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Abstract

We develop subsampling-based tests of stock-return predictability and ap-
ply them to U.S. data. These tests allow for multiple predictor variables with
local-to-unit roots. By contrast, previous methods that model the predictor vari-
ables as nearly integrated are only applicable to univariate predictive regressions.
Simulation results demonstrate that our subsampling-based tests have desirable
size and power properties. Using stock-market valuation ratios and the risk-free
rate as predictors, our univariate tests show that the evidence of predictability is
more concentrated in the 1926�1994 subperiod. In bivariate tests, we �nd sup-
port for predictability in the full sample period 1926�2004 and the 1952�2004
subperiod as well. For the subperiod 1952�2004, we also consider a number of
consumption-based variables as predictors for stock returns and �nd that they
tend to perform better than the dividend�price ratio. Among the variables we
consider, the predictive power of the consumption�wealth ratio proposed by Let-
tau and Ludvigson (2001a, 2001b) seems to be the most robust. Among variables
based on habit persistence, Campbell and Cochrane�s (1999) nonlinear speci�-
cation tends to outperform a more traditional, linear speci�cation.

Keywords: Subsampling, local-to-unit roots, predictive regression, stock-
return predictability, consumption-based models.

1 Introduction

The �nance profession has a long-standing interest in the study of stock-market pre-
dictability. For practitioners, having the ability to forecast future stock returns is
clearly valuable for asset-allocation decisions. For academics, whether or not stock
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returns are predictable and by which variables they can be predicted a¤ect how the
stock market should be modelled theoretically. For example, the theories proposed
by Campbell and Cochrane (1999), Lettau and Ludvigson (2001a, 2001b), Lustig
and Van Nieuwerburgh (2005), Piazzesi, Schneider, and Tuzel (2006), Santos and
Veronesi (2006), and Yogo (2006) all have testable implications regarding stock-return
predictability.

Early studies of predictability rely on standard asymptotic distribution theory to
draw inference. Examples of such studies include the works by Fama and Schwert
(1977), Keim and Stambaugh (1986), Campbell (1987), Campbell and Shiller (1988),
Fama and French (1988, 1989), and Hodrick (1992). However, as more recent studies
have pointed out (see Elliott and Stock, 1994, and Stambaugh, 1999, for example),
standard asymptotic distribution theory works poorly when the predictor variable is
persistent and its innovations are highly correlated with stock returns.

To evaluate the evidence of predictability in this setting, new tests that model the
predictor variable as nearly integrated have been developed. In particular, Torous,
Valkanov, and Yan (2004) and Campbell and Yogo (2005) both use Bonferroni meth-
ods to derive tests that allow the predictor variable to contain a local-to-unit root.1

Although these tests perform much better than the conventional t-tests, it is not clear
how the Bonferroni methods can be extended to a multiple-predictive regression.

In practice, however, the need to carry out tests for multiple-predictive regressions
is pressing because the theoretical models mentioned in the �rst paragraph suggest
di¤erent variables that could be used to forecast returns. To examine the marginal
and/or joint predictive power of these variables, we need to conduct statistical tests
in a multivariate setting. Since many of these variables are highly persistent, using
standard asymptotics for inference can be misleading. In the current literature, there
is not yet any procedure that can test for predictability in the presence of multiple,
nearly integrated regressors.

In this paper, we �ll this void by developing subsampling-based predictability
tests of that allow for multiple regressors with local-to-unit roots. The subsampling
approach computes the statistic of interest for subsamples of the data (consecutive
sample points in the case of time-series data) and the statistic�s subsampled values
are used to estimate its �nite-sample distribution.2 Romano and Wolf (2001) and
Choi (2005b) examine the performance of subsampling when it is used to analyze
time series with exact unit roots. In this study, we prove the validity of subsampling
for time series with local-to-unit roots.

Since subsampling does not require the estimation of nuisance parameters, apply-
ing the procedure to a multiple-regression setting is no more di¢ cult than applying it
to a simple regression. By contrast, previous tests proposed by Torous et al. (2004)
and Campbell and Yogo (2005) require the estimation of the degree of persistence
of the predictor variables. These studies use Bonferroni methods to carry out this

1Valkanov (2003) also uses the local-to-unit root setup to examine stock-return predictability.
Valkanov�s methodology relies on a long-run restriction between the dividend�price ratio and stock
returns implied by the dynamic Gordon growth model. This methodology is not applicable to
predictor variables that do not have such a long-run relationship with stock returns.

2Politis, Romano, and Wolf (1999) provide a rigorous introduction to the theory of subsampling.
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estimation in univariate tests, but multivariate extensions of their approaches seem
infeasible. Wolf (2000) also uses subsampling methods to study predictive regres-
sions, but he only examines a model with a single stationary regressor. Lanne (2002)
makes use of stationarity tests to carry out inference on stock-return predictability.
He allows the predictor variables to be nearly integrated, but bases his inference on
stock-return data alone and ignores data on the predictor variables altogether. As
Campbell and Yogo (2005) argue, such an approach tends to have poor power when
the predictor variable is persistent but remains su¢ ciently far from being integrated.
Finally, the bootstrap may seem to be a feasible alternative to subsampling, but it
can be shown to be inconsistent for regressions with nearly integrated regressors.
Basawa et al. (1991), Datta (1996), and Choi (2005a) demonstrate the failure of the
bootstrap for the AR(1) and VAR models. One major strength of subsampling is
that it can work even when the bootstrap method fails.

Our subsampling-based tests suggest that the evidence for stock-return predictabil-
ity using stoc-market valuation ratios and the risk-free rate is quite strong. Our
univariate tests show that the evidence is more concentrated in the subperiod from
1926�1994. In bivariate tests, we �nd evidence for predictability in the full sample
period, 1926�2004, and the subperiods 1926�1994 and 1952�2004. We also demon-
strate the value of being able to carry out joint tests� there are numerous cases where
univariate tests are insigni�cant, but joint tests are not negligible.

We also show that a number of consumption-based variables have predictive power
for stock returns in the subperiod 1952�2004. During this period, these variables tend
to be better predictors for stock returns than the dividend�price ratio. Among the
variables we consider, the predictive power of the consumption�wealth ratio (cay)
proposed by Lettau and Ludvigson (2001a, 2001b) seems to be the most robust.
Among variables that are based on habit persistence, Campbell and Cochrane�s (1999)
nonlinear speci�cation tends to outperform a more traditional linear speci�cation.

The rest of the paper is organized as follows. Section 2 introduces the model and
test statistics for predictive regressions. Section 3 proposes subsampling-based meth-
ods for predictive regressions with one regressor. Section 4 extends the subsampling
method of Section 3 to multiple regressions. Section 5 reports simulation results.
Section 6 presents our empirical �ndings on stock-market predictability. Section 7
concludes. We relegate technical results to the appendices.

2 The model and test statistics for predictive regressions

Consider the simple linear regression model

yt = �+ �xt�1 + uyt; (t = 2; : : : ; T ); (1)

where

xt = �+ vt; (2)

vt = �vt�1 + uvt;

� = ec=T ; c 2 R:
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Model (1) is the prototypical predictive regression model that has been widely used
in the �nance literature. For instance, yt denotes the excess stock return in period t
and xt�1 is a variable observed at time period t � 1 that may be able to predict yt.
In order to predict the excess stock return, such variables as interest rates, default
spreads, dividend yield, the book-to-market and earnings�price ratios have been used.

Modelling xt as a nearly integrated process3 as in (2) re�ects the fact that many
predictors used in the �nance literature are quite persistent. Campbell and Yogo
(2005) report that the respective 95% con�dence intervals for � are [0.957, 1.007] and
[0.939,1.000] for the dividend�price and earnings�price ratios they studied. The mod-
elling has also been used in the �nance literature including Valkanov (2003), Torous
et al. (2004), and Campbell and Yogo (2005). These articles use the representation
� = 1 + c=T , but this is equivalent to our speci�cation (2) for asymptotic analysis.
We prefer using representation (2) because it simpli�es the proofs in Appendixes I
and II.

In model (1), it is reasonable to assume that uyt and uvt are correlated. For exam-
ple, if xt and yt denote the dividend yield and the excess stock return, respectively, an
increase in stock price will decrease the dividend yield and increase the stock return.
More speci�cally, we assume

Assumption 1 Let kakp = (E jaj
p)1=p. Suppose

(i) uyt = �uvt + et where uvs is independent of et for every s and t.

(ii) ut = fuvt; etg is strictly stationary with E(u1) = 0 and E ku1k2+� < 1
for � > 0;

(iii) futg is strong mixing with its mixing coe¢ cients �u;m satisfying, for � > 0,
1X
m=1

��=(2+�)u;m <1:

Assumption 1 allows serial correlations in fuytg and fuvtg and cross-sectional
correlations between uyt and uvs. Most previous studies have assumed white noise
processes for fuvtg and fuytg. Assumption 1 generalizes this, though in most �nancial
applications it su¢ ces to assume fuvtg and fuytg are uncorrelated. In addition, it is
not necessary to model the form of the serial correlation in futg in this study. Under
Assumption 1, the functional central-limit theorem for futg also holds (cf. Phillips
and Durlauf, 1986).

The null hypothesis we are interested in is

H0 : � = �0: (3)

In most cases, we will set �0 = 0, which corresponds to the unpredictability of yt.

3See Bobkoski (1983 ), Chan and Wei (1987), and Phillips (1987) for nearly integrated processes.
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For null hypothesis (3), we may consider the usual t-test:

t(�0) =
�̂ � �0r

�̂2y

�PT
t=2 (xt�1 � �x�1)

2
��1 ; (4)

where �̂ is the OLS estimator of �, �x�1 = 1
T�1

PT
t=2 xt�1, and �̂

2
y is the usual esti-

mator of �2y = E(u2yt). The asymptotic distribution of t(�0) for the case of serially
uncorrelated fuytg is given (cf. Elliott and Stock, 1994) in the relation

t(�0)) 

R 1
0
�Jc(r)dW (r)qR 1
0
�Jc(r)2dr

+
p
1� 2Z; as T !1;

where) denotes weak convergence, �Jc(r) = Jc(r)�
R 1
0 Jc(s)ds; Jc(r) is an Ornstein�

Uhlenbeck process generated by the stochastic di¤erential equation dJc(r) = cJc(r)dr+
dW (r) with the initial condition Jc(0) = 0 and the standard Brownian motion

W (r);  = Corr(uyt; uvt), and Z
d
= N(0; 1), is independent of (W (r); Jc(r)). Unless

 = 0, the distribution of the t-test depends on the nuisance parameters c and ,
which makes it di¢ cult to use it for statistical inference.

Under Assumption 1, model (1) can be rewritten as

yt = �0 + �xt�1 + �(xt � �xt�1) + et; (5)

where �0 = � � (1 � �)�. Note that the regressors are totally exogenous in model
(5) such that the OLS estimator of � has a mixture normal distribution in the limit.
Letting x�t�1 be the residual obtained by regressing xt�1 on f1; xt��xt�1g, the t-test
for null hypothesis (3) is de�ned by

Q(�0; �) =
~� � �0r

�̂2e

�PT
t=2 x

�2
t�1

��1 ; (6)

where ~� is the OLS estimator of � using model (5) and �̂2e is the usual estimator of
�2e = E(e2t ). The Q(�0; �) test is designed for serially uncorrelated fetg and has some
optimal properties as discussed in Campbell and Yogo (2005). If fetg are serially
correlated, �̂2e should be replaced with the long-run variance estimator (see, e.g.,
Andrews, 1991). The Q(�0; �) weakly converges to a standard normal distribution.

In practice, however, the Q(�0; �) test is not feasible since the value of � is un-
known. If we choose � = 1, it is asymptotically equivalent to Lewellen�s (2004)
bias-adjusted test, though the functional forms of Q(�0; 1) and Lewellen�s test are
di¤erent. When � = 1,

Q(�0; 1)) Z � c�r
�2e

�
�2v
R 1
0
�Jc(r)2dr

��1 ; as T !1: (7)

Again, the limiting distribution given in (7) involves nuisance parameters in a compli-
cated way. If fetg is serially correlated as in Assumption 1, the limiting distribution
will contain additional parameters resulting from the serial correlation.
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3 Subsampling test statistics

3.1 Subsampling

It was shown in Section 2 that t(�0) and Q(�0; 1) have limiting distributions that de-
pend on inestimable parameters. Conventional asymptotic methods cannot be used
for this reason. To remedy the situation, this section proposes using subsampling as
a way to �nd approximations to the limiting distributions of the test statistics t(�0)
and Q(�0; 1). Using smaller blocks of consecutively observed time series, the subsam-
pling method computes t(�0) and Q(�0; 1), and then formulates empirical cumulative
distribution functions using the computed values of the statistics. Subsample critical
values are obtained from the empirical distribution functions. We use consecutively
observed time series to retain the serial correlation structure present in the data. In
addition, blocks may share common sample points. Figure 1 illustrates the scheme
of formulating blocks for the subsampling method. The method explained so far is
called uncentered subsampling, the meaning of which will become obvious shortly.

Whole sample

Block 1

Block 2

Block 3
� � � � � �

Figure 1: Blocks for Subsampling Method

To be more speci�c, let tb;s(�0) be the t-test that uses the subsample f(ys; xs),
: : :, (ys+b�1; xs+b�1)g. We de�ne Qb;s(�0; 1) in the same way. The number of sample
points in the subsample is b, which is called the block size. Index s denotes the
starting point of the subsample. In this subsampling scheme, there will be T � b+ 1
blocks with size b. Now, consider the empirical distribution functions using tb;s(�0)
and Qb;s(�0; 1)

LtT (x) =
1

T � b+ 1

T�b+1X
s=1

1ftb;s(�0) � xg; (8)

LQT (x) =
1

T � b+ 1

T�b+1X
s=1

1fQb;s(�0; 1) � xg: (9)

These are step functions of x.
Under Assumption 1, it is shown in part (i) of Theorem A.1 in Appendix I that

LtT (x) and L
Q
T (x) become closer to their respective limiting distributions uniformly
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in x and with probability approaching one as T ! 1 if b = O(T �) with 1
2 < � � 2

3 .
The intuition for this result comes from the Glivenko�Cantelli lemma� the empir-
ical distribution function of an iid random variable approximates the distribution
function of the random variable. In (8), tb;s(�0) and Qb;s(�0; 1) are neither inde-
pendent nor identically distributed, but they are asymptotically independent in the
sense that blocks far apart are independent. They are also identically distributed in
large samples. Thus, the empirical distributions (8) and (9) will mimic the limiting
distributions of tb;s(�0) and Qb;s(�0; 1), respectively, in large samples.

Once b is chosen properly, approximations to the critical values of the limiting
distributions of t(�0) and Q(�0; 1) can be obtained from (8) and (9). The test statis-
tics t(�0) and Q(�0; 1) will have correct asymptotic sizes when the subsample critical
values from (8) and (9) are used as proven in part (ii) of Theorem A.1. In practice,
values of the test statistics t(�0) and Q(�0; 1) that use the full sample are compared
with those of the subsample critical values in order to reach a statistical conclusion
on the given null hypothesis.

When the null hypothesis is not true, the subsample critical values diverge in
probability, but at lower rates than the corresponding test statistics using the full
sample. Thus, the probability of rejecting the null hypothesis when it is not true
converges to one as T ! 1. This is formally proven in Choi (2005b) and Choi and
Chue (2004).

Another way of subsampling is to center the test statistics at the coe¢ cient esti-
mator using the full sample. That is, we use for subsampling

tb;s(�̂) =
�̂b;s � �̂r

�̂2b;s;y

�Ps+b�1
t=s+1 (xt�1 � �x�1;b;s)

2
��1 (10)

and

Qb;s(~�; 1) =
~�b;s � ~�r

�̂2b;s;e

�Ps+b�1
t=s+1 x

�2
t�1

��1 ; (11)

where �̂ and ~� are the estimators of � using the full sample and the estimators with
subscripts b and s are those using the subsample f(ys; xs), : : :, (ys+b�1; xs+b�1)g.
Subsampling using these statistics is called the centered subsampling.

Under the null hypothesis, the centering has no e¤ect on tb;s(�̂) in the large sample
because

tb;s(�̂) =
�̂b;s � �0r

�̂2b;s;y

�Ps+b�1
t=s+1 (xt�1 � �x�1;b;s)

2
��1

� b

T

T (�̂ � �0)r
�̂2b;s;y

�Ps+b�1
t=s+1 (xt�1 � �x�1;b;s)

2 =b2
��1 (12)
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and the second term on the right-hand side of this relation is asymptotically negligible
as long as bT ! 0. The same analysis applies to Qb;s(�̂; 1). The validity of the centered
subsampling is formally proven in Theorem A.2 of Appendix I.

Under the alternative hypothesis H1 : � 6= �0, however, the �rst term on the
right-hand side of relation (12) is stochastically bounded while the second term is
still asymptotically negligible. This implies that the subsample critical values are
stochastically bounded in contrast with the uncentered subsampling where critical
values diverge in probability under the alternative. An important implication of this
is that the tests using the centered subsampling are likely to have higher power than
those using the uncentered subsampling. In practice, however, centered subsampling
sometimes brings unacceptably high size distortions which discourages its use. For
our problem, it works reasonably well as we will see in Section 5.

3.2 Choice of block sizes

The validity of subsampling requires that b grow as T does but at a slower rate.
This requirement is too rough to use in choosing b in practice. However, there are
a few methods known to work reasonably well in �nite samples. Romano and Wolf
(2001) suggest the minimum-volatility method, which is shown to work well for the
con�dence intervals of an AR(1) coe¢ cient. This method also works well for tests
based on vector autoregressions and panel regressions (cf. Choi, 2005b, and Choi and
Chue, 2004). The algorithm for the minimum-volatility method is:

Step 1: From bi = bsmall to bi = bbig, calculate the subsample critical
values ci.

Step 2: For each bi (i = small + l; : : : ; big � l), calculate the standard
deviation of the critical values ci�l; : : : ; ci+l, denoted SCi. Here, l is a
small positive integer.

Step 3: Choose the block size that gives the minimum of SCi over i.

Romano and Wolf recommend a small number for l (2 or 3) in Step 2 and also note
that the results are insensitive to this choice.

Simulation results in Section 5 indicate that the minimum-volatility method works
well for the uncentered subsampling. However, unreported simulation results reveal
size distortions for the centered subsampling. Thus, we consider calibration rules for
the centered subsampling. Assume that an adequate approximation to an optimal
block size at each nominal size, �, is related to the sample size by

bopt;� = T � : (13)

In order to estimate parameter � of relation (13), we ran simulations for various
sample sizes and data-generating processes, and related them to optimal block sizes.
Data were generated by (1) and (2) with � = 0 and � = 0, which do not have
any e¤ects on the �nite-sample values of the test statistics. We also set � = 0 in
(1). Independent standard normal numbers were used for fuvtg and fetg. For the
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calibration rule, we used T = 100, 250, 500; c = �5, �10, �15; � = �0:1, �0:5,
�0:9, �1, �2, �3. The calibration rules are devised separately for the 5% and 10%
signi�cance levels.

We used the following algorithm for the calibration rules at each signi�cance level.

Step 1: For each set of parameter values, generate the data 200 times
and calculate the subsample critical values for every block size from 5
to 0.8�T .4 In addition, record the critical values of the full-sample pre-
dictability tests from the 200 iterations.

Step 2: For each set of parameter values and for each block size, record
the median of the 200 subsample critical values from Step 1.

Step 3: For each set of parameter values, record the block size whose
median critical value from Step 2 is closest to the critical value of the
full-sample predictability test of Step 1 in terms of absolute discrepancy.

Step 4: Regress the natural logarithm of the optimal block size from Step
3 on ln(T ) to estimate the parameter �.

Steps 1�3 provide the block sizes that produce subsample critical values closest
to the corresponding �nite-sample critical values of the tests. The calibration rules
obtained from the above algorithm are reported in Table 1. We report only the
rules for the t-test because the Q(�; 1) test is not recommended when used together
with the calibration rules. The calibration rules turn out to satisfy the condition
b = O(T �) with 1

2 < � � 2
3 , as required for the subsampling validity, although we

experiment with a wider band for b than is allowed for by the theoretical restriction.

Table 1: Calibration Rules for the t-Test Centered Subsampling

Signi�cance level �

5% 0.61
10% 0.67

4 Predictive regressions with multiple regressors

This section considers the subsampling methods of the previous section for the
multiple-regression model

yt = �+ �0xt�1 + uyt; (t = 2; : : : ; T ); (14)

where xt is a k � 1 vector modelled by

xt = �+ vt; (15)

vt = �vt�1 + uvt;

� = eC=T ; C = diag[c1; : : : ; ck]; ci 2 R (i = 1; : : : ; k):

4This choice includes b = T � with 1
2
< � � 2

3
.
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Here, every element of vt is nearly integrated. We could consider other possibilities
for matrix C without complicating our subsampling approach, but speci�cation (15)
seems most relevant in applications.

We assume that Assumption 1 in Section 2 holds with uyt = �0uvt + et, allowing
correlation between fuytg and fuvtg. For the null hypothesis, H0 : � = �0, we
consider the Wald test de�ned by

W (�0) =
�
�̂ � �0

�00@�̂2y
 

TX
t=2

(xt�1 � �x�1) (xt�1 � �x�1)0
!�11A�1 ��̂ � �0� ;

where �̂ is the OLS estimator of �. The asymptotic distribution of W (�0) obviously
depends on nuisance parameters that make it di¢ cult to tabulate its distribution.
For the null hypothesis on individual coe¢ cients H0 : �i = �i0 (i = 1; : : : ; k), we may
use a t-test based on model (14).

As in Section 2, we rewrite model (14) such that

yt = �0 + �xt�1 + �
0(xt � �xt�1) + et (16)

and consider the Wald test,

MQ(�0; �) =
�
~� � �0

�00@�̂2e
 

TX
t=2

x�t�1x
�0
t�1

!�11A�1 �~� � �0� ;
where ~� is the OLS estimator of � using model (16) and x�t�1 is the residual vector
obtained by regressing xt�1 on f1; xt � �xt�1g. MQ(�0; �) weakly converges to a
chi-square distribution. With � = I, MQ(�0; �) can be considered an extension
of the Q(�0; 1) test. In general, the limiting distribution of MQ(�0; I) depends on
nuisance parameters in a complicated way. It is a chi-square distribution only when
� = 0 and/or � = I. For the null hypothesis on individual coe¢ cients H0 : �i = �i0
(i = 1; : : : ; k), we can use t-test based on model (16).

The methods of subsampling these test statistics, W (�0), MQ(�0; I) and the
t-ratios, are no di¤erent from those in Section 3. We construct relevant empirical
distribution functions and use them to select critical values. Though Theorems A.1
and A.2 in Appendix I are for the case where xt is scalar, it is straightforward to
extend them to the case of multiple regressors.5 Thus, the results in Theorems A.1
and A.2 can be used to justify the use of the uncentered and centered subsamplings.
The minimum-volatility methods discussed in Section 3 can also be used without
changes for the choice of block sizes.

In order to devise calibration rules for the centered subsampling of W (�0), we

5The only change we need is to extend Lemma A.5 to the case of multiple regressors. This can
be done using the same method as for Lemma A.5 with more complex notation and is not deemed
to deserve separate treatments.
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used the same method6 as in Section 3. The rules for the t-ratio and W (�0) based
on model (14) with k = 2 are reported in Table 2 below. We report only the rules
for the t-ratio and W (�0) because the MQ(�; I) test and the corresponding t-test do
not work satisfactorily along with the calibration rules.

Table 2: Calibration Rules for the Centered Subsampling of the t-ratio and Wald
test (k = 2)

�

Signi�cance level t-ratio Wald
5% 0.67 0.65
10% 0.67 0.66

5 Simulation

This section reports empirical size and power of the t-, Wald, Q(�0; 1), andMQ(�0; I)
tests using subsample critical values. We consider the cases of one and two regressors.
The alternative hypothesis is H1 : � > 0 for the case of a single regressor. That for
the case of two regressors is H1 : � 6= 0 or H1 : �i > 0. Data were generated by (1)
and (2) for the univariate case and (14) and (15) for the bivariate case. We set � = 0
and � = 0 in the data generation because they have no e¤ects on the �nite-sample
values of the test statistics. In addition, the elements of � in (14) have the same
value  . For fuvtg,

uvt � iid N(0; 1)

was used for the univariate case; and

uvt � iid N

�
0;

1 0:85
0:85 1

�
for the bivariate case. Note that the elements of uvt are cross-sectionally correlated
in the bivariate case. In the data-generating process (15), the diagonal elements of
matrix C were set to have the same value denoted by c in subsequent tables. The
error terms fuytg were generated by

uyt = �0uvt + et;

with et � iid N(0; 1) and � = [�; �]0. Note that fuvtg and fetg are independent. The
parameter � measures the degree of dependence between fuvtg and fuytg.

In the following tables, we considered the cases T = 100, 250, 500; c = �5, �10,
�15;  = 0, 0.01, 0.05, 0.1; and � = �0:5, �1:5, �3.7 We ran 2,000 replications

6We used the data-generating process (DGP) where the covariance between the two innovation
processes for xt is 0.85 and the bivariate vector � has the same element c=T . Using more gen-
eral DGPs may yield di¤erent rules, but the di¤erence was not noticeable according to our limited
experimentation with di¤erent DGPs.

7Parameter � denotes the covariance between fuytg and fuvtg. The corresponding correlations
are �0:45, �0:83, and �0:95.
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for these tests. Tables 3�5 report the empirical size and power of the t-, Wald,
Q(�0; 1), and MQ(�0; I) tests using critical values from the uncentered subsampling
with the minimum-volatility rule. Table 3 reports the empirical size and power of
the tests for the case of a single regressor. Table 4 reports those of the joint tests for
the two-regressor case, while Table 5 reports those of the individual tests. We also
report in Tables 3 and 4 the size of the t-, Wald, Q(�0; 1), and MQ(�0; I) tests using
standard distributions for the purpose of comparison. The results in Tables 3�5 are
summarized as follows.

� The subsampling-based t- and Wald tests keep nominal size quite well across
all values of T , �, and c, though the tests tend to underreject as the value of c
decreases.

� The Q(�0; 1) and MQ(�0; I) tests along with subsampling work reasonably
well under the null hypothesis when c = 0. However, as c and � decrease, their
performance deteriorates. Especially when c = �15 and � = �3, all the tests
are subject to size distortions. An explanation for the poor performance of the
tests under the null is provided in Appendix III.

� The t- and Wald tests using standard distributions perform poorer as � takes
smaller values and c is closer to zero. This is well expected from standard
theory. Overall, we observe signi�cant advantage of using the subsampling
critical values over those from standard distributions.

� The Q(�0; 1) and MQ(�0; I) tests using standard distributions perform poorly
under the null hypothesis unless c = 0. The MQ(�0; I) test shows serious
overrejections for c 6= 0.

� As expected, the power of the tests improves as the value of  increases and as
T increases. When  = 0:1 and T = 500, the power is close to one in all the
cases.

� As c takes smaller values, the power of the t- and Q(�0; 1) tests in Tables 3�5
tends to decrease. However, that of the MQ(�0; 1) tests in Table 4 tends to
increase, most likely due to size distortions.

� As � takes smaller values, the power of the t- and Q(�0; 1) tests in Tables 3�5
tends to decrease. By contrast, that of the MQ(�0; 1) tests in Table 4 tends to
increase, again most likely due to size distortions.

Tables 6�8 report the size and power of the t- and Wald tests using critical values
from the centered subsampling with the calibration rules from Tables 1 and 2. The
size and power of the Q(�0; 1) and MQ(�0; I) tests are not reported because they
are unsatisfactory and do not deserve the space. We do not report the results of
centered subsampling using the minimum-volatility rule either because these are also
quite poor. Tables 6�8 are summarized as follows.
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� The t-test in Tables 6 and 8 and the Wald test in Table 7 keep nominal size
reasonably well when subsampling critical values are used across all values of
T; �, and c, though some overrejections are observed when c = 0.

� The power of the tests improves as the value of  increases and as T increases.
In particular, we observe signi�cant power gain over uncentered subsampling.

� As c takes smaller values, the power of the tests decreases.

� As � takes smaller values, the power of the tests tends to decrease.

For comparison, we report the �nite-sample size and power of the Bonferroni t-
and Q-tests examined by Campbell and Yogo (2005) in Table 8. Since the tests are
designed for the case of a single regressor, the results should be compared to those
in Tables 3 and 6. The results in Table 9 are summarized as follows.

� Panel A of Table 9 shows that the size properties for both tests are very good.
Unlike the subsampling-based tests we consider above, there is no evidence that
these Bonferroni tests overreject even when c = 0.

� Panel B shows that the Bonferroni Q-test tends to dominate the Bonferroni
t-test in terms of power which is consistent with the results that Campbell and
Yogo report.

� Overall, the Bonferroni Q-test appears to be more powerful than univariate
centered subsampling reported in Table 6, except when T and  are both small
(T = 100,  = 0:01).

The results above indicate that the t- and Wald tests along with centered sub-
sampling work reasonably well in the case of two regressors and are recommended
for empirical applications. When there is only one regressor, the Bonferroni Q-test
appears to be the best choice.

6 Testing for stock-market predictability

In this section, we apply the subsampling-based tests developed above to investigate
the predictability of stock returns. We use the t- and Wald tests along with centered
subsampling in light of the simulation results of the previous section. We �rst consider
such predictor variables as the dividend�price ratio, the earnings�price ratio, and
the short-term interest rate, which have been widely used in previous studies. In
addition to these popular variables, we also consider predictors proposed by more
recent theories. In particular, we examine: (1) the consumption�wealth ratio (cay)
proposed by Lettau and Ludvigson (2001a, 2001b), (2) the labor-income�consumption
ratio (sw) proposed by Santos and Veronesi (2006), (3) the surplus-consumption ratio
based on the linear habit speci�cation examined by Li (2001) and others, and (4) the
surplus-consumption ratio based on the nonlinear habit speci�cation proposed by
Campbell and Cochrane (1999).
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The fact that our approach can handle nearly integrated regressors and can be
used in a multiple-regression setting allows us to address important economic ques-
tions. First, by including both the dividend�price ratio and a second variable as
predictors in the predictive regression, we can investigate if the second predictor has
predictive power for stock returns beyond that already contained in the dividend�
price ratio. In some of the recent studies mentioned above, the authors use standard
asymptotics to demonstrate that the predictors suggested by their theories have incre-
mental predictive power for stock returns relative to the dividend�price ratio. Since
these new predictors and the dividend�price ratio are typically highly persistent, the
use of standard asymptotics may not be valid.8 By contrast, since our approach per-
forms well even in these cases, we can use it to examine if the new predictors indeed
contain incremental information.

Second, some of the predictors mentioned above are closely related and one may
be interested in knowing their joint predictive power. For example, we may be in-
terested in knowing the joint predictive power of the consumption�wealth ratio cay
and the labor-income�consumption ratio sw as both cay and sw depend on aggregate
consumption and labor income. We can also test for the joint predictive power of
di¤erent habit speci�cations. Using the subsampling approach, we can carry out joint
tests that are robust to the presence of nearly integrated predictors.

Third, some of the predictors can be viewed as being in competition with each
other. For example, Campbell and Cochrane (1999) propose a form of nonlinear
habits to overcome certain de�ciencies of the more traditional, linear habit speci�ca-
tion. Since higher surplus consumption forecasts lower future returns in both of these
models, we can use our subsampling-based tests to see which speci�cation has more
predictive power when both predictors are included in the predictive regression.9

Among recent studies, our analysis here is most closely related to the works of
Ang and Bekaert (2005) and Campbell and Yogo (2005). Ang and Bekaert examine
stock-market predictability in both the univariate and multivariate settings, but their
tests are developed for stationary regressors. Campbell and Yogo model regressors
as nearly integrated, but their Bonferroni procedure is only applicable to univariate
tests. Our tests allow for near unit roots in the regressors and can be used in a
multivariate setting.

6.1 Data description

We use the annual, quarterly, and monthly NYSE/AMEX value-weighted index data
from the Center for Research in Security Prices (CRSP) to construct series of stock
returns and dividend�price ratios at the corresponding frequencies. Since earnings
data are not available from CRSP, we construct earnings�price ratios using Standard
and Poor�s (S&P) 500 data.

8Even though some theoretical models suggest that certain predictor variables (such as the
dividend�price ratio) are stationary (see Ang and Bekaert 2005, for example, for one such model),
empirical tests often cannot reject the hypothesis that those variables contain a unit root.

9Such a comparison is particularly interesting since the results reported by Li (2001) suggest that
the two speci�cations have similar abilities in explaining expected return movement.
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We follow Campbell and Shiller (1988) and Campbell and Yogo (2005) in our con-
struction of the dividend�price and earnings�price ratios. We compute the dividend�
price ratio as dividends over the past year divided by the current price, and the
earnings�price ratio as a moving average of earnings over the past ten years divided
by the current price.

In our predictability regressions, we forecast the excess returns on stocks over
a risk-free rate. We use the one-month and three-month T-bill rates, respectively,
for our monthly and quarterly analyses. For annual data, we construct the risk-free
return by compounding the returns on the three-month T-bill. We also use the three-
month T-bill rate as a predictor variable in some of our analyses. All T-bill data are
obtained from CRSP.

The full sample period is from 1926 to 2004, although we also consider the sub-
periods 1926�1994 and 1952�2004. We examine the subperiod 1926�1994 because
the valuation ratios we consider have dropped to their lowest levels in history since
the late 1990�s, and it is interesting to see if such changes a¤ect our results. For
regressions that include the three-month T-bill rate as a predictor variable, we only
consider the subperiod 1952�2004. This is because the U.S. Federal Reserve pegged
interest rates before the Treasury Accord of 1951, and interest-rate data prior to 1952
are di¢ cult to interpret.

In addition to the dividend�price ratio, the earnings�price ratio, and the three-
month T-bill rate, we consider a few consumption-based predictors proposed by recent
research. We obtain real per capita consumption of nondurables and services from the
Bureau of Economic Analysis (BEA), U.S. Department of Commerce. Our de�nition
of labor income follows that in Lettau and Ludvigson (2001a) and Santos and Veronesi
(2006). In particular, it is de�ned as wages and salaries plus transfer payments plus
other labor income minus personal contributions for social insurance minus taxes. The
source of all these series is the BEA. We use an updated series for cay, constructed
by Lettau and Ludvigson (2001a, b), from Martin Lettau�s website. The appendix to
Lettau and Ludvigson (2001a) details the construction of this variable. Due to data
limitation, tests involving the consumption-based predictors are carried out for the
subperiod 1952�2004, and at quarterly and annual frequencies only.

6.2 Valuation ratios and the risk-free rate as predictors

We �rst consider tests of stock-return predictability using the dividend�price ratio,
the earnings�price ratio, and the three-month T-bill rate as predictor variables. Table
11 reports results of our subsampling-based tests of stock-market predictability. We
use centered subsampling where the block size is selected based on a calibration rule.
We carry out one-sided tests at the 5% level. Panel A reports results of t-tests in
univariate predictions and Panel B reports results of the individual t-tests and joint
Wald tests in bivariate predictions.

From Panel A, we see that the strongest evidence for predictability comes from
the 1926�1994 subsample. With the exception of the dividend�price ratio at the
monthly frequency, the null of no predictability is rejected at the 5% level in all other
setups. The evidence for predictability is much weaker for the full sample and for

15



the 1952�2004 subsample. For the full sample, we �nd that only the earnings�price
ratio at the quarterly frequency has signi�cant predictive power at the 5% level. For
the 1952�2004 subperiod, only the short-term interest rate at the monthly frequency
is signi�cant at 5%.

To compare our results with those reported by Campbell and Yogo (2005), we
also carry out our tests for 1926�2002, the period Campbell and Yogo consider. For
this period, we �nd that the dividend�price ratio (at the annual frequency) and the
earnings�price ratio (at both the quarterly and monthly frequencies) are signi�cant
at the 5% level. Overall, our univariate results regarding the predictive power of
the two valuation ratios are almost identical to those obtained from the Bonferroni
Q-test that Campbell and Yogo propose; with respect to the short-term interest rate,
the Bonferroni Q-test �nds evidence for predictability in both quarterly and monthly
data, but we �nd such evidence only at the monthly frequency.

Turning to the bivariate results on Panel B, we see evidence of predictability
that is more evenly spread out across subsamples. In particular, in the 1952�2004
subperiod, we can now reject the null of no joint predictability for the earnings�
price ratio and the short-term interest rate at all three frequencies. In addition,
the combination of the dividend�price ratio and the short-term interest rate is also
rejected at the monthly frequency. For the other two samples, we �nd evidence of
joint predictability for the two valuation ratios at both the monthly frequency (for the
1926�1994 subperiod) and the quarterly frequency (for 1926�1994 and 1926�2004).

Comparing the results on Panels A and B, we see the value of performing joint
tests. For example, in the 1952�2004 subsample, even though univariate tests �nd
predictability only at the monthly frequency, joint tests uncover predictability at
all three frequencies. At the same time, predictor variables that are individually
signi�cant in univariate tests do not necessarily become jointly signi�cant; looking
at the 1926�1994 subperiod and using annual data, even though the valuation ratios
are each individually signi�cant, they are not jointly signi�cant.

Lamont (1998) examines the joint predictive power of the dividend�price ratio and
the earnings�price ratio for future stock returns. In particular, he �nds that when
both valuation ratios are used as predictors, the dividend�price ratio remains positive
and signi�cant, but the earnings�price ratio becomes negative and signi�cant. Since
Lamont uses standard asymptotics for inference, but the valuation ratios are highly
persistent and strongly correlated with returns, we apply our subsampling-based tests
on Lamont�s sample (quarterly Standard & Poor�s Composite Index data from 1947
to 1994) to test his conclusion. As expected, we �nd that the point estimates are
the same as those found by Lamont (1998). More importantly, the coe¢ cient on the
dividend�price ratio remains positive and signi�cant and that on the earnings�price
ratio negative and signi�cant at the 5% level.

However, from the results reported in Table 11, Panel B, we see that Lamont�s
(1998) �nding seems to be present only in the most recent sample period. We �nd
the same positive�negative pattern on the coe¢ cient estimates for the dividend�price
and earnings�price ratios in the 1952�2004 osubperiod only. By contrast, in the 1926�
1994 subperiod and in the full sample, it is the dividend�price ratio (rather than the
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earnings�price ratio) that turns negative.

6.3 Consumption-based variables as predictors

One testable implication of consumption-based asset pricing models is that certain
state variables implied by theory have predictive power for stock returns. Thus,
researchers often use the �nding of predictability as evidence in support of their
models. A popular approach is to include both the state variable under consideration
and the dividend�price ratio in the predictive regression, and then examine if the
state variable has any marginal predictive power beyond that of the dividend�price
ratio. Since previous tests are based on standard asymptotic theories, we reexamine
their results for robustness using our subsampling-based approach.

The �rst two consumption-based predictor variables we consider are the consump-
tion�wealth ratio (cay) proposed by Lettau and Ludvigson (2001a, 2001b) and the
labor-income�consumption ratio (sw) proposed by Santos and Veronesi (2006). Both
variables depend on aggregate consumption and aggregate labor income.

Table 12 shows that both variables have predictive power for stock returns. Panel
A reports results for annual data and Panel B reports results for quarterly data.
From rows 1 and 2 of Panel A, we see that both cay and sw have predictive power for
stock returns at the annual frequency beyond that contained in the dividend�price
ratio. In row 3 of Panel A, we see that both variables are individually signi�cant in a
bivariate predictive regression. This �nding suggests that even though both variables
depend on aggregate consumption and labor income, they each contain independent
predictive power for stock returns. By examining the corresponding rows on Panel
B, we see that the predictive power of sw weakens but that of cay remains. This
result is consistent with the �ndings of Santos and Veronesi (2006), who show that
the predictive power of sw lies in annual and lower frequencies.

We next turn to two habit-based predictors. The �rst is the log surplus con-
sumption based on a linear habit, ln(Ct �Xlin;t), and the second is the log surplus
consumption based on a nonlinear habit, ln(Ct �Xnonlin;t). Xlin;t and Xnonlin;t de-
note the level of linear and nonlinear habit, respectively, and are discussed in detail
below. As Campbell and Cochrane (1999) and Li (2001) argue, at times when surplus
consumption is low, consumers become conditionally more risk averse and demand
a higher expected return on stocks. Campbell and Cochrane rely on calibration re-
sults to demonstrate how this negative relationship between surplus consumption
and expected stock returns arises. Li uses standard asymptotics to show that this
relationship is there in the data as well. In particular, Li examines a wide range of
linear habit speci�cations and �nds that some have performance similar to that of
Campbell and Cochrane�s (1999) nonlinear speci�cation.

In particular, Li (2001) considers linear habit Xlin;t of the form

Xlin;t = �

�
1� 'm
1� 'Jm

� JX
j=1

'(j�1)mCt�j ;

where C denotes the level of aggregate consumption. The parameter ' controls the
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persistence of the habit, for example, how quickly the e¤ects of past consumption
die out. The integer m denotes the number of months elapsed between periods t� 1
and t. The integer J � 1 measures the duration of the habit, that is, the truncation
point beyond which past consumption has no e¤ect. The constant 0 < � < 1 controls
the level of the habit relative to current consumption. We follow Li (2001) in setting
� = 0:98. Since Li shows that speci�cations with ' � 0:99 and J equal to 5 years
perform the best, we focus on the case of ' = 0:99 and J = 20 quarters.

In their nonlinear habit-persistence model, Campbell and Cochrane (1999) do
not specify Xnonlin;t directly. Instead, they de�ne the surplus-consumption ratio

St � Ct�Xnonlin;t
Ct

, and postulate that the log surplus-consumption ratio, st, follows a
heteroskedastic AR(1) process,

st+1 = (1� �)s+ �st + �(st)(ct+1 � ct � g);

where �, g, and s are parameters, and ct denotes lnCt. The function �(st) controls
the sensitivity of st+1 to contemporaneous consumption. We follow Campbell and
Cochrane�s (1999) choice of parameter values and the speci�cation for �(st):10 We
assume that s1 is equal its steady state value s. To weaken the dependence of our
results on this choice of s1, we begin our simulation 20 quarters before the start date
of our predictive regressions (i.e., we begin our simulation in 1947Q1), so that we can
drop the �rst 20 quarters of observations when we examine the predictive power of
ln(Ct �Xnonlin;t) from 1952Q1 to 2004Q4.

When we include surplus consumption together with the dividend�price ratio in
the predictive regression, the coe¢ cients on both the linear and nonlinear speci�ca-
tions have the expected negative sign� higher surplus consumption forecasts lower
future returns. However, the coe¢ cients tend not to be signi�cant, with the exception
of the nonlinear speci�cation ln(Ct �Xnonlin;t) at the annual frequency.

The �head-to-head�comparison between ln(Ct �Xlin;t) and ln(Ct �Xnonlin;t) is
more interesting. When we include both surplus-consumption variables in the predic-
tive regression, the coe¢ cient on the nonlinear habit remains negative and signi�cant,
but that on the linear habit turns signi�cantly positive in annual data, and insigni�-
cantly positive in quarterly data. Campbell and Cochrane (1999) use simulations to
show that their nonlinear habit speci�cation can overcome many di¢ culties that the
more traditional, linear speci�cation faces in asset pricing. Here, we show that the
nonlinear speci�cation also has superior forecasting power for stock returns.

Finally, we investigate if the habit-based variables� the consumption�wealth ra-
tio, cay, and the labor-income�consumption ratio, sw� have the same information
content in terms of stock-return prediction. When we include both cay and ln(Ct �
Xnonlin;t) in the predictive regression, we see that both variables remain signi�cant
with the expected signs. On the other hand, sw and ln(Ct � Xnonlin;t) become in-
dividually insigni�cant, although they are still jointly signi�cant when we carry out

10Speci�cally, we assume that  = 2, � = 0:87, g = 1:89%, and �c = 1:5%, where �, g, and �c are
annualized values. See Campbell and Cochrane (1999) for a detailed discussion on the speci�cation
of �(st).
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the test at the annual frequency. These results indicate that cay has more incre-
mental information than sw does, relative to the information already contained in
ln(Ct �Xnonlin;t).

7 Conclusion

Many popular stock-return predictor variables are highly persistent. Even though
there may be plausible theoretical grounds to assume that some of these variables are
stationary, we often cannot empirically reject the notion that these variables contain
a unit root. Thus, it is natural to model these predictor variables as being nearly
integrated. At the same time, more than one such predictor variable is of interest to
�nancial economists. Thus, in testing for stock-return predictability, it is important
to be able to carry out tests in a multivariate setting.

Some previous studies on stock-return predictability has modelled the predictor
variables as nearly integrated, but their methods are only applicable to univariate
regressions. Other studies have examined multivariate forecasts, but the regressors
are assumed to be stationary. We add to this literature by proposing a subsampling-
based test that can incorporate nearly integrated regressors in a multivariate setting.

By avoiding the need to estimate various nuisance parameters (most notably, the
degree of persistence of the predictor variables), our subsampling-based approach
overcomes the main di¢ culty in extending univariate tests that allow for nearly in-
tegrated predictors (such as the Bonferroni tests) to a multivariate setting.

We carry out extensive simulations to demonstrate that our subsampling-based
tests have desirable size and power properties. On the other hand, the performance
of the conventional t-tests and Wald tests that use standard asymptotics deteriorate
when the persistence of the predictor variables approaches unity. These results in-
dicate that conclusions obtained using these tests (such as the �ndings in Ang and
Bekaert, 2005) can be misleading if the regressors in question in fact contain near
unit roots.

Our subsampling-based tests suggest that the evidence for stock-return predictabil-
ity is quite strong when we use valuation ratios and the risk-free rate as predictors.
In univariate tests, we �nd that the evidence is more concentrated in the subperiod
from 1926�1994. In bivariate tests, we �nd evidence for predictability in the full
sample period 1926�2004, and in the subperiods 1926�1994 and 1952�2004. We also
demonstrate the value in being able to carry out joint tests� there are numerous
cases where univariate tests are insigni�cant but joint tests are not.

We also consider the predictive power of a number of consumption-based vari-
ables. We �nd that both the consumption�wealth ratio (cay) proposed by Lettau and
Ludvigson (2001a, 2001b) and the labor-income�consumption ratio (sw) proposed by
Santos and Veronesi (2006) have signi�cant marginal information to forecast returns
beyond that already contained in the dividend�price ratio. We also see that the
information content of these two variables are not the same, as both variables are
individually signi�cant in tests using annual data. Between the surplus-consumption
variables based on linear and nonlinear habits, we �nd that the nonlinear speci�cation

19



has stronger predictive power.
There are several directions for further research. Although we have examined a

number of consumption-based models in this study, we have not considered models
that explicitly take housing or durables consumption into account. Lustig and Van
Nieuwerburgh (2005), Piazzesi et al. (2006), and Yogo (2006) show that these models
have desirable asset pricing implications. It would be interesting to compare these
models�time-series predictive power for stock returns. Second, although it is easy to
see that our theory applies to more than two regressors and to forecast horizons longer
than the annual frequency, we have to carry out further simulations to investigate
the performance of our tests in such cases.

Appendix I: The main theoretical results

This appendix proves that the subsampling approach provides valid approximations
to the limiting distributions of t(�0) and Q(�0; 1) de�ned by (4) and (6), respectively.
A major source of complication for the proof of the following theorem is that t(�0)
and Q(�0; 1) are not identically distributed when they use blocks of data starting
from s. This follows because the test statistics depend on vs�1 which is not identically
distributed for each s. However, since the initial variable vs�1 does a¤ect the limiting
distributions of the test statistics as b!1, they are identically distributed for large
b which makes the following theorem hold true.

Theorem A.1 Let b = O(T �) with 1
2 < � � 2

3 . Denote the limiting distribution
functions of t(�0) and Q(�0; 1) as J

t(�) and JQ(�), respectively. Suppose that ut =
(uvt; et)

0 satis�es Assumption 1. Then,
(i) supx2R j LzT (x)� Jz(x) j

p! 0 (z = t; Q) as T !1;
(ii) For � 2 (0; 1), let czT (1��) = inffx : L

z
T (x) � 1 � �g and cz(1��) = fx : J

z(x) =

1� �g. Then,
czT (1��)

p! cz(1��) as T !1:

Proof. (i) We will prove the results only for Q(�0; 1) because those for t(�0) can be
proven in the same way. Consider �b;s = Qb;s(�0; 1)jvs�1=0, which is the test statistic
Qb;s(�0; 1) conditional on the restriction vs�1 = 0. The empirical distribution func-
tion using �b;s is written asMT (x) =

1
T�b+1

PT�b+1
s=1 1f�b;s � xg. Because f(uvt; et)0g

is strictly stationary and because �b;s is a measurable function of only fetgs+b�1t=s+1 and

fuvtgs+b�2t=s due to the conditioning vs�1 = 0, �b;s has the same distribution for each
s and b. Thus, we may write

��MT (x)� JQ(x)
�� �

����� 1

T � b+ 1

T�b+1X
s=1

(1f�b;s � xg � E1f�b;1 � xg)
�����

+
��E1f�b;1 � xg � JQ(x)

��
= AT (x) +BT (x); say:
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Since 1f�b;s � xg is a measurable function of fetgs+b�1t=s+1 and fuvtg
s+b�2
t=s , the law of

large numbers for mixing processes stated in Lemma A.3 yields AT (x)
a:s:! 0 for each

x 2 R. From this follows supx2RAT (x)
a:s:! 0 due to Lemma A.4. In addition, BT (x)

converges to zero uniformly in x since E1f�b;1 � xg ! JQ(x) for each x and JQ(�)
is a continuous function (see Lemma 3 of Chow and Teicher, 1988, p.265). Thus, we
have proven that

sup
x2R

��MT (x)� JQ(x)
�� a:s:! 0: (A.1)

In order to prove a similar result for LQT (�), consider an inequality

sup
x2R

���LQT (x)� JQ(x)��� � sup
x2R

���LQT (x)�MT (x)
���+ sup

x2R

��MT (x)� JQ(x)
�� :

The second term on the right-hand side of this inequality has been shown to be
oa:s:(1). In order to show that the �rst term is negligible in probability, assume that

Qb;s(�0; 1) = �b;s + �Tbs (A.2)

where
max
s
j�Tbsj = op(1): (A.3)

Then, letting &Tb = maxs j�Tbsj,

sup
x2R

���LQT (x)�MT (x)
���

= sup
x2R

����� 1

T � b+ 1

T�b+1X
s=1

(1fQb;s(�0; 1) � xg � 1f�b;s � xg)
�����

� sup
x2R

����� 1

T � b+ 1

T�b+1X
s=1

(1f�b;s � x+ &Tbg � 1f�b;s � xg)
�����

� sup
x2R

��MT (x+ &Tb)� JQ(x+ &Tb)
��+ sup

x2R

��JQ(x+ &Tb)� JQ(x)��
+ sup
x2R

��MT (x)� JQ(x)
�� :

Using (A.1) and (A.3), we �nd that the �rst and third terms in the last inequality
converge to zero in probability. The second term also converges to zero in probability
since JQ(�) is continuous. Thus, the proof will be complete if relations (A.2) and (A.3)
are shown to hold. These are proven in Lemma A.5, so the stated result follows. �
(ii) Since LzT (�) and Jz(�) are nondecreasing functions and Jz(�) is continuous, the
result follows from part (i) and Lemma A.6 in Appendix II. �

Let

Lt�T (x) =
1

T � b+ 1

T�b+1X
s=1

1ftb;s(�̂) � xg and

LQ�T (x) =
1

T � b+ 1

T�b+1X
s=1

1fQb;s(~�; 1) � xg;
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where tb;s(�̂) and Qb;s(~�; 1) are de�ned by (10) and (11), respectively. The following
theorem states that the empirical distribution functions, Lt�T (x) and L

Q�
T (x), provide

valid approximations to the limiting distributions of t(�0) and Q(�0; 1), respectively.

Theorem A.2 Suppose that the same assumptions for Theorem A.1 hold. Then,
(i) supx2R j L�zT (x)� Jz(x) j

p! 0 (z = t; Q) as T !1;
(ii) For � 2 (0; 1), let c�zT (1��) = inffx : L

�z
T (x) � 1 � �g and cz(1��) = fx : J

z(x) =

1� �g. Then,
c�zT (1��)

p! cz(1��) as T !1:

Proof. (i) We prove the results only for Lt�T (x). Using relation (12), write

Lt�T (x) =
1

T � b+ 1

T�b+1X
s=1

1ftb;s(�0) + �b;s;n � xg;

where �b;s;T = � b
T

T (�̂��0)r
�̂2b;s;y

�Ps+b�1
t=s+1(xt�1��x�1;b;s)

2
=b2

��1 . We deduce from this relation

that for " > 0
LtT (x� ")1fET g � Lt�T (x)1fET g � LtT (x+ "); (A.4)

where 1fET g is the indicator of the event fj �b;s;T j� "g. Since the event En holds
with probability approaching one as T goes to in�nity, (A.4) implies that the relation

LtT (x� ") � Lt�T (x) � LtT (x+ ")

holds with probability tending to one. Because

LtT (x� ")� J t(x) � Lt�T (x)� J t(x) � LtT (x+ ")� J t(x);

we have

sup
x2R

j Lt�T (x)� J t(x) j� max
�
sup
x2R

j LtT (x+ ")� J t(x) j; sup
x2R

j LtT (x+ ")� J t(x) j
�
:

Thus, we obtain the stated result by sending " ! 0 and using part (i) of Theorem
A.1. �
(ii) This follows as in the proof of part (ii) of Theorem A.1. �

Appendix II: Technical lemmas

This appendix collects some technical lemmas used to prove Theorem A.1. The
�rst result we require is the strong law of large numbers for the function of mixing
processes with the number of arguments growing with the sample size.

22



Lemma A.3 Let Ys = g(zs; zs+1; : : : ; zs+b), where b is an integer satisfying b =
O(T �) with 0 < � < 1. Suppose for some constants c and d that

(a) sups�1 kYsk2+" < c <1 for " > 0;
(b) fzsg is strong mixing with its mixing coe¢ cients �z;m satisfying, for � > 0,

1X
m=1

��=(2+�)z;m <1:

Let ST�b =
PT�b
s=1 (Ys � E(Ys)). Then, as T !1,

1

T � bST�b
a:s:�! 0:

Proof. See Lemma A.2 of Choi and Chue (2004). �
The following lemma, taken from Davidson (1994, p. 332), states that the point-

wise a.s. convergence of the empirical distribution function is su¢ cient for the
Glivenko�Cantelli lemma. Davidson states the lemma for iid random variables, but
its use for dependent random variables is easily veri�ed as long as the pointwise strong
law of large numbers holds for them.

Lemma A.4 For a set of random variables fY1(!); : : : ; YT (!)g de�ned on the prob-
ability space (
;F; P ), de�ne the empirical distribution function as

FT (x) =
1

T

TX
t=1

1fYt(!) � xg:

If FT (x)
a:s:! F (x) pointwise for x 2 R as T !1, then

sup
x2R

jFT (x)� F (x)j
a:s:! 0 as T !1:

In the following lemma, we prove relation (A.3) to support the proof of Theorem
A.1 in Appendix I. The test statistic Qb;s(�0; 1) can be written as

Qb;s(�0; 1) = g

 Ps+b�1
t=s+1 (vt�1 � �v�1;b;s)

2

b2
;

Ps+b�1
t=s+1 (vt�1 � �v�1;b;s) (�vt ��v)

b3=2
;

Ps+b�1
t=s+1

�
�vt ��v

�2
b

;

Ps+b�1
t=s+1 (vt�1 � �v�1;b;s) et

b
;Ps+b�1

t=s+1

�
�vt ��v

�
et

b1=2
;

Ps+b�1
t=s+1 e

2
t

b

!
;

where g(�) is a continuous function, �v�1;b;s =
Ps+b�1
t=s+1 vt�1
b�1 and �v =

Ps+b�1
t=s+1 �vt
b�1 . Let

vt�1 = �t�svs�1+wt�1 with wt�1 = uv;t�1+�vv;t�2+� � �+�t�1�suv;s. Then, extracting
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terms involving initial value vs�1, we obtain

Qb;s(�0; 1) (A.5)

= h

 
v2s�1

Ps+b�1
t=s+1

�
�t�s � ��b

�2
b2

; vs�1

Ps+b�1
t=s+1

�
�t�s � ��b

�
wt�1

b2
;

v2s�1
(�� 1)

Ps+b�1
t=s+1

�
�t�s � ��b

�2
b3=2

; vs�1

Ps+b�1
t=s+1

�
�t�s � ��b

�
uvt

b3=2
;

vs�1
(�� 1)

Ps+b�1
t=s+1

�
�t�s � ��b

�
wt�1

b3=2
; v2s�1

(�� 1)2
Ps+b�1
t=s+1

�
�t�s � ��b

�2
b

;

vs�1
(�� 1)

Ps+b�1
t=s+1

�
�t�s � ��b

�
uvt

b
; vs�1

(�� 1)2
Ps+b�1
t=s+1

�
�t�s � ��b

�
wt�1

b
;

vs�1

Ps+b�1
t=s+1

�
�t�s � ��b

�
et

b
; vs�1

(�� 1)
Ps+b�1
t=s+1

�
�t�s � ��b

�
et

b1=2
; rb;s

!
;

where ��b =
Ps+b�1
t=s+1 �

t�s

b�1 . In relation (A.5), rb;s denotes a vector of terms that do not

involve vs�1, These are functions of only fetgs+b�1t=s+1 and fuvtg
s+b�2
t=s and are Op(1).

Lemma A.5 Let b = O(T �) with 1
2 < � � 2

3 . Then, Qb;s(�0; 1) = �b;s + �Tbs and
maxs j�Tbsj = op(1).
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Proof. A Taylor expansion of (A.5) gives

	b;s = h(0; : : : ; 0; rb;s)

+
@h

@x1 jx1=x�1

�vs�1
T 1=2

�2 T
b2

s+b�1X
t=s+1

�
�t�s � ��b

�2
(A.6)

+
@h

@x2 jx2=x�2

vs�1
T 1=2

T 1=2

b

Ps+b�1
t=s+1

�
�t�s � ��b

�
wt�1

b

+
@h

@x3 jx3=x�3

�vs�1
T 1=2

�2 T

b3=2
(�� 1)

s+b�1X
t=s+1

�
�t�s � ��b

�2
+
@h

@x4 jx4=x�4

vs�1
T 1=2

T 1=2

b3=2

s+b�1X
t=s+1

�
�t�s � ��b

�
uvt

+
@h

@x5 jx5=x�5

vs�1
T 1=2

T 1=2

b1=2
(�� 1)

Ps+b�1
t=s+1

�
�t�s � ��b

�
wt�1

b

+
@h

@x6 jx6=x�6

�vs�1
T 1=2

�2 T
b
(�� 1)2

s+b�1X
t=s+1

�
�t�s � ��b

�2
+
@h

@x7 jx7=x�7

vs�1
T 1=2

T 1=2

b
(�� 1)

s+b�1X
t=s+1

�
�t�s � ��b

�
uvt

+
@h

@x8 jx8=x�8

vs�1
T 1=2

T 1=2(�� 1)2
Ps+b�1
t=s+1

�
�t�s � ��b

�
wt�1

b

+
@h

@x8 jx9=x�9

vs�1
T 1=2

T 1=2

b

s+b�1X
t=s+1

�
�t�s � ��b

�
et

+
@h

@x9 jx10=x�10

vs�1
T 1=2

T 1=2

b1=2
(�� 1)

s+b�1X
t=s+1

�
�t�s � ��b

�
et;

where xi denotes the i-th argument of function h(�) and x�i lies on the line joining 0
and xi. Obviously, h(0; : : : ; 0; zb;s) = �b;s. Thus, we need to show that the second to
eleventh terms on the right-hand side of equation (A.6) are op(1). Due to the weak
convergence results for nearly I(1) processes (cf. Phillips, 1988),

max
s

���vs�1
T 1=2

��� = Op(1): (A.7)
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In addition,
s+b�1X
t=s+1

�
�t�s � ��b

�2
=

b�1X
t=1

 
ect=T � 1

b� 1

b�1X
t=1

ect=T

!2

=
b�1X
t=1

 
1 +

ct

T
+ atT �

1

b� 1

b�1X
t=1

�
1 +

ct

T
+ atT

�!2

=
b�1X
t=1

 
ct

T
� 1

b� 1

b�1X
t=1

ct

T

!2
+ o(1)

=
c2

T 2

b�1X
t=1

 
t� 1

b� 1

b�1X
t=1

t

!2
+ o(1)

= O(
b3

T 2
); (A.8)

which shows that
Ps+b�1
t=s+1

�
�t�s � ��b

�2 is bounded in the limit due to the given as-
sumption on b. Moreover, using the strong mixing inequality11 for fetg, we obtain
for a constant C

V ar

 
b�1X
t=1

�
�t � ��b

�
et

!
(A.9)

= �2y

b�1X
t=1

(�t � ��b)2 + 2
b�2X
m=1

b�1X
t=m+1

(�t � ��b)(�t�m � ��b)�m

� �2y

b�1X
t=1

(�t � ��b)2 + 2C
b�2X
m=1

��=(2+�)m

b�1X
t=m+1

���t � ��b�� ���t�m � ��b��
� �2y

b�1X
t=1

(�t � ��b)2 + 2C
b�2X
m=1

��=(2+�)m

vuut b�1X
t=m+1

(�t � ��b)2
vuut b�1X
t=m+1

(�t�m � ��b)2

� �2y

b�1X
t=1

(�t � ��b)2 + 2C
 
b�1X
t=1

�
�t � ��b

�2! b�2X
m=1

��=(2+�)m = O(1);

where Cov(et; et�m) = �m. The �rst inequality in (A.9) uses the strong mixing
inequality, and the second uses the Cauchy�Schwarz inequality. The last equality is
based on (A.8). Relation (A.9) implies that

s+b�1X
t=s+1

�
�t�s � ��b

�
et = Op(1) (A.10)

11The inequality is jCov(uyt; uy;t+m)j � 2(21�1=(2+�) + 1)��=(2+�)u;m kuytk2+� kuy;t+mk2+�. For this,
see Davidson (1994, p. 212).
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Likewise,
s+b�1X
t=s+1

�
�t�s � ��b

�
uvt = Op(1) (A.11)

Furthermore, using maxs+1�t�s+b�1
���wt�1
b1=2

��� = Op(1) and relation (A.8), we obtainPs+b�1
t=s+1

�
�t�s � ��b

�
wt�1

b

� max
s+1�t�s+b�1

���wt�1
b1=2

��� Ps+b�1
t=s+1

���t�s � ��b��
b1=2

� max
s+1�t�s+b�1

���wt�1
b1=2

���
vuuts+b�1X
t=s+1

(�t�s � ��b)2 = Op(1): (A.12)

Note that the second inequality of (A.12) uses the Cauchy�Schwarz inequality. Since
�� 1 = O( 1T ) and

@h
@xi jxi=op(1)

= Op(1) for i = 1; : : : ; 9, relations (A.7), (A.8), (A.10)

and (A.11) imply that the second to eleventh terms on the right-hand side of equation
(A.6) are op(1) uniformly in s as required. This completes the proof. �

The following lemma is used to prove part (ii) of Theorem A.1.

Lemma A.6 Let H n (y) = inffx : Hn(x) � yg and H (y) = inffx : H(x) � yg.
If (a) Hn(�) and H(�) are nondecreasing functions, (b) H(�) is continuous, and (c)
supx2R jHn(x) � H(x)j p! 0 as n ! 1, then H n (y)

p! H (y) for any y 2 R as
n!1.

Proof. Let g(x) = H(x) + supx2R j�n (x)j and f(x) = H(x)� supx2R j�n (x)j, where
�n (x) = Hn(x)�H(x). Functions g(�) and f(�) are continuous in x and nondecreasing
with probability one. Thus, for y 2 R, we have with probability one

f (y) � H (y) � g (y)

and
f (y) � H n (y) � g (y);

which imply
jH n (y)�H (y)j � g (y)� f (y):

Since supx2R j�n (x)j
p! 0, g (y) � f (y)

p! 0 as n ! 1, from which follows the
stated result. �

Appendix III: Why does subsampling perform poorly for
the Q(�0;1) test?

When c 6= 0, the simulation results in Section 5 indicate that subsampling does not
work well for the Q(�0; 1) test. This section tries to explain this. To this end, consider
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the empirical distribution function

L�T (x) =
1

T � b+ 1

T�b+1X
s=1

1f� b;s � xg;

where � b;s is either tb;s(�0) or Qb;s(�0; 1). The limiting distribution function of �T;1
is denoted by J� (�). The mean-squared error of LT (x) in estimating J(x) is given by

E (L�T (x)� J� (x))
2

= E

 
1

T � b+ 1

T�b+1X
s=1

(1f� b;s � xg � E1f� b;s � xg)

+
1

T � b+ 1

T�b+1X
s=1

E1f� b;s � xg � J� (x)
!2

= E

 
1

T � b+ 1

T�b+1X
s=1

�
1f� b;s � xg � E1f� b;1 � xg

�!2

+

 
1

T � b+ 1

T�b+1X
s=1

E1f� b;s � xg � J� (x)
!2

= AT;b(x) +BT;b(x); say:

If b=T ! 0 and Assumption 1 holds, it can be shown that AT;b(x) = o(1). Thus, it
is the squared bias, BT;b(x), that is asymptotically equivalent to the mean-squared
error. In Table 13, we calculated the mean-squared error and the squared bias using
the same data-generating scheme as for Table 3 with T = 250, c = �5, � = �3 and
b = 15; 27. We chose x such that J� (x) = 0:95. Table 13 shows that the Q(�0; 1)
test has much higher mean-squared error and squared bias than the t-test, which
implies that the subsampling critical values for the Q(�0; 1) test are unlikely to be as
accurate as those for the t-test in estimating its limiting critical values. This explains
why the Q(�0; 1) test does not perform well in �nite samples relative to the t-test.
Obviously, the culprit is its bias. Since 1

T�b+1
PT�b+1
s=1 E1f� b;s � xg ' Pf� b;1 � xg

for large b, the substantial bias results from the slow convergence of the Q(�0; 1) test
to its limiting distribution.12

Table 13: Mean squared error and squared biases of the t- and Q(�0; 1) tests

Notes: 1. Data were generated by yt = �xt�1 + uyt; � = 0; xt = exp(� 5
T
)xt�1 + uvt; uyt =

�3uvt+ et; uvt � iid N(0; 1); et � iid N(0; 1); :T = 250. 2. Block sizes correspond to T 0:5 and T 0:6.

3. uncentered subsampling was used. 4. Results are based on 2,000 replications.

t-test Q(�0; 1)
MSE Bias2 MSE Bias2

b = 15 0.0166 0.0140 0.9022 0.9022
b = 27 0.0144 0.0099 0.9025 0.9025

12We performed the same experiment with larger sample sizes and c = �15. The Q(�0; 1) test
statistic did not improve with the increased sample sizes and performed worse with c = �15.
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Table 3: Finite-Sample Size and Power of the t- and Q(�0; 1) Tests: The Case of
One Regressor

Notes: 1. Data were generated by yt = �xt�1+uyt; � = 0; xt = exp( cT )xt�1+uvt; uyt = �uvt+et;

uvt � iidN(0; 1); et � iidN(0; 1). 2. The minimum-volatility rule was used for subsampling. 3.

Uncentered subsampling was used. 4. Results are based on 2,000 replications. 5. One-sided test

with H1 : � > 0.

Panel A: Size

Subsampling N(0; 1)
t-test Q(�0; 1) t-test Q(�0; 1)

c = 0 0.065 0.061 0.158 0.056
� = �0:5 c = �5 0.032 0.014 0.107 0.015

c = �15 0.023 0.002 0.081 0.003
c = 0 0.074 0.061 0.346 0.056

T = 100 � = �1:5 c = �5 0.035 0.001 0.153 0.001
c = �15 0.030 0.000 0.109 0.000
c = 0 0.080 0.061 0.414 0.056

� = �3 c = �5 0.035 0.000 0.182 0.000
c = �15 0.023 0.000 0.118 0.000
c = 0 0.062 0.056 0.163 0.054

� = �0:5 c = �5 0.034 0.014 0.100 0.009
c = �15 0.030 0.003 0.080 0.003
c = 0 0.065 0.056 0.355 0.054

T = 250 � = �1:5 c = �5 0.029 0.001 0.167 0.001
c = �15 0.021 0.000 0.111 0.000
c = 0 0.066 0.055 0.430 0.054

� = �3 c = �5 0.034 0.000 0.199 0.000
c = �15 0.027 0.000 0.119 0.000
c = 0 0.059 0.049 0.174 0.060

� = �0:5 c = �5 0.039 0.015 0.109 0.018
c = �15 0.026 0.003 0.084 0.005
c = 0 0.061 0.049 0.358 0.060

T = 500 � = �1:5 c = �5 0.023 0.001 0.184 0.001
c = �15 0.019 0.000 0.113 0.000
c = 0 0.061 0.049 0.434 0.060

� = �3 c = �5 0.025 0.000 0.201 0.000
c = �15 0.022 0.000 0.123 0.000
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Panel B: Power

 = 0:01  = 0:05  = 0:1
T � c t-test Q(�0; 1) t-test Q(�0; 1) t-test Q(�0; 1)

0 0.118 0.104 0.429 0.443 0.786 0.766
�0:5 �5 0.044 0.022 0.169 0.130 0.509 0.428

�15 0.032 0.004 0.089 0.021 0.250 0.084
0 0.099 0.104 0.267 0.443 0.617 0.766

100 �1:5 �5 0.043 0.002 0.075 0.015 0.194 0.132
�15 0.033 0.000 0.060 0.000 0.113 0.001
0 0.091 0.104 0.166 0.443 0.333 0.766

�3 �5 0.038 0.000 0.060 0.000 0.096 0.005
�15 0.028 0.000 0.040 0.000 0.064 0.000
0 0.206 0.232 0.905 0.885 0.997 0.987

�0:5 �5 0.080 0.505 0.689 0.605 0.986 0.950
�15 0.059 0.010 0.366 0.152 0.882 0.686
0 0.146 0.232 0.792 0.885 0.994 0.987

250 �1:5 �5 0.044 0.005 0.304 0.258 0.923 0.894
�15 0.035 0.000 0.153 0.002 0.523 0.093
0 0.101 0.232 0.463 0.885 0.917 0.987

�3 �5 0.041 0.000 0.111 0.015 0.412 0.612
�15 0.030 0.000 0.069 0.000 0.174 0.000
0 0.484 0.501 0.998 0.993 1.00 1.00

�0:5 �5 0.179 0.138 0.990 0.967 1.00 1.00
�15 0.093 0.018 0.899 0.701 1.00 1.00
0 0.279 0.501 0.995 0.993 1.00 1.00

500 �1:5 �5 0.077 0.015 0.938 0.907 1.00 1.00
�15 0.047 0.000 0.493 0.095 0.995 0.940
0 0.151 0.501 0.934 0.993 1.00 1.00

�3 �5 0.048 0.001 0.386 0.614 0.992 0.998
�15 0.029 0.000 0.143 0.000 0.651 0.178
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Table 4: Finite-Sample Size and Power of the Wald and MQ(�0; I) Tests: The Case
of Two Regressors

Notes: 1. Data were generated by yt = �0xt�1+uyt; � = [0; 0]0; xt =
�
exp( c

T
) 0

0 exp( c
T
)

�
xt�1+

uvt; uyt = [�; �]uvt + et; uvt � iid N

�
0;

�
1 0:85
0:85 1

��
; et � iid N(0; 1). 2. The minimum-

volatility rule was used for subsampling. 3. Uncentered subsampling is used. 4. Results are based

on 2,000 replications.

Panel A: Size

Subsampling Chi-square
Wald MQ(�0; I) Wald MQ(�0; I)

c = 0 0.087 0.074 0.164 0.050
� = �0:5 c = �5 0.056 0.184 0.010 0.189

c = �15 0.053 0.404 0.071 0.530
c = 0 0.077 0.074 0.288 0.050

T = 100 � = �1:5 c = �5 0.048 0.697 0.138 0.813
c = �15 0.039 0.948 0.074 0.998
c = 0 0.080 0.074 0.319 0.050

� = �3 c = �5 0.043 0.947 0.140 0.994
c = �15 0.042 0.987 0.078 1.00
c = 0 0.075 0.083 0.177 0.047

� = �0:5 c = �5 0.044 0.183 0.092 0.173
c = �15 0.043 0.483 0.065 0.554
c = 0 0.064 0.083 0.291 0.047

T = 250 � = �1:5 c = �5 0.038 0.755 0.118 0.812
c = �15 0.032 0.987 0.072 1.00
c = 0 0.067 0.083 0.306 0.047

� = �3 c = �5 0.034 0.984 0.126 0.997
c = �15 0.028 1.00 0.069 1.00
c = 0 0.078 0.076 0.179 0.043

� = �0:5 c = �5 0.042 0.212 0.095 0.183
c = �15 0.032 0.490 0.067 0.558
c = 0 0.079 0.076 0.295 0.043

T = 500 � = �1:5 c = �5 0.038 0.774 0.135 0.826
c = �15 0.033 0.993 0.080 1.00
c = 0 0.073 0.076 0.317 0.043

� = �3 c = �5 0.036 0.989 0.134 0.996
c = �15 0.033 1.00 0.080 1.00

34



Panel B: Power

 = 0:01  = 0:05  = 0:1
T � c Wald MQ(�0; 1) Wald MQ(�0; 1) Wald MQ(�0; 1)

0 0.140 0.125 0.655 0.695 0.945 0.935
�0:5 �5 0.073 0.111 0.273 0.206 0.772 0.716

�15 0.053 0.316 0.141 0.097 0.417 0.142
0 0.095 0.125 0.290 0.695 0.650 0.935

100 �1:5 �5 0.050 0.604 0.085 0.173 0.195 0.212
�15 0.044 0.937 0.061 0.874 0.109 0.681
0 0.094 0.125 0.154 0.695 0.298 0.935

�3 �5 0.046 0.933 0.059 0.834 0.086 0.428
�15 0.046 0.987 0.049 0.986 0.060 0.980
0 0.321 0.398 0.996 0.992 1.00 1.00

�0:5 �5 0.091 0.072 0.943 0.906 1.00 0.999
�15 0.057 0.261 0.638 0.290 0.995 0.963
0 0.141 0.398 0.868 0.992 1.00 1.00

250 �1:5 �5 0.045 0.501 0.303 0.504 0.953 0.994
�15 0.034 0.976 0.109 0.636 0.514 0.146
0 0.097 0.398 0.425 0.992 0.904 1.00

�3 �5 0.042 0.956 0.087 0.180 0.313 0.913
�15 0.030 1.00 0.054 0.999 0.128 0.943
0 0.727 0.766 1.00 1.00 1.00 1.00

�0:5 �5 0.255 0.188 1.00 1.00 1.00 1.00
�15 0.106 0.114 0.998 0.977 1.00 1.00
0 0.312 0.766 1.00 1.00 1.00 1.00

500 �1:5 �5 0.074 0.211 0.970 0.998 1.00 1.00
�15 0.045 0.966 0.489 0.123 1.00 1.00
0 0.156 0.766 0.924 1.00 1.00 1.00

�3 �5 0.045 0.907 0.316 0.916 0.991 1.00
�15 0.033 1.00 0.112 0.980 0.544 0.331
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Table 5: Finite-Sample Size and Power of the t- and Q(�0; 1) Tests: The Case of
Two Regressors

Notes: 1. Data were generated by yt = �0xt�1+uyt; � = [0; 0]0; xt =
�
exp( c

T
) 0

0 exp( c
T
)

�
xt�1+

uvt; uyt = [�; �]uvt + et; uvt � iid N

�
0;

�
1 0:85
0:85 1

��
; et � iid N(0; 1). 2. The minimum-

volatility rule was used for subsampling. 3. Uncentered subsampling is used. 4. Results are based

on 2,000 replications.

Panel A: Size

t-test Q(�0; 1)

c = 0 0.080 0.070
� = �0:5 c = �5 0.053 0.041

c = �15 0.040 0.019
c = 0 0.078 0.070

T = 100 � = �1:5 c = 5 0.047 0.012
c = 15 0.028 0.001
c = 0 0.078 0.070

� = �3 c = �5 0.042 0.004
c = �15 0.025 0.000
c = 0 0.070 0.063

� = �0:5 c = �5 0.039 0.027
c = �15 0.026 0.012
c = 0 0.061 0.063

T = 250 � = �1:5 c = �5 0.034 0.007
c = �15 0.022 0.001
c = 0 0.058 0.063

� = �3 c = �5 0.038 0.001
c = �15 0.022 0.000
c = 0 0.067 0.069

� = �0:5 c = �5 0.040 0.033
c = �15 0.025 0.012
c = 0 0.062 0.069

T = 500 � = �1:5 c = �5 0.035 0.001
c = �15 0.019 0.000
c = 0 0.063 0.069

� = �3 c = �5 0.028 0.001
c = �15 0.021 0.000

36



Panel B: Power

 = 0:01  = 0:05  = 0:1
T � c t-test Q(�0; 1) t-test Q(�0; 1) t-test Q(�0; 1)

0 0.097 0.090 0.165 0.217 0.284 0.424
�0:5 �5 0.062 0.047 0.091 0.102 0.159 0.208

�15 0.043 0.021 0.063 0.040 0.095 0.080
0 0.083 0.090 0.108 0.217 0.145 0.424

100 �1:5 �5 0.050 0.016 0.062 0.042 0.076 0.104
�15 0.030 0.002 0.041 0.005 0.050 0.010
0 0.080 0.090 0.091 0.217 0.113 0.424

�3 �5 0.044 0.004 0.050 0.007 0.056 0.024
�15 0.026 0.000 0.028 0.000 0.033 0.000
0 0.100 0.131 0.356 0.537 0.653 0.859

�0:5 �5 0.058 0.053 0.198 0.270 0.463 0.666
�15 0.033 0.016 0.102 0.092 0.270 0.315
0 0.072 0.131 0.145 0.537 0.281 0.859

250 �1:5 �5 0.040 0.015 0.077 0.146 0.151 0.533
�15 0.023 0.002 0.039 0.009 0.075 0.072
0 0.066 0.131 0.094 0.537 0.143 0.859

�3 �5 0.040 0.002 0.052 0.028 0.076 0.276
�15 0.022 0.000 0.031 0.001 0.037 0.003
0 0.139 0.207 0.676 0.870 0.952 0.995

�0:5 �5 0.070 0.089 0.449 0.672 0.868 0.973
�15 0.043 0.029 0.235 0.322 0.673 0.835
0 0.086 0.207 0.275 0.870 0.567 0.995

500 �1:5 �5 0.047 0.033 0.132 0.525 0.336 0.957
�15 0.030 0.001 0.066 0.061 0.163 0.565
0 0.076 0.207 0.147 0.870 0.284 0.995

�3 �5 0.038 0.003 0.067 0.277 0.133 0.901
�15 0.024 0.000 0.039 0.001 0.070 0.088
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Table 6: Finite-Sample Size and Power of the t-Test: The Case of One Regressor

Notes: 1. Data were generated by yt =  xt�1 + uyt; xt = exp( c
T
)xt�1 + uvt; uyt = �uvt + et;

uvt � iid N(0; 1); et � iid N(0; 1). 2. The calibration rule was used for subsampling. 3. Centered

subsampling was used. 4. Results are based on 2,000 replications. 5. One-sided test with H1 : � > 0.

Size Power
 = 0  = 0:01  = 0:05  = 0:1

c = 0 0.096 0.155 0.557 0.903
� = �0:5 c = �5 0.068 0.099 0.321 0.716

c = �15 0.070 0.088 0.203 0.465
c = 0 0.110 0.148 0.400 0.788

T = 100 � = �1:5 c = �5 0.071 0.085 0.164 0.365
c = �15 0.062 0.072 0.118 0.222
c = 0 0.116 0.136 0.236 0.491

� = �3 c = �5 0.069 0.077 0.115 0.176
c = �15 0.061 0.066 0.089 0.131
c = 0 0.088 0.288 0.970 1.00

� = �0:5 c = �5 0.059 0.132 0.822 0.999
c = �15 0.055 0.103 0.571 0.978
c = 0 0.101 0.196 0.903 1.00

T = 250 � = �1:5 c = �5 0.053 0.091 0.470 0.977
c = �15 0.045 0.065 0.238 0.715
c = 0 0.099 0.146 0.619 0.972

� = �3 c = �5 0.053 0.069 0.191 0.604
c = �15 0.040 0.053 0.110 0.268
c = 0 0.085 0.551 1.00 1.00

� = �0:5 c = �5 0.054 0.261 0.998 1.00
c = �15 0.046 0.148 0.973 1.00
c = 0 0.088 0.365 1.00 1.00

T = 500 � = �1:5 c = �5 0.037 0.115 0.987 1.00
c = �15 0.039 0.066 0.691 1.00
c = 0 0.093 0.211 0.974 1.00

� = �3 c = �5 0.041 0.074 0.565 1.00
c = �15 0.036 0.053 0.217 0.821
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Table 7: Finite-Sample Size and Power of the Wald Test: The Case of Two
Regressors

Notes: 1. Data were generated by yt = �0xt�1+uyt; � = [ ; ]0; xt =
�
exp( c

T
) 0

0 exp( c
T
)

�
xt�1+

uvt; uyt = [�; �]uvt + et; uvt � iidN

�
0;

�
1 0:85
0:85 1

��
; et � iid N(0; 1). 2. The calibration rule

was used for subsampling. 3. Centered subsampling was used. 4. Results are based on 2,000

replications.

Size Power
 = 0  = 0:01  = 0:05  = 0:1

c = 0 0.128 0.210 0.798 0.987
� = �0:5 c = �5 0.091 0.119 0.459 0.928

c = �15 0.083 0.104 0.265 0.673
c = 0 0.142 0.171 0.452 0.838

T = 100 � = �1:5 c = �5 0.082 0.098 0.168 0.375
c = �15 0.070 0.075 0.117 0.210
c = 0 0.146 0.161 0.262 0.474

� = �3 c = �5 0.082 0.089 0.121 0.179
c = �15 0.065 0.068 0.087 0.118
c = 0 0.100 0.418 1.00 1.00

� = �0:5 c = �5 0.058 0.160 0.989 1.00
c = �15 0.053 0.093 0.821 1.00
c = 0 0.099 0.203 0.942 1.00

T = 250 � = �1:5 c = �5 0.055 0.082 0.460 0.993
c = �15 0.038 0.050 0.191 0.705
c = 0 0.087 0.134 0.541 0.960

� = �3 c = �5 0.053 0.064 0.142 0.484
c = �15 0.036 0.043 0.080 0.205
c = 0 0.094 0.800 1.00 1.00

� = �0:5 c = �5 0.052 0.368 1.00 1.00
c = �15 0.045 0.159 1.00 1.00
c = 0 0.100 0.389 1.00 1.00

T = 500 � = �1:5 c = �5 0.044 0.100 0.994 1.00
c = �15 0.036 0.059 0.661 1.00
c = 0 0.093 0.196 0.964 1.00

� = �3 c = �5 0.043 0.065 0.446 1.00
c = �15 0.033 0.043 0.156 0.705
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Table 8: Finite-Sample Size and Power of t-Test: The Case of Two Regressors

Notes: 1. Data were generated by yt = �0xt�1+uyt; � = [ ; ]0; xt =
�
exp( c

T
) 0

0 exp( c
T
)

�
xt�1+

uvt; uyt = [�; �]uvt + et; uvt � iidN

�
0;

�
1 0:85
0:85 1

��
; et � iid N(0; 1)/ 2. The calibration rule

was used for subsampling. 3. Centered subsampling was used. 4. Results are based on 2,000

replications.

Size Power
 = 0  = 0:01  = 0:05  = 0:1

c = 0 0.118 0.135 0.228 0.382
� = �0:5 c = �5 0.093 0.108 0.169 0.270

c = �15 0.085 0.093 0.131 0.203
c = 0 0.133 0.138 0.172 0.223

T = 100 � = �1:5 c = �5 0.094 0.097 0.114 0.139
c = �15 0.067 0.071 0.084 0.106
c = 0 0.126 0.129 0.145 0.172

� = �3 c = �5 0.085 0.088 0.097 0.110
c = �15 0.067 0.070 0.075 0.079
c = 0 0.107 0.161 0.461 0.788

� = �0:5 c = �5 0.072 0.097 0.298 0.641
c = �15 0.057 0.071 0.190 0.453
c = 0 0.110 0.129 0.246 0.401

T = 250 � = �1:5 c = �5 0.067 0.079 0.130 0.228
c = �15 0.045 0.054 0.087 0.144
c = 0 0.111 0.124 0.178 0.247

� = �3 c = �5 0.064 0.071 0.093 0.140
c = �15 0.048 0.054 0.064 0.084
c = 0 0.101 0.198 0.775 0.983

� = �0:5 c = �5 0.064 0.127 0.614 0.956
c = �15 0.047 0.081 0.403 0.861
c = 0 0.104 0.148 0.379 0.673

T = 500 � = �1:5 c = �5 0.063 0.087 0.216 0.486
c = �15 0.044 0.054 0.134 0.294
c = 0 0.101 0.124 0.232 0.389

� = �3 c = �5 0.060 0.071 0.126 0.227
c = �15 0.037 0.044 0.074 0.131
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Table 9: Finite-Sample Size and Power of the Bonferroni t-Test for One Regressor

Notes: 1. Data were generated by yt = uyt; xt = exp( c
T
)xt�1 + uvt; uyt = �uvt + et; uvt �

iid N(0; 1); et � iid N(0; 1). 2. Results are based on 2,000 replications.

Size Power
T � c  = 0  = 0:01  = 0:05  = 0:1

0 0.057 0.116 0.604 0.933
-0.5 -5 0.042 0.055 0.241 0.721

-15 0.037 0.052 0.142 0.400
0 0.053 0.090 0.672 0.987

100 -1.5 -5 0.050 0.058 0.180 0.788
-15 0.043 0.054 0.132 0.326
0 0.060 0.092 0.751 0.998

-3 -5 0.050 0.060 0.144 0.839
-15 0.052 0.064 0.154 0.366
0 0.057 0.246 0.984 1.000

-0.5 -5 0.040 0.105 0.883 1.000
-15 0.037 0.073 0.563 0.992
0 0.051 0.227 1.000 1.000

250 -1.5 -5 0.035 0.073 0.939 1.000
-15 0.052 0.092 0.465 0.999
0 0.051 0.227 1.000 1.000

-3 -5 0.043 0.067 0.988 1.000
-15 0.062 0.097 0.476 1.000
0 0.050 0.604 1.000 1.000

-0.5 -5 0.030 0.219 1.000 1.000
-15 0.037 0.134 0.992 1.000
0 0.061 0.678 1.000 1.000

500 -1.5 -5 0.036 0.150 1.000 1.000
-15 0.051 0.141 0.999 1.000
0 0.055 0.734 1.000 1.000

-3 -5 0.047 0.132 1.000 1.000
-15 0.050 0.146 1.000 1.000
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Table 10: Finite-Sample Size and Power of the Bonferroni Q-Test for One Regressor

Notes: 1. Data were generated by yt =  xt�1 + uyt; xt = exp( c
T
)xt�1 + uvt; uyt = �uvt + et;

uvt � iid N(0; 1); et � iid N(0; 1). 2. Results are based on 2,000 replications.

Size Power
T � c  = 0  = 0:01  = 0:05  = 0:1

0 0.067 0.136 0.647 0.946
-0.5 -5 0.063 0.096 0.339 0.796

-15 0.052 0.068 0.191 0.466
0 0.059 0.102 0.802 0.996

100 -1.5 -5 0.071 0.098 0.370 0.930
-15 0.058 0.070 0.158 0.468
0 0.072 0.120 0.932 1.000

-3 -5 0.065 0.084 0.353 0.986
-15 0.060 0.073 0.177 0.512
0 0.055 0.247 0.983 1.000

-0.5 -5 0.057 0.154 0.925 1.000
-15 0.039 0.089 0.634 0.993
0 0.043 0.219 1.000 1.000

250 -1.5 -5 0.044 0.119 0.982 1.000
-15 0.047 0.088 0.663 1.000
0 0.042 0.198 1.000 1.000

-3 -5 0.047 0.122 0.999 1.000
-15 0.047 0.086 0.718 1.000
0 0.046 0.614 1.000 1.000

-0.5 -5 0.049 0.307 1.000 1.000
-15 0.041 0.171 0.992 1.000
0 0.045 0.758 1.000 1.000

500 -1.5 -5 0.040 0.310 1.000 1.000
-15 0.041 0.144 1.000 1.000
0 0.045 0.898 1.000 1.000

-3 -5 0.046 0.280 1.000 1.000
-15 0.040 0.144 1.000 1.000
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Table 11. Subsampling-Based Tests of Predictability: Valuation Ratios and the
Risk-free Rate as Predictors

We use centered subsampling where the block size is selected based on the calibration rule

discussed in Section 3. In all regressions, the dependent variable is log excess stock return on the

NYSE/AMEX value-weighted index. The independent variables are the log dividend�price ratio (dp),

the log earnings�price ratio (ep), and the log three-month T-bill rate (rf), all lagged one period.

Panel A reports results of univariate one-sided t-tests and Panel B the results of bivariate Wald tests.

* denote test statistics that are signi�cant at the 5% level.

Panel A. Univariate Tests

Series Regressor b� t-test
1926�2004
Annual dp 0.126 2.124

ep 0.147 2.572
Quarterly dp 0.028 1.770

ep 0.043 2.732*
Monthly dp 0.006 1.399

ep 0.012 2.462
1926�1994
Annual dp 0.269 3.016*

ep 0.269 3.435*
Quarterly dp 0.054 2.308*

ep 0.077 3.513*
Monthly dp 0.012 1.789

ep 0.021 3.187*
1952�2004
Annual dp 0.114 1.768

ep 0.098 1.534
rf -1.189 -1.457

Quarterly dp 0.029 1.816
ep 0.025 1.572
rf -0.407 -2.063

Monthly dp 0.009 1.818
ep 0.007 1.517
rf -0.159 -2.661*
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Panel B. Bivariate Tests

Series b� of regressors Wald test
dp ep rf

1926�2004
Annual -0.034 0.176 6.607
Quarterly -0.052* 0.090* 9.683*
Monthly -0.019 0.029* 9.347
1926�1994
Annual 0.082 0.211 12.00
Quarterly -0.035 0.104* 13.11*
Monthly -0.016 0.034* 12.01*
1952�2004
Annual 0.163 -0.051 3.155

0.168 1.928* 8.815
0.164 2.052* 8.333*

Quarterly 0.056 -0.028 3.556
0.046 -0.604 11.90

0.046 -0.639* 11.57*
Monthly 0.021 0.012 3.869

0.015 -0.221* 15.70*
0.015 -0.233* 15.29*
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Table 12. Subsampling-Based Tests of Predictability: Consumption-Based Variables
as Predictors

We use centered subsampling where the block size is selected based on the calibration rule

discussed in Section 3. In all regressions, the dependent variable is log excess stock return on the

NYSE/AMEX value-weighted index. The independent variables are the log dividend�price ratio (dp),

the consumption�wealth ratio (cay) proposed by Lettau and Ludvigson (2001a, 2001b), the labor-

income�consumption ratio (sw) proposed by Santos and Veronesi (2006), log surplus consumption

based on linear habit, ln(Ct�Xlin;t), and log surplus consumption based on nonlinear habit, ln(Ct�
Xnonlin;t), all lagged one period. All tests in this table are based on bivariate regressions. Columns

1�5 report estimates of the individual coe¢ cients, with * denoting a coe¢ cient that is signi�cant at

the 5% level in a one-sided t-test. The last column reports the Wald statistic of a joint test where

both coe¢ cients are di¤erent from zero, with * denoting a test statistic that is signi�cant at the 5%

level.

b� of regressors Wald test
dp cay sw ln(C �Xlin) ln(C �Xnonlin)

Panel A. Annual Data (1952�2004)
0.045 5.470* 15.99*
0.132 -1.654* 8.329

5.411* -0.887* 17.360*
0.059 -0.093 5.051
0.058 -0.128* 8.641*

0.171* -0.293* 9.332*
5.230* -0.116* 23.190*

-0.598 -0.125 8.363*

Panel B. Quarterly Data (1952�2004)
0.012 1.435* 15.050*
0.033 -0.427 8.579

1.400* -0.213 15.850*
0.019 -0.017 4.309
0.015 -0.029 7.377

0.060 -0.085* 8.964*
1.375* -0.025* 18.420*

-0.195 -0.027 7.402
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