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Abstract

Using recent advances in the nonparametric estimation of continuous-time processes under mild statisti-
cal assumptions as well as recent developments on nonparametric volatility estimation by virtue of market
microstructure noise-contaminated high-frequency asset price data, we provide (i) a theory of spot variance
estimation and (ii) functional methods for stochastic volatility modelling. Our methods allow for the joint
evaluation of return and volatility dynamics with nonlinear drift and di¤usion functions, nonlinear leverage
e¤ects, jumps in returns and volatility with possibly state-dependent jump intensities, as well as nonlinear risk-
return trade-o¤s. Our identi�cation approach and asymptotic results apply under weak recurrence assumptions
and, hence, accommodate the persistence properties of variance in �nite samples. Functional estimation of a
generalized (i.e., nonlinear) version of the square-root stochastic variance model with jumps in both volatility
and returns for the S&P500 index suggests the need for richer variance dynamics than in existing work. We
�nd a linear speci�cation for the variance�s di¤usive variance to be misspeci�ed (and inferior to a more �exible
CEV speci�cation) even when allowing for jumps in the variance dynamics.
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1 Introduction

Understanding volatility is of fundamental importance for e¤ective portfolio choice, derivative pricing, and risk

management, among other issues. A successful strand of the literature on volatility estimation has focused on

stochastic volatility modelling either in continuous time or in discrete time (for a review, Shephard, 2005, 2006).

This literature provides alternative methods to �lter volatility - an inherently unobservable state variable - by

using return data sampled at relatively low (generally daily) frequencies. An equally successful, but alternative,

recent strand of the literature on volatility estimation has recognized the identi�cation potential of return data

sampled at intra-daily frequencies to e¤ectively treat daily volatility (estimated by aggregating squared intra-daily

returns) as an "observable" quantity, without need for �ltering on the basis of low-frequency return data (for

a review, Andersen et al., 2004). This second body of work has seldom investigated the implications of high-

frequency variance estimation for stochastic volatility modelling. The parametric approaches of Barndor¤-Nielsen

and Shephard (2002), Bollerslev and Zhao (2002), Corradi and Distaso (2006), and Todorov (2007), however, are

important exceptions and very promising contributions in this area.

We further bridge the gap between arguably the two main strands of the current literature on �nancial markets

volatility by providing functional inferential methods. Speci�cally, we study nonparametric stochastic volatility

modelling in continuous time using high-frequency asset price data for the purpose of spot volatility estimation.

Write continuously-compounded returns as rt;t+1 = log(pt+1)� log(pt) and consider the system:

rt;t+dt = d log(pt) = �(�2t )dt+ �tdW
r
t + dJ

r
t ; (1)

df(�2t ) = mf(:)(�
2
t )dt+ �f(:)(�

2
t )dW

�
t + dJ

�
t ; (2)

where fW r
t ;W

�
t g are possibly correlated Brownian motions, fJrt ; J�t g are Poisson jump processes independent of

each other and independent of fW r
t ;W

�
t g with intensities �r(:) and ��f(:)(:), and �(:), mf(:)(:), and �f(:)(:) are

generic functions satisfying smoothness conditions laid out in the following sections.

Our procedures have three main features. First, we �lter spot variance by localizing (in time) high-frequency

estimates of integrated variance
R
�2sds. We then use spot variance to identify the parameters and functions

driving variance dynamics (i.e., ��f(:)(:), mf(:)(:), �f(:)(:) and, given parametric assumptions on the jump size

distribution, the moments of the volatility jumps). Since the classical realized variance estimator (i.e., the sum of

squared intra-daily returns over the day) may contain substantial contaminations due to market microstructure

noise (as emphasized by Bandi and Russell, 2008, and Zhang at al., 2005, in recent work), we employ robust

(to noise) integrated variance estimates. In other words, when possible, we allow for market microstructure

noise and control for it.1 Second, di¤erently from much existing work on stochastic volatility modelling, we avoid

imposing tight (possibly a¢ ne) parametric structures on ��f(:)(:), mf(:)(:); and �f(:)(:). Speci�cally, we identify the

relevant functions (through estimates of the system�s in�nitesimal moments) using nonparametric kernel methods

for di¤usion and jump-di¤usion processes as proposed by Bandi and Nguyen (2003), Bandi and Phillips (2003), and

Johannes (2004) in simpler frameworks, namely in the context of scalar models with observables. In order to lay out

the main ideas in the context of a well-understood estimation problem, we use classical Nadaraya-Watson kernel

estimates. However, as we illustrate below, extensions to alternative functional estimation methods are rather
1For recent surveys of nonparametric methods for integrated variance estimation using market microstructure noise-contaminated

high-frequency asset price data, we refer the reader to the review papers by Bandi and Russell (2007), Barndor¤-Nielsen and Shephard
(2007), and McAleer and Medeiros (2008).
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straightforward given our procedures. Third, identi�cation does not require stationarity. Rather, it relies on

recurrence, which is known to be a milder assumption than stationarity and mixing (see Bandi and Phillips, 2004,

for a review of identi�cation methods for recurrent continuous-time processes). In light of the persistent behavior

of daily volatility series, methods which only hinge on recurrence and do not rely on the information contained in

a potentially inaccurately estimated (in �nite samples) stationary density may, arguably, be particularly suitable

for our problem.

We present preliminary ideas in the no jump case (dJrt = 0, dJ�t = 0) - Section 4. We then consider the

empirically-important case of jumps in volatility (dJrt = 0, dJ�t 6= 0) - Section 5. For clarity, two alternative

models (and corresponding identi�cation methods) are presented. We �rst discuss a nonlinear version of the

square-root speci�cation with exponential jump sizes of Du¢ e et al. (2000). Having received important empirical

validation in recent studies (see, e.g., Eraker et al., 2003), this is the speci�cation we analyze in our empirical

work. We then discuss a nonlinear log-volatility model (f(�2) = log(�2)) with Gaussian jump sizes in the spirit of

Jacquier et al. (2001). Finally, we consider the case of jumps in both the return and the volatility process (dJrt 6= 0,
dJ�t 6= 0) - Section 6. When focusing on the full system (in Section 7) we study nonparametric identi�cation of

risk-return trade-o¤s (�(�2t )) and (possibly nonlinear) leverage e¤ects.

Our empirical work evaluates the S&P500 joint return/variance dynamics. Using intra-daily Spiders data

sampled between the beginning of January 1998 and the end of March 2006, we provide further evidence for the

need of jumps in both returns and variance. Estimation of a generalized (i.e., nonlinear) version of the square-root

stochastic variance model with exponential jumps in variance and Gaussian jumps in returns suggests the need

for richer (di¤usive) variance dynamics than in existing parametric work. We show that a linear speci�cation for

the variance�s di¤usive variance is likely misspeci�ed (and inferior to a CEV speci�cation) even when allowing for

discontinuities in the variance dynamics.

We conclude this Introduction by pointing out that, in independent and concurrent work, Kanaya and Kris-

tensen (2008) have also tackled estimation of stochastic volatility models in the presence of spot volatility �ltered

nonparametrically by virtue of the functional estimator proposed by Kristensen (2006). The focus of their stimu-

lating work is however somewhat di¤erent from ours. They study the impact of the measurement error induced by

high-frequency kernel estimates of spot volatility on both nonparametric and parametric estimates of stochastic

volatility models. We concentrate on the nonparametric case but allow for market microstructure noise (when

handling the �rst-stage spot volatility estimates) as well as for discontinuities in the volatility and return dynamics.

As we discuss below, these di¤erences naturally result in di¤erent approaches to spot volatility estimation and

nonparametric modelling. In particular, while not being the substantive core of our analysis but only an input for

later developments, we view our theory of microstructure noise-robust and jump-robust spot variance estimation

(in Appendix A) to be a promising contribution of our approach. An interesting, recent paper related to ours is

also that of Comte et al. (2007) who, in the presence of a continuous stochastic volatility local martingale price

process, study least-squares functional techniques to identify the drift and di¤usion function of their assumed

di¤usive volatility while providing bounds for the estimators�risk.

We begin with a description of the in�nitesimal moment estimators and their logic.
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2 The in�nitesimal moment estimators

We assume availability of n equi-spaced price observations in the time interval [0; T ] with �n;T = T
n . We also

assume availability of k (not necessarily equi-spaced) price observations in each interval [i�n;T ; i�n;T + �n;T ]:

The k intra-period observations are employed to evaluate integrated variance (bViT=n) over each sub-interval of size
�n;T .

The functions driving the dynamics of di¤usion and jump-di¤usion models are known to have in�nitesimal

conditional moment representations which can be exploited for the purpose of nonparametric identi�cation (Bandi

and Phillips, 2004, for discussions). We identify the j-th in�nitesimal moment of the variance process, i.e.,

�j(x) = lim
�!0

1

�
E
h�
f(�2t+�)� f(�2t )

�j j�2t = x
i

j = 1; :::; (3)

by virtue of

b�j(x) = 1

�n;T

n�1X
i=1

K

 e�2iT=n � x
hn;T

!h
f(e�2(i+1)T=n)� f(e�2iT=n)ij

nX
i=1

K

 e�2iT=n � x
hn;T

! j = 1; :::;

where e�2iT=n = bViT=n
�n;T

and bViT=n is a consistent estimate of R iT=n+�n;TiT=n �2sds for �xed n; T; and �n;T .

Renò (2006) provides simulation evidence for the performance of b�j(x) with j = 1; 2 (i.e., the drift and the

di¤usion case) while dealing with stochastic volatility models without discontinuities. This paper develops the

necessary theory for speci�cations with and without jumps in the presence of preliminary high-frequency spot

variance estimates e�2iT=n.
The kernel function K(:) and the integrated variance estimates bViT=n satisfy the following properties:

Assumption 1. K(:) is a bounded, continuously-di¤erentiable, symmetric, and nonnegative function whose

derivative K0(:) is absolutely integrable and bounded, and for which
R
K(s)ds = 1, K1 =

R
s2K(s)ds < 1; and

K2 =
R
K2(s)ds <1.

Assumption 2. bViT=n is such that
E�2

0@��n;T k�
0@ bViT=n
�n;T

�
R iT=n+�n;T
iT=n �2sds

�n;T

1A1A a� 0 (4)

and

V�2

0@��n;T k�
0@ bViT=n
�n;T

�
R iT=n+�n;T
iT=n �2sds

�n;T

1A1A a�
�
a
�
�4iT=n

��
+ b
�

(5)

with � 2 (0; 12 ] and � 2 [0; 1] given T and n. E�2 and V�2 denote expectation and variance conditional on the

spot volatility path. a; b; and � are numbers. The symbol
a� denotes asymptotic equivalence for a large k and a

small �n;T .

Coherently with Bandi and Nguyen (2003) and Bandi and Phillips (2003), the asymptotics are derived under

T ! 1 (long span) and n ! 1 with �n;T ! 0 (in�ll). We also assume asymptotic increases in the number
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of observations for every time span of size �n;T with �n;T vanishing to zero (i.e., k ! 1 with �n;T ! 0). The

relation between T , n, k, and �n;T is made precise in the theorems. Assumption 2 deserves some attention. Its

meaning is spelled out in Remarks 1 and 2.

Remark 1. In Appendix A we show that the spot variance estimates e�2iT=n constructed by virtue of (almost)
all recently-proposed integrated variance estimators bViT=n have asymptotic variances and biases which may be
represented as in Eq. (5) and Eq. (4) (sometimes for a speci�c - large - number of subsamples or autocovariances).

Consider, for instance, the classical realized variance estimator (Andersen et al., 2003, and Barndor¤-Nielsen and

Shephard, 2002) in the absence of market microstructure noise. In this case, � = 1
2 ; � = 0; a = 2; b = 0, and � = 1.

When allowing for noise, in the case of the two-scale estimator (Zhang et al., 2005) with a number of subsamples

q equal to �k2=3 (with � �xed), we show that � = 1
6 , � = 1, a = 0; and b 6= 0. If q = �

�
k

�n;T

�2=3
and �n;T = k�

with � 1
2 < � < 0, then � = 1

6 , � =
1
3 , a 6= 0, b = 0, and � =

2
3 . Consider now the class of �at-top realized kernels

(Barndor¤-Nielsen et al., 2006) with a kernel function g(:) satisfying g0(0) = 0 and g0(1) = 0, for instance. We

�nd that, if the number of autocovariances q is such that q = � k
1=2

�n;T
and �n;T = k� with � 1

2 < � < 0, then � = 1
4 ;

� = 1
2 , a 6= 0, b = 0, and � =

1
2 . Explicit expressions for these estimators, as well as derivations, are provided in

Appendix A. In particular, the Appendix relates Assumption 2 to a broader class of integrated variance estimatorsbViT=n recently proposed in the literature while o¤ering details on the form of the relevant parameters �, �, a, b,

and �, for each estimator.

Remark 2. (Spot volatility estimation using realized variance.) In the absence of market microstructure

noise, for realized variance we have:

V�2

0@k 1
2

0@ bViT=n
�n;T

�
R iT=n+�n;T
iT=n �2sds

�n;T

1A1A a�

0@2
0@�n;T R iT=n+�n;TiT=n �4sds

�2n;T

1A1A a� 2�4iT=n

since
R iT=n+�n;T
iT=n

�4sds

�n;T

a:s:! �4iT=n as �n;T ! 0. By the modulus of continuity of Brownian motion, notice that

k
1
2

0@ bViT=n
�n;T

�
R iT=n+�n;T
iT=n �2sds

�n;T
+

R iT=n+�n;T
iT=n �2sds

�n;T
� �2iT=n

1A
= k

1
2

0@ bViT=n
�n;T

�
R iT=n+�n;T
iT=n �2sds

�n;T

1A+ k 1
2 oa:s:

 
sup

iTn�s�i
T
n+�n;T

����2s � �2i�n;T

���!

= k
1
2

0@ bViT=n
�n;T

�
R iT=n+�n;T
iT=n �2sds

�n;T

1A+ oa:s: k 1
2

�
�n;T log

�
1

�n;T

��1=2!
= Op(1)

if k
1
2

�
�n;T log

�
1

�n;T

��1=2
! 0. Thus, if k

1
2

�
�n;T log

�
1

�n;T

��1=2
! 0 with k ! 1 and �n;T ! 0, then

bViT=n
�n;T

converges in probability to �2iT=n (at speed k
1
2 ). In addition, using classical weak convergence results (see, e.g.,

Jacod, 1994, and Jacod and Protter, 1998):

k
1
2

 bViT=n
�n;T

� �2iT=n

!
)

k!1;�n;T!0
MN

�
0; 2�4iT=n

�
; (6)
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where MN denotes a mixed Gaussian distribution.

Remark 3. (Spot volatility estimation using more general estimators.) Using Remark 1, by the same

argument as in Remark 2 above, e�2iT=n = bViT=n
�n;T

converges in probability to �2iT=n (at speed �
�
n;T k

� if ��n;T k
� !1)

provided k���n;T
�
�n;T log

�
1

�n;T

��1=2
! 0. Furthermore, if the distribution of bViT=n is mixed normal (as is the

case for virtually all integrated variance estimators studied in the literature thus far), then

��n;T k
�

 bViT=n
�n;T

� �2iT=n

!
)

k!1;�n;T!0
MN

�
0; a

�
�4iT=n

��
+ b
�
: (7)

In the case of (kernel-based) estimators that are robust to market microstructure noise (such as the two-scale esti-

mator and the class of �at-top realized kernel estimators), the result also requires appropriate (limiting) relations

between the number of subsamples/autocovariances, the number of intra-period observations k, and the length

�n;T . Again, Appendix A provides details while specializing the weak convergence result in Eq. (7) to a variety

of estimators recently proposed to evaluate integrated variance in the absence as well as in the presence of noise.

The Appendix, for instance, shows that, in the presence of noise, the rate of convergence of the spot variance

estimates constructed using the two-scale estimator is k1=10. Provided the kernel function g(:) satis�es g0(0) = 0

and g0(1) = 0, the spot variance estimates constructed using realized kernels may converge at rate k1=8.

Remark 4. (More on spot volatility estimation.) As emphasized above, the quantity e�2iT=n = bViT=n
�n;T

is a spot

variance estimator constructed using an integrated variance measure. Alternative spot volatility estimates have

been recently proposed, for instance, by Malliavin and Mancino (2008) and Kristensen (2007). Renò (2008) uses the

former to identify the functions m(:) and �(:) in Eq. (2) for the case without jumps in either volatility or returns.

When just aggregating squared continuously-compounded returns (i.e., the realized variance case) in the absence

of market microstructure noise, there is an important connection between the interesting approach advocated

by Kristensen (2007) and the one adopted here for the purpose of evaluating the full return/variance system.

Kristensen�s estimator uses all of the observations in the sample and smoothes squared continuously-compounded

returns locally, i.e.,

b�2i=n = 1

h

nkX
j=1

K

�
j � i=n
h

�
r2j i = 1; :::; n;

where K(:) is a kernel function (largely) satisfying Assumption 1 and nk is the total number of observations

in [0; T ] with T = 1; for simplicity. If nkh ! 1, b�2i=n converges to the spot variance at i=n with a standard
nonparametric speed

p
nkh. Speci�cally, the weak convergence result

p
nkh(b�2i=n � �2i=n))MN(0; 2K2�

4
i=n) (8)

holds if, in addition, nkh1+2 ! 0, where 0 <  � 1 is the order of smoothness of �2t (see Kristensen, 2007,

Theorem 2). The latter condition guarantees disappearance of the asymptotic bias term. We now turn to our

approach when bVi=n is realized variance and noise is absent. Write
bVi=n
�n;1

=

kX
j=1

r2j

�n;1
=

1

�n;1

nkX
j=1

1n
0� j�i=n

�n;1
�1
or2j ;
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where 1f:g is the indicator kernel. Hence,
bVi=n
�n;1

has an interpretation in terms of kernel smoother. We are simply

aggregating (using equal weights) observations in a local neighborhood of i=n, i.e., [i=n; i=n + �n;1]. Thus, �n;1
is e¤ectively a bandwidth playing the same role as h in the case of b�2i=n. This said, our derived asymptotic
distribution in Eq. (6) and the asymptotic distribution in Eq. (8) have to be consistent with each other when

K(:) = 1f:g. In other words, if nk�n;1 !1 and nk�1+2n;1 ! 0;

q
nk�n;1

 bVi=n
�n;1

� �2i=n

!
)MN

�
0; 2

�Z
12f0�s�1gds

�
�4i=n

�
:

Now, notice that �n;T is de�ned as an interval containing k observations, i.e., n�n;1 = 1. Thus, the (e¤ective)

rate becomes
p
k; which is coherent with Eq. (6). Similarly, the asymptotic variance becomes 2�4i=n; which is also

consistent with Eq. (6). Finally, the condition for a vanishing asymptotic bias term nk�1+2n;1 = k�2n;1 = k1=2�n;1 =

o(1) is equivalent to k
1
2

�
�n;T log

�
1

�n;T

��1=2
= o(1) for our assumed degree of smoothness of the spot volatility

process.

From a theoretical standpoint, the use of smooth kernels, as in Kristensen (2007), yields e¢ ciency gains over

the equal weighting implicitly delivered by our methods. In fact, the term K2 is generally smaller than 1 (it is,

for example, equal to 1
2
p
�
for a second-order Gaussian kernel). From an empirical standpoint, the presence of

intraday seasonalities (see, e.g., Andersen and Bollerslev, 1998, and the references therein) might a¤ect estimates

based on smooth kernels in ways that are di¢ cult to predict. Diurnal e¤ects appear more likely to average out

when using equal weighting over a trading day as implied by integrated variance-type measures, such as realized

variance.

Importantly, the properties of (either smooth or discountinuous) kernel estimates of spot variance have not been

previously studied for the cases with jumps and market microstructure noise, which are relevant for our purposes.

We do so in Appendix A. Using equal weighting allows us to draw from the recent literature on integrated variance

estimation both in terms of asymptotic results and in terms of �nite sample adjustments required for more accurate

empirical implementations. The latter have been advocated by Bandi and Russell (2006, 2008).2 We leave the

study of smooth kernels for spot variance estimation in the presence of noise and return jumps for future work.

Intuition. We now turn to the logic behind our estimation procedure. Given Remark 2 and 3, the rate of

convergence of e�2iT=n to �2iT=n is k���n;T (if k���n;T !1, of course, and k���n;T
�
�n;T log

�
1

�n;T

��1=2
! 0), where

� 2 (0; 12 ] and � = [0; 1]. Loosely speaking, if k ! 1 at a fast enough pace as hn;T ! 0, then one may hope

to control (asymptotically) the estimation error induced by the preliminary spot variance estimates so that b�j(x)
identi�es �j(x) consistently (in probability). A set of conditions that are su¢ cient for this to happen (and for

the moments to have well-de�ned limiting distributions) is listed in the theorems below. Identi�cation of all the

functions (and parameters of interest) of the model in Eq. (1) and Eq. (2) will rely on consistent estimation ofb�j(x), for j = 1; :::, as we discuss in Section 5 below.
This paper presents the main ideas in the context of classical Nadaraya-Watson kernel estimates. Extensions

to functional estimates with improved asymptotic and �nite sample properties are rather immediate given our

2For the case with no jumps in returns, the working paper version of this paper (Bandi and Reno�, 2008) estimates the S&P 500
index�s spot variance using the two-scale estimator and appropriate realized kernels. In both cases, the �nite-sample properties of the
estimators are optimized by minimizing the estimators�MSEs (under microstructure noise) as suggested by Bandi and Russell (2008).
We refer the interested reader to that version of the paper for details.
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procedures and are, in some cases, discussed below (see, e.g., Remark 10). Among other methods, b�j(x) could be
a local linear estimator of the form

b�jll(x) = 1

�n;T

n�1X
i=1

eKi (x; hn;T )
h
f(e�2(i+1)T=n)� f(e�2iT=n)ij

nX
i=1

eKi (x; hn;T )

j = 1; :::; (9)

where eKi (x; hn;T ) =
1

hn;T
K

� e�2iT=n�x
hn;T

�
�n;2 � (e�2iT=n � x) 1

hn;T
K

� e�2iT=n�x
hn;T

�
�n;1 with

�n;s =
nX
i=1

(e�2iT=n � x)s 1

hn;T
K

 e�2iT=n � x
hn;T

!

for s = 1; 2. More generally, it could be a local polynomial estimator de�ned as the solution f�0; �1; :::; �pg to

nX
i=1

 
1

�n;T
(f(e�2(i+1)T=n)� f(e�2iT=n))j � pX

u=0

�u(e�2iT=n � x)u
!
K

 e�2iT=n � x
hn;T

!
j = 1; :::;

where b�jll(x) = b�0(x) for p = 1. Local polynomial methods for di¤usions are studied by Fan and Zhang (2003) and,
under recurrence, by Moloche (2002). Alternative, interesting approaches for di¤usion estimation under a variety

of assumptions, including weak recurrence assumptions, have been recently proposed, inter alia, by Kristensen

(2008) and Xu (2006, 2007).

3 Recurrence

Consider a complete probability space (
;=; P; f=tgt�0) and the compensated N -dimensional jump-di¤usion

process Xt de�ned as

Xt = X0 +

Z t

0

�(Xs�)ds+

Z t

0

�(Xs�)dWs +

Z t

0

Z
c(Xs�; y)v(ds; dy);

where fWt;=tg is a standard m-dimensional Brownian motion and

v(dt; dy) = N(dt; dy)�E(N(dt; dy))

= N(dt; dy)� e�(dy)dt
is a compensated Poisson random measure on [0;1)�RN independent of Wt.

Assumption 3. The terms �(:), �(:), and c(:; y) are at least twice continuously-di¤erentiable vector functions

of the Markov state. �(:) = f�i(:)g1�i�N , and c(:; y) = fci(:; y)g1�i�N ; are N � 1 Borel measurable vectors, and
�(:) = f�ij(:)g1�i�N

1�j�m
is a N�m Borel measurable matrix. There exists a constant C such that, for any x; z 2 RN ;

j�(x)� �(z)j2 + jj�(x)� �(z)jj2 +
Z
jc(x; y)� c(z; y)j2e�(dy) � Cjx� zj2;

j�(x)j2 + jj�(x)jj2 +
Z
jc(x; y)j2e�(dy) � C(x� jzj)2:

7



Write a(x) = �(x)�(x)|: In addition, there exists a number � > 0 so that

z|a(x)z � �jzj2 for all x and z:

Assumption 3 guarantees the existence of a nondegenerate strong solution Xt.

Assumption 4. For each x 2 RN ;

sup
z 6=0

Z �
ln
jz + c(z + x; y)j

jyj

�2 e�(dy) = Cx:

If Assumption 3 and 4 are satis�ed and, for r > 0, there exists "1 = "1(r) > 0 and �1 = �1(r) > 0 so that, for

any jzj � r and x 2 RN ;

X
zi�i(z + x)

jzj2 �

X
aij(z + x)zizj

2jzj2 +

X
aii(z + x)

2jzj2 +

+

Z �
ln
jz + c(z + x; y)j

jyj � z|c(z + x; y)

jyj2

� e�(dy) < (1� "1)
X

aij(z + x)zizj

2jzj4 � �1;

then the process Xt is recurrent (In-Suk Wee, 2000).

Remark 5. The model in Eq. (1) and Eq. (2) is not compensated. This is of course not problematic since we

could compensate it and rede�ne the drift vector as being equal to �(:) = f�(:);mf(:)(:)g| � f�r(:); ��f(:)(:)g| �
fE[(cr(:; yr)];E[(c�(:; y�)]g|; where � denotes element-by-element multiplication. The conditions in Assumption 4
would therefore have to apply to the system with a re-de�ned drift term.

Under recurrence, for any x 2 RN and r > 0,

Px(jXt � xj < r for a sequence of times increasing to 1) = 1:

In other words, the process returns to open sets in its range an in�nite number of times over time, thereby

making consistent point-wise kernel estimation possible even in the absence of a time-invariant stationary density.

Recurrent processes for which a stationary density exists converge to it and are called positive recurrent (or

ergodic). They are called strictly stationary when started at the stationary density. Recurrent processes which are

not endowed with a stationary density are called null recurrent. See, e.g., Bandi and Phillips (2004) for discussions.

Importantly for our purposes, while it is of course hard to argue against the stationarity properties of return

and variance series, the persistence features of variance should be a concern when identi�cation is conducted by

heavily relying on the informational content of the variance process�stationary density. The use of identi�cation

methods which do not hinge on stationarity is expected to lead to less distorted estimates in regions where the

variance�s stationary density cannot be estimated reliably and, as we will show below, a somewhat more objective

representation of statistical uncertainty. In e¤ect, the size of the point-wise (asymptotic) con�dence bands of each

in�nitesimal moment estimate will be shown to be an inverse function of the number of visits made by the spot

variance process in the local neighborhood of each spatial point, i.e., the local time of the process.

Here we provide conditions for recurrence only in the case of our most general system with jumps. When

specializing to individual equations (either variance or returns) and/or when considering the benchmark framework

without jumps, we refer the reader to the conditions for multivariate di¤usion processes in Hasminskii (1960) and

Bhattacharya (1978).
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4 A preliminary case: dJrt = 0 and dJ
�
t = 0

In the absence of jumps, the estimated in�nitesimal moments are known to directly identify the functions of

interest since �1(x) = m(x), �2(x) = �2(x), and �j(x) = 0 8j � 3. Theorems 2 and 3 below present conditions on
T; n; k; �n;T ; and the bandwidth hn;T ; which guarantee b�1(x) p! m(x) and b�2(x) p! �2(x) while yielding asymptotic

Gaussian distributions. We begin with the limiting properties of the averaged kernel function.

Theorem 1 (Convergence to the chronological local time.) Assume T is �xed (T = T ). If k; n!1 and

hn;T ; �n;T ! 0 so that

lim
n!1

1

hn;T

 
�n;T log

1

�n;T

!1=2
= 0;

lim
k;n!1

1

hn;T k
���

n;T

+
1

hn;T

 
�n;T log

 
1

�n;T

!!1=2
= 0; (10)

with � 2 (0; 12 ] and � = [0; 1], then,

bL�2(T ; x) = �n;T
hn;T

nX
i=1

K

 e�2iT=n � x
hn;T

!
p! L�2(T ; x);

where L�2(T ; x) is the chronological local time of the spot variance process.

Proof. See Appendix B.

Remark 6. In functional estimation methods for recurrent continuous-time semimartingales, chronological local

time (i.e., the time spent by the process in the vicinity of a point) drives the rate of convergence of the functional

estimates (see, e.g., Theorem 3 and 4, below). Since recurrent processes visit each open neighborhood of a point

in�nitely often over time (Section 3), then local time diverges with T . The divergence rate is linear (in T ) for

positive recurrent (ergodic) or stationary processes (since L�2(T; x)=T
p! p(x); where p(x) is the time-invariant

stationary density at x) but is lower for null recurrent processes and, importantly, unknown in general. One

important exception in the null recurrent class is Brownian motion for which v(T ) = T 1=2. In what follows, we

write L�2(T; x) / v(T ), where v(T ) is a regularly-varying function at in�nity (see, e.g., Bandi and Moloche, 2004,

for discussions).

Remark 7. In practise, the nature of the divergence properties of local time is immaterial for our purposes. All

we will need, in order to express the (e¤ective) rate of convergence of our functional estimates (and, of course,

their limiting variance), is an in-sample characterization of the local time factor. As Theorem 1 implies, one can

do so by using kernel methods similar to those employed for estimating classical stationary densities.

Theorem 2 (The volatility drift.) If k; n; T !1 and hn;T ; �n;T ! 0 so that

lim
n;T!1

hn;T v(T ) = 1; (11)

lim
n;T!1

v(T )

hn;T

�
�n;T log

1

�n;T

�1=2
= 0; (12)

lim
k;n;T!1

Tv(T )�1

�n;Thn;T k��
�
n;T

+
Tv(T )�1

�n;Thn;T

�
�n;T log

�
1

�n;T

��1=2
= 0; (13)
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with � 2 (0; 12 ] and � = [0; 1] ; then,

b�1(x) p! m(x);

where L�2(T; x) / v(T ). If

lim
n;T!1

hn;T v(T ) = 1;

lim
n;T!1

h5n;T v(T ) = C1; (14)

lim
n;T!1

v(T )

hn;T

�
�n;T log

1

�n;T

�1=2
= 0;

lim
k;n;T!1

Tv(T )�1=2

�n;Th
1=2
n;T k

���n;T
+
Tv(T )�1=2

�n;Th
1=2
n;T

�
�n;T log

�
1

�n;T

��1=2
= 0; (15)

then, q
hn;T

bL�2(T; x)nb�1(x)�m(x)� �m(x)o) N
�
0;K2�

2(x)
�
;

with

�m(x) = h2n;TK1

"
m

0
(x)

s
0
(x)

s(x)
+
1

2
m

00

(x)

#
;

where s(dx) is the di¤usion�s speed measure and C1 is a constant.

Proof. See Appendix B.

Theorem 3 (The volatility di¤usion.) If k; n; T !1 and hn;T ; �n;T ! 0 so that

lim
n;T!1

v(T )

hn;T

�
�n;T log

1

�n;T

�1=2
= 0;

lim
k;n;T!1

Tv(T )�1

�n;Thn;T k��
�
n;T

+
Tv(T )�1

�n;Thn;T

�
�n;T log

�
1

�n;T

��1=2
= 0;

with � 2 (0; 12 ] and � = [0; 1] ; then,

b�2(x) p! �2(x);

where L�2(T; x) / v(T ). If

lim
n;T!1

h5n;T v(T )

�n;T
= C2;

lim
n;T!1

v(T )

hn;T

�
�n;T log

1

�n;T

�1=2
= 0;

lim
k;n;T!1

Tv(T )�1=2

�
3=2
n;Th

1=2
n;T k

���n;T
+
Tv(T )�1=2

�
3=2
n;Th

1=2
n;T

�
�n;T log

�
1

�n;T

��1=2
= 0;
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then, vuuthn;T
bL�2(T; x)
�n;T

nb�2(x)� �2(x)� ��(x)o) N
�
0; 2K2�

4(x)
�
;

with

��(x) = h2n;TK1

"
�
20

(x)
s
0
(x)

s(x)
+
1

2
�
200

(x)

#
;

where s(dx) is the di¤usion�s speed measure and C2 is a constant.

Proof. See Appendix B.

Remark 8 (The bandwidth conditions) In order to discuss the meaning of the bandwidth conditions, we

simply focus on the drift estimator. Similar observations can be made in the di¤usion case and will apply to the

more general in�nitesimal moment estimators in the next section. Eq. (11) is analogous to the classical condition

nh ! 1, which is necessary for consistency of the Nadaraya-Watson kernel estimator in discrete-time. Here the
local time�s divergence rate (v(T )) replaces the divergence rate of the number of observations (n). Eq. (12) hinges

on the Brownian modulus of continuity and guarantees that the continuous sample path of the process can be

approximated (in the limit) by virtue of discretely-sampled data. This condition is important to replicate the

"in�nitesimal" features of the moment(s), as implied by Eq. (3). Eq. (12) is the condition which allows us to

eliminate (asymptotically) the measurement error which is, necessarily, induced by the preliminary spot variance

estimates. This condition ought to be slightly strengthened (in Eq. (15)) for weak convergence to hold. When

deriving weak convergence, the additional condition in Eq. (14) guarantees optimality of hn;T by appropriately

balancing the estimator�s asymptotic bias and variance. It is analogous to nh5 = O(1) in the case of classical

Nadaraya-Watson kernel estimators in discrete-time.

Remark 9 Since �n;T ! 0, the di¤usion estimator has a faster rate of convergence than the drift estimator. In

both cases, optimal rate selection for the smoothing parameter hn;T yields an asymptotic bias term which has

a familiar form (from more conventional kernel estimation in discrete time) but, in light of the mildness of our

assumptions, depends on the process�invariant (speed) measure rather on the process�time-invariant stationary

density, which is not assumed to exist. The drift�s optimal bandwidth rate is
�

1
v(T )

�1=5
. The corresponding

di¤usion�s value is
�
�n;T

v(T )

�1=5
.

Remark 10 (Local linear estimates) As pointed out in the Introduction and in Section 2, while we illustrate

the main issues by virtue of traditional Nadaraya-Watson estimates, extensions to kernel estimators with superior

asymptotic mean-squared error properties can be conducted similarly. Consider, for example, local linear estimates

of the drift and di¤usion as in Eq. (9). All bandwidth conditions would be preserved. In fact, the statements

of Theorems 2 and 3 would remain unchanged with the exception of intuitive (given existing work in discrete

time) modi�cations of the asymptotic biases: �m(x) would become h2n;TK1

�
1
2m

00
(x)
�
and ��(x) would become

h2n;TK1

�
1
2�

200
(x)
�
.
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5 Jumps in volatility: dJrt = 0 and dJ
�
t 6= 0

Recent empirical work has emphasized the importance of models allowing for rapid increases in stock returns�

conditional volatility (see, e.g., Bates, 2000, Du¢ e et al., 2000, Pan, 2002, and Eraker et al., 2003). Such increases

cannot be yielded by the small Gaussian changes implied by classical di¤usive stochastic volatility models. Jumps

in volatility provide an important means by which sudden volatility jumps translate, due to persistence in the

volatility dynamics, into lasting, higher volatility levels (see Eraker et al., 2003, for discussions).

In the presence of jumps in volatility, the high-order in�nitesimal moments of the volatility process can be

employed to learn about the intensity of the jumps and the moments of the jump size distribution as suggested,

in other contexts, by Johannes (2004) and studied formally by Bandi and Nguyen (2003).3 To clarify ideas, we

consider nonlinear versions of two stochastic volatility models which have drawn particular attention in recent

years, namely the square-root stochastic volatility model with exponential jumps of Du¢ e et al. (2000) and a

log-volatility model with Gaussian jumps in the spirit of Jacquier et al. (2002). Alternative speci�cations may of

course be easily adopted provided the identi�cation scheme is modi�ed accordingly.

Generalized Du¢ e, Pan, and Singleton (2000) model. Write Eq. (2) with f(�2t ) = �2t and dJ
�
t = ��dN�

t ,

where �� � exp(��): In Du¢ e et al. (2000) and Eraker et al. (2003), m�2(�
2
t ) is a¢ ne (i.e., linear in �

2
t ), ��2(�

2
t )

is a square-root process (�2�2(�
2
t ) is also a¢ ne) as in Heston (1993), and ��2(�

2
t ) (i.e., the intensity of the Poisson

jump N�
t ) is constant and, hence, independent of the state (see, also, Andersen et al. (2002) for an a¢ ne stochastic

volatility model with ��2(�2t ) = 04). Provided the variance drift, di¤usion, and intensity satisfy the conditions

laid out in Section 3, we leave their functional forms unspeci�ed. Now, notice that

�1(x) = m�2(x) + ����2(x) (16)

�2(x) = �2�2(x) + 2�
2
���2(x) (17)

�3(x) = 6�3���2(x) (18)

�4(x) = 24�4���2(x) (19)

:::

Hence, consistent (in probability) identi�cation of the relevant functions may be conducted by computing:

b�� =
1

n

nX
i=1

b�4(e�2iT=n)
4b�3(e�2iT=n) ; (20)

b��2(x) =
b�4(x)
24b�4� ; (21)

b�2�2(x) = b�2(x)� 2b�2�b��2(x); (22)

bm�2(x) = b�1(x)� b��b��2(x): (23)

3A di¤erent methodology based on pre-�ltering the data with a threshold function is explored in Mancini and Renò (2006).
4Other papers allowing for jumps in returns, stochastic volatility, but no jumps in volatility are, for example, Bakshi et al. (1997),

Bates (2000), and Pan (2002). These papers �nd evidence for misspeci�cation in the volatility dynamics pointing to the likely presence
of discontinuities in the volatility sample path.
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Alternative (possibly superior) identi�cation methods can of course be employed. One could, for instance, consider

higher-order approximations.5 Here we lay out the main ideas by considering the most intuitive identi�cation

scheme. Below, we show empirically, and by simulation, that this approach may perform very satisfactorily in

practise.

Log-variance. Write Eq. (2) with f(�2t ) = log(�2t ) and dJ
�
t = ��dN�

t , where �
� � N(0; �2�): This model is in

the spirit of Jacquier et al. (2002), among others. As earlier, we generalize it by allowing for a nonlinear drift,

di¤usion, and intensity of the jumps. Write

�1(x) = mlog �2(x); (24)

�2(x) = �2log �2(x) + �
2
��log �2(x); (25)

�4(x) = 3�4��log �2(x); (26)

�6(x) = 15�6��log �2(x); (27)

:::

A potential identi�cation method (Bandi and Nguyen, 2003, and Johannes, 2004) is now:

b�2� =
1

n

nX
i=1

b�6(e�2iT=n)
5b�4(e�2iT=n) ; (28)

b�log �2(x) =
b�4(x)
3b�4� ; (29)

b�2log �2(x) = b�2(x)� b�2�b�log �2(x); (30)

bmlog �2(x) = b�1(x): (31)

This identi�cation procedure has proved successful in the analysis of the temporal dynamics of spot interest

rate series in continuous time (Johannes, 2004). As discussed earlier, it can be generalized when needed (see, e.g.,

Section 9, Eq. (36) and Eq. (37)).

Using linear speci�cations with no jumps in either returns or variance, Andersen et al. (2002) and Chernov

et al. (2002) �nd that the log-volatility and the square-root model provide very similar �t to the data. In light

of the recent empirical validation provided by Eraker et al. (2003) to the a¢ ne square-root model with jumps in

both volatility and returns, a nonlinear version of this model will be the subject of our empirical work.

Theorem 4 presents conditions on T; n; k; �n;T ; and the bandwidth hn;T ; guaranteeing b�j(x) p! �j(x) for all j,

and by an application of Slutsky�s theorem, consistency (in probability) of the relevant functions and jump size

moments. Our discussion in the previous section provides intuition for several aspects of the Theorem. Below, we

focus on what is speci�c to the case with discontinuous jumps.

Theorem 4. (The in�nitesimal moments.) If k; n; T !1 and hn;T ; �n;T ! 0 so that

5We do so when evaluating the return dynamics in order to achieve more accurate �nite sample performance (see Section 10).
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lim
n;T!1

hn;T v(T ) = 1;

lim
n;T!1

v(T )

hn;T

�
�n;T log

1

�n;T

�1=2
= 0;

lim
k;n;T!1

Tv(T )�1

�n;Thn;T k��
�
n;T

+
Tv(T )�1

�n;Thn;T

�
�n;T log

�
1

�n;T

��1=2
= 0;

with � 2 (0; 12 ] and � = [0; 1] ; then,

b�j(x) p! �j(x) j � 1;

where L�2(T; x) / v(T ). If

lim
n;T!1

hn;T v(T ) = 1;

lim
n;T!1

h5n;T v(T ) = C3;

lim
n;T!1

v(T )

hn;T

�
�n;T log

1

�n;T

�1=2
= 0;

lim
k;n;T!1

Tv(T )�1=2

�n;Th
1=2
n;T k

���n;T
+
Tv(T )�1=2

�n;Th
1=2
n;T

�
�n;T log

�
1

�n;T

��1=2
= 0;

then, q
hn;T

bL�2(T; x)nb�j(x)� �j(x)� ��j (x)o) N
�
0;K2�

2j(x)
�
; 8j � 1

with

��j (x) = h2n;TK1

"
�
j0
(x)

s
0
(x)

s(x)
+
1

2
�
j00

(x)

#
;

where s(dx) is the process�invariant measure and C3 is a constant.

Proof. See Appendix B.

Remark 11. Contrary to the no jump case, all in�nitesimal moments converge at the same rate. In particular,

an enlarging span of data (T ! 1) is necessary to guarantee hn;T bL�2(T; x) a:s:! 1 and, hence, consistency of all

moments. As earlier, selection of the optimal bandwidth rate
��

1
v(T )

�1=5�
yields an asymptotic bias term which

depends on the process�invariant measure and may be eliminated by slight undersmoothing.

5.1 The implied drift, di¤usion, intensity of the jumps, and jump size: asymptotic
properties

For both models presented earlier, we now discuss asymptotic inference on the functions and parameters of interest.

In all cases, the bandwidth hn;T is set so as to avoid the presence of an asymptotic bias term (as implied by the

condition in Eq. (32)).
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We initially assume that the moments of the jump sizes are estimated by averaging higher-order in�nitesimal

moments over a �xed time period T . In other words, b�� = 1
n

nX
i=1

b�4(e�2iT=n)
4b�3(e�2iT=n) and b�

2
� =

1
n

nX
i=1

b�6(e�2iT=n)
5b�4(e�2iT=n) with

T=n! 0 as n!1 over a �xed T < T . Importantly, for consistency (see Remark 11), the higher-order momentsb�j used to compute b�� and b�2� continue to be estimated (before the averaging) over an asymptotically expanding
T . As we will show, the �xed T case is theoretically interesting when dealing with generic (stationary and

nonstationary) recurrent processes. Speci�cally, it guarantees that the averages b�� and b�2� are asymptotically
well-behaved in the null recurrent (nonstationary) case.6 We will relax the �xed T condition (and let T diverge

with T ) when focusing on ergodic (or strictly stationary) systems (Remark 12).

Theorem 5. (Variance moments: Weak convergence.)

Assume

lim
n;T!1

hn;T v(T ) = 1;

lim
n;T!1

h5n;T v(T ) = 0; (32)

lim
n;T!1

v(T )

hn;T

�
�n;T log

1

�n;T

�1=2
= 0;

lim
k;n;T!1

Tv(T )�1=2

�n;Th
1=2
n;T k

���n;T
+
Tv(T )�1=2

�n;Th
1=2
n;T

�
�n;T log

�
1

�n;T

��1=2
= 0;

with � 2 (0; 12 ] and � = [0; 1], where L�2(T; x) / v(T ).

Generalized Du¢ e et al.�s model

Expected jump size:

(�(T ))
�1=2

T
�b�� � ��	) N(0; 1);

where

�(T ) =

Z 1

�1
��2(x)

 
L
2

�2(T ; x)

L�2(T; x)

!
E

0@ 1

4�3(x)
(��)

4 � �4(x)

4
�
�3(x)

�2 (��)3
!21A dx:

Jump intensity:

q
hn;T

bL�2(T; x)nb��2(x)� ��2(x)o) N

0@0;K2

��2(x)E
�
(��)

8
�

(24)2�8�

1A :

Di¤usive function:

q
hn;T

bL�2(T; x)nb�2�2(x)� �2�2(x)o) N

0@0;K2��2(x)E

0@ (��)2 � 1

12�2�
(��)

4

!21A1A :

6A similar asymptotic design is adopted in Bandi and Phillips (2007) in a di¤erent context. We refer the interested reader to that
paper for details. In particular, Bandi and Phillips (2007) emphasize that the assumption is made only for theoretical convenience but
is empirically immaterial.
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Drift function:

q
hn;T

bL�2(T; x) fbm�2(x)�m�2(x)g ) N

0@0;K2

0@�2�2(x) + ��2(x)E
0@ �� � 1

24�3�
(��)

4

!21A1A1A :

Log-variance model

Jump standard deviation:

(�(T ))
�1=2

2T�� fb�� � ��g ) N(0; 1);

where

�(T ) =

Z 1

�1
�log �2(x)

 
L
2

�2(T ; x)

L�2(T; x)

!
E

0@ 1

5�4(x)
(��)

6 � �6(x)

5
�
�4(x)

�2 (��)4
!21A dx:

Jump intensity:

q
hn;T

bL�2(T; x)nb�log �2(x)� �log �2(x)o) N

0@0;K2

�log �2(x)E
�
(��)

8
�

9�8�

1A :

Di¤usive function:

q
hn;T

bL�2(T; x)nb�2log �2(x)� �2log �2(x)o) N

0@0;K2�log �2(x)E

0@ (��)2 � 1

3�2�
(��)

4

!21A1A :

Drift function:q
hn;T

bL�2(T; x)�bmlog �2(x)�mlog �2(x)
	
) N

�
0;K2

�
�2log �2(x) + �log �2(x)E

�
(��)

2
���

:

Proof. See Appendix B.

Remark 12 (The ergodic case) In the positive recurrent and strictly stationary case, v(T ) = T and
bL�2 (T;x)

T

p!
p(x), where p(x) is the stationary density of the spot variance process. Hence, the rate of convergence of the point-

wise estimates and the denominator of their asymptotic variances have a familiar look. The former is
p
hn;TT .

The later depends on the volatility process�time-invariant probability distribution, p(x).

As expected, due to the averaging, the moments of the jump components converge at a faster (parametric)

rate than that of the remaining functions. Even in this case, the look of their asymptotic distributions is more

recognizable when setting n = n!1 and T = T !1 with �n;T = �n;T ! 0. In this case, in e¤ect,

p
T
�b�� � ��	) N

0@0;Z 1

�1
��2(x)E

0@ 1

4�3(x)
(��)

4 � �4(x)

4
�
�3(x)

�2 (��)3
!21A p(x)dx

1A ;

and

p
T fb�� � ��g ) N

0@0; 1
4�2�

Z 1

�1
�log �2(x)E

0@ 1

5�4(x)
(��)

6 � �6(x)

5
�
�4(x)

�2 (��)4
!21A p(x)dx

1A :
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Remark 13 (Asymptotic covariance estimation) In light of Theorem 5, statistical inference on all functions

and parameters of interest is now straightforward given estimates of the relevant asymptotic variances. To this

extent, assume that the bandwidth conditions yielding consistency of the in�nitesimal moments (as expressed in

Theorem 4) are satis�ed. Also, assume the usual asymptotic scheme. In the case of the generalized Du¢ e et al.�s

model, we notice that:

hn;T
hn;T

�
�n;T

�2
�n;T

nX
i=1

0B@ b�8
16
�b�3�2 �

2b�4b�7
16
�b�3�3 +

�b�4�2 b�6
16
�b�3�4

1CA
Pn
j=1K

� e�2jT=n�e�2iT=n
hn;T

�
Pn
j=1K

� e�2
jT=n

�e�2
iT=n

hn;T

�
p!
Z 1

�1
��2(x)

 
L
2

�2(T ; x)

L�2(T; x)

!
E

0@ 1

4�3(x)
(��)

4 � �4(x)

4
�
�3(x)

�2 (��)3
!21A dx;

b�8(x)
(24)2b�8� p!

��2(x)E
�
(��)

8
�

(24)2�8�
;

b�4(x)� 2b�6(x)
12b�2� +

b�8(x)
(12)2b�4� p! ��2(x)E

0@ (��)2 � 1

12�2�
(��)

4

!21A ;

and

b�2(x)� 2b�5(x)
24b�3� +

b�8(x)
(24)2b�6� p! �2�2(x) + ��2(x)E

0@ �� � 1

24�3�
(��)

4

!21A :

Furthermore,

hn;T
hn;T

�
�n;T

�2
�n;T

nX
i=1

0B@ b�12
25
�b�4�2 �

2b�6b�10
25
�b�4�3 +

�b�6�2 b�8
25
�b�4�4

1CA
Pn
j=1K

� e�2jT=n�e�2iT=n
hn;T

�
Pn
j=1K

� e�2
jT=n

�e�2
iT=n

hn;T

�
p!
Z 1

�1
�log �2(x)

 
L
2

�2(T ; x)

L�2(T; x)

!
E

0@ 1

5�4(x)
(��)

6 � �6(x)

5
�
�4(x)

�2 (��)4
!21A dx;

b�8(x)
9b�8� p!

�log �2(x)E
�
(��)

8
�

9�8�
;

b�4(x)� 2b�6(x)
3b�2� +

b�8(x)
9b�4� p! �log �2(x)E

0@ (��)2 � 1

3�2�
(��)

4

!21A ;

and, of course,

b�2(x) p! �2log �2(x) + �log �2(x)E
�
(��)

2
�

in the log-variance case.7

7The proofs of these results follow from the methods laid out in Appendix B. For brevity, we do not report them here. However,
they may be provided by the authors upon request.
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6 Jumps in returns and volatility: dJrt 6= 0 and dJ�t 6= 0

When allowing for the empirically-important case of discontinuities in the price process, realized variance, realized

kernels, and the two-scale estimator, inter alia, identify the continuous quadratic variation component of the

price process
Z
�2sds, as earlier, in addition to the sum of the squared jumps. We therefore need to consider

estimators which solely identify integrated variance. The realized bipower variation measure of Barndor¤-Nielsen

and Shephard (2004, 2005), which we formally de�ne in Section 8 below, achieves, among other procedures, this

goal.

Remark 14 (Bipower variation in the no noise case.) Provided 1

�
1=2
n;T

�
1
k log

�
k

�n;T

��1=2
! 0 with �n;T ! 0

and k !1, the quantity e�2iT=n = bViT=n
�n;T

, where bViT=n is bipower variation, is consistent for �2iT=n in the presence
of jumps in returns and

e�2iT=n � �2iT=n = Op

 �
�n;T log

�
1

�n;T

��1=2!
+Op

 
1

�n;T

�
�n;T
k

log

�
k

�n;T

��1=2!
+Op

�
1p
k

�
:

In other words, while Assumption 2 is technically not satis�ed (when jumps play a role) in the bipower variation

case due to the presence of an asymptotic (jump-induced) bias-component (whose order is given by the second

term in the above expression),8 our theory continues to be valid with � = 1
2 and � =

1
2 . As done earlier when

using spot variance estimates for which Assumption 2 (and a classical mixed normal theory of inference) hold,

these choices, in fact, are su¢ cient to eliminate the measurement error induced by the estimated spot variances.

Appendix A provides more details and discusses the more general case of multipower variation-based spot variance

estimation.

7 dJrt 6= 0, dJ�t 6= 0; risk-return trade-o¤s, and leverage e¤ects

We now turn to the full system for our more general case with both jumps in returns and in volatility. Given spot

variance estimates e�2iT=n (obtained by using bipower variation or alternative identi�cation methods robust to jumps
in returns) as well as in�nitesimal moment estimates for the return process (b�jr(�2) with j = 1; 2; :::), the relevant
functions and the features of the return jump distribution can be identi�ed by using a scheme similar to those in

Section 5. One could assume, for instance, Gaussian mean-zero jumps, i.e., dJrt =  dNr
t with  � N(0; �2 ),9 and

employ

b�2 =
1

n

nX
i=1

b�6r(e�2iT=n)
5b�4r(e�2iT=n) ; (33)

b�r(�2) =
b�4r(�2)
3b�4 ; (34)

b�(�2) = b�1r(�2): (35)

8The presence of jump-induced limiting biases in bipower (and multipower) estimates of integrated variance as been discussed by
Barndor¤-Nielsen et al. (2006) and Woerner (2006). Here, of course, we focus on the spot variance case.

9See, e.g., Eraker et al. (2003).
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where,

b�jr(�2) = 1

�n;T

n�1X
i=1

K

 e�2iT=n � �2
hn;T

!�
log p(i+1)T=n � log piT=n

�j
nX
i=1

K

 e�2iT=n � �2
hn;T

! j = 1; ::::

Should b�(�2) be a statistically increasing function of �2, then a risk-return trade-o¤ would exist. Theorem 6

discusses consistency and weak convergence of b�(�2).
Theorem 6. (Risk-return trade-o¤s: consistency and weak convergence.) If k; n; T ! 1 and

hn;T ; �n;T ! 0 so that

lim
n;T!1

hn;T v(T ) = 1;

lim
n;T!1

v(T )

hn;T

�
�n;T log

1

�n;T

�1=2
= 0;

lim
k;n;T!1

Tv(T )�1

�n;Thn;T k��
�
n;T

+
Tv(T )�1

�n;Thn;T

�
�n;T log

�
1

�n;T

��1=2
= 0;

with � 2 (0; 12 ] and � = [0; 1] ; then,

b�(�2) p! �(�2);

where L�2(T; �2) / v(T ). If

lim
n;T!1

hn;T v(T ) = 1;

lim
n;T!1

h5n;T v(T ) = C4;

lim
n;T!1

v(T )

hn;T

�
�n;T log

1

�n;T

�1=2
= 0;

lim
k;n;T!1

Tv(T )�1=2

�n;Th
1=2
n;T k

���n;T
+
Tv(T )�1=2

�n;Th
1=2
n;T

�
�n;T log

�
1

�n;T

��1=2
= 0;

then, q
hn;T

bL�2(T; �2)�b�(�2)� �(�2)� ��(�2)	) N
�
0;K2�

2(�2)
�
;

with

��(�
2) = h2n;TK1

"
�
0
(�2)

s
0
(�2)

s(�2)
+
1

2
�
00
(�2)

#
;

where

�2(�2) = �2 + �r(�2)E( 2);
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s(d�2) is the variance process�invariant measure, and C4 is a constant.

Proof. See Appendix B.

The leverage function10 can be identi�ed as follows:

b�(�2) =
bC(�2)q

�2b�2f(:)(�2)
=

0BBBB@ 1

�n;T

n�1X
i=1

K

 e�2iT=n � �2
hn;T

!�
log(p(i+1)T=n)� log(piT=n)

�
(f(e�2(i+1)T=n)� f(e�2iT=n))

nX
i=1

K

 e�2iT=n � �2
hn;T

!q
�2b�2f(:)(�2)

1CCCCA ;

where b�2f(:)(�2) may be estimated by virtue of Eq. (22) or Eq. (30) (depending, of course, on the assumed variance
model). Our empirical work will use Eq. (22). In light of the independence of the jumps in returns and volatility

and the independence between jumps and Brownian shocks, b�(�2) identi�es �(�2) consistently, as we show in

Theorem 7. The theorem assumes that the same bandwidth is used to estimate numerator and denominator ofb�(�2).
Theorem 7. (Leverage: consistency and weak convergence.) If k; n; T !1 and hn;T ; �n;T ! 0 so that

lim
n;T!1

v(T )

hn;T

�
�n;T log

1

�n;T

�1=2
= 0;
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k;n;T!1

Tv(T )�1
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�
n;T

+
Tv(T )�1

�n;Thn;T

�
�n;T log

�
1

�n;T

��1=2
= 0;

with � 2 (0; 12 ] and � = [0; 1] ; then

bC(�2) p! C(�2);

where L�2(T; �2) / v(T ). If

lim
n;T!1

h5n;T v(T )

�n;T
= C5;

lim
n;T!1

v(T )

hn;T

�
�n;T log

1

�n;T

�1=2
= 0;
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k;n;T!1

Tv(T )�1=2

�
3=2
n;Th

1=2
n;T k

���n;T
+
Tv(T )�1=2

�
3=2
n;Th

1=2
n;T

�
�n;T log

�
1

�n;T

��1=2
= 0;

then, vuuthn;T
bL�2(T; �2)
�n;T

n bC(�2)� C(�2)� �C(�2)o) N
�
0;K2�

C(�2)
�
;

10 In�uential recent work on leverage estimation in stochastic volatility models includes Harvey and Shephard (1996), Jacquier et al.
(2004), and Yu (2005), among others. Yu (2005) also provides a thorough discussion of the existing literature.
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with

�C(�2) = �2f(:)(�
2)�2(1 + �2(�2)) + �2��f(:)(�

2)E[�2] + �2f(:)(�
2)�r(�2)E[ 2] + ��f(:)(�

2)E[�2]�r(�2)E[ 2];

and

� bC(�2) = h2n;TK1

"
z
0
(�2)

s
0
(�2)

s(�2)
+
1

2
z
00
(�2)

#
;

where z(x) =
p
x�f(:)(x)�(x), s(dx) is the variance process�invariant measure, and C5 is a constant. Finally, if

lim
n;T!1

hn;T v(T ) = 1;

lim
n;T!1

h5n;T v(T ) = 0;

lim
n;T!1

v(T )

hn;T

�
�n;T log

1

�n;T

�1=2
= 0;

lim
k;n;T!1

Tv(T )�1=2

�n;Th
1=2
n;T k
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+
Tv(T )�1=2
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�
�n;T log

�
1

�n;T

��1=2
= 0;

then q
hn;T

bL�2(T; �2)�b�(�2)� �(�2)	) N
�
0;K2�

�(�2)
�

with ��(�2) = �2(�2)
4�4

f(:)
(�2)

Asyvar
�b�2f(:)(�2)� and

Asyvar
�b�2f(:)(�2)� = ���2(x)E

0@ (��)2 � 1

12�2�
(��)

4

!21A
if f(:) = �2 or

Asyvar
�b�2f(:)(�2)� = ��log �2(x)E

0@ (��)2 � 1

3�2�
(��)

4

!21A
if f(:) = log �2:

Proof. See Appendix B.

8 High-frequency spot variance estimates and data

We are interested in the joint S&P500 return/variance dynamics. We start with a description of the high-frequency

variance estimates used to identify spot variance. We then present the data. The next section reports estimates

of the functions and parameters driving the S&P500 return/variance evolution in the context of the generalized

Du¢ e et al�s model discussed in Section 5.
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8.1 Bipower-based spot variance

As earlier, we assume availability of k price observations log(pj) in each interval [i�n;T ; i�n;T + �n;T ] with

i = 1; :::; n. Write rj = log(pj)� log(pj�1) with j = 2; :::; k and

e�2iT=n = bViT=n
�n;T

=
��2

Pk
j=2 jrj jjrj�1j
�n;T

i = 1; :::; n

with � = E(jZj); where Z denotes the standard normal random variable. In the absence of market microstructure

noise but, importantly, regardless of the presence of jumps in the return process, Appendix A shows that e�2iT=n is
consistent (when �n;T ! 0 and k !1 at appropriate rates) for e�2iT=n for all i (c.f., Section 6).
Importantly, alternative spot variance estimates (such as those based on the two-scale estimator and the

family of realized kernels) would give us robustness to market microstructure noise but would be a¤ected by price

discontinuities (when focusing on the variation of the continuous price component). Here, in agreement with our

more general speci�cation in Eqs. (1) and (2), as well as much recent evidence in empirical asset pricing, we opt

for being general in terms of return dynamics and allow for discontinuities in the return sample path.11

However, in order to break the �rst-order dependence in the observed high-frequency returns induced by

microstructure noise contaminations in the k price observations, we employ a "staggered version" of bipower

variation and write

e�2iT=n = bV Stag:iT=n

�n;T
=
��2

�
k�2
k

��1Pk
j=3 jrj jjrj�2j

�n;T
i = 1; :::; n:

This correction does not yield theoretical consistency of the estimator in the presence of noise but preserves

consistency in the no noise case and, importantly for our empirical purposes in this section, has been shown to

perform well when applied to noise-contaminated price observations, as is the case in practice (see, e.g., Andersen

et al., 2007, and Huang and Tauchen, 2005).12

8.2 Data

Our sample period is January 2, 1998 to March 31, 2006. We employ daily returns on the S&P500 index and

high-frequency price data on the Standard and Poor�s depository receipts (Spiders) to construct the index�s (daily)

variance estimates.13 Speci�cally, we use Spiders mid-quotes on the NYSE sampled between 10am and 4pm. We

delete quotes whose associated price changes and/or spreads are larger than 10%. In our sample, the average

duration between quote updates is 11:53 seconds. The average spread and the average price level are 0:0015 and

117:27, respectively. Hence, in terms of our previous notation, T = 9, n = 2; 053, and the average k is about 1; 873

(the number of seconds in a 6-hour period divided by 11:53).

We follow common practise in the literature and convert the integrated variance estimates bV into daily measures.
Since the original estimates are for an intra-daily 6-hour period, we multiply them by a constant factor � de�ned

11As is well-known, the study of integrated (and spot, in our case) variance estimates which are robust to both return jumps and
market microstructure noise is an open area of research.
12For an interesting, alternative approach to integrated variance estimation using bipower variation we refer the reader to Corsi et

al., 2008. Their approach employs the threshold methods proposed, in other contexts, by Mancini (2007).
13Spiders are shares in a trust which owns stocks in the same proportion as that found in the S&P500 index. Spiders trade like a

stock (with the ticker symbol SPY) at approximately one-tenth of the level of the S&P500 index. They are widely used by institutions
and traders as bets on the overall direction of the market or as a means of passive management.
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as � =
nX
i=1

�
rS&P500iT=n

�2
=

nX
i=1

bViT=n; where rS&P500iT=n is the return on the S&P500 index over day i. This procedure

ensures that the average of the transformed variances, i.e., �bV , is equal to the average of the squared daily returns.
Alternatively, one could add the squared overnight returns to the original estimates. Qualitatively, we �nd similar

results when using the latter procedure and only report results relying on the adjustment �.14

In what follows, the S&P500 returns and the spot variance estimates are expressed in daily terms (�n;T =
9

2053 ).

The returns are further expressed as percentages (�100). In agreement with this scaling, the daily spot variances
are multiplied by 10; 000. As always, market returns display little autocorrelation (-0.026), little skewness (0.069),

and excess kurtosis (5.57). The bipower-based spot variance estimates are strongly right-skewed (5.943) and

persistent (0.761).

9 Stochastic volatility dynamics

We estimate the generalized Du¢ e et al.�s jump-di¤usion model presented in Section 5. We choose a simple

identi�cation scheme, as laid out in Eq. (20) through Eq. (23), but, contrary to existing parametric work, allow

for a nonlinear drift, di¤usion, and jump intensity.15 The validity of this scheme is veri�ed below by simulation.

Drift function, di¤usion function, and intensity of the jumps are reported in annual terms. Figure 1 contains

the functional estimates (along with the corresponding drift and di¤usion function for the case with no variance

jumps). The (asymptotic) con�dence bands are obtained by using the limiting results in Theorem 5 along with

asymptotic covariance estimates evaluated as discussed in Remark 13. We note that the (daily) spot variance

process makes most of its visits at levels between about 0.1 and 0.8, i.e., for a volatility of annual S&P500 returns

between about 5% and 15%, as implied by the variance�s estimated local time. Not surprisingly, the point-wise

con�dence bands are relatively tighter in this range (c.f. Figure 1).

The estimated drift denotes mildly nonlinear mean-reversion. The di¤usive function conforms more naturally

with a nonlinear constant-elasticity-of-variance (CEV) speci�cation than with a linear structure (i.e., a square-root

speci�cation for di¤usive volatility), as introduced by Heston (1993) and adopted by several others. In the relevant

variance range, the intensity estimates suggest between 0 and 6 volatility jumps per year (with point estimates

around 2 annual jumps). The estimated expected size of the jumps is about 2.5.

We compare our �ndings to the parametric estimates (converted to annual �gures) of Eraker et al. (2003, Table

III, Column 5). In Eraker et al. (2003) the drift is linear, the di¤usive volatility is square-root, and the intensity

of the jumps is constant. Our nonparametric (nonlinear) drift implies more mean-reversion. Despite di¤erences

in the point estimates, their jump intensity and average jump size are statistically supported by our data. So is

their variance�s di¤usion function. This said, our di¤usive variance�s point estimates di¤er from those in Eraker

et al. (2003) in important ways. We �nd more volatility associated with the process�continuous component. As

indicated above, we also �nd that the variance�s di¤usive function is more accurately represented by a �exible

CEV speci�cation (i.e., �2(x) / x3=2)16 than by a square-root model for di¤usive volatility (or a linear model for

14Hansen and Lunde (2005) provide a theoretical justi�cation for this traditional adjustment while studying the optimal combination
of overnight squared returns and intra-daily realized variance for the purpose of daily integrated variance estimation.
15The in�nitesimal moments�bandwidths are set equal to cj � stdc

�e�2� � n�1=5, where cj is chosen by cross-validation. In general,
c1 > c2 and cj > c2 for j > 2 (the �rst and higher moment�s bandwidths are larger than the second moment bandwidth). We use a
second-order Gaussian kernel for all moments.
16We assume a linear mean-reverting drift, a constant jump intensity, and exponential jumps for spot variance. Applying GMM to

the in�nitesimal �rst, second, third, and fourth moments, we �nd b�2(x) = 0:1x3=2. The t-statistics associated with these estimates
are equal to about 3 and 4.
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di¤usive variance). Using speci�cations without jumps in variance, Chacko and Viceira (2001) and Jones (2002)

also emphasize the need for nonlinear structures in the variance of variance. In Chacko and Viceira (2001) such

a need diminishes with the addition of jumps in returns. For brevity, given the largely methodological nature of

this paper, we do not dwell on this important empirical point here. However, we refer the reader to the broader

empirical treatment in Bandi and Renò (2008)17 for residual-based procedures and nonparametric tests based on

high-order moments which con�rm (i) the need for richer variance-of-variance structures and (ii) the importance

of variance jumps.

It is now of interest to assess whether the reported di¤erences between our estimates and those obtained in

Eraker et al. (2003) are simply due to the use of di¤erent sample periods (Eraker et al., 2003, employ S&P500

return data sampled between January 2, 1980, and December 31, 1999) or whether they are a genuine by-product

of alternative variance �ltering methods (in Eraket et al., 2003, daily variance is �ltered from daily returns using

MCMC methods).

9.1 The joint volatility/return dynamics

We estimate a (possibly) nonlinear model for returns with Gaussian jumps (Fig. 2). The identi�cation scheme is

therefore consistent with Eq. (28)-Eq. (31) applied to returns rather than to log-variances, see Eq. (33) through

Eq. (35) in Section 7.18 However, identi�cation of the quantities which heavily hinge on high-order moments,

namely the standard deviation of the jump size and the price jump intensity, is conducted by also allowing for

higher (�rst) order terms in the relevant conditional moment representations. Speci�cally, write

�4r(�
2) = 3�r(�2)�4 + 3

�
�2r(�

2)
�2
�n;T| {z }

correction

+O(�2n;T );

and

�6r(�
2) = 15�r(�2)�6 + 15�

2
r(�

2)(3�r(�2)�4 )�n;T| {z }
correction

+O(�2n;T )

= 15�r(�2)�6 + 15�
2
r(�

2)(�4r(�
2)� 3

�
�2r(�

2)
�2
�n;T )�n;T +O(�

2
n;T ):

Hence,

b�2 =
1

5n

nX
i=1

b�6r(e�2iT=n)� 15b�2r(e�2iT=n)(b�4r(e�2iT=n)� 3 hb�2r(e�2iT=n)i2�n;T )�n;Tb�4r(e�2iT=n)� 3 hb�2r(e�2iT=n)i2�n;T ; (36)

b�r(�2) =

b�4r(e�2iT=n)� 3 hb�2r(e�2iT=n)i2�n;T
3b�4 : (37)

To de�ne b�2 we further weigh the quantities in the sum by the corresponding local density. The additional terms

(in b�2 and b�r(�2)) are asymptotically negligible (thereby not a¤ecting our limiting results), but play an important
17This is the unpublished working paper version of the current paper.
18The bandwidths are set using cross-validation as indicated in Footnote 15 above. In particular, the constants c1 and cj , with

cj > 2, are equal to about 3, whereas c2 is equal to about 2. The corresponding bandwidths of the variance process are generally
slightly larger. A second-order Gaussian kernel is again used to de�ne all in�nitesimal moment estimators.
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role in �nite samples (when estimating return dynamics) as we show below by simulation. As earlier, we employ

the results in Theorem 1 (and Remark 13) to characterize the sampling error by virtue of asymptotic con�dence

bands.

For clarity, we again compare our estimates to the parametric estimates of the a¢ ne model with Gaussian

jumps in returns of Eraker et al. (2003). In Eraker et al. (2003) the return drift and the intensity of the

Gaussian jumps are constant. The return dynamics suggest the presence of a statistically-insigni�cant nonlinear

risk-return trade-o¤. The insigni�cance of the trade-o¤ is of course not surprising and fully consistent with much

empirical work on the evaluation of the relation between conditional mean returns and conditional variance at

low (daily, here) frequencies (see, e.g., Bandi and Perron, 2008, for references). Importantly, in our case the use

of high-frequency data does not yield a stronger dependence between conditional mean and conditional variance

as suggested in some recent work (see, e.g., Bali and Peng, 2006). Similarly, Eraker et al. (2003) stress that

experimentation with a linear risk-return model did not deliver signi�cant estimates using their �ltering methods

and, therefore, resorted to a speci�cation with a constant mean (whose numerical value is reported in Fig. 2(a)).

We �nd mildly hump-shaped (in the spot variance level) leverage e¤ects around �0:5. We also �nd smaller jump
sizes (implying about 95% jumps between 4.5% and -4.5%) and a slightly higher number of jumps (between 2 and

6 in the relevant variance range) than in Eraker et al. (2003).19 We again refer the interested reader to Bandi and

Renò (2008) for a broader set of empirical results providing additional evidence in favor of discontinuities in the

return (and variance) process. We now turn to simulations.

10 Simulations

Consider the bi-variate system:

rt;t+�t
= b�t +

q
�2t�t"

r
t +  tJ

r
t ; (38)

�2t+�t
� �2t = �(� � �2t )�t + ��

q
�2t�t"

�
t + �

�
t J

�
t ; (39)

where fJrt ; J�t g are Bernoulli random variables with constant intensities �r�t and �
��t, f"rt ; "�t g are standard

Gaussian random variables with correlation �,  t is a mean zero Gaussian random variable with standard deviation

� , �
�
t is an exponential random variable with mean ��; and �t is a time-discretization (one day). We generate

2,053 observations (as in our sample) for every sample path and 1,000 paths. The parameters are those in

Table III, Column 5, of Eraker et al. (2003) with the exception of �� (set equal to 0:31). The speci�cation

�2(�2t ) = 0:1(�
2
t )
3=2 provides superior �t for our data, as indicated previously (Bandi and Renò, 2008, for further

discussions). Consistent with the empirical work, we use cross-validated bandwidths.

Figs. 3 and 4 report the 10th, 50th, and 90th percentile of the distribution of the estimates. We start with the

variance dynamics. Drift and di¤usion function are estimated fairly accurately. In light of our empirical results

regarding the shape of the variance�s di¤usive variance, this is an important �nding. If anything, the di¤usion

19The negative value of the estimated jump intensity at high spot variance levels (i.e., at values that are hardly visited in-sample)
should not be surprising. It is a by-product of the scarcity of observations in this range combined with bias-corrected estimates (as
discussed in the main text) which are not guaranteed to remain positive in �nite samples. This is a general issue in the nonparametric
literature sometimes caused by the identi�cation scheme, sometimes even caused by the (implied) kernel function used (as in the
case of local polynomial estimates, for example, see Xu, 2007). While this paper lays out an identi�cation methodology which is
shown (through simulations and applied work) to be very informative even in a relatively simple form, future research should focus
on identi�cation schemes which explicitly address the non-negativity issue in �nite samples.
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estimates tend to be slightly downward biased, thereby possibly reinforcing our previous results about the need

for a higher variance of variance. The jump features are accurately estimated. The expected jump size is very

slightly downward biased (with the true value being well within the 95% band), while the intensity of the jumps

is only mildly upward biased and tends to increase when moving away from the bulk of the data.

We now turn to the return and joint dynamics. The return drift and the leverage parameter are fairly accurately

estimated. However, interestingly, if one were to use a straightforward identi�cation scheme as in Section 7,

the standard deviation of the Gaussian jumps would be excessively downward biased whereas the return jump

intensities would be biased upward with, again, an increasing nonlinear trend when moving to values away from

the center of the simulated data. Importantly, similar patterns would be observed in the data had this simple

identi�cation scheme been employed. The use of �rst-order adjustments (as done with data previously) improves

�nite sample performance drastically. The "corrected" sigma estimates are now much closer to the true value

resulting, in conjunction with a bias-corrected fourth moment, in substantially more accurate lambda estimates.

We conclude with three observations. First, we �nd that the most important departure from a¢ ne stochastic

volatility models with Gaussian jumps in returns and exponential jumps in variance is the nonlinear shape of the

variance�s di¤usion function. Simulations show that this function is estimated accurately. Second, the features

of the jumps (their probability and jump distribution) appear to be more easily identi�able for variance than

for the (noisier) return process, thereby requiring �nite sample corrections in the later case. We provide these

corrections, when needed, and emphasize their potential importance for applied purposes, in general. Third, we

stress that, while very informative, natural identi�cation schemes and straightforward bandwidth choices have

been used throughout. More e¢ cient schemes potentially making use of the informational content of alternative

in�nitesimal moments could have been employed. Di¤erent bandwidth choices capable of adapting to the sparsity

of the data (as implied by our asymptotic results) may also have been used. These issues are better left for future

work.

11 Conclusions

We study stochastic volatility modelling in continuous time by employing functional estimation procedures. Pre-

liminary nonparametric estimates of spot variance (for which we provide a theory of inference) are employed, in

conjunction with functional estimates of the model�s conditional moments, to learn about the functions and para-

meters driving the joint return/variance dynamics. The model and identi�cation methods allow for nonlinearities

in the drift and di¤usion functions as well as in the intensities of the return/variance jumps. Nonlinear leverage

e¤ects are also permitted. Our limiting results control for the measurement error induced by the preliminary

spot variance estimates and are derived under the weaker (than stationarity) assumption of recurrence. We show

consistency and weak convergence of all the relevant functions and jump parameters of generalized (i.e., nonlinear)

versions of two widely-employed stochastic volatility models.

A very succesful, recent literature as focused on the e¢ cient use of intra-period price observations for the

purpose of estimating variance over the period. This literature aims at being as much as possible model-free. In the

same "model-free" spirit, we view this paper has an initial e¤ort to render this literature�s contributions operative

in the context of continuous-time �nance modelling under weak assumptions in terms of model speci�cation and

conditions needed for identi�cation.
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A Appendix A: A theory of spot variance estimation

Write e�2iT=n = bViT=n
�n;T

; where bViT=n is an integrated (over �n;T ! 0) variance estimator constructed using k intra-daily

observations (with k !1). In this Appendix we show that Assumption 2 and the stronger weak convergence result

��n;T k
� �e�2i=n � �2iT=n

	
)

k!1;�n;T!0
MN

�
0; a

�
�4iT=n

��
+ b
�

are satis�ed, under assumptions, by a large class of integrated variance estimators bViT=n recently proposed in the literature
if ��n;T k

� !1 and k���n;T
�
�n;T log

�
1

�n;T

��1=2
! 0:

As we clarify below, depending on the estimator, the result hinges on the absence of jumps in the return process, on the
absence of market microstructure noise, or both. For some (kernel-based) estimators, the result also requires appropriate
conditions on the number of autocovariances. We provide these conditions for the two-scale estimator and for the family of
�at-top kernel estimators. More generally, by speci�ng the values of �; �; a; b; and � for various estimators, we provide an
inferential theory for spot variance estimation under alternative estimators and di¤erent data generating processes allowing
(or not) for discontinuities in the price process and market microstructure noise. Extensions to additional estimators can
be conducted along similar lines.

Case 1. dJrt = 0, without microstructure noise.

1. Realized variance (Andersen et al., 2003, and Barndor¤-Nielsen and Shephard, 2002): � = 1
2
, � = 0; a = 2, b = 0,

and � = 1.

2. Bipower variation (Barndor¤-Nielsen and Shephard, 2004, 2005): � = 1
2
, � = 0, a � 2:6, b = 0, and � = 1.

3. Realized range (Christensen and Podolskij, 2007): � = 1
2
, � = 0; a � 0:4, b = 0, and � = 1.

4. Fourier estimator (Malliavin and Mancino, 2008): same as realized variance.

Case 2. dJrt 6= 0, without microstructure noise.

5. Bipower variation (Barndor¤-Nielsen and Shephard, 2004, 2005): The above weak convergence result does not hold.

However, if 1

�
1=2
n;T

�
1
k
log
�

k
�n;T

��1=2
! 0, then e�2i=n = �2iT=n + op(1) and

e�2iT=n � �2iT=n = Op

 �
�n;T log

�
1

�n;T

��1=2!
+Op

 
1

�n;T

�
�n;T
k

log

�
k

�n;T

��1=2!
+Op

�
1p
k

�
:

6. Multipower variation: Assume multipower variation is computed by summing up z adjacent absolute values of

equilibrium returns jrj�j2=z with z � 2. If 1
�
n;T

�
�n;T
k
log
�

k
�n;T

��(z�1)=z
! 0, then e�2i=n = �2iT=n + op(1) and

e�2iT=n � �2iT=n = Op

 �
�n;T log

�
1

�n;T

��1=2!
+Op

 
1

�n;T

�
�n;T
k

log

�
k

�n;T

��(z�1)=z!
+Op

�
1p
k

�
:

If k
1
2

�
�n;T log

�
1

�n;T

��1=2
! 0 and k

1
2

�n;T

�
�n;T
k
log
�

k
�n;T

��(z�1)=z
! 0, then the above weak convergence result

holds with � = 1
2
, � = 0; a 6= 0, � = 1, and b = 0.

7. Threshold realized variance (Mancini, 2007): � = 1
2
, � = 0; a = 2, b = 0, and � = 1.

8. Threshold bipower variation (Corsi et al., 2008): � = 1
2
, � = 0; a � 2:6, b = 0, and � = 1.

Case 3. dJrt = 0, with microstructure noise.
The market microstructure noise is assumed to satisfy the assumptions that are common to Zhang et al. (2005) and

Barndor¤-Nielsen et al. (2006). Write log(pj)� = log(pj) + �j (for j = 1; :::; k over �n;T ), where the shocks �j are iid in
discrete time with mean zero and variance E(�2). Below, the symbol E("2) denotes the variance of the contaminations in
the return process (i.e., E("2) = 2E(�2)).

The two-scale estimator (Zhang et al., 2005): De�ne q non-overlapping sub-grids 	(i) of the original grid of k arrival
times with i = 1; :::; q. The �rst sub-grid starts at t0 and takes every q-th arrival time, i.e., 	(1) = (t0; t0+q; t0+2q; :::; ),
the second sub-grid starts at t1 and also takes every q-th arrival time, i.e., 	(2) = (t1; t1+q; t1+2q; :::; ); and so on. Given
the generic i-th sub-grid of arrival times, de�ne bV (i) =

P
tj ;tj+2	(i)

�
log(ptj+)

� � log(ptj )�
�2
; where tj and tj+ denote
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adjacent elements in 	(i). The two-scale estimator is constructed as bV ZMA =
Pq
i=1

bV (i)

q
� kbE("2); where k = k�q+1

q
and

bE("2) = Pk
j=1

�
log(ptj+ )

��log(ptj )
�
�2

k
.

Realized kernels (Barndor¤-Nielsen et al., 2006): Write bV BNHLS = b0 + qP
s=1

ws(bs + b�s); where bs = Pk
j=1 r

�
j r

�
j�s

with s = �q; :::; q, r�j = log(pj)� � log(pj�1)�, ws = g
�
s�1
q

�
; and g(:) is a kernel function on [0; 1] satisfying g(0) = 1 and

g(1) = 0.

9. Two-scale estimator: If q = �k2=3, then � = 1, � = 1
6
, a = 0, and b =

�
8
�2

� �
E("2)

�2
.

10. Two-scale estimator: If qo = �
�

k
�n;T

�2=3
with � =

�
12(E("2))2

�4
iT=n

�1=3
, then � = 1

3
, � = 1

6
, a = 2

�
12
�
E("2)

�2�1=3
,

� = 2
3
, and b = 0. The optimal rate is k1=10:

11. Realized kernels: If q = �k2=3, then � = 1, � = 1
6
, a = 0, and b = 4

�
E("2)

�2 1
�2
fg0(0)2 + g0(1)2g.

12. Realized kernels: If qo = �
�

k
�n;T

�2=3
with � =

�
2fg

0
(0)2+g0(1)2g
g
0;0
�

�1=3�
(E("2))2

�4
iT=n

�1=3
, then � = 1

3
, � = 1

6
, a =

6

�
2fg

0
(0)2+g0(1)2g
g
0;0
�

�1=3
g0;0�

�
E("2)2

�1=3
, � = 2

3
, and b = 0.

13. Realized kernels: Assume g
0
(0) = 0 and g0(1) = 0. If q = �k1=2, then � = 1, � = 1

4
, a = 0, and b =

4
h
1
�3
fg000(0)2 + g0;4� g � 1

�

�
g0;2�

	i �
E("2)

�2
.

14. Realized kernels: Assume g
0
(0) = 0 and g0(1) = 0: If qo = � k

1=2

�n;T
with � =

�
�g0;2�
g
0;0
�

�1=2�
(E("2))2

�4
iT=n

�1=2
, then � = 1

2
,

� = 1
4
, a = 8

�
�g0;2�

	1=2 �
g0;0�

	1=2 �
E("2)2

�1=2
, � = 1

2
, and b = 0. The optimal rate is k1=8.

Proof of 5. Write

bV BNS

�n;T
�
R iT=n+�n;T
iT=n �2sds
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=
bV BNS
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k

log
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��1=2!
;

where bV BNS
c is the bipower variation estimator without jump components and the last term is the order of the jump term.

Clearly, as in 2. above,

bV BNS
c

�n;T
�
R iT=n+�n;T
iT=n �2sds

�n;T
= Op

�
1p
k

�
:

Finally, using the Brownian modulus of continuity, we obtain the result in the statement. �

Proof of 6. Obvious using the same expansion as in the proof of 5. �
Proof of 9. From Bandi and Russell (2005), Theorem 2, when �n;T ! 0 and k ! 1, the dominating terms of the
estimator�s variance decomposition, i.e., V�2

�bV ZMA �
R iT=n+�n;T
iT=n �2sds

�
, are

4

3

 
�n;T
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!
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k
! 0. As for the bias term, i.e., E�2

�bV ZMA �
R iT=n+�n;T
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�
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If q = �k2=3, then v = q
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or
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Notice, also, that
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Proof of 10. If q = ��n;T k
2=3 with ��n;T =
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Importantly, for �1=3n;T k
1=6 ! 1 and �n;T ! 0, it has to be the case that �n;T = k� with � 1
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since �2=3n;T k
1=3 ! 0. The optimal rate can be derived more explicitly. Since
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The �nal expression is the same as that in Eq. (40) above since q = ��n;T k
2=3 with ��n;T =

 
12(E("2))2
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Remark (i) (The rate of convergence.) The condition �n;T = k� with � 1
2
< � < 0 (which implies �1=3n;T k

1=6 ! 1)

combined with �1=3n;T k
1=6
�
�n;T log

�
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�n;T

��1=2
! 0 (which is necessary to eliminate the asymptotic bias term), leads to

(roughly) �n;T = k� with � 1
2
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5
. Hence, one could choose � = � 1

5
, and the implied rate of convergence of the spot

variance estimator would be k1=10, which is slower than the rate of convergence of integrated variance (k1=6).

Proof of 11. Using Barndor¤-Nielsen et al. (2006), Eq. (15), and Bandi and Russell (2005), Theorem 3, write
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where the kernel-related g terms are de�ned in Barndor¤-Nielsen et al. (2006). Hence, as earlier, in the general case there
are two dominating terms (provided v = q
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! 0) and

V�2

( bV BNHLS �
Z iT=n+�n;T

iT=n

�2sds

!)
� 4g0;0�

 
�n;T

Z iT=n+�n;T

iT=n

�4sds

!
v + 4E("2)2

1

v2k
fg

0
(0)2 + g0(1)2g:

Similar expressions as in the two-scale case arise. In particular, if q = �k2=3, then
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R iT=n+�n;T
iT=n �2sds
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�

Proof of 12. Assume now qo = �
�

k
�n;T

�2=3
: Hence,
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The optimal � is now  
2fg0(0)2 + g0(1)2g

g0;0�

!1=3 �
E("2)

�2
�4iT=n

!1=3
:

This choice implies
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�4iT=n

�2=3
:

�

Proof of 13. Now notice that if g
0
(0) = 0 and g0(1) = 0, then

V�2

( bV BNHLS �
Z iT=n+�n;T

iT=n

�2sds

!)
� 4g0;0�

 
�n;T

Z iT=n+�n;T

iT=n

�4sds

!
v

�4 1
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Z iT=n+�n;T

iT=n

�2sdsg
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v3k2
fg

000
(0)2 + g0;4� g

�
:

If q = �k1=2, then
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�
and
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�
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:

�

Proof of 14. If q = � k
1=2

�n;T
, then
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and
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Now select � =
�
�g0;2�
g
0;0
�

�1=2�
(E("2))2

�4
iT=n

�1=2
: This choice yields,
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:

�

Remark (ii) (The rate of convergence.) The condition �n;T = k� with � 1
2
< � < 0 (which implies �1=2n;T k

1=4 ! 1)

combined with �1=2n;T k
1=4
�
�n;T log

�
1

�n;T

��1=2
! 0 (which is necessary to eliminate the asymptotic bias term), leads to

(roughly) �n;T = k� with � 1
2
< � < � 1

4
. Hence, one could choose � = � 1

4
, and the implied rate of convergence of the spot

variance estimator would now be k1=8, which appears to be optimal for this problem.

B Appendix B
We begin with useful preliminary lemmas.

Lemma B.1. (Bandi and Phillips, 2003) Assume dJ�t = 0 8t. Also, assume �n;T = T
n
! 0 and hn;T ! 0 (as

n; T ! 1) in such a way as to guarantee that L
�2
(T;x)

hn;T

�
�n;T log

�
1

�n;T

��1=2 a:s:! 0 and hn;TL�2(T; x)
a:s:! 1, where

L�2(T; x) is the chronological local time of �
2. Then,

bm(x) = 1
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n�1X
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K

 
�2iT=n � x

hn;T

!
(f(�2(i+1)T=n)� f(�2iT=n))

nX
i=0

K

 
�2iT=n � x

hn;T

! a:s:! m(x):

If, in addition, h5n;TL�2(T; x) = Oa:s:(1); thenq
hn;T

bL�2(T; x) fbm(x)�m(x)� �m(x)g ) N
�
0;K2�

2(x)
�
;

with

�m(x) = h2n;TK1

"
m

0
(x)

s
0
(x)

s(x)
+
1

2
m

00

(x)

#
;

where s(x) is the di¤usion�s speed measure.

Lemma B.2. (Bandi and Phillips, 2003) Assume dJ�t = 0 8t. Also, assume �n;T = T
n
! 0 and hn;T ! 0 (as

n; T ! 1) in such a way as to guarantee that L
�2
(T;x)

hn;T

�
�n;T log

�
1

�n;T

��1=2 a:s:! 0, where L�2(T; x) is the chronological

local time of �2. Then,

b�2(x) = 1

�n;T

n�1X
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K

 
�2iT=n � x
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!
(f(�2(i+1)T=n)� f(�2iT=n))

2

nX
i=0
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�2iT=n � x

hn;T

! a:s:! �2(x):

If, in addition,
h5n;TL�2 (T;x)

�n;T
= Oa:s:(1); thens

hn;T
bL�2(T; x)
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nb�2(x)� �2(x)� ��(x)o) N
�
0; 2K2�

4(x)
�
;
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��(x) = h2n;TK1

"
�2

0
(x)

s
0
(x)

s(x)
+
1

2
�2

00
(x)

#
;

where s(x) is the di¤usion�s speed measure.
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Lemma B.3. (Bandi and Nguyen, 2003) Assume dJ�t 6= 0. Also, assume �n;T =
T
n
! 0 and hn;T ! 0 (as n; T !1)

in such a way as to guarantee that
L
�2
(T;x)

hn;T

�
�n;T log

�
1

�n;T

��1=2 a:s:! 0 and hn;TL�2(T; x)
a:s:! 1, where L�2(T; x) is the

chronological local time of �2. Then,
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j
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i=0
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�2iT=n � x
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! a:s:! �j(x) 8j � 1:
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"
�j

0
(x)

s
0
(x)

s(x)
+
1

2
�j

00
(x)

#
;

where s(dx) is the process� invariant measure 8j � 1.

Proof of Theorem 1. Fix T . We wish to show that

eLn(x) = �n;T

hn;T

nX
i=1

K

 e�2i�n;T
� x

hn;T

!
�
Z T

0

1

hn;T
K

�
�2s � x

hn;T

�
ds = op(1):

Since K(:) is continuously-di¤erentiable and bounded by Assumption 1, then

eLn(x) � 1
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�����
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�
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hn;T

�
;

where, by the mean-value theorem, �2is is a value on the line segment connecting �
2
i�n;T

with �2s: Now notice that
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������
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by the Brownian modulus of continuity. Also, given Assumption 2,
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and, ignoring the negligible (under our assumptions on the bandwidth hn;T ) term Oa:s:
�
�n;T

hn;T

�
;

eLn(x) �
Op(g(T; n; k; �n;T ))
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by the occupation time formula for semimartingales (see, e.g., Protter, 1995, Corollary 1, p.168) and the integrability of
K

0
(:) from Assumption 1. If g(T; n; k; �n;T ) ! 0, then eLn(x) p! 0, and convergence to the chronological local time (at T

and x) of the spot variance process derives from another application of the occupation time formula to
R T
0

1
hn;T

K
�
�2s�x
hn;T

�
ds.

�
Proof of Theorem 2. We show how the estimation error induced by the preliminary spot variance estimates is handled
asymptotically in the drift case. Similar derivations apply to all in�nitesimal moments (in both the di¤usion and the
jump-di¤usion case) and are omitted for brevity. Write
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Immediately, given the arguments in Theorem 1 above, eKi�K�
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Since bm(x) = m(x)+op(1) from Lemma B.1, we only need to show that the remaining terms are so thatR1+R2+R3 = op(1):
Write

34



R3 = Op
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under our assumptions (see Eq. (15)). Now write
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As for weak convergence, note that
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Lemma B.1. now gives the limiting distribution. �
Proof of Theorem 3. The result follows from using the method of proof of Theorem 2 combined with Lemma B.2. �
Proof of Theorem 4. The result follows from using the method of proof of Theorem 2 combined with Lemma B.3. �
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Proof of Theorem 5. For brevity, we focus on two representative cases in the context of the generalized Du¢ e et al.�s
speci�cation (f(�2) = �2 and � � exp(��)). In particular, in order to illustrate the relevant issues, we detail the method of
proof for (1 ) a point-wise functional estimator (b��2(x)) and (2 ) a semiparametric estimator (b��). Similar methods apply
to all estimators in Theorem 5. In all cases below, the estimation error induced by the spot variance estimates is handled
as in proof of Theorem 2.

We begin with b��2(x). Using a Taylor expansion, write the dominating terms in the estimation error decomposition asnb��2(x)� ��2(x)
o
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w(�2jT=n)

Z (j+1)T=n

jT=n

Z
(��)4 v�(ds; d�

�) =

n�1X
j=1

ujT=n;(j+1)T=n;

where w(�2jT=n) =
1p
hn;T

K

�
�2jT=n�x
hn;T

�
. For all T , the objects

�
ujT=n;(j+1)T=n;=j;n; 1 � j � n; n � 1

	
constitute a zero-

mean, square-integrable, martingale di¤erence array. The conditional variance of Un;T is

U2
n;T =

n�1X
j=1

w2(�2jT=n)E

( Z (j+1)T=n

jT=n

Z
(��)4v�(ds; d�
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j=j;n

)
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n�1X
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!
E
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�(�2s�)E((�
�)8)ds

!
j=j;n

)

=
�n;T
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j=1
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�2jT=n � x

hn;T

!
�(�2jT=n)E((�

�)8) + op(1)
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�n;T!0

1

hn;T

Z T

0

K2

�
�2s� � x

hn;T

�
�(�2s�)E((�

�)8)ds = eU:
If an appropriate negligibility conditions (i.e., a conditional version of the Lindeberg condition) is satis�ed, namely

8� > 0;
n�1X
j=1

E
n
u2jT=n;(j+1)T=n1(jujT=n;(j+1)T=nj>�)j=j;n

o
p! 0; (42)

then
Un;T ) Z; with characteristic function E( exp(�1

2
eUt2)); (43)

which is a generalized martingale central limit theorem (Hall and Heyde, 1980, Theorem 3.2, Corollary 3.1). We now show
that Eq. (42) holds. Write

n�1X
j=1

E
n
u2jT=n;(i+1)T=n1(jujT=n;(j+1)T=nj>�)j=jT=n

o

=
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E
�
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�

n�1X
j=1

E
n
u2jT=n;(i+1)T=n1(jujT=n;(j+1)T=nj��)j=iT=n
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n;T �
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E
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�x
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!R (j+1)T=n
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R
(��)4v�(ds;d��)

�������phn;T
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(44)
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but K
�
�2jT=n�x
hn;T

�R (j+1)T=n
jT=n

R
(��)4 v�(ds; d�

�) = Op(
p
�n;T ). Hence, the indicator converges in probability to 1 and,

given boundedness of eU, Eq. (44) converges in probability to 0 (as �n;T ! 0). Thus, by Eq. (43), Un;T )
�n;T!0

W eU,
where W denotes Brownian motion. In addition,

Un;Ts
�n;T

hn;T

Pn
j=1K

�
�2
jT=n

�x
hn;T

� )
�n;T!0

W eU
1

hn;T

RT
0 K

0@�2
s��x
hn;T

1Ads

Now, by the ratio-limit theorem for Harris recurrent processes (see, e.g., Revuz and Yor, 1994, Theorem 3.12),

eU
1

hn;T

R T
0
K

�
�2s��x
hn;T

�
ds
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T!1; hn;T!0

1
hn;T

R1
�1K

2
�
a�x
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�
�(a)E((��)8)s(a)da

1
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R1
�1K

�
a�x
hn;T

�
s(a)da

=

R1
�1K

2 (u)�(uhn;T + x)E((��)8)s(uhn;T + x)duR1
�1K (u) s(uhn;T + x)du

=

�Z 1

�1
K2 (u) du

�
�(x)E((��)8):

Finally, W eU
1

hn;T

RT
0 K

0@�2
s��x
hn;T

1Ads
)

�n;T!0; T!1; hn;T!0

�q
K2�(x)E((�

�)8)

�
Z; where Z is a standard normal random vari-

able, by Skorohod embedding (see, e.g., Van Zanten, 2000, Theorem 4.1). Hence,�q
hn;T

bL�2(T; x)�nb�4(x)� �4(x)
o

)
�n;T!0; T!1; hn;T!0

�q
K2�(x)E((�

�)8)

�
Z:

It then follows that

�q
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o

)
�n;T!0; T!1; hn;T!0

0@
q
K2�(x)E((�

�)8)

24�4�

1AZ; (45)

since, as we will show below, b�� � �� converges at a faster rate than b�4(x)� �4(x) and, therefore, has an estimation error

which does not a¤ect the resulting limiting distribution. This proves the stated result for b��2(x). We now turn to b��. Write
the estimation error as

T (b�� � ��) =
T

n

nX
i=1

0@ b�4(�2
iT=n

)

4b�3(�2
iT=n

)
�

�4(�2
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)

4�3(�2
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)

1A+ op(1)

=
T

n
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1

4�3(�2
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)
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�
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�
�4(�2
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)

4
�
�3(�2
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)
�2 �b�3(�2iT=n)� �3(�2iT=n)

�
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1CCCCCCCA
(46)

+op(1): (47)

Again, the dominating term in the limiting distribution of b�4(�2
iT=n

)��4(�2
iT=n

) is

1
hn;T

Pn�1
j=1 K

0@�2
jT=n

��2
iT=n
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1AR (j+1)T=n
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(��)4v�(ds;d�
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�n;T
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0@�2
jT=n

��2
iT=n

hn;T

1A :

Write
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An;n;T =
T

n

nX
i=1

An;n;T;i =

n�1X
j=1

w(�2jT=n)

Z (j+1)T=n

jT=n

(��)4 v�(ds; d�
�);

where w(�2jT=n) =
T
n
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1
hn;T

K

0@�2
jT=n

��2
iT=n

hn;T
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4�3(�2

iT=n
)

0@�n;T
hn;T

Pn
j=1K

0@�2
jT=n

��2
iT=n

hn;T

1A1A : Given previous results, An;n;T is an average of asymp-

totically normal random variables. Repeated applications of the occupation time formula yield its limiting variance:

A2
n;n;T

= �n;T

n�1X
j=1

w2(�2jT=n)�(�
2
jT=n)E((�

�)8) + op(1)
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j=1
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1
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=
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0
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0

1
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K

�
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2
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�
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�
1
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�
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2
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�
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�du
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2

�(�2s�)E((�
�)8)ds+ op(1)

=
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K
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�
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�
L�2(T; c)dc
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�(b)E((��)8)L�2(T; b)db+ op(1)

=

Z 1
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 Z 1
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4�3(b� fhn;T )
R1
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L�2(T ; b� fhn;T )df

!2
�(b)E((��)8)L�2(T; b)db
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=

Z 1
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1
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 �
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�2�
L�2(T; b)

�2
!
�(b)E((��)8)L�2(T; b)db+ op(1)

= eA+ op(1):

Thus, �eA��1=2 (An;n;T ) )
�n;T!0; T!1; hn;T!0

Z; (48)

Similarly, the dominating term in the limiting distribution of b�3(�2
iT=n

)��3(�2
iT=n

) is

1
hn;T

Pn�1
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jT=n

��2
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��2
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1A :

In this case, write

Bn;n;T =
T

n

nX
i=1
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Z (j+1)T=n
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(��)3 v�(ds; d�
�);

where w(�2jT=n) =
T
n

nP
i=1

�4(�2
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)

4

�
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��2
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hn;T

1A1A

1CCA : Following the same steps leading to Eq. (48) we

obtain: �eB��1=2 (Bn;n;T ) )
�n;T!0; T!1; hn;T!0

Z;

where

38



eB =

Z 1

�1

�
�4(b)
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�
�3(b)

�4
 �

L�2(T ; b)
�2�

L�2(T; b)
�2
!
�(b)E((��)6)L�2(T; b)db:

Finally, the asymptotic covariance between An;n;T and Bn;n;T can be expressed as

eC = �
Z 1

�1

�
�4(b)

�
16
�
�3(b)

�3
 �

L�2(T ; b)
�2�

L�2(T; b)
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!
�(b)E((��)7)L�2(T; b)db:

In sum, �eA+ 2eC+ eB��1=2 T �b�� � ��
	

)
�n;T!0; T!1; hn;T!0

Z; (49)

which proves the result as stated in the main text. We conclude by noting that�bD��1=2 T �b�� � b��	 )
�n;T!0; T!1; hn;T!0

Z;

where
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� e�2
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�
(as in Remark 13) since

�eA+ 2eC+ eB� =bD p! 1. Also, from Eq. (49), the rate of convergence of b�� to �� is e¤ectively
Op(

�
L�2(T; x)

�1=2
). This (semiparametric) rate is of course faster than the (nonparametric) rate of convergence of b�j(x) to

�j(x) 8j, namely Op(
�
hn;TL�2(T; x)

�1=2
), thereby justifying the asymptotic negligibility of the second term in Eq. (41). �

Proof of Theorem 6. The result follows from using the method of proof of Theorem 2 combined with Lemma B.3. �
Proof of Theorem 7. For brevity, we only consider the case f(�2) = �2, �� � exp(��). The case f(�

2) = log �2,
�� � N(0; �2�) can of course be handled analogously. We start by separating measurement error as in the proof of Theorem
2 and write
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(e�2(i+1)T=n � e�2iT=n)

�n;T

nP
i=1

K

� e�2
iT=n

��2

hn;T

�

=
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��2
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� +R0;

where R0 ! 0, under our assumed bandwidth conditions. Now notice that Ito�s lemma yields

�
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�
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�
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�
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�
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2
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�
+
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iT=n

�(�2s�)�s��(�
2
s�)ds;

where �log ps = log ps � log ps� and ��2s = �2s � �2s� . For convenience, in what follows we compensate the random
measures vr(ds; d ); v�(ds; d��) and, consequently, write m(�2s�)+��(�

2
s�)E[�

�] in place ofm(�2s�) and e�(�2s�) = �(�2s�)+
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�r(�
2
s�)E[ ] in place of �(�

2
s�). In other words, we add and subtract the conditional �rst moment of the jump size to

render the discontinuous components martingale di¤erence sequences. With this, one can show (see below for an explicit
derivation of the rates of convergence) that
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1
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+
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and
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Thus, R1 +R2
p! 0, under our conditions on the bandwidth. Using the process�modulus of continuity and the ratio-limit

theorem, write
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Notice also that,

R4 =

n�1P
i=1

K

�
�2iT=n��

2

hn;T

�" P
iT=n�s�(i+1)T=n

�log ps��
2
s

#

�n;T

nP
i=1

K

�
�2
iT=n

��2

hn;T

� = oa:s:(1);

since, by independence of the jumps, the probability of common jumps is zero (see, e.g., Cont and Tankov, 2004, Proposition
5.3). Finally,
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bC(�2) = R0 +R1 +R2 +R3 +R4 +
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by the ratio-limit theorem. This implies, by Slutsky�s theorem, that b�(�2) = bC(�2)p
�2b�(�2) p! �(�2); provided b�(�2) is a

consistent estimate of �(�2), as implied by Theorem 5. We now turn to weak convergence and clarify the origin of
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where the term flog ps� � log piT=ng de�nes the measure
R s
iT=n

�
�2u� + �r(�

2
u�)E( 

2)
�
du. We now justify the op(1) term

above by showing that the neglected terms (in A, B, and C) are negligible. Write A = A1 +A2. The term A1 is clearly
not problematic being of higher order than flog ps� � log piT=ng. The terms C and A2 are of higher order than B: We
therefore focus on B. Using integration by parts (see, e.g., Protter, 2005), we obtain
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is a square-integrable martingale di¤erence array.

The same methods as in the proof of Theorem 5 show that a conditional Lindeberg condition is satis�ed for eRnum
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hn;T
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1;b . Hence, using a generalized martingale convergence theorem and Skorohod embedding as in the proof of
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In addition, the asymptotic conditional covariance term can be expressed as:
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Using the same reasoning (combined with the independence of the jumps), we obtain:
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As earlier, the bandwidth conditions guarantee that R0 = oa:s:(R1 + R2) and, by independence of the jumps, R3 =
oa:s:(R1 +R2). Finally, consider the bias term
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De�ne z(:) = p:�(:)�(:). An application of the ratio-limit theorem combined with a second-order Taylor expansion leads
to
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Now, by the delta method,
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Hence, the asymptotic distribution of the leverage function is driven by b�2(�2)� �2(�2) and has variance
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Finally, under one of our assumptions on the bandwidth sequence (namely, limn;T!1 h5n;T v(T ) = o(1)), b�(�2)� �(�2) has
a vanishing asymptotic bias. �
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