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Abstract

In Japanese stock markets, there are two kinds of breaks, i.e., night-
time and lunch break, where we have no trading, entailing inevitable
increase of variance in estimating daily volatility via naive realized vari-
ance (RV). In order to perform a much more stabilized estimation, we
are concerned here with a modification of the weighting technique of
Hansen and Lunde (2005). As an empirical study, we estimate optimal
weights in a certain sense for Japanese stock data listed on the Tokyo
Stock Exchange. We found that, in most stocks appropriate use of the
optimally weighted RV can lead to remarkably smaller estimation vari-
ance compared with naive RV, hence substantially to more accurate
forecasting of daily volatility.
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1 Introduction

Recently, it has been well recognized that diurnal activity affects the intra-
day phenomenon, namely, when detailed intraday information is stockpiled,
it has a big impact on the market. * The notion of realized variance (RV)
has been introduced to deal with this phenomenon, and it has come under
intense investigation. For example, see Andersen and Bollerslev (1998a, b),
Andersen, Bollerslev, Diebold, and Ebens (2001), Andersen et al. (2001,
2003), Barndorff-Nielsen and Shephard (2002, 2004), as well as references
therein. Then, the RV has become one of the critical notions in analyzing
market microstructure, as it captures market information more precisely
than daily returns, through intraday (high-frequency) data.

Theoretically, RV can be viewed as a proxy variable of Integrated Vari-
ance (IV) calculated from intraday full high-frequency log returns, when
adopting the semimartingale-model setup having a continuous-martingale
part for the underlying log-price process, nowadays widely accepted. Thus
we need to employ full high-frequency data for 24 hours in estimation of RV
as a measure of daily volatility in actual analysis. We can always observe
“full” high-frequency data in case of, e.g., an exchange rate: then we could
follow the same line of thought as Andersen et al. (2003) argued in forecast-
ing volatilities in future periods. However, in some stock markets the market
activities are restricted, e.g., to 4-5 hours a day in Japanese stock markets.
In such a situation, we can only observe intermittent high-frequency data,
and then variance of computing naive RV over whole day may be much
larger compared with the full high-frequency case, due to possible larger
fluctuations over longer time-intervals. '

In order to tackle this problem, Hansen and Lunde (2005) have regarded
it as a smoothing problem to the period when data is not observed, and
estimated an optimal weight to the volatility of each period as a constrained
optimization problem. Taking into account only the stock markets in the
U.S., they have assumed that markets have only one inactive period within
a day, which is, they only consider close-to-open period. We will adopt
their approach in order to construct an optimal weight applicable to the
Japanese stock markets having two breaks a day, that is, nighttime and

*There has been a lot of literature focusing on intraday activity in financial markets
investigated by using tick-by-tick data referred to as high-frequency data. For example,
please see Dacorogna et al. (2001) for further details.

fThere have been some studies which investigates the impact of the overnight return
on daily volatility. For example, Gallo (2001) reports the one in New York stock exchange
(NYSE) by using GARCH models.



lunch break. As an empirical study, we will estimate optimal weights for
Japanese stock data listed on the Tokyo Stock Exchange (First Section) for 3
years, from January 4, 2004 to November 28, 2006. These data are TOPIX
(index) and TOPIX core 30 (individual stocks). We found that, in most
stocks appropriate use of the optimally weighted RV can lead to remarkably
smaller estimation variance compared with naive RV, hence substantially to
more accurate forecasting of daily volatility.

The remainder of this article is organized as follows. Section 2 presents
the construction of an optimally weighted RV, following the technique of
Hansen and Lunde (2005). Section 3 provides some empirical analyses con-
cerning the optimally weighted RV based on the intermittent high-frequency
data of the Tokyo Stock Exchange. Section 4 reports the comparison of the
forecast performance between optimally weighted and no-weighted RV by
using a time series model. Section 5 concludes.

2 An optimal weight for RV under conditional pro-
portionality

Japanese market opens at 9:00 and closes at 15:00 (at each business day)
with lunch break from 11:00 to 12:30. Let T" > 0 represent 24-hours length
expediently. Put I = [0,T] = [(yesterday’s closing time), (today’s closing time)].
Then I can be split into four subperiods:

where I; are regarded as follows:

I; : nighttime,
I : morning trading hours,
I3 : lunch break,

1,4 : afternoon trading hours.
For convenience, let us put I; = [T;—1,T;], so that
O=Ty<Ti<Th<I3<Ty="T.

We can get high-frequency data only over the active periods Iy and Iy.
Based on intermittent high-frequency data over I, we want to estimate the
integrated volatility over I, say V. If the underlying log-price process is



described by a Brownian semimartingale X; = Xg + fg psds + fg osdws,
then the integrated volatility over the period [u,v] is formally defined to be
[ o2ds.

Let V; stand for the integrated volatility over I;. Then, in view of the
additive character of the integrated volatility, we have V = Z?:l V;. Denote
by X = (X¢)ier the underlying log-price process. A common estimator of
V' is the naive RV given by

RV = i Vi,
i=1
where
Vi := (X7, — X1,)? = (squared return over nighttime),
Vo := (RV over I),
Vs := (X1, — X1,)? = (squared return over lunch break),
Vi := (RV over I}).

It may be expected that estimation and prediction of (V7, V3) is more unsta-
ble compared with that of (V2,V}), due to the lack of high-frequency data
therein. At the same time, we should not simply preclude fluctuations over
each I; and I3 in general, as they may exhibit non-negligible impact for the
target variable V.

Instead of the naive RV, we are concerned here with a weighted RV of
the form

for some constant A = (\;)i<4. A natural optimal weight, say A* = (\});<u,
is then given by the minimizer of the mean square error

A= MSE()) := E[|[RV(\) — V|?.

In general it is impossible to get an empirical variant of A* as V cannot be
observed. Following the approach taken in Hansen and Lunde (2005, Section
2), we can provide a closed-form solution to this optimization problem under
a kind of conditional proportionality assumption, which entails that RV ()
is Vji-conditionally unbiased.

Write o = E[V], wi = E[Vi], nij = cov[V;, V], and vi; = nij/(ptt;)
for 1 <4,j < 4. Further, put d;; = ,ui,uj(%z; + Vi — Vi — %’4) and b; =
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popi(vas — via) for 1 <4, 5 < 3, and then

diy dig diz 0 by

| dor da2 daz O | b
Da= d31 dzz d3zz 0 |’ be = b3
p pp ps o i o

By means of Lemma A with m =4 and G = {¢,Q}, we have

Lemma. Suppose that p; > 0 a.s., and that for each i < 4 there exists a
constant p; such that

Ev[Vi] = pV., (1)
Then \ — MSE(\) defined on

4
Z Aifti = Mo}

A= {)\ =(\), €RY
=1

is minimized by \* = argmin, ¢ yvar[V(N)], which is explicitly given by \* =
D4_1b4 as soon as Dy s invertible.

This lemma is a multi-intermittence variant of Hansen and Lunde (2005,
Sections 2.2 and 2.3), which corresponds to the case where m =2 and G =
{#,9} in Lemma A. The assumption (1), which leads to the unbiasedness
of V()\) for every A € A, cannot be suppressed in general for computing the
A* without involving the latent variable V.

Our task toward empirical analysis is to evaluate constants (u;)?_, and
[mj]?’ j—1, and of course this in principle requires specification of underlying
model structure and forms of V; as well as their relation to V. As in Hansen
and Lunde (2005), in the empirical study given in the next section we will

simply use the empirical quantities for evaluations of (u;)i, and [nij]ijzl.

3 Empirical study

In this section we apply our optimal weight for intermittent high-frequency
data to Japanese stock data. We use Japanese stock data listed on the Tokyo
Stock Exchange (First Section) for 3 years, from January 4, 2004 to Novem-
ber 28, 2006. These are TOPIX (index) and TOPIX core 30 (individual
stocks). However, we deselect four stocks, Seven & I Holdings, Mitsubishi
UFJ Financial Group, Sumitomo Mitsui Financial Group, and Mizuho Fi-
nancial Group. The Seven & I Holdings is done for the reason that it was



formed on September 1, 2005, and the other three banking holding compa-
nies is done for the reason that we cannot optimize the weights for these
data fluctuating irregularly after Japan’s financial big bang. As a result, we
use one index and 27 individual stocks. In sum, we perform our empirical
analysis using 27 data series. These are listed in Table 1 along with the
number of observations N.

As mentioned before, the Japanese stock market is divided into two ses-
sions by a lunch break, i.e., the morning session from 9:00 to 11:00 and the
afternoon session from 12:30 to 15:00." ¥ Taking into consideration the min-
imum observation interval of the Japanese stock market, we take 1 minute
as a sampling frequency. Thus, the sample size of zenba and goba are 120
and 150, respectively. Now let (Vi2,)12 and (Yg4,)12 denote the kth-
day intraday returns over zenba and goba, respectively, and then define the
kth-day naive realized variance by

RVj, =Y + RVyo + Y2 + RV,

120 150

_ 2 2 2 2

= V2 Y Vi + Y+ Y Vi
i=1 =1

where Ykzl, RV} o, YkQS, and RV}, 4 denote the square of close-to-open re-
turn, RV in morning éession, the square of lunch break return, and RV in
afternoon session on kth day, respectively.

As in the case of U.S.-stock market handled in Hansen and Lunde (2005),
unrestricted estimates are found to be strongly influenced by the most ex-
treme values. So we filter the raw data for outliers. We classify 1% of
the observations Y 1, Y 2, Y 3, and Y 4 as outliers and omitted from the
estimation.? §

The literature says that the data are contaminated with market mi-
crostructure noise if sampling frequency is too high, and that it leads to a
biased estimate. Then, in order to mitigate the influence of the noise, we use
Newey-West type modified realized variance (RVyw ) in our analysis follow-
ing Hansen and Lunde (2005). The RV estimators over the k th lunch
break and the k£ th nighttime, say RVNw 2 and RVNw 4, respectively, are

#These two sessions are respectively called “zenba” and “goba”.
§As for JAPAN TOBACCO, we take 0.1% data as outliers.



defined based on the Bartlett kernel:

120 120—h

h
RVNw 2 = Z YViig+2 Z (1 - q+1> Z Yi2,jYk25+h,
=1
150 150—h
RVNWka = Zsz +2 Z <1 - q—|—1> > YiagYeajen,

i=1

where ¢ is the number of autocovariances in our empirical study,® we will
utilize the RVNwy,; for RVi,, 1 = 2,4. 9 This estimator has the advan-
tage that it is guaranteed to be nonnegative; see Newey and West (1987).
We show how the bias occurs in too high-frequency sampling and how the
RVnw can correct it by plotting the volatility signature plot introduced by
Anderson et al. (2000). See Figure 1. The upper panel is for the TOPIX
and the lower for the JAPAN TOBACCO. In these figures, the horizontal
axis is the sampling interval ranging from 1 to 20 minutes. The vertical axis
is the averaged RV over all sampling periods.

From these figures we can clearly see that RVyyys are relatively sta-
ble at every sampling frequency, while RV's estimated in usual way are
widely ranged depending on sampling frequency. Furthermore, the plot of
the TOPIX has upward bias; conversely, the others including the JAPAN
TOBACCO have downward bias.

Hereafter we will omit the subscript yw in RVywi2 and RVNw 4.

3.1 Estimation of optimal weight

Here, we estimate the optimal weight A* obtained in Section 7?7 for the
volatilities in each intraday period with real data. The A\* can be obtained
by some optimal measures p; and 7; ; (sunply, i = 1, i), which are estimated
as expected values and variances. Let Vk 1= Yk 1> Vi 2 =RV} o, Vi 3= Yk, 35

TWe take ¢ = 10 which spans a 10-minute period.



and Vk’4 = RVk:Aa then

J . . .
g = — Vi Vi Vi Via),
Ho nZ( i1+ Vio+Vis+ Via)
ﬂiz—zvm, i=1,234,
’ﬁzzfz MZ 5 i:1>273747

fli,j = 72 /‘LZ ‘/t,] ﬂj)’ i,j=1,2,3,4,

where n is the number of daily observations over the sample period.

Tables 1-4 show the estimates of these optimal measure and optimal
weight for each data. From these tables we have several interesting obser-
vations as follows.

e Table 1 shows that each volatility of index or TOPIX is very low
compared with the individual stocks. Moreover, the volatilities of jis,
i.e., volatilities in lunch time are remarkably low compared with others.

e Table 2 indicates variance estimates of each volatility. The values of
M are quite larger than others through all stocks. This implies the
need for obtaining “optimal weight” in empirical analysis.

e Table 3 has correlation estimates between volatilities. This has a no-
ticeable consequence that the estimates between 7; and 73, i.e., close-
to-open and lunch break in several stocks have negative correlations.
As expected, the estimates in all stocks have very high correlation be-
tween 7jo and 74, i.e., morning session and afternoon session volatilities.

e Finally Table 4 gives estimates \* = (5\?)154 of the optimal weight
M*. These estimates are large in the order of A%, 5\3, A3, and 5\2 on
average. However, it is also interesting that )\48 are larger than /\25 in
some stocks.* |

3.2 Result and discussion

In this subsection, we investigate whether variances of RV's are reduced well
by using the estimates obtained above. For the purpose, we compare RV

I'When the optimal weight A has a negative component, we there set zero conveniently.



calculated by usual way and weighted RV. These two RV's are obtained
from

RV}, = Yk2,1 + RVj o+ Yk2,3 + RV} 4,
RVE(\Y) = Y2, + A3RVis + A5Yi2s + NjRV 4.

The sample period for estimation of optimal weights is ranged from 2004 to
2006, which means that we perform in-sample estimation. Table 5 shows the
result. By definition, there is no change in these averages. However, these
variances are significantly reduced in all stocks. Additionally, we plot these
RVs in Figure 2. The upper panel is for the TOYOTA and the lower for the
Nomura Holdings. In this figure, crosses indicate conventional RV's and open
circles indicate weighted RV's. We recognize at a glance that the variances
of RV's are reduced over estimation periods. In Figure 3, we plot V;“ or
/\ZVM in each time period, separately. The upper panel is for the V;“ of
TOYOTA and the lower for the )\lem It can be recognized from this figure
that the overnight variance notably gets smaller and the variances in active
periods get larger by optimally weighting the data. In view of the stylized
fact that there is a positive correlation between volume and volatility (for
example, see the extensive survey of Karpoff (1987)), it is quite natural that
the optimal weight A; in inactive periods such as overnight and lunchtime
one is relatively small. After all, we can conclude that the optimal weight
may significantly reduce the “variance of RV” for more accurate forecasting
of volatility based on intermittent high-frequency data.

Furthermore, we analyze two aditional cases of intermittent high-frequency
data. First, we set the number of lambdas to be estimated to 2 by merging
lunchtime squared return Yk23 into overnigtht one Y,fl and morning realized
volatility RV}, 2 into afteroon one RV 4, respectively’.

RVup o (") = Nj (Y21 + Y3) + A5(RVio + RVia).

This case is essentially identical to Hansen and Lunde (2005). Secondly, we
set it to 3 by uniting morning realized volatility Y,fl and Yk?’Q.

RVis k(A*) = A (Y21 + Vi23) + A3RVio + AjRVia.

Table 6 and 7 show the result.This indicates that the optimal weight for
RV}, 2 or RV}, 4 is heavier than the one of (Y,f1 + Yk23), which is consistent
with the RV}, 4 case.



4 Ccomparison of the forecast performance

Finally, we compare the forecast performance of weighted and non-weighted
RVs by using a time series model. Many literatures have reported that
the specification of RV with the following ARFIMA (autoregressive frac-
tionally integrated moving average) model provides better accurate forecast
performance than any other time series models since realized volatility fol-
lows a long-memory process, e.g. Andersen et al. (2003) or Watanabe and
Yamaguchi (2007) for Japanese stock market, and so on.

o(L)(1 — L)*RV}, = 0(L)uy, uy ~ NID(0,0?),

where N1D(0, 0%) denotes normally and independently distributed with zero
mean and variance o2, L denotes the lag operator and ¢(L) = 1 — ¢y L —
--+— ¢pLP are the p-th and ¢-th order lag polynomials. So we now estimate
ARFIMA (p,d,q) model for four RV series obtained above in order to com-
pare the forecast performance. More specifically, we estimate the memory
parameter d in the model by using Reisen (1994) estimator™ and optimal
lag orders p and ¢ are chosen by using the minimum SIC criterion.’" Table
8 and 9 show these estimates.™

After estimating parameters of ARFIMA model for each RV, we compare
the forecast performance by using two loss functions such as RMSE (root
mean squared error), MAE (mean absolute error):

N
1 R 2
RMSE = |+ > (RVi— 3, )
t=1
1 N
MAE = — ;1: |RV: - &3,

where NN is the number of trading days in the sample period such as from
January 4, 2004 to November 28, 2006 and &y;_; denotes the in-sample
one-step-ahead volatility forecast regarding the realized volatility as a proxy
for the true volatility. Table 10-13 show the values of loss Functions and
the ratios of these values of three weighted RV's against ones of no-weighted

**Tt is based on the regression equation using the smoothed peridogram function as an
estimate of the spectral density. See Reisen (1994) in detail.

t"We also use AIC criterion but the selection is almost the same as the SIC’s.

#If d = 0, ARFIMA model collapses to stationary ARMA model and if d = 1, it
becomes ARIMA model. If 0 < d < 0.5, RV}, follows a stationary long-memory process
and if 0.5 < d < 1, RV}, follows a nonstationary long-memory process.
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RV. From these tables, we can see that weighted RV's virtually overcome
no-weighted RV in both of RMSE and MAE but there is no noticeable
difference among three weighted RV's.

Anyway, these results here imply that modeling RV with optimal weights
can significantly improve the forecast performance of daily volatility.

5 Concluding remarks

In this article, in order to perform estimation of the integrated volatility with
variance being less than conventional RV, we first formulated an optimal
closed-form random weighting procedure under the conditional proportion-
ality of the computable “basis” variable (V;)j<m. Then we have obtained
the preferable empirical evidence that applying this weighting procedure can
reduce the variances of estimating integrated volatility for most stocks. Our
empirical analysis substantially implies that, as soon as we are concerned
with intermittent high-frequency data, the optimally weighted RV can lead
to more accurate forecasting of daily volatility than the common naive RV.

11



Appendix.

Here we will compute the explicit form of A\* given in Section 2 within a
more formal setup.

Let (Q,F,P) be an underlying probability space. Given any natural
number m > 2 (say m = m/+m”, where, in the main context, m’ corresponds
to the number of inactive periods of tradings, and m” to that of active
periods where we can get reasonably high-frequency data). Let V' and Vi,
i < m, be nonnegative random variables. Fix a sub o-field G C F and write
H=GVao(V),sothat G C H CF. Now V is the target (latent) variable
to be estimated based on all available information, and we want to find the
optimal G-measurable random weight A\* = (Af);<y,, which a.s. minimizes
the G-conditional mean square error given by

A = (Mi)i<m — MSEg()) := Eg[|[V()) — V|7,

where Eg stands for the G-conditional expectation operator, and the esti-
mator V() of V' is supposed to take the form

) =S A (2)

As in Hansen and Lunde (2005), we here focus on A = (\j)j<m € Ag
with the random index set Ag being

ho={A= (s e RY

D N zuo},

=1

where X
fo = EglV] and ;= Eg[Vi].

Here we implicitly suppose u; > 0 a.s. Write
Mij
143t

nij = covg[Vi, V] and iy =

With these notation, we are going to derive the explicit form of \* € Ag
under an additional assumption of a kind of H-conditional proportionality
of V; to V, in a similar manner to Hansen and Lunde (2005, Theorem 5),
which corresponds to the case of m = 2 and G = {¢,Q}. In the sequel
we will suppress the term “a.s.” for brevity in equations involving random
variables and/or conditional expectations.

12



Suppose that for each 7 < m there exists an G-measurable random vari-
able p; such that
Ey[Vi] = piV.

Then, by taking the conditional expectation Eg in (2) we have
BV ()] = Y- NV. ®)
i=1
hence taking Fg and using the fact G C H yield
BolV ] = 0 3 v )
i=1
On the other hand, taking Eg in (2) yields that
Eg[V(N)] = i Aifli = 1o (5)
i=1
for A € Ag. Equating the right-hand sides of (4) and (5) yields ;" A\ip; =1
for A € Ag. Therefore, from (3) we get for A € Ag
EglV (V)] = V. (6)

(hence Eg[V(A)] = po) According to (6) and simple conditioning argument
we get Eg[[V(A)=V|*] = varg[V(N)]=2Eg[{V (A\) =V HV — )] —varg[V] =
varg[V(\)] —varg[V] for A € Ag, thereby we arrive at

A* = argminy cyvarg[V (M),

which serves as the optimal G-measurable random weight within Ag for
L?(P|g)-projection of V onto the linear space spanned by {V;,Va, ..., Vi1,
where P|g denotes the restriction of P to G.

For any A\ = (\;)i<m € Ag we may set

m—1
1
Am = (Mo - /\mi)-
Hm i=1

Then observe that

varglVIN] =D N +2 > X = O, Amoa).
i=1 1<i<j<m

13



For each i € {1,...,m — 1} we have

OxC( ALy A1) = 2<du’>\z‘ + Z Njdij — bi>7

1<j<m—1,j#i
where
dij = pitt; (Ymm + Vij = Yim — Vjm);
bi = propti(Ymm — Yim)
for 1 <4,j < m—1. In view of the first-order condition V. C(A1, .. s A1) =
0 and the definition of Ag, we see that for A € Ag the optimal G-measurable

weight \* = (AF)™, fulfils DA* = b, where D € R™ @ R™ and b € R™ are
given by

d11 e dl,mfl 0 bl
D= : : : 7 b—
dn-11 - dm—1m-1 0 bin—1
H1 s Hm—1 Hm Ho

Summarizing the above yields the following assertion.

Lemma A. Suppose that p; > 0 a.s., and that for each i < m there exists
a G-measurable random variable p; such that

EylVil =piV, as. (7)
Then, the G-measurable function A — Eg[[V(X\) — V2] defined on Ag is a.s.

minimized by \* = argminyc varg[V (X)], which is in turn explicitly given
by a solution of D\ =b. Therefore \* = D™'b as soon as D is invertible.

14
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Asset

N flo 1 fi2 fi3 fua
TOPIX 700 0.632 0.229 0.220 0.009 0.174
JAPAN TOBACCO 727 5.208 1.239 2.005 0.135 1.829
Shin-Etsu Chemical 699 2.646 0.796 0.934 0.052 0.865
Takeda Pharm. 699 1.613 0.442 0.584 0.027 0.559
Astellas Pharma Inc. 699 2.872 0.926 1.003 0.053 0.890
FUJIFILM Holdings 699 2.557 0.728 0.893 0.056 0.879
NIPPON STEEL 699 3.613 0.855 1.324 0.062 1.371
JFE Holdings,Inc. 699 3.357 0.992 1.199 0.051 1.115
Hitachi,Ltd. 699 2.351 0.946 0.734 0.032 0.639
Matsushita 699 2.121 0.892 0.630 0.033 0.566
SONY 699 2.855 1.073 0.900 0.036 0.845
NISSAN MOTOR 699 2.048 0.959 0.562 0.025 0.503
TOYOTA 699 2.077 0.663 0.683 0.030 0.700
HONDA MOTOR 699 2.548 0.932 0.803 0.039 0.774
CANON INC. 699 2.168 0.855 0.649 0.031 0.632
Nintendo Co.,Ltd. 699 2.810 1.253 0.889 0.051 0.617
Mitsubishi Corp. 699 2.980 1.101 1.003 0.041 0.835
ORIX 698 4.208 1.714 1.375 0.076 1.042
Nomura Holdings 699 3.090 1.331 0.919 0.043 0.796
Millea Holdings 695 5.842 1.052 2.263 0.143 2.383
Mitsubishi Estate 699 3.896 1.347 1.418 0.055 1.075
East Japan Railway 699 1.574 0.397 0.617 0.035 0.525
NTT 699 2.715 0.876 0.944 0.040 0.855
KDDI 699 2.727 0.858 0.964 0.051 0.854
NTT DoCoMo,Inc. 699 5.669 1.050 2.059 0.148 2.412
Tokyo Electric Power 699 1.312 0.236 0.513 0.029 0.534
SOFTBANK CORP. 699 7.374 1.918 2902 0.082 2.472

Table 1 Empirical estimates fi
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Asset m M2 M3 "4
TOPIX 0.089 0.032 0.000 0.021
JAPAN TOBACCO 5.947 3.342 0.074 2.483
Shin-Etsu Chemical 1.438 0.317 0.007 0.261
Takeda Pharm. 0.575 0.099 0.002 0.097
Astellas Pharma Inc. 2.135 0.337 0.007 0.222
FUJIFILM Holdings 1.216 0.200 0.006 0.163
NIPPON STEEL 1.690 0.465 0.009 0.548
JFE Holdings,Inc. 2.616 0.554 0.007 0.624
Hitachi,Ltd. 2.200 0.285 0.002 0.211
Matsushita 2.419 0.236 0.004 0.187
SONY 2.666 0.227 0.003 0.162
NISSAN MOTOR 2.113 0.158 0.002 0.138
TOYOTA 0.889 0.118 0.002 0.113
HONDA MOTOR 2.065 0.199 0.004 0.177
CANON INC. 1.738 0.130 0.002 0.110
Nintendo Co.,Ltd. 3.645 0.803 0.017 0.550
Mitsubishi Corp. 3.213 0.597 0.004 0.432
ORIX 8.499 1.551 0.028 0.866
Nomura Holdings 4.341 0.471 0.007 0.398
Millea Holdings 2.663 1.511 0.035 1.353
Mitsubishi Estate 5.060 1.534 0.010 0.849
East Japan Railway 0.479 0.144 0.003 0.098
NTT 2.431 0.403 0.003 0.280
KDDI 2.171 0.372 0.007 0.333
NTT DoCoMo,Inc. 3.104 0.283 0.028 0.348
Tokyo Electric Power  0.149 0.112 0.002 0.099
SOFTBANK CORP. 11.671 7.381 0.023 5.385

Table 2 Empirical estimates 7
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Asset

2

713

14

723

724

734

TOPIX 0.204 —0.028 0.182 0.272 0.514 0.233
JAPAN TOBACCO 0.220 0.134 0.148 0.277 0.622 0.360
Shin-Etsu Chemical 0.220 0.013 0.181 0.171 0.473 0.130
Takeda Pharm. 0.197 —0.011 0.099 0.094 0.388 0.137
Astellas Pharma Inc. 0.133 0.078 0.127 0.106 0.367 0.238
FUJIFILM Holdings 0.109 0.028 0.099 0.104 0.308 0.169
NIPPON STEEL 0.156 0.052 0.145 0.226 0.540 0.266
JFE Holdings,Inc. 0.117 —0.030 0.118 0.163 0.406 0.106
Hitachi,Ltd. 0.213 0.043 0.091 0.169 0.462 0.143
Matsushita 0.288 —0.022 0.195 0.190 0.444 0.145
SONY 0.175 —0.028 0.165 0.141 0.405 0.128
NISSAN MOTOR 0.229 0.052 0.146 0.223 0.484 0.198
TOYOTA 0.108 0.028 0.217 0.155 0.479 0.136
HONDA MOTOR 0.262 0.079 0.191 0.255 0.474 0.185
CANON INC. 0.163 —0.040 0.174 0.102 0.449 0.051
Nintendo Co.,Ltd. 0.136 0.140 0.123 0.120 0.293 0.088
Mitsubishi Corp. 0.250 —0.003 0.163 0.245 0.507 0.228
ORIX 0.159 0.047 0.181 0.277 0.520 0.283
Nomura Holdings 0.174 0.123 0.214 0.225 0.485 0.244
Millea Holdings 0.178 —0.057 0.054 0.120 0.485 0.238
Mitsubishi Estate 0.105 0.028 0.177 0.325 0.507 0.243
East Japan Railway 0.230 0.101 0.211 0.134 0.392 0.142
NTT 0.318 0.082 0.304 0.136 0.483 0.098
KDDI 0.252 0.139 0.165 0.173 0.429 0.136
NTT DoCoMo,Inc. 0.072 —0.007 0.143 0.053 0.199 —0.041
Tokyo Electric Power 0.362 0.104 0.295 0.200 0.705 0.177
SOFTBANK CORP. 0.213 0.145 0.270 0.322 0.606 0.317

Table 3 Empirical estimates of correlation
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Asset A% A3 A5 Vi
TOPIX 0.175 1.047 0.182 2.069
JAPAN TOBACCO 0.083 1.545 0.026 1.096
Shin-Etsu Chemical 0.039 1.427 0.140 1.476
Takeda Pharm. 0.025 1.762 0.152 1.017
Astellas Pharma Inc. 0.037 1.267 0.072 1.756
FUJIFILM Holdings 0.032 1.451 0.081 1.402

NIPPON STEEL 0.041 2.223 0.018 0.462
JFE Holdings,Inc. 0.067 1.786 0.176 1.023
Hitachi,Ltd. 0.081 0.959 0.259 2.444
Matsushita 0.041 1.033 0.165 2.524
SONY 0.023 1.015 0.120 2.263
NISSAN MOTOR 0.079 0.997 0.132 2.805
TOYOTA 0.031 1.345 0.113 1.619
HONDA MOTOR 0.014 1.256 0.040 1.971
CANON INC. 0.033 1.006 0.220 2.342
Nintendo Co.,Ltd. 0.193 1.063 0.149 2.619
Mitsubishi Corp. 0.079 1.149 0.227 2.074
ORIX 0.119 1.044 0.047 2.461
Nomura Holdings 0.084 1.182 0.072 2.372
Millea Holdings 0.048 1.958 0.114 0.564
Mitsubishi Estate 0.122 1.198 0.101 1.885
East Japan Railway 0.0065 1.773 0.131 0.902
NTT —0.019 1.173 0.281 1.885
KDDI 0.020 1.642 0.124 1.312
NTT DoCoMo,Inc. —0.003 2.408 0.077 0.291

Tokyo Electric Power —0.001 1.566 0.226 0.940
SOFTBANK CORP. 0.096 1.720 0.106 0.886

Min. 0.000 0.959 0.018 0.291
Max. 0.193 2.408 0.281 2.805
Average 0.058 1.407 0.132 1.647

Table 4 Empirical estimates pe
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RV RVia Diff.
Code Mean Var. Mean Var.  Var.
TOPIX 0.632  0.209 0.632 0.195 0.014
JAPAN TOBACCO 5.208 19.292 5.208 17.443 1.849
Shin-Etsu Chemical 2.646  2.844 2.646 1.824 1.021
Takeda Pharm. 1.613  0.995 1.613  0.551 0.444
Astellas Pharma Inc. 2.872  3.348 2.872 1.699 1.649
FUJIFILM Holdings  2.557  1.916 2.557  0.980 0.935
NIPPON STEEL 3.613  3.896 3.613 3.011 0.885
JFE Holdings,Inc. 3.357  4.888 3.357  3.369 1.519
Hitachi,Ltd. 2.351  3.409 2.351  2.128 1.281
Matsushita 2.121  3.745 2.121  1.983 1.762
SONY 2.855  3.709 2.855  1.440 2.269
NISSAN MOTOR 2.048  2.996 2.048 1.713 1.284
TOYOTA 2.077  1.450 2.077  0.761 0.689
HONDA MOTOR 2.548  3.228 2.548  1.455 1.773
CANON INC. 2.168  2.394 2.168  1.007 1.387
Nintendo Co.,Ltd. 2.810 6.335 2.810 6.187 0.148
Mitsubishi Corp. 2.980  5.880 2.980 4.033 1.846
ORIX 4.208 14.533 4.208 10.600 3.933
Nomura Holdings 3.090 6.792 3.090 4.278 2.514
Millea Holdings 5.842  7.997 5.842  7.850 0.147
Mitsubishi Estate 3.896 10.070 3.896 8.180 1.890
Fast Japan Railway 1.574  1.047 1.574 0.684 0.363
NTT 2.715  4.602 2.715  2.244 2.358
KDDI 2.727  3.986 2.727  2.258 1.728
NTT DoCoMo,Inc. 5.669  4.316 5.669  1.758 2.558
Tokyo Electric Power 1.312  0.688 1.312  0.584 0.103
SOFTBANK CORP. 7.374 40.986 7.374 38.900 2.086

Table 5 Mean and variance of RV's
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Figure 2 Realized variance (TOYOTA and Nomura Holdings)
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