  T
WTCC )(δδ − )( δδ −C W = 1 (equivalent to the case of T = 2 and λ = 0) is the case 

where any country’s initiation of a punishment phase by imposing its static optimal tariff is not 

followed by any punishment period where countries play a Nash tariff war of setting their 

tariffs to be the static optimal ones, representing the shortest possible punishment phase.  TW → 

∞ is the case where a permanent Nash tariff war is followed by an initiation of a punishment 
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phase, representing the longest possible punishment phase.37  Then, the problem of finding the 

optimal TTS is solving the following maximization problem: 

(20)  
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where ωD represents a trigger control variable, defined in the same way as in Section 3.2.  

 Because the problem of finding the optimal PTS in Section 3.2 is to choose only ωD to 

maximize the same payoff function as in (20) subject to the same incentive compatibility 

condition, but with TW (or equivalently, corresponding T and λ) being determined by 

 = [u(h, l
WTCC )(δδ − c) − u(lc, lc)]/(VC

W − VN), it is obvious that the optimal TTS of solving the 

maximization problem in (20) will yield an expected discounted payoff that is greater than (or 

at least equal to) that under the optimal PTS.  The question is how and to what degree the less-

constrained optimal TTS will outperform the optimal PTS.  

Analyzing the first order conditions of the maximization problem for the optimal TTS in 

(20) can provide some insight into the factors that determine the optimal choice of ωD and TW: 
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37 Under TTS, it is not impossible to choose TW ∈ (0, 1) by setting T = 1 and λ ∈ (0, 1).  For example, the WTO 
uses its own randomizing device in determining whether to tell each country to impose its static optimal tariff for 
one period or not with probability λ if ω ∈ ΩD or ω* ∈ ΩD.  To make a direct comparison between PTS and TTS, 
once again I limit the choices of TW with TW ∈ [1, ∞).   
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where IW(l) represents the implicit function defining the ICW above, ∂l/∂ωD = − (∂IW/∂ωD)/ 

(∂IW/∂l) and ∂l/∂TW = − (∂IW/∂TW)/(∂IW/∂l) generate the second equality for dVC
W/dωD and 

dVC
W/dTW, respectively.  The expression after the second equality for ∂VC

W/∂TW is obtained 

using the expression for ∂VC
W/∂Pr in (21).  As explained in Section 3.2, the optimal choice of 

ωD involves the balance between its positive effect of lowering the cooperative protection and 

its negative effect of increasing the probability of costly punishment phases.  Similarly, 

increasing the length of a punishment phase has a positive effect of lowering the cooperative 

protection by strengthening the punishment but also entails a negative effect of increasing the 

cost of punishment with the costly punishment phase being longer.  The optimal choice of TW 

also involves balancing between these counteracting forces.    

This section focuses on the analysis of an optimal choice of TW because Section 3.2 

provides an analysis of the optimal choice over ωD and a similar characterization should apply 

to the one under TTS.38  For further characterization of an optimal choice of TW, I assume that 

the optimal ωD is an interior solution, thus dVC
W/dωD = 0.  It is reasonable to assume that 

dVC
W/dωD = 0 for any TTS that attains improvement over one-shot Nash equilibrium because a 

corner solution for ωD implies either no punishment for any contingency ( DΩ  = ∅) or 

punishment for all contingencies ( DΩ  = Ω ).  Using dVC
W/dωD = 0 together with the second 

expression for ∂VC
W/∂TW in (21), I can rewrite dVC

W/dTW as follows: 
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The above first order condition for an optimal choice of TW, which also embodies the first order 

condition for the choice of ωD, reveals a potentially “competing” nature of these two choice 

variables in restraining the use of concealed trade barriers.  ∂IW/∂TW < 0 and ∂IW/∂ωD < 0  

                                                 
38 For any given level of TW, the optimal choice over ωD under TTS should be the same kind of balancing choice as 
the one under PTS.  See the above discussion on the choice of ωD in relation with (21). Therefore, the 
characterization of an optimal ωD of Proposition 2 should apply to the optimal ωD under TTS.
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demonstrate that both of these choice variables can relax ICW, which in turn enable countries to 

lower the cooperative protection level, l.  For example, if the effectiveness of ωD in relaxing 

ICW rises so that the absolute value of ∂IW/∂ωD (and A∂IW/∂ωD) increases, then the optimal 

choice of TW may involve a decrease in TW and an increase in ωD to sustain dVC
W/dTW = 0 if 

∂2IW/(∂TW)2 > 0 and  ∂(A∂IW/∂ωD)/∂ωD < 0.39  In fact, the following result establishes that the 

optimal TW may take corner solutions depending on the probability of a punishment being 

triggered in the equilibrium, which in turn may depend on the accuracy of information about 

potential deviations, as shown through a numerical analysis that follows this analytical result: 

 
Proposition 4. Given that ∂Pr/(l)/∂ωD > 0, ∂Pr(τ)/∂ωD > 0, ∂2Pr/(l)/∂(ωD)2 < 0, and 

∂2Pr(l)/∂(ωD)2 = 0 as assumed in Proposition 3 for the characterization of optimal PTS, 

(a)  the length of a single-country initiated punishment phase, TW, equals 1 under the optimal 

TTS if Pr(l) < Pr , where 
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(b)  the length of a single-country initiated punishment phase, TW, goes to ∞ under the optimal 

TTS if Pr(l) > Pr , where 
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(See Appendix for Proof) 

 
 According to Proposition 4, the length of a single-country initiated punishment phase 

under the optimal TTS takes its minimum value of TW = 1 if the probability of a punishment 

phase being triggered is below a critical level, denoted by Pr .  With TW = 1, note that no tariff 

war period (under which both countries impose their static optimal tariffs) will follow an 

initiation of any punishment phase.  This implies an asymmetric (in the sense that only the 

potential deviator is punished with the punishing country being rewarded by imposing its static 

                                                 
39 One can show that ∂2IW/(∂TW)2 > 0 but it seems to be very difficult prove that ∂(A∂IW/∂ωD)/∂ωD < 0 given the 
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optimal tariff) and minimum (in the sense that the punishment length is taking its minimum 

value) punishment against potential violations.  Note also that countries cannot use such an 

asymmetric and minimum punishment under PTS because countries will have an incentive to 

initiate such a punishment phase regardless of their private signals.  The presence of the WTO, 

a third party who impartially judges whether a country (might have) violated a trade agreement 

allows countries to use an asymmetric and minimum punishment, facilitating countries to 

realize higher expected payoffs beyond what they can do by themselves under PTS.40

       This asymmetric and minimum punishment (TW = 1) is optimal when the probability of a 

punishment phase being triggered, Pr(l) is less than a critical level, Pr .  As briefly discussed 

with regard to the first order condition for choosing TW in (22), one can understand this 

(sufficient) condition for TW = 1 by looking at how a change in Pr(l) affects the relative 

effectiveness of TW and ωD in relaxing the incentive constraint, ICW.  In fact, one can show that 

the (relative) effectiveness of ωD increases faster than the effectiveness of TW in response to a 

decrease in Pr(l) so that the effectiveness of ωD is greater than that of TW for all values of TW 

when Pr(l) < Pr , thus having dVC
W/dTW < 0 for all TW ∈ [1, ∞).  The effectiveness of ωD 

relative to TW is measured by the absolute value of A(∂IW/∂ωD) relative to the absolute value of 

∂IW/∂TW in the second bracket of (22). 

 0/ <∂∂ CPr δ  in Proposition 4 implies that the optimal TTS is less likely to involve TW = 1 

when countries’ relative valuations of future payoffs increase with higher values of δC.  Once 

again, one can understand this result by examining how a change in δC affects the relative 

effectiveness of TW and ωD in relaxing the incentive constraint, ICW:  One can show that the 

effectiveness of TW increases faster than that of ωD in response to an increase in δC so that the 

optimal TTS is less likely to set TW = 1 when δC is higher.  If δC = 1/2, for example, Pr  = 1/4, 

implying that TW = 1 is optimal under TTS if the probability of a punishment being triggered is 

less than 1/4, and Pr  decreases toward zero as δC approaches 1.   

 Proposition 4 (b) shows that TW → ∞ may also emerge as an optimal punishment length 

choice under TTS if the probability of a punishment phase being triggered is above a critical 

                                                                                                                                                 
highly non-linear nature of A in ωD, unless one introduces stringent assumptions on Pr.  
40 This kind of asymmetric action is often one of important characteristics of optimal strategies of repeated games 
under various applications, such as in Kandori and Matsushima (1998), Compte (1998), and Athey and Bagwell 
(2001), because such asymmetry allows players to avoid actions with (at least heavy) dead-weight losses.  
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level, denoted by Pr .  This maximum punishment of playing the Nash tariff war forever once a 

punishment is triggered is a surprising result because the main reason for countries to 

coordinate their trade policies is to avoid playing the Nash tariff war, and because they can 

choose any length for their punishment phase under TTS.  Again, it is possible to understand 

this sufficient condition for TW → ∞ by looking at how a change in Pr(l) affects the relative 

effectiveness of TW and ωD in relaxing the incentive constraint, ICW.  The effectiveness of ωD 

decreases faster than that of TW in response to an increase in Pr(l) so that the effectiveness of 

ωD is smaller than that of TW even when TW → ∞ if Pr(l) > Pr , thus having dVC
W/dTW > 0 even 

when TW → ∞.   

 Proposition 4 provides a characterization of the optimal TTS, which depends on the 

probability of a punishment phase being triggered right after a cooperative period.  One may 

find that such a characterization is not satisfactory because the characterization relies on Pr(l), 

a variable that countries choose indirectly by choosing ωD.41  One may also wonder about the 

possibility of more directly comparing the optimal PTS and the TTS, thus finding when they 

will differ from each other and how they will differ.42  In response to such demands, one may 

try to introduce more structures to the private signals, thus making Pr(l) depend on some 

accuracy measure of private signals, then characterize the optimal TTS (and the optimal PTS) 

depending on such a fundamental variable.  Because of the highly non-linear nature of the 

maximization problem involving two choice variables (TW and ωD) as shown through the first 

order condition in (22), pursuing such a characterization is extremely difficult, if not 

infeasible.43   

While it might not be possible to derive complete analytical results regarding the 

characterization of the optimal TTS and optimal PTS in the way the preceding paragraph 

discusses, one can conduct a numerical analysis for such characterization.  The following 

numerical analysis does just that and reveals several interesting (numerical) results.  To conduct 

                                                 
41 A positive side of the characterization of optimal TTS in Proposition 4 is that it imposes relatively weak 
assumptions on private signals and is still able to drive a relatively sharp prediction of when the corner solutions 
will emerge as an optimal choice for TW, depending on the equilibrium values of Pr(l).  
42 Proposition 4 does provide results that show how and when the optimal TTS would differ from the optimal PTS 
because neither TW = 1 nor TW → ∞ occur under PTS.  What is missing is a more continuous comparison of the 
two strategies, possibly depending on some fundamental variables, such as a measure for accuracy of signals.  
43 As shown in the proof of Proposition 4 in the Appendix, proving the results in Proposition 4 itself is not a trivial 
exercise given the highly nonlinear nature of the optimization problem to solve.  
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a numerical analysis, I use the same partial equilibrium trade model as the one in Bond and 

Park (2002) where H exports good 1 and F exports good 2, with σ ∈ [1, ∞) denoting the size of 

H’s markets relative to F’s.44  Demand for good i in H is )( ii BpAD −=σ  and supply of good i 

in H is )( iii pX βασ += , where pi is the price of good i in H with i = 1 or 2.  For F, demand 

and supply are given by  and .  To ensure that H will export good 

1 and import good 2 and that the countries will be symmetric when σ = 1, 

 and .  In addition, I assume that Pr(l) takes the following 

functional form: 

∗∗ −= ii BpAD ∗∗∗ += iii pX βα

02211 >−=− ∗∗ αααα ∗= 21 αα

(23)  
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where ,/2 χρωχ −≡ Dl  1/χ∈ (0,∞) represents the sensitivity of the signal in detecting an 

increase in the level of concealed trade barriers, and ρ ∈ [0, ∞) represents the level of errors in 

detecting concealed trade barriers (thus, the “in-”stability of the signals), making Pr(l) > 0  

even when l = 0 with ρ > 0 and ωD (∈[0, 1/ρ)) > 0.  While the complicated expression for Pr(l) 

with l > l/2 is used to make the probability density function to be symmetric around l/2 and 

Pr(l) = 1 when l = l, the equilibrium values for l are all less than l/2 in the following numerical 

analysis, thus making this part of the probability definition be redundant.  Pr(l) defined in (23) 

is one of simplest functional forms for Pr(l) with parameters representing both the sensitivity 

and (in)stability of private signal and also having ∂Pr(l)/∂l > 0, ∂2Pr(l)/∂(l)2 > 0, ∂Pr/(l)/∂ωD > 

0, ∂Pr(τ)/∂ωD > 0, ∂2Pr/(l)/∂(ωD)2 < 0, and ∂2Pr(l)/∂(ωD)2 = 0 for l ≤ l/2, as assumed in 

Proposition 4.45     

                                                 
44 In a previous version of this paper, there was a section that provides an analysis of PTS in the presence of 
asymmetry in the size of trading countries.  The following concluding section briefly discusses the effect of 
introducing such asymmetry on PTS as a factor that may limit the use of PTS in restraining concealed trade 
barriers. 
45 One may find Pr(l) = 1 for l > l not satisfying, especially when l < h.  Thus, one can consider using an adjusted 
Rayleigh distribution, ])2/()(exp[1),;()( 22 DDD llPr l ρωχωχρω −−−==Pr  for the numerical analysis because 

Pr(l) < 1 for all l ∈ [0, ∞).  The problem associated with using this Rayleigh distribution is that ∂2Pr(l)/∂(ωD)2 = 0 
is no longer true, and this assumption is what enables simplification of the first order condition for TW in (22), 
which in turn leads to the analytical results in Proposition 4.  As a robustness check, I have done a numerical 
analysis using this probability function and found that characteristics of the optimal PTS and optimal TTS are 
qualitatively identical to those shown in the numerical analysis of this section using Pr(l) in (23).  
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I assume that σ = 1 to analyze the case of symmetric countries, and also assume that α1 − 

α1
* = 3, β + B = 1, which induces h = 1 for simplicity.46  To illustrate how the optimal TTS 

change as the instability of the private signal (measured by ρ) changes, Figure 4 shows the 

outcome of the numerical analysis with χ = 1 and δC = 0.5.  It indicates how each of the 

following changes in response to an increase in the instability of the signal, ρ, from 

80(×0.00005) to 130.2(×0.00005): (i) the expected percentage payoff gain under the optimal 

TTS compared with playing the static Nash tariff war forever, (VC
W − VN)/VN ; (ii) the 

cooperative protection level, l; (iii) the probability of a punishment phase being triggered, Pr(l); 

(iv) the length of a punishment phase, TW; and (v) the trigger control variable choice, ωD.  

As predicted by Proposition 4, TW = 1 when Pr(l) < Pr = 1/4 (using δC = 0.5) and TW → ∞ 

when Pr(l) > 4/9, using the fact that the maximum value that Pr  can take is 4/9 as [u(l, l) − u(h, 

h)]/[u(l, l) − u(l, h)] reaches its minimum at 2/5 with l = 0 given the parameter values of the 

trade model under consideration.  It also confirms the conjecture that the probability of a 

punishment phase being triggered in the equilibrium would depend on the accuracy of 

information about potential deviations (at least in the limits), thus having TW = 1 for low 

enough values of ρ and TW → ∞ for high enough values of ρ.  Another notable aspect of this 

numerical result is that Pr(l) decreases in response to an increase in ρ, the instability (or 

inaccuracy) measure of private signals, when optimal TTS utilize both ωD and TW (> 1).  A 

possible explanation for this phenomenon once again can be based on the relative effectiveness 

of ωD and TW in relaxing ICW:  If the effectiveness of TW relative to ωD improves as ρ increases, 

then countries will substitute ωD with TW, implying a lower ωD and a higher TW as shown in the 

bottom two graphs in Figure 4, which in turn may lead to a decrease in Pr(l) because 

∂Pr(l)/∂ωD > 0.47

                                                 
46 In deriving this result, I assume that each country’s welfare function (as a function of τ and τ*) derived from 
demand and supply functions with no uncertainties is identical to the ones derived with uncertainties described in 
Section 2.1.  This is a strong assumption but justifiable given the fact that what one really needs are u(τ, τ ) and 
u (τ , τ) with ∂u(τ, τ )/∂τ > 0 at τ = 0, ∂u (τ*, τ)/∂τ < 0, ∂[u(τ, τ ) + u (τ*, τ)]/∂τ < 0, ∂ u(τ, τ )/∂τ  < 0, and ∂ u(τ, 
τ )/∂τ∂τ  = 0, properties of welfare functions of the trade model of Bond and Park (2002).  

*

* * * * * * 2 * 2 2

* *

47 This explanation of ∂Pr(l)/∂ρ < 0 for internal values of TW seams to be in conflict with the following explanation 
for Proposition 4 (a) given earlier, “the (relative) effectiveness of ωD increases faster than that of TW in response to 
a decrease in Pr(l),” because ωD decreases and TW increases when Pr(l) decreases in response to an increase in ρ in 
the bottom 3 graphs of Figure 4.  However, these are not contradictory explanations because the explanation for 
Proposition 4 (a) is explaining how the corner solution of TW = 1 may rise for small values of Pr(l) by changing 
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 Another interesting exercise one can do with this numerical analysis is to compare the 

optimal TTS with optimal PTS.  Continuing to assume the same parameter values, except for χ 

being 100 instead of being 1 (thus, the sensitivity of private signals being lower), Figure 5 

compares the optimal TTS and the optimal PTS in all the same 5 variables as in Figure 4 when 

ρ increases from 30(×0.000005) to 61.9(×0.000005).  Note that the bold lines represent 

variables for the optimal TTS and the dotted lines depict variables for the optimal PTS.  The 

graphs on the right column in Figure 5 provide zoomed graphs of the same 5 variables for high 

values of ρ, from 59(×0.000005) to 61.9(×0.000005) because the variable for the TTS and the 

PTS are very similar for these high values of ρ.  One obvious result is that the gains from 

cooperation under the TTS are higher than those under PTS (being identical only when ρ = 60.5 

in Figure 5 with all other variables being identical as well, as they should be).  One less obvious 

but potentially important result is that the gains from moving from the optimal PTS to the 

optimal TTS are significant when the signals are relatively accurate with low values for ρ.  As 

one can easily tell from the top graphs in Figure 5, such gains can become negligible for high 

values of ρ.  It is important to note that the significant gains from moving from the optimal PTS 

to the optimal TTS come from countries’ ability to reduce the length of punishment phase and 

substitute it with a higher value for ωD under TTS.  The probability of a punishment phase 

being triggered is higher under TTS than under PTS for all ρ < 60.5 due to a higher value for ωD.  

This higher value for ωD enables to countries to support a lower protection level under TTS than 

under PTS, as shown in Figure 5 for ρ < 60.5. 

Given the analytical results in Proposition 4 as well as the numerical ones shown in Figure 

4 and 5, I can highlight the main potential benefit of the WTO’s presence in enforcing 

international trade agreements as follows.  Even when the (private) signals of violations are 

relatively accurate, it might be hard for countries to be responsive against potential violations 

(choosing a higher value for ωD) under PTS because initiating a punishment should and will 

accompany a rather long and costly tariff-war phase between countries (to eliminate the 

incentive to abuse the punishment).  Once countries can utilize opinions of an impartial third 

party, such as the WTO, then countries can employ a more effective punishment, possibly the 

                                                                                                                                                 
Pr(l) as if it is an exogenous variable, even though it is in fact an endogenous variable affected by the optimal 
choices of ωD and TW.  
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asymmetric and minimum punishment with TW = 1, which in turn enables countries to be less 

tolerant of potential violations, attaining a higher level of cooperation! 

  
 
5. Concluding Remarks         

 
In the presence of concealed trade barriers of which each country has imperfect private 

signals, the WTO can facilitate a better cooperative equilibrium in the repeated trade 

relationship.  This is established by comparing the optimal PTS (private trigger strategies) in 

which each country triggers a punishment phase based on its own private signals with the 

optimal TTS (third-party trigger strategies) in which the WTO tells who should start a 

punishment phase based on its (the WTO’s) signals, abstracting away from any informational 

advantage or disadvantage of the WTO over trading countries.  Prior to discussing the role of 

the WTO, the analysis first establishes that symmetric countries may restrain the use of 

concealed trade barriers under simple PTS if the sensitivity of their private signals rises in 

response to an increase in such barriers.  It also shows that any equilibrium payoff under almost 

strongly symmetric PTS will be identical to the one under simple PTS as long as the initial 

punishment is triggered by a static optimal tariff, justifying the focus on simple PTS.  The 

analysis of optimal (simple) PTS reveals that it is not optimal to push down the cooperative 

protection level to its minimum attainable level (such as free trade) due to the cost associated 

with increasing the probability of costly punishments.   

To illustrate how and by what degree the WTO may facilitate countries in enforcing 

international trade agreements beyond what they can achieve alone under PTS, this paper 

conducts both an analytical analysis of the optimal TTS and a numerical comparison of the 

optimal PTS and optimal TTS.  If the probability of a punishment phase being triggered is low 

enough, possibly because of accurate enough signals of potential violations, the analytical 

analysis establishes that the optimal TTS entail an asymmetric and minimum punishment.   The 

punishment is asymmetric in the sense that only the potential deviator is punished with the 

punishing country being rewarded by imposing its static optimal tariff and minimum in the 

sense that the punishment length is taking its minimum value.  Just the opposite result of using 

a punishment involving a permanent Nash tariff war will emerge under the optimal TTS if the 

probability of a punishment being triggered is high enough, possibly because of inaccurate 
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signals of violations.  The presence of the WTO under TTS changes the nature of signals that 

trigger punishments from private into public, enabling countries to employ punishment phases 

of any length, which in turn can help countries to attain a better cooperative equilibrium.  The 

numerical analysis illustrates that the WTO’s contribution is likely to be more significant when 

its private signals are relatively accurate so that the lengths of punishment phases are shorter 

than those under the optimal PTS, possibly involving the asymmetric and minimum punishment.  

With regard to the effectiveness of PTS, there exist other factors that may severely limit the 

use of PTS so that countries cannot support any level of cooperation, as analyzed in a previous 

version of this paper.  One is a reduction in each country’s time lag in readjusting its tariff 

protection level in response to the other country’s initiation of a punishment phase by imposing 

an explicit tariff.  The other is asymmetry among countries.  Both of these factors may limit the 

level of cooperation attainable under PTS by reducing the lengths of punishment phases that 

countries can employ against potential deviations.   

Recall that each country is willing to initiate a punishment phase involving costly tariff war 

periods under PTS because it can realize some gains in the initial period of a punishment phase 

by imposing its static optimal tariff unilaterally.  If countries can readjust their tariff levels 

faster so that countries play the static Nash tariff war (almost) instantaneously in response to an 

initiation of a punishment, then no length of a punishment phase would satisfy the incentive 

compatibility condition for truthful revelation of private information (ICP).48  This is because 

countries will only lose from initiating a punishment, thus making it impossible to support any 

cooperation under PTS.49  If there exists a large enough asymmetry among trading countries, a 

similar problem will rise under PTS.  When one of two trading countries gets very small 

compared to the other one, then the small country’s static optimal tariff goes to zero because its 

                                                 
48 It is sometimes argued that enforcement constraints cannot be relevant in the trade policy setting, since a 
government can retaliate almost immediately whenever another government defects.  This result suggests that such 
an argument is based on a public-action model and requires substantial modification in a private monitoring setting, 
as pointed out by a referee of this paper.     
49 Abreu, Milgrom and Pearce (1991) and more recently Sannikov and Skrzypacz (2007) show that shortening the 
period over which actions are held fixed can hurt the possibilities for cooperation under imperfect public 
monitoring, possibly leading to the impossibility of cooperation.  While their impossibility of cooperation outcome 
from shortening the period over which actions are held fixed is similar to the one under PTS, the driving forces 
behind these impossibility results are different.  Under imperfect public monitoring, shorter periods of fixed action 
multiply the ways that player can deviate from the equilibrium, leading to the impossibility.  Under PTS, the 
impossibility of cooperation arises not because countries can deviate more effectively (the period over which 
concealed trade barriers are held fixed remains constant and only the period of readjusting tariff levels in response 
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ability to change the terms of trade by imposing tariff becomes negligible.50  This implies that 

there will be no length of a punishment phase satisfying the incentive compatibility condition 

for the small country, thus eliminating the possibility of supporting any cooperation under 

PTS.51   

In the presence of factors that may limit the credibility of initiating strong punishments 

against potential deviations under PTS, once again the WTO may facilitate cooperation by 

changing the nature of information that triggers punishments from private into public, which in 

turn restores the credibility of punishments.  For example, the WTO mandates a regular review 

of its members under the Trade Policy Review Mechanism (TPRM), generating “public” 

reports which consist of detailed chapters examining the trade policies and practices of the 

members.  According to the WTO’s website, “Surveillance of national trade policies is a 

fundamentally important activity running throughout the work of the WTO.  At the centre of 

this work is the TPRM.” 

Another activity that the WTO does in enforcing trade agreements is settling disputes 

through its Dispute Settlement Procedure (DSP).  When countries form different opinions of 

potential violations based on their imperfect and private information, the DSP of the WTO may 

generate third-party rulings on disputed cases, thus public signals about potential deviations.  

As emphasized in this paper through the analysis of the optimal TTS, the availability of an 

impartial third party’s opinion may enable countries to adopt a more efficient punishment, such 

as the asymmetric and minimum punishment.  This in turn enables countries to be more 

                                                                                                                                                 
to initiations of punishment phases shortens) but because the punishments that countries can use against deviations 
weaken.  
50 McLaren (1999) and Park (2000) analyze trade agreements between countries of asymmetric size where a small 
country has no ability to change the terms of trade by its tariff so that its static optimal tariff is zero.   
51 Formal proofs for these results can be found in an earlier version of this paper, “Private Trigger Strategies in the 
Presence of Concealed Trade Barriers.”  As correctly pointed out by one of referees of this paper, a proper way to 
introduce a change in the speed of readjusting tariff protection levels is to make the model into one in which 
information arrives continuously over time and to shorten the period under which tariff levels are held fixed.  The 
ad-hoc approach of changing the payoff function to some convex combination of the payoff before and after the 
readjustment of tariffs is adopted to introduce a change in the readjustment speed of tariffs without any change in 
the basic structure of the model and without any change in the readjustment speed of concealed trade barriers.  
This reflects that the readjustment of concealed trade barriers may take longer than readjusting tariffs because 
concealed trade barriers often rely on customary practices or implicit agreements but each country may readjust its 
tariff level by simply issuing an executive order.  Given the logic of the proof, however, the impossibility of 
cooperation result should be still valid under a proper modeling of a change in the readjustment speed of tariffs.  A 
referee’s questioning the focus on the symmetry in the triggering event (ΩD = ΩD*) in the presence of asymmetry 
among countries is also legitimate, but the impossibility of cooperation result under a large enough asymmetry 
among countries should be valid even when one considers asymmetric triggering events with ΩD ≠ ΩD*.    
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responsive of potential violations and as a result attain a higher level of cooperation compared 

to the situation with no DSP.   

While this paper provides a new way of understanding the role that the WTO plays in 

enforcing international trade agreements, there is still much to be done for a more complete 

understanding of its role in dispute settlements. 52   For example, the DSP of the WTO 

encourages settlements through consultations among disputing parties as a preferred way to 

settle trade disputes.  According to the official website of the WTO, “The priority is to settle 

disputes, through consultations if possible.  By July 2005, only 130 of the nearly 332 WTO’s 

dispute cases had reached the full panel process.  Most of the rest have either been notified as 

settled “out of court” or remain in a prolonged consultation phase — some since 1995.” 53  This 

indicates that the DSP plays a role that goes beyond simply generating public signals of 

potential deviations.  Carefully analyzing the role that the DSP of the WTO plays in the context 

of imperfect private monitoring of potential violations, especially regarding settlements through 

consultations, would be a meaningful extension of this paper.   

                                                 
52 Maggi and Stagier (2008) analyze the possible role that the DSP of the WTO plays in completing an incomplete 
contract, characterizing the optimal choice of contractual incompleteness and the DSP design. 
53 This quote comes from the following website: http://www.wto.org/english/thewto_e/whatis_e/tif_e/disp1_e.htm.
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Appendix 
 
Proof for Lemma 1 (a) 

It is obvious that ICP is a necessary condition and ICP becomes = [u(h, l) − u(l, l)]/(Vδδ −C
C − 

VN)] if .  Therefore, I only need to show that  is also a 

necessary condition for each country to truthfully represent its private signals under PTS.  Note that ICP 

only provides the incentive for each country to truthfully initiate a punishment phase given that it was 

following the equilibrium strategy of setting τ = l in a pervious (cooperative) period.  Even when ICP is 

satisfied, there is a deviation possibility of settingτ ≠ l in a current period and starting a punishment 

phase in a following period regardless of its private signal, upon the contingency of no punishment 

phase being initiated in that current period.  In an equilibrium of the repeated game, there should be no 

such deviation incentive and the following argument will prove that  is necessary 

for eliminating such an incentive.   

)(2 δδδδ −=− CSC )(2 δδδδ −=− CSC

)(2 δδδδ −=− CSC

For PTS defined in Definition 2 to be equilibrium strategies, each country should have no incentive 

to set τ ≠ l in any period following a cooperative one (or in any “initial” period) unless it desires to 

initiate a punishment phase by setting τ = e = h, regardless of whether it would initiate a punishment or 

continue cooperating in a following period, upon the contingency of no punishment phase being 

initiated.  To derive the (necessary) condition for such an equilibrium behavior, first note that the 

expected discounted payoff of setting its total protection level to equal τ in any period following a 

cooperative one is     
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depending on whether H continues to cooperate (by setting its total protection level to equal l) or initiate 

a punishment phase (by setting its total protection level to equal h), respectively, in the following period 

upon the contingency of no punishment phase being initiated after setting its total protection level to 

equal τ.  To be able to support τ = l, the following first order conditions need to be satisfied for each of 

the above expected discounted payoff expressions: ∂u(l, l)/∂τ = (1 − Pr)[∂Pr(l)/∂l][u(l, l) − u(l, h) + 

( )(V

Cδ

δδ −C
C − VN)] for the first expression, and ∂u(l, l)/∂τ = (1 − Pr)[∂Pr(l)/∂l][u(h, l) − u(h, h) + 

( )(V

Cδ
Sδδ − C − VN)] for the second one.  Using u(l, l) − u(l, h) = u(h, l) − u(h, h), these two first order 

conditions imply that = , or equivalently . δδ −C Sδδ − )(2 δδδδ −=− CSC
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Proof for Lemma 1 (b) 

I will prove Lemma 1 (b) in the following way.  First, I will assume the existence of ( ) that 

satisfies = [u(h, l) − u(l, l)]/(V

Sδδ ,

δδ −C
C − VN)] and  so that )(2 δδδδ −=− CSC ),( ∗≡ ssVVC  in (6) can 

be rewritten into a simpler form.  Given  and Pr ≈ 0, then I will show that there exists indeed a 

unique combination of ( ) that satisfies these necessary conditions.   

1≈Cδ
Sδδ ,

Using , I can simplify )(2 δδδδ −=− CSC ),( ∗ssV  in (6) into  

with .  To denote 

the value of 

N
CC

C VPrkV +−+−= )](21/[ δδδ

)],(),()[1()],(),()[1()],(),()[1( 2 llulhuPrPrlluhluPrPrhhulluPrk −−+−−+−−=

δ  that satisfies ICP with , define N
CC

CC VPrkVV +−+−≡= )](21/[)( 00 δδδδ ≡)( 0δδ e  

If there exists a unique value of 
./)](21)][,(),([)],()()1/[()],(),()[1( 00 kPrllulhuhhuVllulhu CCC

C
CCC δδδδδδδδ −+−−−=−−−−−

0δ  ∈ (0, ) such that Cδ 00 )( δδδ =e  and  when 

 and Pr ≈ 0, then proof is done for Lemma 1 (b).  First, note that 

),0(2 0
CCS δδδδ ∈−=

1≈Cδ 00 /)( δδδ ∂∂ e  

approaches zero if Pr ≈ 0.  Second, note that 0/)],(),([2 >−= kllulhuPr )( 0δδ e  approaches  with 

 when  and Pr ≈ 0, including the case with 

Cδ

C
e δδδ <)( 0 1≈Cδ 00 =δ .   These two facts together imply 

that there exists a unique value of 0δ  ∈ (0, ) such that Cδ 00 )( δδδ =e  when  and Pr ≈ 0.  

Because  and for 

1≈Cδ

Cδδ <0
Cδδ ≈0 0δ  satisfying 00 )( δδδ =e  when  and Pr ≈ 0,  

.   

1≈Cδ CS δδδ −= 02

),0( Cδ∈

 
Proof for Lemma 2 

Proofs for the results in Lemma 2 follow the same logics as the proofs for the corresponding results 

in Stokey and Lucas (1989).  More specifically, Theorem 4.2, 4.3, 4.4, and 4.5 in Stokey and Lucas 

correspond to (i), (ii), (iii), and (iv) of Lemma 2 (a), respectively.  One may also find corresponding 

proofs for Lemma 2 (b) and Lemma 2 (c) in Theorem 4.6 in Stokey and Lucus.  To save the space, I 

discuss how one can adjust the corresponding proofs in Stockey and Lucas to prove the results in 

Lemma 2.  A complete proof for Lemma 2 is available upon request.     

        

For Lemma 2 (a):   

Let Γ: X → X denote the correspondence describing the feasibility constraints with X =[0, h]. Given 

x0 ∈ X, let Π(x0) ={ : x∞
=0}{ ttx t+1 ∈ Γ(xt), t = 0, 1, …} be the set of plan that are feasible from x0.  Define 

F(xt, xt+1) as F(⋅) in (8).  Then, Assumption 4.1 in Stokey and Lucas is satisfied.  I modify Assumption 
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4.2 with existing for all x( )( )∑ ∏= +
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n
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0

),(]1[)(δ 0 ∈ X and )( 0xx ∏∈ , then it is also 

satisfied.  For each n = 0, 1, ⋅⋅⋅, define un: Π(x0) → R by ( )( )∑ ∏= +

−

=

−=
n

t tt

t

i
i

tC
n xxFxPrxu

0 1

1

0

),(]1[)()( δ . 

Define u: Rx →∏ )( 0  by )()( xuimlxu nn ∞→
= .  Then, it is easy to show that Lemma 4.1 in Stocky and 

Lucas holds when one replaces )(),()( /
10 xuxxFxu Cδ+=  with ( )( ) )(1),()( /

010 xuxPrxxFxu C −+= δ .  

Having v* and v in Stocky and Lucas representing VS and V in Lemma 2, I can also show that Theorem 

4.2, 4.3, 4.4, and 4.5 hold for these newly defined variables, replacing  

of (9) in Stocky and Lucas with 

)(),()( 11
∗
+

∗
+

∗∗∗ += t
C

ttt xvxxFxv δ

( )( ) )(1),()( 11
∗
+

∗
+

∗∗∗ −+= ti
C

ttt xvxPrxxFxv δ .  While one needs to modify 

some lines of proofs in Stocky and Lucas, it is a pretty straightforward extension of the logics of their 

proofs, as mentioned earlier.  

 
For Lemma 2 (b) and (c):   

First note that Lemma 2 (b) and Lemma 2 (c) correspond to Theorem 4.6 of Stocky and Lucas.  

Also note that Theorem 4.6 basically uses the Contraction Mapping Theorem (Theorem 3.2) and the 

Theorem of Maximum (Theorem 3.6) to prove the results.  To show that the proof in Theorem 4.6 

works for proving Lemma 2 (b) and Lemma 2 (c), I establish the following result.  Define an operator T 

by (Tv)(x) = {F(x, y) + δ
],0[ hy

Max
∈

C[1 − Pr(x)]v(y)}.  T satisfies Blackwell’s sufficient condition for 

contraction mapping as it satisfies both “Monotonicity” and “Discounting” criteria: 

(Monotonicity)  

If v(y) ≤ w(y) for all values of y, then Tv(y) ≤ Tw(y) because [1 − Pr(x)] ≥ 0 by definition.      

(Discounting) 

 T(v + a)(x) = {F(x, y) + δ
],0[ hy

Max
∈

C[1 − Pr(x)][v(y) + a]} = {F(x, y) + δ
],0[ hy

Max
∈

C[1 − Pr(x)]v(y) + δC[1 − 

Pr(x)]a}} = (Tv)(x) + δC[1 − Pr(x)]a ≤ (Tv)(x) + δCa because [1 − Pr(x)] ∈ [0,1]. 

In addition, T: C(X) → C(X) from the Theorem of Maximum with C(X) denoting the set of bounded 

continuous functions f: X → R.  Thus, T: C(X) → C(X) is a contraction mapping with modulus δC, 

implying that I can apply the Contraction Mapping Theorem to T.  Thus, I can show that Lemma 2 (b) 

and (c) hold using the Theorem of Maximum as in Theorem 4.6. 

 
Proof for Lemma 3 

For Lemma 3 (a): 
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Define f(τ−1, τ) ≡ F(τ−1, τ) + δC[1 – Pr(τ−1)]V(τ).  Note that f(τ−1, τ) is everywhere differentiable 

w.r.t. τ−1 for all τ ∈ [0, h] and ∂f(τ−1, τ)/∂τ−1 = – [∂Pr(τ−1)/∂τ−1]{u(τ, l) + δCV(τ) – u(τ, h) – (δC – δ) VN  – 

δVC} is bounded for all τ ∈ [0, h].  This implies that f(τ−1, τ) is absolutely continuous w.r.t. τ−1 for all τ 

∈ [0, h].  Therefore, I can use Theorem 2 of Milgrom and Segal (2002) in deriving the following 

expression 

(A1) ( )[ ]∫ − ∂∂+=−
1

01 )(,)0()(
τ

τ dmmmgmfVV ,  

where g(m) ∈ G(m) and ∂f(m,g(m))/∂m = – [∂Pr*(m)/∂m]{u(g(m), l) + δCV(g(m)) – u(g(m), h) – (δC – 

δ)VN  – δVC}.  

(A1) implies that V(τ−1) will be strictly decreasing in τ−1 ∈ [0, h], if u[g(m), l] + δCV(g(m)) – u(g(m), 

h) – (δC – δ)VN  – δVC > 0 for all m ∈ [0, h], because ∂Pr(m)/∂m > 0 by assumption.  To show that 

u(g(m), l) + δCV(g(m)) – u(g(m), h) – (δC – δ)VN  – δVC > 0 for all m ∈ [0, h] > 0, I first establish that the 

inequality holds for any g(m) ≤ l, and then show that the inequality holds for any g(m) > l.  

First, assume that g(m) ≤ l.  To have u(g(m), l) + δCV(g(m)) ≤ u(g(m), h) + (δC – δ) VN  + δ VC, VC > 

V(g(m)) because u(g(m), l) > u(g(m), h) with l < h and V(g(m)) ≥ VN.  The last inequality is obvious 

because the strategy of always setting τ  = h will generate a discounted expected payoff at least as good 

as VN, regardless of g(m) taking any feasible values.  V(g(m)) ≥ [1 – Pr(g(m))][u(l, l) + δCVC] + 

Pr(g(m))[u(l, h) + (δC – δ)VN  + δ*VC] ≥ [1 – Pr(l)][u(l, l) + δCVC] + Pr(l)[u(l, h) + (δC – δ)VN  + δ VC], 

where the last inequality comes from  g(m) ≤ l and [u(l, l) + δCVC] ≥ [u(l, h) + (δC – δ)VN  + δ VC], and 

the first inequality comes from the fact that [1 – Pr(g(m))][u(l, l) + δCVC] + Pr(g(m))[u(l, h) + (δC – δ)VN  

+ δVC] represents a discounted expected payoff of playing a potentially suboptimal strategy of setting τ 

= l with τ−1 = g(m).  From ICP, VC = [1 – Pr(l)][u(l, l) + δCVC] + Pr(l)[u(l, h) + (δC – δ)VN  + δVC], 

which implies that VC ≤ V(g(m)), thus a contradiction.  Therefore, u(g(m), l) + δCV(g(m)) > u(g(m), h) + 

(δC – δ)VN  + δVC  if g(m) ≤ l. 

Now, I will show that u(g(m), l) + δCV(g(m)) >  u(g(m), h) + (δC – δ)VN  + δVC  if g(m) > l.  Define 

K ≡ u(g(m), h) + (δC – δ)VN  + δVC.  Then, V(g(m)) ≥ [1 – Pr(g(m))]u(g(m), l)/{1 – δC[1 – Pr(g(m))]} +  

Pr(g(m))K/{1 – δC[1 – Pr(g(m))]} because the right-hand side of the inequality represents a discounted 

expected payoff from playing a potentially suboptimal strategy of setting the current and all the future 

protection level at g(m) with τ−1 = g(m).  This implies that u(g(m), l) + δCV(g(m)) – K ≥ u(g(m), l) + δC[1 

– Pr(g(m))]u(g(m), l)/{1 – δC[1 – Pr(g(m))]} + δCPr(g(m))K/{1 – δC[1 – Pr(g(m))]} – K = (1 – 

δC){u(g(m), l)/(1 – δC) – [u(g(m), h) + (δC – δ)VN  + δVC]}/{1 – δC[1 – Pr(g(m))]}.  Note that the last 

term has a positive sign because u(g(m), l)/(1 – δC) > [u(g(m), h) + (δC – δ)VN  + δVC] with u(g(m), l)/(1 

– δC) > VC  as g(m) > l.  This implies that u(g(m), l) + δCV(g(m)) > K.  
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For Lemma 3 (b): 

To prove that G(τ−1) is strictly increasing in τ−1, I first show that  ≥  for all  >  ∈ [0, h] 

with ∈ G( ) and ∈ G( ).  Then, I show that  =  will lead to a contradiction using a result 

in Cotter and Park (2006).  Consider  > , having V( ) = F( , ) + δ

//τ /τ //
1−τ

/
1−τ

//τ //
1−τ

/τ /
1−τ

//τ /τ

//
1−τ

/
1−τ

/
1−τ

/
1−τ

/τ C[1 – Pr( )]V( ) and 

V( ) = F( , ) + δ

/
1−τ

/τ

//
1−τ

//
1−τ

//τ C[1 – Pr( )]V( ).  Then, F( , ) + δ//
1−τ

//τ /
1−τ

/τ C[1 – Pr( )]V( ) ≥ F( , ) + 

δ

/
1−τ

/τ /
1−τ

//τ

C[1 – Pr( )]V( ) and F( , ) + δ/
1−τ

//τ //
1−τ

//τ C[1 – Pr( )]V( ) ≥ F( , ) + δ//
1−τ

//τ //
1−τ

/τ C[1 – Pr( )]V( ) 

because the terms of the right-hand sides of these inequalities represent discounted expected payoffs 

from playing potentially suboptimal strategies.  These two inequalities together imply that  

//
1−τ

/τ

(A2) [F( , )–F( , )] – [F( , )–F( , )] ≥ δ/
1−τ
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1−τ

/τ /
1−τ

//τ //
1−τ
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//τ /τ

τ ; , ) = F( ,/
1−τ

//
1−τ

/
1−τ τ ) – F( ,//

1−τ τ ).  According to the mean value theorem (using the fact that 

E(τ ; , ) is continuous and differentiable w.r.t. /
1−τ

//
1−τ τ , then ∃ τ  ∈ [Min( , ), Max( , )] such 

that  

/τ //τ /τ //τ
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with the inequality coming from (A2).  Note that [∂E(τ ; , )/∂/
1−τ

//
1−τ τ ] = [∂u(τ , l)/∂τ  – ∂u(τ , l)/∂τ ] = 0 

as ∂2u(τ , )/∂∗τ τ ∂  = 0.  Now, I will show that  <  leads to a contradiction.  If  < , 

δ

∗τ //τ /τ //τ /τ

C[Pr( )–Pr( )][V( )–V( )] > 0 because Pr( )–Pr( )) > 0 and [V( )–V( )] > 0 from 

Lemma 3 (a).  This contradicts δ

//
1−τ

/
1−τ

//τ /τ //
1−τ

/
1−τ

//τ /τ

C[Pr( )–Pr( )][V( )–V( )] ≤ 0 in (A3), thus  ≥  for all  

>  ∈ [0, h]. 

//
1−τ

/
1−τ

//τ /τ //τ /τ //
1−τ

/
1−τ

Now, it remains to prove that  =  leads to a contraction.  From Theorem 2 of Cotter and Park 

(2006), V(

//τ /τ

τ ) is differentiable for τ  ∈ G(τ−1) for all τ−1 ∈ [0, h].  Therefore, 
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Proof for Lemma 4 
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For Lemma 4 (a): 

In proving Lemma 4 (a), I use Theorem 4 in Cotter and Park (2006).  According to the theorem, if 

there exists a unique τS ∈ (0, h) that satisfies IC defined in (11): ∂F(τS, τS)/∂τ  + δC[1 − 

Pr(τS)][∂V(τS)/∂τ] = 0  and τ ∈ (0, h) for every 1−τ  ∈ [0, h] and τ  ∈ G( 1−τ ), then G(τS) = {τS} and τS  is 

a strongly stable protection level in the sense that for every 1−τ  > τS and  τ  ∈ G( 1−τ ),τ  < 1−τ , and for 

every 1−τ  < τS and τ  ∈ G( 1−τ ), τ  > 1−τ .  To prove Lemma 4 (a), therefore, I first show that there exists 

a unique τS ∈ (0, h) such that ∂F(τS, τS)/∂τ  + δC[1 − Pr(τS)][∂V(τS)/∂τ] = 0 if [∂2Pr(τ)/(∂τ)2][1 – Pr(τ)] – 

{1 + δC[1 – Pr(τ)]}[∂Pr(τ)/∂τ ]2 > 0 for all τ ∈ [0, h] and ∂Pr(τ)/∂τ ≈ 0 at τ = 0, then establish that τ ∈ 

(0, h) for every 1−τ  ∈ [0, h] and τ  ∈ G( 1−τ ). 

First note that ∂F(τS, τS)/∂τ  = ∂u(τS, l)/∂τ > 0 at τS = 0 and ∂2F(τS, τS)/∂τ2 < 0 with ∂F(τS, τS)/∂τ  = 

∂u(τS, l)/∂τ = 0 at τS = h from the assumptions on the derivatives of u(τ, τ) w.r.t. τ .  Because ∂V(τS)/∂τ  

= – [∂Pr(τS)/∂τ ]{u(τS, l) + δCV(τS) – [u(τS, h) + (δC – δ )VN  + δVC]} ≈ 0 at τS = 0 from the assumption of 

∂Pr(τ)/∂τ ≈ 0 at τ = 0,  F(τS, τS)/∂τ  > 0 at τS = 0 implies that IC in (11) will not be satisfied at τS = 0.  

Now, define A(τS) ≡ u(τS, l) + δCV(τS) – [u(τS, h) + (δC – δ)VN  + δVC] and B(τS) ≡ δC[1 − Pr(τS)] 

[∂Pr(τS)/∂τ]A(τS), thus δC[1 − Pr(τS)][∂V(τS)/∂τ] = −B(τS).  Then, ∂B(τS)/τS = δCA(τS)〈[∂2Pr(τ)/(∂τ)2][1 – 

Pr(τ)] – {1 + δC[1 – Pr(τ)]}[∂Pr(τ)/∂τ ]2〉 > 0 for all τS ∈ [0, h]  because [∂2Pr(τ)/(∂τ)2][1 – Pr(τ)] – {1 

+ δC[1 – Pr(τ)]}[∂Pr(τ)/∂τ ]2 > 0  for all τS ∈ [0, h] by assumption and A(τS) > 0 as shown in the proof 

for Lemma 3 (a).  This implies that there exists a unique τS ∈ (0, h) such that ∂F(τS, τS)/∂τ  + δC[1 − 

Pr(τS)][∂V(τS)/∂τ] = 0. 

Now, I only need to prove that τ  ∈ (0, h) for every 1−τ  ∈ [0, h] and τ  ∈ G( 1−τ ).  Because G( 1−τ ) 

is strictly increasing in 1−τ  as proved in Lemma 3 (b), it suffices to prove that 0 ∉ G(0) and h ∉ G(h).    

Note that 0 ∉ G(0) is already proven above: “IC in (11) will not be satisfied at τS = 0.” Because IC in 

(11) is a necessary condition for any stationary protection level, IC in (11) being not satisfied at τS = 0 

implies that 0 ∉ G(0).      

I can show that h ∉ G(h) by contradiction.  First, assume that h = G(h), implying that V(h) = 

 with .  Consider an alternative protection sequence 

with τ

[ ]∑ Π
∞

=
+

−

= ⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −

0
1

1

0
),()(1)(

d
ddi

d

i

dC FPr τττδ ∞
== 0}{ dd hτ

0 = h, τ1 = h − ε, and , which defines a corresponding discounted expected payoff, 

denoted by V

∞
== 2}{ dd hτ

A(h).  Then, I can show that VA(h) – V(h) = {Pr(h)u(h − ε, h) + [1 – Pr(h)]u(h − ε, l) + 

Pr(h)[(δC – δ) VN  + δVC]} − {Pr(h)u(h, h) + [1 – Pr(h)]u(h, l) + Pr(h)[(δC – δ) VN  + δVC]} + δC[1 – 

Pr(h)][Pr(h − ε) − Pr(h)]{u(h, h) – u(h, l) + [(δC – δ) VN  + δVC]} − δC[Pr(h) − Pr(h − ε)]F(h, h)δC[1 − 
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Pr(h)]/{1 − δC[1 − Pr(h)]}.  )0/()]()([
0

−−
→

ε
ε

hVhVlim A  = −δC[∂Pr(h)/∂τ][1 – Pr(h)]{(1 −δC)[u(h, h) + (δC 

– δ)VN  + δVC] − u(h, l)}/{1 − δC[1 − Pr(h)]}> 0 where the last inequality comes from ∂Pr(h)/∂τ > 0 and 

u(h, l)/(1 −δC) > u(h, h) + (δC – δ)VN  + δVC  as shown in Lemma 3 (a).  This implies that h ∉ G(h). 

 
For Lemma 4 (b): 

To prove Lemma 4 (b), I will show that H cannot strictly increase its discounted payoff by initiating 

a punishment phase in a period that that follows a cooperative period during which H set its protection 

level at  ≠ l = τ/l S, as long as the lengths of punishment phases satisfy the necessary conditions in 

Lemma 1 (a).  Once I prove this result, this implies that H cannot increase its discounted expected 

payoff by initiating a punishment phase along any (deviatory) protection sequence, thus Lemma 4 (b).   

Suppose that H sets its protection level at l in a period that follows a cooperative period during 

which H sets its protection level at  ≠ l = τ/l S, then chooses its optimal protection sequence from the 

next period on.  Denote the discounted expected payoff from taking this potentially suboptimal action 

by C( ), then /l

(A5) .  ]),()][(1[])(),()[()( ///
C

C
CN

C VllulPrVVhlulPrlC δδδδ +−++−+=

Now suppose that H initiates a tariff war phase by setting tariff level at h in a period that follows a 

cooperative period where H set its protection level  ≠ l = τ/l S, then follows its specified strategy once 

the tariff war phase is over.  Denote the discounted expected payoff from taking this potentially 

suboptimal action by D( ), then /l

(A6)  
].)(),()][(1[            
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/
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VVhhulPrlD
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δδδ
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I can rewrite C( ) and D( ) into /l /l
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Now, note that C( ) − D( ) =  [u(l, l) − u(h, l)] + ( )(V/l /l δδ −C
C − VN) − Pr( ){[u(l, l) − u(l, h)] − [u(h, 

l) − u(h, h)] +[(δ

/l
C – δ) − (δ – δS)](VC  − VN)} = 0 from [u(l, l) − u(l, h)] = [u(h, l) − u(h, h)] and the 

sufficient condition for ICP and ICP* in Lemma 1 (a):  = [u(h, l) − u(l, l)]/(Vδδ −C
C − VN)  and  

= 

SC δδ +

)( δδ + .  Because C( ) is equal or possibly lower than a discounted expected payoff from choosing 

an optimal protection sequence of not involving an initiation of a punishment phase, this implies that H 

cannot strictly increase its discounted payoff by initiating a punishment phase in a period that follows a 

cooperative period during which H sets its protection level at  ≠ l = τ

/l

/l S. 
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Proof for Proposition 1 

With δ = δC − [u(h, ) − u( , )]/(VSl Sl Sl C − VN), and , note that setting τ)(2 δδδδ −=− CSC
S =  

satisfies IC in (11), thus  is the unique stationary protection level from which H does not have any 

incentive to deviate from, as described in Lemma 4.  By symmetry,  is also such a protection level for 

F.  If l = , then PTS satisfy ICP and  as well as IC, thus becoming a supergame 

equilibrium of the protection setting game between H and F from which no country has any unilateral 

incentive to change its specified strategy.   

Sl

Sl

Sl

Sl )(2 δδδδ −=− CSC

What is the relationship between the condition for Lemma 4 (a) and the existence of l (< h) that 

satisfies I(l) = 0 in (13)?  For example, does the condition for Lemma 4 (a) guarantee the existence of 

such l?  To address this issue, I show that the second term of I(l) in (13), δC[∂Pr(l)/∂τ ][1 − Pr(l)][u(h, l) 

– u(l, h)], representing H’s dynamic incentive to avoid a punishment phase, may not necessarily increase 

in l when the condition for Lemma 4(a) is satisfied.  ∂{[∂Pr(l)/∂l][1 − Pr(l)][u(h, l) – u(l, h)]}/∂l = 

〈[∂2Pr(l)/(∂l)2][1 – Pr(l)] – [∂Pr(l)/∂l]2〉[u(h, l) – u(l, h)] + [∂Pr(l)/∂l][1 − Pr(l)]{∂[u(h, l) – u(l, h)]/∂l} = 

〈[∂2Pr(l)/(∂l)2][1 – Pr(l)] – {1 + δC[1 – Pr(l)]}[∂Pr(l)/∂l]2〉[u(h, l) – u(l, h)] + 〈{δC[1 – Pr(l)]} 

[∂Pr(l)/∂l]2[u(h, l) – u(l, h)] + [∂Pr(l)/∂l][1 − Pr(l)]{∂[u(h, l) – u(l, h)]/∂l}〉.  Because [∂Pr(l)/∂l][1− 

Pr(l)]{∂[u(h, l) – u(l, h)]/∂l} < 0, once cannot rule out the possibility of having {δC[1 – 

Pr(l)]}[∂Pr(l)/∂l]2[u(h, l) – u(l, h)] + [∂Pr(l)/∂l][1 − Pr(l)]{∂[u(h, l) – u(l, h)]/∂l} < 0, thus  

∂{[∂Pr(l)/∂l][1 − Pr(l)][u(h, l) – u(l, h)]}/∂l  < 0 even when [∂2Pr(l)/(∂l)2][1 – Pr(l)] –{1 + δC[1 – 

Pr(l)]}[∂Pr(l)/∂l]2 > 0.  Therefore, the condition for Lemma 4 (a) does not necessarily guarantee the 

existence of l (< h) that satisfies I(l) = 0, validating the insertion of an additional condition to guarantee 

the existence of such l in Proposition 1. 

 

Proof for Proposition 4 

For (a):  It is sufficient to show that dVC
W/dTW in (22) is less than 0 for all values of TW ≥ 1 if Pr(l) 

< Pr .  Using 
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I can rewrite dVC
W/dTW in (22) into 
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By replacing u(l, l) − u(l, h) with u(l, l) − u(h, h) in the above expression and using u(l, l) − u(l, h) > u(l, 

l) − u(h, h), I obtain the first inequality in the following expressions:    
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where  and setting  for the 

last bracketed term,  in the preceding expression 

to the second inequality are used to obtain the second inequality.  To obtain the (last) equality in the 
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above expressions, I use the assumption of ∂2Pr(l)/∂(ωD)2 = 0, thus Pr(l) being linear in ωD.  With this 

assumption, I can rewrite Pr(l) = ωDPrD(l), which in turn implies that ∂Pr(l)/∂l = ωD[∂PrD(l)/∂l], 

∂Pr(l)/∂ωD = PrD(l), ∂2Pr(l)/∂l∂ωD = ∂PrD(l)/∂l, and [∂Pr(l)/∂l][∂Pr(l)/∂ωD] = Pr[∂PrD(l)/∂l].  Once I 

rewrite the corresponding terms in the expression preceding to the last equality in this way, I can obtain 

the last expression (or equivalently, the last equality).  As a result of these transformations, I obtain the 

following inequalities: 
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with the last inequality holding for all values of TW ≥ 1 if < 0, 

which in turn holds if Pr(l) < 

)1)(12(2)1)(1( CC PrPrPr δδ +−++−

Pr .  

 For (b):  It is sufficient to show that dVC
W/dTW in (22) is greater than 0 for all values of TW ≥ 1 if 

Pr(l) > Pr .  As shown above, I can rewrite dVC
W/dTW (22) into the following expression, using (A8):  
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By replacing u(l, l) − u(h, h) with u(l, l) − u(l, h) in the above expression and using u(l, l) − u(l, h) > u(l, 

l) − u(h, h), I obtain the first inequality in the following expressions    
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preceding expression to the second inequality is used to obtain the second inequality.  To obtain the 

(last) equality in the above expressions, once again I use the assumption of ∂2Pr(l)/∂(ωD)2 = 0 in the 

same manner that I used it to obtain the last equality in the corresponding expressions in the proof for 

Proposition 4 (a).  As a result of these transformations, I obtain the following inequalities: 
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with the last inequality holding for all values of TW ≥ 1 if (1 − Pr)[u(l, l) − u(h, h)]/[u(l, l) − u(l, h)] + 

2(2Pr − 1) > 0, which in turn holds if Pr(l) > Pr .   
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Figure 1. The Effect of a Higher τ −1 on the Optimal Choice of τ   
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0 lmin l 

∂u(l, l)/∂τ   

lmax h 

δC[∂Pr(l)/∂τ ][1 − Pr(l)][u(h, l) – u(l, h)] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Multiple l satisfying I(l) = 0  
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Figure 4. A numerical analysis of the optimal TTS for different values of ρ (rho) with χ = 1, 

α1 − α1
* = 3, β + B = 1 (so, h = 1), and δC = 0.5 

 65



 

 

 
Figure 5. A numerical analysis of the optimal TTS and optimal PTS for different values of 

ρ (rho) with χ = 100, α1 − α1
* = 3, β + B = 1 (so, h = 1), and δC = 0.5 
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