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ABSTRACT

In this paper we deal with the prediction theory of long memory processes. After investigating the general theory
relating to convergence of moments of the nonlinear least squares estimators, we evaluate the asymptotic prediction
mean squared error of two predictors. One is defined by using the estimator of the differencing parameter and the
other is defined by using a fixed, known differencing parameter, which is, in other words, one parametric predictor
of the seasonally integrated autoregressive moving average (SARIMA) models. In this paper, results do not impose
the normality assumption and deal not only with stationary time series but also with nonstationary ones. The finite

sample behavior is examined by simulations using the computer program S-PLUS in terms of the asymptotic theory.



1 Introduction

This paper considers prediction theory for long-memory processes. For the stationary process,
{y:+}, when the system of autocovariances is known, it is well known that the mean squared error
of the best linear predictor (BLP) of y,, based on a finite past {y;};; is easily obtained and,
as n — 00, it decreases monotonically and converges to that of the BLP based on an infinite past
{y1}52,. Because autocovariances are usually unknown, we have to use estimated linear predictors.
International Journal of Forecasting (volume 18, issue 2) provides a good survey of this issue.
However, few papers address the theoretical optimality of the practical predictors. One is Hidalgo
and Yajima (2002), which introduces a semiparametric predictor and demonstrates consistency on
the basis of the mean squared error of the BLP based on an infinite past.

The purpose of this paper is to discuss the asymptotic prediction mean squared error, denoted
PMSE, of an alternative linear predictor for the long-memory processes with estimated coefficients
in parametric models.

First, independently to the other sections, Section 2 discusses the convergence of moments of
the estimators. Some authors have considered convergence of moments of the linear least squares
estimators to evaluate the PMSE, for example, Fuller and Hasza (1981), Bhansali and Papangelou
(1991), Papangelou (1994), and Ing (2001). Independently, under an iid assumption, the asymp-
totic expansion of the moments of the normalized maximum likelihood estimator has been studied
by, for example, McCullagh (1987, Section 7.3). However, none so far have dealt with the case of
the non-linear least squares (NLS) estimators with standard properties. We prove the convergence
of moments of the scaled estimators without assuming normality. Corollary 2.1 gives sufficient
conditions of moments of the estimators of long-memory processes, which are used demonstrating
asymptotic PMSE in later sections.

Section 3 considers a scalar process:

$(L)(1 — L*)ye = O(L)er, (1.1)

where {e;} is iid (0,03) and E[g;]" < oo for all positive integers r, s is known and unity or an even
integer, p(z) = 1 — >0 | ¢z, 0(2) =1+ 3%, 6:2%, and ¢(z) = 0 and #(z) = 0 have no roots in
common and all roots are outside the unit circle. In this case, the autoregressive moving average,
ARMA(p,q), model S(L)ey = [#(L)/¢p(L)]es is stationary and invertible. Hosking (1981) and
Hassler (1994) introduced this model and showed that when d < 1/2, {y;} is stationary and when
d > —1/2,{y;} is invertible and demonstrates properties of long or intermediate memory processes.
The model is known as the autoregressive fractionally integrated seasonal moving average, or
ARFISMA(p, d, q), model when s is an even integer, and as an autoregressive fractionally integrated
moving average, ARFIMA(p, d, ¢), model when s = 1. However, our main concern is the following
non-stationary ARFISMA (p,d + m, q) process:

(]. — Ls)m.'I}t = Y, t Z ].7 (12)

where m is zero or a positive integer. Imposing the restrictions {z;_ms =y =0, ¢ < 0} and d €
(—1/2,1/2), we assume that we observe 1 _ s, Zo_ms,-. -, T, and the differenced series y1, ..., Yn.
Section 3 adopts a NLS method called the conditional sum of squares (CSS) method and proves
convergence of moments of the scaled estimators by using Corollary 2.1. Chung and Baillie (1996)
considers the small sample properties of CSS estimators of ARFIMA models and provides a survey
of this method. Section 3 also introduces a linear predictor with estimated coefficients and proves
consistency on the basis of the mean squared error of the BLP for the differenced series {y.}.
Section 4 extends this result to the non-stationary linear predictor for {z;} and considers the
effects of the misspecification of a predictor of the seasonal autoregressive integrated moving average
(SARIMA) model with differencing parameter m, when the true model is the ARFISMA model in
(1.2). The effects of misspecification of (non)stationary ARMA models are well documented, see for
example, Bhansali (1981), Fuller and Hasza (1981), Tanaka and Maekawa (1984), and Kunitomo
and Yamamoto (1985). We focus on the misspecification of the differencing parameter d in models
(1.1) and (1.2).

Section 5 examines these finite sample properties of the PMSE of predictors. It also reports the

rate to select an appropriate predictor with Wald test statistics and Akaike Information Criterion
(AIC).



Throughout this paper, let L be the lag operator, ||z|| = (2’z)/? be the Euclidian norm of ,

lA|ls = supjz=1 [|Az|| be the matrix norm of A called the spectral norm of A, 0f(x)/0z|z—y =
of (y)/oz, fOy) = f(y), fV(y) = 0f(y)/dz, and fP)(y) = 8°f(y)/dxdx’. In addition,
‘RHS’ abbreviates ‘right-hand side’, ‘LHS’ abbreviates ‘left-hand side’; and const is used to denote
universal appropriate positive constants to economize on notation. All proofs are given in the
Appendix.

2 Convergence of moments of the non-linear least squares
estimators

In this section we consider the convergence of moments of NLS estimators for some time series
models. After assuming the well-known sufficient conditions of strong consistency and asymptotic
normality, we provide a set of sufficient conditions for the convergence of moments of NLS estima-
tors. Corollary 2.1 gives simple sufficient conditions to prove the convergence of moments of NLS
estimators for a truncated time series model, which is applicable to the long-memory processes in
Section 3.

2.1 Case I: stationary processes

We counsider the following scalar stationary process, {y;}, defined by:
Za] VWi—j+ e = Zb Ner_j+e, t=...,-1,0,1,..., (2.1)

where {g,}2, is iid (0,03) and E[e;]" < oo for all positive integers r, 8° is a vector of true
parameters contained by the compact and convex parameter space @ C RP, > °° =1 a;(0)? and
Z;; b;j(0)? are finite for any @ = (61,...,60,)" € O, and, for simplicity, o is assumed to be
known. R

Let €1(0) = y1, e(0) = y: — >_; _1 i(0)y;—; (t >2), and 0,, € © be the estimator of 8° that

minimizes the objective function:

Qn( 2m 5 ) eil (2.2)

t=1

which is almost certainly twice continuously differentiable on ®, forn =1,2,....

First, we provide the sets of sufficient conditions for strong consistency and asymptotic nor-
mality of 0, [see, e.g., Gallant and White (1998, Section 3) and Gourieroux and Monfort (1989,
Chapter 24)]. Suppose there exists a function Q.(6):

sup |Qn(8) — Qoo (0)] = 0 (2.3a)

0cO

The minimum ém(% Qo (0) is attained at a unique value of 6°. (2.3b)
€

These conditions are sufficient to ensure strong consistency. Since (), is differentiable with respect
to 8, we can expand the partial derivative of @,,(8,,) with respect to 8 in a Taylor series about 0°,
for large n by, for example, Gourieroux and Monfort (1989, Property 24.9):

\/ﬁlel)(é\n) =0= \/EQS)(BO) + Q%Z) (0*)\/ﬁ(§n - 00)7 (24)

where ||@* —0°|] < ||§n —6°||. On the Hessian matrix of the above equation, we assume that there
exists a p x p fixed matrix function I(6) such that I(@) is continuous on @, I(8") is a symmetric,
positive definite matrix, and:
sup |Q2(0) — I(0)] =5 0. (2.5)
0cO



Putting Q') (0%) = I.,(6°) + R,.(6"):

1 n
1,(6°) = — eV (%)l (%)

0 =1
R, (0" -1 - 9%)e'? (g° 2)(9*) — 0@ (°
n()ngzet()et()+Qn()Qn():
UO t=1
we further assume that:
1,(6%) =5 1(6°), (2.6)
and VnQ()(6°) 5 N (0, 1(6°)), (2.7)

as n — oo. Conditions of (2.6) and (2.7) are based on the fact that series e,(8°) is obtained by
truncating the infinite autoregressive representations for y;. See, for example, Theorem 5.5.1 and
Theorem 8.4.1 in Fuller (1996). Then, Q'2 (8*) £ I(6°) and R,,(6%) <5 0 from 8,, ~5 6°, 1(6)
is continuous, (2.5), (2.6),

QP(67) ~ 16°)| < [@12(67) — 1(67)

< sup |Q(8) - 1(6)| +|1(67) — 1(6")| =5 0,
EC)

and  |R(67)] = |Q1(67) ~ 1,(6")|

+|1(6") —1(8°)|

< Q287 - 1(6")| + |1(6°) - 1.(6")] “5 0.
It follows that, as n — oo:
Vi@, - 0°) = {207} Vi) 5 N (o, 16°)7).

These are well-known results for NLS estimators. However, the aim of this section is not to
derive strong consistency and asymptotic normality of the estimators. Instead, our aim is to derive
the moments of the (scaled) estimator converge, as n — oo, to the moments of the asymptotic
distribution. Typically:

nE (6, -6%(0,-—6°) — 1(0°)~",  asn— oo. (2.8)
To proceed, put:
d
ai(m) = o (01(0),02(0), .., an(9)'| oo,

fort=1,...,p. We assume the following.

Assumption 1 For the process, {y;}, in (2.1), we assume the following.

(a) The assumptions of (2.3a), (2.3b), (2.5), (2.6), and (2.7) hold.

(b) a;(m),ax(m),...,a,(m) are linearly independent for some m > p.

(c) ||e§1)(00)|| has finite moments of all orders.

(d) For any finite set {j,l1,ls,...lp} of distinct integers, the joint distributions of
Yir Y1, Yiss -+, Y1, are absolutely continuous and there exists a constant K > 0 and
a conditional probability density function y; given v, = Y,y = ¥5,.--.¥, = Y5,

fjl1l2...lk(' |yI7y§7 - '71/2)7 such that
fjlllz---lk(y|yfay;7' .- 7yZ) <K

for all y,y7,y5,-.-,9%-



The conditions of (2.3a) and (2.3b) can be replaced by the strong consistency of 6,,. Namely,
6, — 6° =% 0. The condition of (b) is only used in deriving (A.2) in the proof of Theorem 2.1
in Appendix A. For example, when the process {y;} is a pth order autoregressive, AR(p), process,
Ye = > 0 1 0iyi—i + e, (a1(0),...,a,(0)) = (61,...,6,) and (ai(p),...,a,(p)) is a p X p identity
matrix. The condition of (c) is also only used in deriving (A.4) in the proof of Theorem 2.1,
Appendix A. The condition of (d) is due to (III) of Bhansali and Papangelou (1991, p.1157). [Due
to a printer’s error, an incongruous Kt appears in place of the correct bound K in (III). See
Papangelou (1994, p.403).]
Then we obtain the following theorem.

Theorem 2.1 For the model (2.1), let 8., be the estimator defined by (2.2) and satisfy Assumption
1. Then there exists a number ng >0, 19 > 1 > 2, u,v > 1, 1/u+1/v =1, and for all n > ny:

—1]|9
E H{Q@) < 0, (2.9)
s
for some q > rqu. Furthermore, if:
EH\/EQS)(BO)HEI < o0, (2.10)
for some ¢' > rov and all n > ng, then:
lim E||va (8, - 6°)| =E|N(0, 167", (2.11)

n— o0
and (2.8) holds.

The proof of Theorem 2.1 makes use of arguments by Bhansali and Papangelou (1991) and Ing
(2001), which prove the convergence of moments of the normalized linear least squares estimators.

2.2 Case II: non-stationary processes

We counsider the following truncated non-stationary process, {y;}, defined by:

Za] VWi—j +er = Zb Nerj+er, t=2,3..., (2.12)

y1 = €1, and y; = 0 for ¢t < 0, where {&;}, aj(BO)s, and bj(BO)s are given by (2.1). Namely, this
model is equivalent to the model (2.1) with assumption {y; =&, = 0,t < 0}.

We derive convergence of moments of NLS estimators of 8° when we observe {y;}7, de-
fined by (2.12). Note that we use notations of Section 2.1 to economize notations. Therefore,
similarly to Section 2.1, let e1(0) = y1, e(0) = yr — Zﬁ;i a;(@)yi—; (t > 2), and {y:} be
given by (2.12). Let 6., € © be the NLS estimator of 6° that minimizes the objective function
Qn(0) = 321, €7(0)/(2n0g).

In this model, by using the fact that Z;; Zz;ﬁ_l ay; = Z Zk o Ok, j—k, We have:

t—1 t—1 t—j—1 t—1
V0% == a0y ;= -3 alV (0% N b0 ;=D di(0%)ej,  (213)
j=1 j=1 k=0 j=1

for ¢ > 2, where d;(8°) = — 327~} 0 br(0°)a; (1) .(0°) and by(8°) = 1. Therefore, if these {d;(0°)}
satisfy:

n t—1t—1 t—1
1
=— ) D> d;j(0°)dr(0°)er_jer i =S I(6°) = lim > d;(0°)d;(6°), (2.14)
naot 2 j=1 k=1 t%mgl

n (2.6), then we can simplify sufficient conditions of moments of the NLS estimators given by
Theorem 2.1.



Assumption 2 For the process, {y;}, in (2.12), we assume the following.
(a) The assumptions of (2.3a), (2.3b), (2.5), and (2.6) hold.
(b) There exist p-vector sequences {d;(0°)} given by (2.13) and satisfy (2.14).

(c) &1 has a probability density function f(z) such that f(z) < K for any ¢ € R and some
positive constant K.

The conditions of (2.3a) and (2.3b) can be replaced by the strong consistency of 6, as noted in
Section 2.1. Since {a;(0)} is a sequence of non-linear functions of @, it is often difficult to treat
{a;(m)} in (b) of Assumption 1. (b) of Assumption 2 simplifies this condition (see the proof of
Corollary 2.1 in Appendix A). This condition not only ensures (c) of Assumption 1 and (2.10), but
also satisfies conditions of a central limit theorem for martingale differences because, under the
model (2.12), e;(8°) = &, for t > 1 and {et(BO)egl)(ﬂo)} is a sequence of martingale differences.
See, for example, Fuller (1996, Theorem 5.3.4 and Theorem 5.5.1). Therefore, (2.7) in Assumption
1 also holds. (d) of Assumption 1 is replaced by (c) of Assumption 2 from Lemma 2.1 below.

Corollary 2.1 Let the model (2.12) hold, and let the conditions of Assumption 2 hold. Then (2.8),
(2.9), and (2.11) hold.

We establish the following lemma to prove Theorem 2.1 and Corollary 2.1.

Lemma 2.1 (i) Let {X;} be a strict stationary processes, and let for any finite set {j,11,l2,... 11}
of distinct integers, the joint distributions of X;, Xi,, X1,,..., Xy, be absolutely continuous and
there ezist a constant K > 0 and a conditional probability density function X; given X; =
1, X1, = @2, ..., Xi, =%k, fins. 1. ( |21, 22, .., @), such that:

fjlllZ---lk('r|'r17'r27"'7$k) SKa (215)

for all x,x1,25,..., 7. PutY; = >"
Then:

ai; X; (i =1,2,...,n), where a;; # 0 fori =1,...,n

j=t
Pr(Y; € C4,Y1, € C1,, Y1, € Cly, ..., Y1, € CL)
< K|a11|_1(cll - cl) PI‘(Y}I € Cluyiz € Clz: cee 71/l-k € Clk)? (216)
where Cy = (c1,c]), —00 < 1 < ¢ <00, 1<l <ly <<l <mn, and C,,Cl,,...,C, are
appropriate intervals.
(ii) When {X;} is an iid process, the condition of (2.15) can be replaced by:
fi(z) < K, (for any x € R and some K > 0), (2.17)

where fy(z) is the marginal probability density function of X, .

3 PMSE for long-memory processes

In this section we explore the asymptotic PMSE for the process {y;} in (1.1). For a scalar stationary
and invertible process {y;} defined by:

Zﬂ'jyt_j = &¢, and Yt :Z¢j8t_j, tZO,:tl,..., (31)
i=0 =0
where Z —0 ], Z] 01/12 < 00, and mg = Yo = 1, it is well known that, in general, the BLP,
denoted by yn(h), for a future value of y,+n based on data from the 1nﬁn1te Past, Yn, Yn_1,- - - iS
written as:

= wign(h =) =Y ci(Wyni15 = Y $icntn i, (3-2)
j=1 j=1

Jj=h



for h > 1 where y,,(h — j) = Ynyn—; for j > h and c;(h)s are, given by equation (A5.2.3) in Box
and Jenkins (1976):

h—1
¢j(h) = — Z YiTjth—i-1, (3.3)
i=0
for j > 1. Its PMSE, o7 (h), is given by:
2 h—1 -| 2 h—1
P20 Z E [y - u(h)]  =E S| o2 (3.9
7=0 7=0

However, for simplicity, we impose restrictions on {y; = 0,¢ < 0}, or equivalently {e; = 0,t <
0}. In this case, the expression for the BLP y,,(h) based on {y;}}~, is simply obtained by imposing
{y: =0,t <0} and {e; = 0,¢t <0} in (3.2) and the PMSE in (3.4) will not change.

Because ;s and ;s are usually unknown, Section 3.1 discusses estimated predictors based
on data of sample size n for y; defined by (1.1), whereas Section 3.2 discusses the effects of
misspecification when the differencing parameter d is fixed. Throughout this section, we estimate
parameters using the CSS method.

3.1 PMSE for ARFISMA processes

We first construct the estimated predictor of y,4p, denoted by 3, (h), when {y.}7, in (1.1) is
given. Put 8(z) = 0(2)/¢(z) = >ioy Biz'. When §(z) = 1, under the initial condition, the model
(1.1) can be expressed as:

t—1
ye=Y vi(de_;, t>1, (3.5)

j=0
and y; = 0,t <0, where ¢;(d) =T['(j+d)/{T'(d)T(j+1)}, for j =0,s,2s,... =0, otherwise, which

is the well-known jth MA (00) coefficient of the ARFIMA(0, d, 0) process when s = 1. Alternatively,
we can rewrite (3.5) as:

t—1
S omidyej=e,  t>1, (3.6)
Jj=0

where 7;(d) = 1¢;(—d). Similarly, for the ARFISMA(p, d, q) model in (1.1), it can be written as:
t—1 t—1
Y = ij(lso)é‘t—ja Zﬂj(éo)yt—j =&t t>1, (3.7)
7=0 7=0

where 1;(0%)s are defined in terms of coefficients of 8;s and v;(d)s, 7;(6°)s are also similarly

defined, 6° is the true parameter vector of (1.1) defined by 8° = (d,,@')l, and B is a (p + q)-
parameter vector consisting of ARMA(p, ¢) parameters, i.e., 8 = (¢1,...,¢p,01,...,6,)".
We now assume the following.

Assumption 3 For the process {y;} in (1.1),

(a) {&:} isiid (0,08) and E[g;]” < oo for all positive integers r and £; has a probability density
function f(z) such that f(z) < K < oo for any = € R and some positive constant K.

(b) {y: =0, t <0} or equivalently {e; =0, t <O0}.

(¢) d € Dy for some | = 1,2,3, where D; = [a, 1/2 —qa], Dy = [« —1/4, 1/4 —a], D3 =
[ —1/2, —a], and a € (0,1/4). Dg be a compact space such that, for any 8 € D3, ¢(2)
and 6(z) satisfy conditions given in Section 1. §° = (d,8')’ € D; x D = Ds. In addition,
o2 is in the interior of the compact space contained in RT



Assumption 3 (c) is from Yajima (1985). Yajima (1985) proves strong consistency and asymp-
totic normality of maximum likelihood estimators (MLE) of the ARFIMA(0,d,0) model with
d € (0,1/2). Using the techniques of Yajima’s proof, we can prove the consistency of the CSS esti-
mators when d € D; and extend this result to the case of any D, (see Katayama, 2006, Appendix
B).

Given a process {y; }7_, defined in (1.1), which satisfies Assumption 3, let §° be a true parameter
vector (d, ')’ and assume that 6° and & are in the same compact parameter space D; defined by

o .
Assumption 3. The CSS estimator (0 ,5%)" of ((6°)',02)" is obtained by maximizing the CSS
function:

n

. . 1
S(é,az):—glog%r—glogaz—ﬁ e2(9),
t=1

where £,(0) is defined by £,(d) = ZZ;% 7k (0)ye—x for 6 € Ds. Note that 4 is given by minimizing
the objective function Y., €7(d), with respect to § and set 6> = Y., £,(6)?/n. Then, by
Katayama (2006, Theorem 1 and Remark 1), the following holds, as n — oo:

525 6% and Vn(d— 8% -5 N(0, I(6°)7Y), (3.8)
where I(6°) is a positive definite matrix given by:

t—1

1(50):< /6 ””) Zaka 8& ‘50 Z&kL e, (3.9)

8 = (s, 0} )" is defined by 92,(8°)/0d = Y, sk L*e; and 0¢,(8°) /0B = Y__} Or,3L*e;. Each
element of {5k} is defined as follows:

dey(6° =y =1 ,
g(d ) =log(1—L%)e; = — ELkSEt = - ZSkLkEt; (3.10)
k=1 k=1
o 50 t—j—1 t—1 ,
e R SR TR
] —i
De,(6° t—j—1 t—1
65(0 ) =_91! LJEt Z o* Lk+]8t Zeziijst, forj=1,....,q
i —
where s; = s/j for j = s,2s,..., ;=0 otherwise, ¢} and 67 are coefficients in the expansions

o1 (2) = X5, @327 and 671(z) = >i20 0327, respectively. Especially, 377 | si = 77/6, k =

>het Orps and =377, 81,50} 5
Furthermore, as a consequence of Corollary 2.1, we obtain, as n — oo:

-~ -~

nE(E-0°)(3-0° — I6°)" and E H 5 — & H — O(n~"/?), (3.11)

for > 1. The proof of (3.11) is given in the Appendix B.
Let c;(h) = ¢j(h, 8°), then the BLP ¥, (h) based on {y;}7_, is yn(h) = > i cji(h, 0N Ynt1j =

Z"+h Y49 (0°)entn_j, whereas 7, (h) is defined by:

n n+h—1

@\n(h) = Zc](h Z/n+1 —Jj — Z 1;[]] E:n—‘,-h—j; (312)
j=1

where ¢;(h, 3) and (0 ) are given by substituting & for 6° into cj(h,8°) and 1;(8"), respectively,

and {&;};=, is the residual sequence given by & = z—:t(é) = ZE %ﬂr](é)yt j- The final equality of

(3.12) is given in the Appendix B.



The prediction error of ¥, (h) is given by:
Yn+h = Yn(h) = Ynth = yn(h) + yn(h) — Yn(h)

n

h—1
=> i (0"entnj— Y {Cj(ha 6) —c;(h, 50)}yn+17j- (3.13)
=0 j=1

Since the first and second terms on the RHS of (3.13) are mutually independent, the asymptotic
PMSE of 4, (h), denoted by 2 (h), is defined as:

n

=o,(h) +E [Z {cj(h, d) — ¢;(h, 50)}yn+1_j] : (3.14)

=1

where o7 (h) is of Z;:& % given by (3.4) with ¢; = 1;(8°).
To derive the asymptotic PMSE of g, (h), we first establish the following lemmas, which are
used repeatedly in what follows.

Lemma 3.1 Let the random variables be defined by:

n—1 n—2 /n—j—1
-'L'i,n:E Q; j€n—j, and Zi,n:E E BikEn—j—k |En—j, =12,

7=0 7=0 k=1
where {e;} ~ iid (0, 03), Ele;]* < 00, as j — 00, a;; = O(j %) and B;; = O(F~t) fori = 1,2,
a € (1/2,1]. Then it follows that, as n — oo:
E[1 022 n21,n22,0]/n = E[t1 n®2,n] E[21 022 0] /1 + 0(1), (3.15a)
and  E[z1 222,21 0] = o(v/1). (3.15Db)
Since the proof can be obtained from the fact that Y, k™! <1+logn and Y ,_ k! <c¢ 'n¢
(0<e<l), we omit it. Note that E[x; nz2,,] E[21.n22,n]/7 = O(1) as n — oo.
Hereafter, let c (h 0) be the i-th derivatives of ¢;(h, §) with respect to 9.

Lemma 3.2 It holds that w](i)(éo) = O((logj)ij—ah, 1/1](i)(60) = O((logj)'j% 1Y), and
¢ (1, 6%) = O((log j)ij~*~1), i =0,1,2, as j - oo.

We omit the proofs since these results are obtained in the same way as those in, for example,
Sections 2.11 and (8.8.6) of Fuller (1996).

By a Taylor expansion of g, (h) around 6= 6%, we obtain:

Z {Cj(h,g) — cj(h,é }yn+1 —j ZC h (50 (5 - (50)yn+1_]‘ + Rl,n, (316)

Jj=1

where:
n

Rl,n = Z (8_ 60)105‘2) (h‘a 6*)(5\_ 60)yn+17]’7

j=1
and ||3— 0°|| > ||6* — 6°||. Using (3.11), we obtain the following theorem.

Theorem 3.1 Let {y:}}, be given by (1.1) and Assumption 3. Then it follows that, as n — oo:

oo

52(h) = B [yn - gn(h)]2 = 02(h) + ‘2—0 0,(h, 6% I(8°) ", (1, 6°) + 0<%> (3.17)

Jj=0

where o (h) and §,(h) are given by (3.14) and (3.12), respectively:

J
;(h, 0% = Z:cgc+1 h, 6% 1 (6°) = Zwk Ojrh—t,
k=0

and {81} is given by (3.9) and (3.10), and I(8°) are given by (3.8).



Note that (3.17) indicates that PMSE of ¥, (h) converges to that of BLP with O(1/n). As well,
the positive number divided by n in (3.17) consists of information about PMSE of BLP, o (h) =

E[Z;:Ol $;(6°)ensn_;]* and the asymptotic variance of v/n(8 — 6°), T1(6°)~! = {352, 6204}~
The following results follow from the preceding theorem.

Corollary 3.1 Under the same conditions as in Theorem 3.1, it follows that, as n — oo:
~ ~ 2 . +q+1 1
HOE e yn(l)] = o2 (1 + %) + o(E). (3.18)

Example 3.1 Let {y;} be given by the AR(p) process, y; = Y 4 | ¢iys—i + €. Then y,(h) =
>F 1 ¢j(h,0)ynt1—j. By Corollary 3.1, 55(1) ~ o5(1+ p/n) as n — oo. Let {y;} be given by
the AR(1) process, y; = ¢y;_1 + & where 0 < |¢| < 1 and ¢ = ¢;. Then, g,(h) = cl(h,qb)yn =
"y, 1(8°) = 1/(1 — ¢?), dc1(h, ¢)/0¢ = h¢"~', and ¢, (h,8°) = h¢h~'¢7. It follows that
20 @, (h, 8°) I(8°) ", (h,8°) = h2¢*"=V) h > 0. Also, 02(h) = 03 3.1~} ¢*. These results
are consistent with Yamamoto (1976, p.126).

Furthermore, let {y;} be given by the autoregressive moving average ARMA(1,1) model, y, =
¢yr—1 + 01 + &, where 0 < [¢],|6] < 1 and (¢,0) = (¢1,61). Then, 0% = (4,0)', &
(=71, —(=0)71), 9;(8") =1 for j = 0; = (¢ +6)¢/~" for j > 1:

(P h=1)" 26+ 0) + o) (10— 1/(1+60)
%'(h"so)‘( o1 (—0) > (‘50)‘<1/1+¢9> 1/(1—92>>’

and & (h) =03 (h) + %3{2&“—1) +2(h = 1)(¢ +0)6*" % + (h = 1)*(1 + ¢6)>¢*"~ 2>} + 0(2)

as n — 00, where o2 (h) = 0§ for h = 1; = o5 {1 + (¢ + 6)* Z;ZOQ 3?7} for h > 2. These results are

consistent with Yamamoto (1981, pp. 489 —490).

3.2 The effects of misspecification of the integration order

We rewrite the model (1.1) as:
(1— L)%ty =B(L)ey  t>1, (3.19)

and y; = 0, t < 0, where d = dy + 0. We assume that the process (3.19) satisfies Assumption 3
and dy,d € Dy, for some | = 1,2,3. The predictors with estimated parameters considered here are
Un(h), which are discussed in Section 3.1, and ¥, (h), which is given by fixed dy with estimators of
ARMA (p, q) parameters, denoted by 3, from the process {(1— L*)%y,}. That is, let § = (do,gl)',

then:
n n+h—1

T(h) = ¢j(h, O)yni1—j = Z 5 (8)Entns, (3.20)
j=1
where & = &,(8) = 3120 ™5 (0)yi—;-
To make a comparison between the two predictors, 7, (h) and g, (h), we assume that § = ¢/\/n
and that ¢ is a fixed constant. The following theorem shows the asymptotic PMSE of g,,(h).

Theorem 3.2 Let {y:};; be given by (3.19) and 6 = ¢/\/n where c is a fived constant. Then it
follows that, as n — oo:

(e}

a;(h)zE[yM—gn(h)]z Z (h,8°) T @, (h, 60)+0<711> (3.21)

where o2 (h) and §n(h) are given by (3.14) and (3.20), respectively, {<pj(h,60)} is defined by The-
orem 3.1. T is given by:

2 —2k'Pd L
r'= ( —2® 'k B +2P kP! ) ’

where k and ® are given by (3.9).



Note that T is similar to asymptotic variance of \/T_L(S — 0%, 1(6°)~'. (3.21) indicates that the
PMSE of y,,(h) converges to that of BLP with O(1/n).

Remark 1 Hereafter, to make a comparison between the two different predictors, we define asymp-
totic relative efficiency (ARE) as follows: for a stochastic process {y;}, let y,(h) and g, (h) be two
predictors of a future value, y,r, when {yt};‘:j for some j < n is given. Then the asymptotic
relative efficiency between g, (k) and g,(h), denoted by ARE [4,,(h), ¥.(h)], is defined by:

ARE (3,0, 72(0)] = fim 0 (E [in = 5a0)] = E[mn -] ). @22)

n—oo

The asymptotic PMSE of y,,(h) is given by (3.17), which leads to the following result.
Corollary 3.2 Under the same conditions as in Theorem 3.2, it follows that:

>0 iffw>|cl;

) (3.23)
<0 iffw<]el;,

ARE [§n(h), Gn(h)] {

where w = (12 /6 — K'® 1K) ~1/2.

Note that w is the standard error of the limiting distribution of \/n(d — d) given by (3.8). The
following result also follows from the preceding theorem.

Corollary 3.3 Under the same conditions as in Theorem 3.2, it follows that, as n — oo:

CHOE —gjn(1)]2 = o2 <1+IM> +o<l>, (3.24)

n n

where w is given by Corollary 3.2.

Example 3.2 Let {y:};., be given by (1 — L)ly, =& (t > 1) and y, = 0 (¢t < 0) where d €
(=1/2,1/2). Then g,(1) = =327 7 (d)yn_H _j and 67(1) is, for large n, (14 1/n)og. If h > 2,
then g, (h) is given by:

n n+h—1
gn(h) =Y cj(hd)ynii—j = Y i d)Entn—j,
=1 j=h

where &5 = Zk 07rk( )y] k, ¥j(d) and 7;(d) are given by (3.5) and (3.6), respectively, and:

~ D(h+d)  jm(d)
- Zwi(d)ﬂj+h*i*1(d) - _r(1 +d)T(h)j+h—1

by equation (2.2.6) in Miller (1994). The asymptotic PMSE of g,,(h) is given by, as n — oc:

53509 =B [y 5] =0 T 5@ + o +o( 1),

Jj=0

where:

C(h’d)ZWQZ{Z]-i-h k}

h—j—1

= , 6= ) 1 Ui (d)n_i(d) « 1

=0 k=1 1<]<k<h =]
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Let d be dy + 6, where 6 and dy are fixed constants, then ,(1) = =37, 7;(do)yn+1-; and
o2(1) = E[(1 — L) %e,41]?, which is, for large n, the variance of the stationary ARFIMA(0,6,0)
model, o2T(1 — 260)/T%(1 - 6).

Let d be dp + 6, where dy and 6 are a fixed constant and ¢/+/n, respectively; then, as n — oo,
G2(1) ~ {1+ x*c*/(6n)}og. If h > 2, then G(h) ~ {Zh,Ol ¥;(d)? + w2c2C(h,d)/(6n)}o3, as
n — oo. Therefore, under this model the sign of ARE[y,(h), ¥n(h)] depends on whether |c]| is

greater than w = \/_/7T ~ 0.78.

Example 3.3 Similar results are also obtained if the model of {y;} in Example 3.2 is replaced by
(1 — L*)%y; = &, where t > 1, s is even, and d € (—1/2,1/2). The expression of the asymptotic
PMSE of y,(1) = —Z] | (d)yn+1 _; is the same as that of Example 3.2. ¥, (h) is given by
Gulh) = Xy (DEnrn sy where &5 = Y475 m(d)yi, 15(d) and 7;(d) are given by (3.5)
and (3.6), respectively. Letting d be do + 6, where 6 and dy are fixed constants, then 572(1) =
E[(1 — L*)~%,,41)%, which is, for large n, the variance of the stationary ARFISMA(0,6,0) model,
030(1—260)/T%(1—6). Let 6 be ¢/+/n; then, as n — o0, 75 (1) ~ {1+ n%c?/(6n)}og, which implies
that we can evaluate the ARE[7,(1), yn(l)] as in Example 3.2.

4 PMSE for integrated long-memory processes

We discuss the asymptotic PMSE of non-stationary ARFISMA processes {z;}, which is already
given by (1.2) in Section 1:

(1—=Lx, =y = (1 - L°) " 4B(L)ey, t>1, (4.1)

and T¢—ms = yr = 0, t < 0, where {y;} is given by (1.1) with Assumption 3, the vector
(Z1—ms,---,To) is any random vector and is uncorrelated with y;, ¢ > 1, and m is known zero
or a positive integer.

As in Brockwell and Davis (1991, Section 9.5), given the data {x:}} ,_,,, from (4.1), we can
obtain the BLP, denoted by z,(h), based on #1_ms,Z2—ms,..., T, for a future value z,4,, and
define the predictor with estimated parameters using the results of Sections 3.1 and 3.2. The
following example shows the asymptotic PMSE of the two predictors with estimated parameters,
ZTn(h) and Z,(h).

Example 4.1 (m =s =1 and f(z) = ) Let {z;}" , be given by (1 — L)z, =y, = (1 — L) g
and d = ¢/y/n. Then a,(h) = 2+ 12y yn(h—j) and B, (h) = &+ 5=y Tn(h—j) where y,, (k) =

l":_Ol Yirk(d)en—; and 4, (k) is given similarly to Example 3.2 for kK = 1,..., h, respectively, and
Zn(h) = z,. By Corollary 3.2 and Example 3.2, the sign of ARE[Z,(h), Z,(h)] depends on
whether | c| is greater than w = v/6/7m =~ 0.78.

Example 4.2 (m = 1, s is even, and £(z) = 1). Let {z:}}_,_, be given by (1 — L*)z; = y; =
(1 — L*)~4¢; with an even integer s and d = ¢/\/n. If h < s, then x,(h) = T,1h_s + yn(h) and
Tn(h) = Tpnyn—s +Yn(h) where y,(h) = 7:—01 Yi4-n(d)en—; and 7, (h) is given similarly to Example
3.3, and Z,,(h) = Tpth—s. By Corollary 3.2 and Example 3.3, the sign of ARE[Z,(h), Z,(h)]
depends on whether | c| is greater than w = v/6/7.

Example 43 (m = s = 1 and B(2) = (1 — ¢z)"1). Let {x}, be given by (1 — L)z,
= (1-L)"¢1 ¢L) g with |¢| < 1 and d = ¢/v/n. Then z,(h) = z, + Z] 0 Y yn(h = j
- Ba(h) = 2+ Tjog Ga(h — ) where ya(h) = Eily dren(d)ent, 8° = (d,9)', and Gu(k) =

"¢ k,é Yna1_j for k =1,... h, whereas z,,(h) = x,,+ Un(h—j) where y, (k) = gkyn for
2]71 .7( +1—7 j= 0

k=1,...,hasin the AR(1) case of Example 3.1. By Corollary 3.2, the sign of ARE[Z,,(h), Z,(h)]
depends on ¢ and w = [7?/6 — {log(1 — ¢)}?(1 — ¢2)/¢2]71/2.

~—
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5 Some simulations for PMSE and model selection

In this section we use simulations to examine the finite sample performance of the predictors dis-

cussed in the previous section. The calculations are made using S-PLUS Version 4.5. Observations

in the models were generated by Cholesky decomposition of the covariance matrix of the process

(see Sections 11.3.1 and 11.3.5 in Beran, 1994). In addition, the Gauss—Newton procedure is used

for the maximization of S(4,0?), for which Tanaka (1999, Section 5) follows concrete procedures.
The models used are:

DGP 1: @y = 24— + (1 — L)%y, (t=1,...,n+1),
DGP 2: @ = 412 + (1 — L*?) ey, (t=1,...,n+12),
DGP 3: 2 =21 + (1 — L) ¢(1 —¢L) ! (t=1,...,n+1),

where {e,} ~ NID(0,1). We consider the predictors Z,, (h) and Z,, (h), which are given by Examples
4.1, 4.2, and 4.3. For all simulations, we fix the number of replications at 10,000 and h = 1,3, 5.
The first row labelled d denotes the true value of d and the second row labelled ¢/w is given by
¢ = v/nd where w is given by Examples 4.1, 4.2, and 4.3. Here, the simulated square root of PMSE,
denoted SRPMSE, for h-step ahead is given by:

10000 . 10000
1 1

2 2
7.0 = \| Toogs 2 {Fui (W) = s} and (0 = | 15505 3 1 {Eni() = wuins}
where x4, ; denotes the actual value of =, at the jth simulation of the relevant model above,
and Tp,_;(h) and Z,_;(h) are also predictors of Z, (h) and Z, (h) from data {z;} and differenced data
of sample size n at the jth simulation, respectively. Each table employs underlining to distinguish
the smaller of . (h) and 7, (h). Also reported is the SRPMSE of the BLP, o, (h).

The tables also provide the rate of selection of Z,,(h) using the Wald test statistics:

W=vnd/w. (5.1)

This is because, following from Corollary 3.2, v/n|d|/w = |¢|/w > 1 is a necessary and sufficient
condition of ARE[Z,(h), Z,(h)] > 0, and we can estimate d and w from CSS methods. Given
Tanaka (1999, Section 4), it is known that:

Pr(W > zo) — Pr(Z > 24 — ¢/w), asn — oo, (5.2)

where Z ~ N(0,1) and z, is an upper 100a% point of Z. Therefore, when ¢ > 0, it holds, as
n — oo:
Pr(W >1|c/w>1) — Pr(Z >1—c/w|c/w>1) > 0.5. (5.3)

It follows that when Z,, (h) is more desirable than Z, (h) in terms of ARE of PMSE, the asymptotic
probability of selecting Z, (h) by W > 1 is larger than 0.5 and increases as ¢ — oo. This is a
right-sided test, Hy : d = 0 vs Hy : d > 0 using Wald test statistics with a significance level of
about 16%. Therefore, Wald test statistics are a candidate for model selection in terms of the
ARE of PMSE. Based on these results, we report the rate of selection of predictor Z, (h) as follows.
When d > 0, the rows labelled W (s) denote the percentages of W > 1 (selection of Z, (h)) and
the rows of W (100«) (o = 0.10,0.05,0.01) denote the percentages of W > z, (selection of Z, (h))
of the right-sided test, Ho : d = 0 vs Hy : d > 0. Similarly, when d < 0, the rows labelled W (s)
denote the percentages of W < —1 and the rows of W (100«) denote the percentages of W < —z,
of the left-sided test, Hyp : d = 0 vs Hy : d < 0. We also report the percentage of selection of
predictor Z,(h) using Akaike information criterion (AIC). These are defined by:

AIC = -25(5,5%) +2(p+1), and AIC = —25(3,57%) +2(p+ 2),

where p is given by p = 0 for DGP 1 and DGP 2 and p = 1 for DGP 3, respectively. The

rows labelled AIC denote the percentage of AIC < AIC. Namely, the percentage of approximate
likelihood ratio test statistics is larger than 2 for the hypothesis test Hy : d = 0 vs H; : d # 0 with
significance level about 16%.

These experiments reveal the following.
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1. For the results on SRPMSE:

(a) Both o,(h) and ,(h) approximate o, (h) well. These results are consistent with the

theoretical results given by Sections 3 and 4 because 52 (h)
with O(1/n).
(b) It indicates the 2 (h)

_52

T

and 72 (h) converges to o2 (h)

(h) gets smaller as |c|/w gets larger. This is consistent with the

theoretical results given by Corollary 3.2 because ARE[Z,,(h), Z,(h)] = const(w? — ¢?)
(see the proof of the Corollary 3.2 in Appendix B).
(c) Underlines in the rows of 7, (h) and o, (h) show that o, (h) seems to be smaller than
o (h) for |c|/w > 1, conversely, 7, (h) seems to be larger than &, (h) for |¢|/w < 1, which
is consistent with theoretical results given by Corollary 3.2 and Examples 4.1, 4.2, and

4.3.

2. For the results on model selections:

(a) The rows of W (s) and W (100«) show the empirical sizes of the left-hand sided tests

have relatively large values, while the rows of AIC present a stable size.

(b) The rows of W (s) show the percentages of selection of Z,,(h) are getting larger as |c|/w
becomes larger and are larger than 50% for |c|/w > 1, which is consistent with (5.3).

(¢) The rows of W(100a) are more likely to select Z,(h) (by a simple model) than Z,(h)
(by a complex model) even if Z,,(h) is more desirable than Z, (h) in the sense of ARE of
PMSE, which is obvious from the theoretical power function given by (5.2). The rows
of AIC also show similar properties.

3. Table 3 (a) shows the case of ¢ = 0.6, 0, (h) performs poorly and 7. (h) < 7.(h) for |d| >
0.3. Correspondingly, the model selection results are likely to choose Z,(h). In the case of
¢ = —0.8 given by Table 3 (b), however, it seems that Z,(h) performs relatively well and
0.(h) < o,(h) for |d| > 0.2. By Example 4.3 and Tanaka (1999), this is closely related to
the fact that the estimators of ¢ and d are negatively correlated and the correlation is much
higher for ¢ = 0.6. This indicates that the finite sample performance of Z,,(h) is affected by
the true ARMA parameters.

4. As a whole, it indicates that classical test statistics, such as the likelihood ratio, Wald, and
Lagrange multiplier test statistics, control the probability of selecting the relatively efficient
predictor by the levels of significance. In other words, these can serve as model selection
criteria for the ARE of PMSE when a complex model hypothesized is a true model.

TABLE 1 (a) The SRPMSE and the percentage of selection of z, (h) for DGP 1 (n = 50)

d -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
c/w -1.81 -1.36 -0.91 -0.45 0.00 0.45 0.91 1.36 1.81
o.(1) 1.0089 0.9981  1.0044 1.0127 1.0087 0.9892 1.0168 1.0152 1.0533
0.(3) 1.5134 1.5766  1.6051  1.6657 1.7418 1.8241 1.9238 2.0176  2.1619
o.(5) 1.8234 1.9034 1.9820 2.1063 2.2485 2.3845 2.6220 2.8179  3.0740
o.(1) 1.0044 0.9937 1.0096 1.0226 1.0234 0.9973 1.0189  1.0058 1.0139
0.(3) 1.4937 1.5630 1.6124 1.6856 1.7719 1.8460 1.9293  1.9932  2.0650
0.(5) 1.7967 1.8899 1.9910 2.1345 2.2933 24169  2.6296  2.7789  2.9323
0z (1) 1.0000  1.0000  1.0000  1.0000 1.0000 1.0000  1.0000  1.0000  1.0000
0z(3) 1.4691 1.5299 1.5941 1.6615 1.7321 1.8058  1.8826 1.9623  2.0451
02(5) 1.7371  1.8481 1.9681 2.0974 2.2361 2.3844  2.5426  2.7110  2.8897
AIC 94.9 38.6 24.6 16.9 13.1 16.8 27.0 42.6 99.8
W (s) 80.9 67.1 50.1 36.0 21.9/13.9 26.4 42.0 98.7 74.5
W (10) 72.5 96.9 39.6 27.6 15.9/8.5 18.2 32.0 48.3 66.2
W (5) 99.8 43.1 28.1 18.3 10.1/4.2 9.8 20.3 35.3 93.3
W (1) 35.2 22.8 12.8 7.6 3.7/0.9 24 6.4 14.3 8.6

DGP 1: {z;}?, where 7, = 2, 1 + (1 — L)"%¢; and {g;} ~ NID(0,1).
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TABLE 1 (b) The SRPMSE and the percentage of selection of Z,(h) for DGP 1 (n = 100)
d -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
c/w -2.57 -1.92 -1.28 -0.64 0.00 0.64 1.28 1.92 2.57
0.(1) 1.0228 1.0135 1.0201  0.9941 1.0047 1.0117 1.0071 1.0310  1.0496
0.(3) 1.5279  1.5657 1.6308  1.6571 1.7433 1.8158 1.9311  2.0560  2.1733
0.(5) 1.8136 1.9010 1.9987  2.1054 2.2455 2.3813 2.6101 2.8423 3.0871
0.(1) 1.0011  1.0001  1.0194 0.9990 1.0119 1.0158 1.0024 1.0125 1.0025
0.(3) 1.4768 1.5409 1.6280 1.6663 1.7600 1.8283  1.9205 1.9943 2.0370
0.(5) 1.7470 1.8625 1.9922 2.1151 2.2711 23966  2.5914  2.7536  2.8788
o.(1) 1.0000  1.0000 1.0000  1.0000 1.0000 1.0000  1.0000  1.0000  1.0000
0.(3) 1.4691 1.5299 1.5941 1.6615 1.7321 1.8058 1.8826 1.9623  2.0451
o.(5) 1.7371  1.8481 1.9681 2.0974 2.2361 2.3844 2.5426 2.7110 2.8897
AIC 81.8 60.7 379 19.0 12.5 20.0 40.0 63.9 82.5
W (s) 95.0 84.0 63.2 39.7 20.0/13.6 32.1 96.9 78.2 91.0
W(10) 915 761 529 208  13.9/81 229 463  70.1  86.8
W (5) 83.5 63.2 39.8 19.5 8.5/3.7 13.3 32.6 58.0 79.1
W (1) 60.9 37.5 18.8 7.7 2.5/0.7 3.2 12.9 32.8 57.2

DGP 1: {z;}1% where z; = z; 1 + (1 — L) % and {g;} ~ NID(0,1).

TABLE 2 (a) The SRPMSE and the percentage of selection of Z,(h) (n = 50)
d -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
c/w -1.81 -1.36 -0.91 -0.45 0.00 0.45 0.91 1.36 1.81
0. (1) 1.0381  1.0148 1.0129  1.0089 0.9977 1.0022 1.0100 1.0251 1.0609
0(3) 1.0313 1.0157  1.0018 0.9995 1.0036 1.0028 1.0004 1.0329 1.0456
0.(5) 1.0385  1.0140 1.0208 0.9913 1.0050 1.0062 1.0126 1.0263  1.0507
0.(1) 1.0348 1.0197 1.0207  1.0231 1.0117 1.0213  1.0140 1.0195 1.0301
0.(3) 1.0306 1.0156 1.0126  1.0147 1.0223 1.0180  1.0123 1.0279  1.0096
0.(5) 1.0266 1.0191 1.0312 1.0056 1.0221 1.0224 1.0130 1.0147  1.0279
AIC 36.2 28.0 20.7 154 12.7 15.9 23.0 35.3 54.2
W(s) 69.6 59.4 48.5 36.0 24.7/20.7 324 47.8 62.2 78.6
W (10) 61.5 51.0 40.7 28.7 19.1/15.2 25.2 39.4 53.6 72.0
W (5) 50.1 40.4 30.6 21.1 13.1/9.6 17.3 29.1 42.8 62.2
W(1) 30.7 23.3 16.4 10.6 5.8/3.6 7.1 14.1 25.2 42.2

DGP 2: {z,:}¢2, where z; = x4_12 + (1 — L'?)7 %, and {&;} ~ NID(0,1). 0,(h) =1 for h =1,3,5.

TABLE 2 (b) The SRPMSE and the percentage of selection of Z,(h) (n = 100)
d -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
c/w -2.57 -1.92 -1.28 -0.64 0.00 0.64 1.28 1.92 2.57
0.(1) 1.0239 1.0271  1.0118 1.0015 1.0047 1.0122 1.0228 1.0193  1.0482
0.(3) 1.0201  1.0079 1.0100  1.0025 0.9913 0.9968 1.0129 1.0270 1.0747
o.(5) 1.0080 1.0119  1.0093 1.0093 0.9843 0.9959 1.0210 1.0230 1.0414
0.(1) 1.0064 1.0191 1.0117 1.0052 1.0126 1.0156 1.0196 1.0056 1.0143
0.(3) 1.0011 1.0013 1.0073 1.0072 1.0009 1.0019 1.0135 1.0078 1.0269
0.(5) 0.9929 1.0024 1.0115 1.0128 0.9913 1.0002 1.0179 1.0084 1.0047
AIC 67.4 49.8 32.0 18.8 13.0 18.8 36.6 59.7 81.9
W (s) 88.6 77.3 60.5 40.4 22.7/17.5 35.1 99.2 79.4 92.8
W(10) 83.1 69.0 50.8 32.0 16.8/11.9 26.3 49.7 72.5 89.0
W(5) 74.1 S7.7 38.8 224 10.6/6.6 17.3 38.1 61.7 83.1
W(1) 92.8 35.2 19.9 10.1 3.5/1.8 6.2 19.3 38.5 65.6

DGP 2: {z;}112 where 7, = 24 19 + (1 — L*?)"%, and {&;} ~ NID(0,1). o.(h) =1 for h = 1,3,5.
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TABLE 3 (a) The SRPMSE and the percentage of selection of Z, (h) for DGP 3 (¢ = 0.6, n = 100)
d -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30
c/w -1.17 -0.78 -0.39 0.00 0.39 0.78 1.17
0. (1) 1.0079 1.0087 0.9971 0.9882 1.0007 1.0050 1.0033
0.(3) 2.1602 2.3402 2.5204 2.7211 2.9391 3.1784 3.4517
0.(5) 2.9281 3.3016 3.6745 4.1994 4.6976 5.3406 6.1197
0.(1) 1.0056 1.0122 1.0002 0.9927 1.0058 1.0075 0.9998
0.(3) 2.1500 2.3509 2.5422 2.7492 2.9613 3.1820 3.4235
0.(5) 2.8931 3.3176 3.7285 4.2661 4.7459 5.3438 6.0502
o.(1) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.(3) 2.1402 2.3224 2.5160 2.7206 2.9361 3.1623 3.3990
o.(5) 2.8552 3.2480 3.6880 4.1776 4.7196 5.3169 5.9725
AIC 36.9 20.1 10.6 9.0 11.1 17.1 30.6
W (s) 65.4 45.7 31.2 19.3/14.8 25.9 37.7 55.1
W (10) 50.3 33.8 22.8 13.9/10.8 19.6 29.7 45.1
W (5) 33.1 22.9 16.1 7.4/9.6 14.2 21.7 34.8
W(1) 17.2 12.2 8.9 5.3/3.3 7.6 12.6 21.7

DGP 3: {z;:}1% where z; = 241 + (1 — L)~%(1 — ¢L)"'e; and {&;} ~ NID(0,1).

TABLE 3 (b) The SRPMSE and the percentage of selection of Z, (h) for DGP 3 (¢ = —0.8, n = 100)
d -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30
c/w -3.61 -2.41 -1.20 0.00 1.20 2.41 3.61
0. (1) 1.0609 1.0338 1.0098 1.0078 1.0132 1.0525 1.1331
0.(3) 1.2637 1.2740 1.2805 1.3205 1.4165 1.5670 1.8353
0.(5) 1.3755 1.4032 1.4530 1.5628 1.7332 2.0132 2.5008
0.(1) 1.0174 1.0176 1.0100 1.0147 1.0093 1.0155 1.0097
0.(3) 1.2124 1.2500 1.2821 1.3309 14117 1.4997 1.5894
0.(5) 1.3195 1.3742 1.4524 1.5754 1.7270 1.9152 2.1286
o.(1) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.(3) 1.2106 1.2322 1.2691 1.3212 1.3882 1.4697 1.5649
0.(5) 1.3094 1.3576 1.4366 1.5483 1.6940 1.8745 2.0902
AIC 95.9 76.1 36.3 12.9 34.7 75.2 95.6
W{(s) 99.5 924 61.9 21.8/12.1 51.4 86.6 98.0
W (10) 98.8 87.0 91.3 15.4/7.5 40.2 80.8 97.6
W (5) 96.6 77.3 37.6 9.2/3.1 27.5 71.3 94.9
w(1) 86.1 53.1 16.9 3.2/0.5 10.2 47.8 85.9

DGP 3: {z,}}% where 2y = 2,1 + (1 — L)~%(1 — ¢L)"'e; and {g;} ~ NID(0,1).
t=1
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6 Conclusion

This paper deals with the prediction theory of non-stationary long-memory processes, referred
to as the ARFISMA model by Hassler (1994). After investigating the general theory relating
to the convergence of the moments of the non-linear least squares estimators, we evaluate the
asymptotic prediction mean squared error of two predictors. The first is defined by the estimator
of the differencing parameter and the second by a fixed differencing parameter: in other words,
a parametric predictor of the SARIMA model. The effects of misspecifying the integration order
in the ARFISMA model are clarified by the asymptotic results relating to the prediction mean
squared error. The finite sample behaviour of the predictor is investigated using simulation, and
the source of differences in behaviour made clear in terms of asymptotic theory. The results also
reveal that classical test statistics, like the likelihood ratio and Wald test statistics, can serve as
model selection criteria in terms of prediction mean squared error.
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Appendix A

Proof of Theorem 2.1:

Since Q%Q)(B*) = 1,(6°) + R, (6") and I(8°) are positive definite, the minimum eigenvalues of
Q%z)(ﬂ*) and I,,(8°) are positive for all n > ng by (2.6). It follows that:

né—1
0
(2) (p* 2 ! * v 2 *
v'Q)(07) ZZ )+ v' R, (0)v ;5 , and 5;Z()+’UR(0)'U
are positive for all n > ng a.c., where v = (vy,...,v,)" is a fixed vector such that |jv|| = 1,
Zy(j) = v 65_21(00) == av(j,k)yk, a, (4, k) = —U’aﬁzl_k(eo), 0 < ¢ < 1 and without loss of

generality, nd is assumed to be a positive integer, and o2 = 1. Similarly to equations (3.3) and
(3.4) of Ing (2001), rearranging n~! Z] 5 Z2(j), one obtains:

(1=8)n/(lg)—11g—1

’WW*Z%ZT % 2: Zﬁ ) >0 ac,

j=nd

where n(i) = nd + (1 — 0)ni/(lg), I > 4(p — 1)/q + 2 and, to simplify the discussion, lq and
(1 —0)n/(lq) are also assumed to be positive integers and nd, (1 — d)n/(lg) > m. And by the
convexity of function 7%, x > 0:

—q _§\ ¢ (1=8)n/(lg)=1 (lg—1 —q
{”'Q%Q)(H*)v} < (1 6) 1 iq(;)n > {IZ Z2(n(i) + j)} ac..
i=0

lq =

Let ¢ be the smallest eigenvalue of Q%Q)(B*), v = (v1,...,Vp) be on the unit sphere S of RP, and
2,(j) = v/l (6"). Then [{QP(6")}!|s = A7" and Ao = infjp—y 'QP (67)v. Therefore, if
one can show that there exists some C' > 0 such that:

lg—1
inf Zz
[IVII 1 Z

holds for all j =0,...,(1 = d)n/(lg) — 1 and n > ng, then (2.9) follows. In this proof we focus on
the case of j = 0 because the same argument is easily applied to other values of j.
First, we show that:

—q

<0< (A.1)

Pr (Q(v) < B) < const pla/?, (A.2)

for fixed v such that [jv|| = 1 and 8 > 0, where Q(v) = Y.\ ," Z2(n(i)). Note that, by (b) of
Assumption 1, there exists k(i) (i =0,1,...,lg— 1) such that k(i) = max[k | |a,(n(i), k)| >0, k =
n(i—1)+1,...,n0()] fori =1,...,l¢ — 1 and k(0) = max[k||a,(n(0),k)] >0,k =1,...,n(0)]
because (1 — d)n/(lg) > m and n(0) = nd > m. To prove (A.2), we use the same argument as in
the proof of (2.2) of Bhansali and Papangelou (1994, pp.1158-1159), (d) of Assumption 1, and (i)
of Lemma 2.1. Let Y (u), u = 1,2,...,k(lg — 1) be defined by:

k(i) , o B
Y(u) = {Ztl ay(n(i),t)yy uw==Ek(@{),i=0,1,...,l¢g—-1,

Yu otherwise.
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Then Y (k(i)) = Z,(n(i)) = SF a,(n(i), )y, i = 0,1,...,1g — 1, and {V(u)}*""" and
{y }eUa) gatisfy conditions of (i) of Lemma 2.1. Tt follows that:

lg—1 lg—1 lg—1
P (Z Z2(n(i)) < 6) <P ( N (Z20)) < B}> =P ( N {~VF <Y(ki) < ﬂ})

i=0 i=0

lg—2
= Tau(nllg ili)\,/z(zq —oy ( N {-VB <y < ﬂ}> < const /%,

which proves (A.2).
To demonstrate (A.1) one can follow Bhansali and Papangelou (1991, p.1159). Let v and v be

on the unit sphere S of R?, and Q(v) = Ziq:Bl ZZ%(n(i)). Then, using the triangular inequality
and the Cauchy—Schwarz inequality, we have:

1Z0)] = | +v = 0) e (0%)] < 1ZG)] + o~ vi]

eggl(eo)H.

It implies that if |[v — v|| < ¢ and ||€S()i)+1(00)||2 <1l/e,i=0,1,...,lg—1, then:

lg—1 lg—1 lg—1
Q) = X Z() <23 Z20) + 2 — vl Y el ) <200 + 2105 (A3
=0 =0 =0

It is easy to see that, given € € (0, 1), there is a subset of S’ of S, with (const /e )?*’~2 elements,
such that given any v € S there exists v € S” with |[[v — v|| < e. From this, (A.2), and (A.3), we
deduce that:

Pr(Q(v) < e for some v € 5) (A4)

=Pr <{Q(u) < ¢ for some v € S}() { ell)

2
n(i)+1(00)H > 1/e for some i =0,1,...,lqg — 1}

e

2
n(i)+1(00)H <1/efor any i =0,1,...,lg— 1}

+ Pr ({Q(V) < ¢ for some v € S}ﬂ {

SPr(

+Pr ({Q(V) < ¢ for some v € S} ﬂ {Q(v) <2Q(v) + 2lge for some v € S'})

2
eil()i)H(OO)H > 1/e for some i =0,1,...,lg — 1)

lg—1 5
< Z Pr <Hes()i)+l(00)H > 1/€> + Pr(Q(v) < 2e + 2lge for some v € S’)
=0

lg—1 ‘ lg—4p+4 ¢ 2p—2
< Z gla/2=2r+2 g Hes()i)ﬂ(o()) + (COSS ) (2 + 2qu—,‘)lq/2
=0

< const gl4/2=2p+2

where the last inequality follows from (c) of Assumption 1. By (A.4), Pr (inf”yH:l Q) < 6) <
const £'7/2-2P+2 hence:

. Li/nle Q(V)} - /0°° o ( {zi/nf=1 Q(V)}q >t )dt
< 1+/100Pr< inf Q(v) < t~1/1 >dt

lvi=1

o lg/2—2p+2
<l+ const/ (t_l/q) dt,
1

which is finite since I > (4p — 4)/q + 2 and hence demonstrates (A.1) for the case of j = 0.
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To obtain (2.8) and (2.11), it is sufficient to check the uniform integrability of \/n(6,, —6°) (see
Serfling, 1980, pp.13-14). By Holder’s inequality, we have, for n > ng:

EH\/_ —GO)H <constEH Q@) 0" }

< const & H CRIR)

Hf QM ©")|"

Tou

-1

rov}l/v.

Using (2.9), (2.10), and Lyapunov’s inequality, this uniform integrability is satisfied and the con-
clusion follows.

} {B]vaew e

S

Proof of Corollary 2.1:

We borrow the notations in the proof of Theorem 2.1. Since Q) 0) = 1,,(6°) + R,(0") and
I(6°) are positive definite, the minimum eigenvalue of Q( )(0*) and I,,(68°) are positive for all
n > no by (2.6). From this and (b) of Assumption 2, v'Q'? (6*)v = n~! i ' Z2(j) +v' Ry (0%,

(1=0){n(1—8)} "t X205 Z2(j), and 6(nd) =" 32075 Z2(j) +v' R, (8% )v are all positive for all n >

j=nd
ng a.c., where v is a fixed vector such that ||v|| = 1, Z,(j) = v 65_21 6% = fc:l dj1 (0%, =
Zi::l av(jak)5k7 65‘1)(00) = Zi;ll dk(oo)sj—k = Zi;ll j—k(e )Eka av(]ak) = Uldj+1—k(00)7 0<
d < 1 and without loss of generality, nd is assumed to be a positive integer, and o3 = 1. Let
Z,(j) = u’eﬁ?l(oo). Similarly to (A.1) in the proof of Theorem 2.1, by equations (3.3) and (3.4)
of Ing (2001), if one can show that there exists some C' > 0 such that:

lg—1 -4

”Iyﬁf X Z2(n@i) +7)| <C<o (A.5)
= i=0

holds for all j =0,...,(1 = d)n/(lg) — 1 and n > ng, then (2.9) follows. In this proof we focus on
the case of j = 0, because the same argument is easily applied to other values of j.
First, we show that:

Pr (Q(v) < B) < const pla/?, (A.6)

for fixed v such that ||v|]| = 1 and § > 0, where Q(v) = Ziq 01 Z%(n(i)). By (a) and (b) of
Assumption 2, we have for large n > ng:

n(i) ,  (1-8)n/(ta)
> {am@n} =v Y du(6”)du(6°)v >0,
k=n(i—1)+1 k=1
n(0) 9 nod
and ) {av(n(O),k)} =v' > di(6°)di(6°)'v > 0.
k=1 k=1

It follows that these have at least one non-zero summand since I(6°) = S°77 di(6°)di(6°)'
is positive definite.  These prove the existence of k(i) (i = 0,1,...,lIg — 1) such that
k(i) = max[k||ay(n(i),k)] > 0,k = n(i —1) +1,...,n(i)] for ¢ = 1,...,lq —1 and k(0) =
max[k ||a,(n(0),k)] >0,k =1,...,n(0)]. To prove (A.6), we use the same argument as in the
proof of (2.2) of Bhansali and Papangelou (1994, pp.1158-1159), (c) of Assumption 2, and (ii) of
Lemma 2.1. Let Y(u), u=1,2,...,k(lg — 1) be defined by:

Yu) = {zanU( n(i),t)e; w=k(i), i=0,1,...,1g—1,

Eu otherwise.

Then Y (k(i) = Z,(n(i) = SFa,(n(i),t)er, i = 0,1,...,1g — 1, and {V(u)} """ and
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{eF ) gatisfy conditions of (ii) of Lemma 2.1. Tt follows that:

lg—1 lg—1 lg—1
Pr <Z Z2(n(i)) < 6) < Pr ( N {Z:m) < ﬁ}> =Pr ( N {-VB < vk < JB})

i=0 i=0

lg—2
2K.\/B Pr ( m {_\/E <Y(k(i)) < \/E}> < constﬂlq/z7

= oaw(n(lg = 1), k(g - 1)\ g

which proves (A.6). The rest of the proof of (A.5) is obvious from the same argument as in the
proof of Theorem 2.1. To obtain (2.8) and (2.11), it is sufficient to check uniform integrability
of \/n(B,, — 8°) (see Serfling, 1980, pp.13-14). We note that ||e(1)(00)|| and ||\/77Q$})(00)|| have
finite moments of all orders from (b) of Assumption 2 because, under the model (2.12), e,(8°) = ¢,

for t > 1 and {et(oo)et (6°)} is a sequence of martingale differences. Using this and the same
argument as in the proof of Theorem 2.1, the uniform integrability is satisfied, which proves (2.8)
and (2.11).

Proof of Lemma 2.1:

(i) Let the joint probability distributions of (Xi,...,X,) and (Y1,...,Y,,) be fi__, and g1, n,
respectively, € = (X1,Xo,...,X,.)", y = (Yl,Yg,.. ,Y,)', A is an n X n upper triangular
matrix such that (i,j)th element is a;; and a;; = 0, i > j, y = Az, and x = A 'y =
(01 (Y1,...,Y0),02(Ya,...,Y0),...,v.(Ys)). Then det(4) = [1i, ai and g1, n(Y1,-.-,Yn) =
Jrm @11, Yn), 02(Y2, - Yn)s - 0 (Un)) | Ty a”|_1. Therefore, let the joint probability
distributions of (X»,...,X,) and (Y2,...,Y,) be fo_, and g> ., we have:

Pr(y; € C4,Y1, € C,, Y1, € Cy,y, ..., Y, € Cyy)

// // Loon (Y15 -+ 5 Yn)dYn -+ - dyiy, - dyi, dyn

1 Cll Cl Rn—k— 1

// // Jron Wiy, Yn), v2(Y25 - Yn)s -+, Un(Yn))
ey, Jo, JrRr—k-1 27--7”(1}2(1/27"'7yn)7"'7vn(yn))
sz,...,n(UQ(yQ,---,yn (yn))dyn~ “dyi, - - - dyi, dy:

1
<K|a11| C _cl / / 2,...,n UZ(yZ: "7yn yn
Cl1 Ol Rn— k— 1

dyn .. dylk .. .dyll

—K|(L11| _Cl / / / 2,0 y2;--~;yn)dyn' dylk dyll
Cll Cl Rn—Fk-— 1
:K|(Lll| ( 1—01)PI'(Y}1 EC[I,YEZGCIZ,...,Y;,CECIIC).

-1

n
JIEE
i=1

-1

H

We note that the equalities follow from the fact that:

A~ [ A A= ayy _aﬁlA_liZAQ_zl :
0 Azg 0 A22

and (Xa,...,X,)" = Ay (Yo, ..., Yn) = (v2(Ya, ..., Yn), ., vn(Yn)), where Ajs is 1 x (n — 1)
matrix and Ass is (n — 1) x (n — 1) matrix.

(ii) Similarly to the proof of (i), let the joint probability distributions
of (Xy,...,X,) and Y1,...,Y,) be fi_.. and g1, ., respectively. Then

n —1
g1,n (Y15 Yn) = JroemO1W1s - yn)sv2(Y2, - Yn), - - Un(Yn) | [Ty @il =
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froi(ys, . yn)) fr(02(y2, - yn)) - Fr(oa ()T, aii|_1. Therefore:

Pr Yl S Cl;Yll EC[I,YEZ S Clz, . ;Ylk S Clk)

/ / / / 91, Y1y - Yn)dYn - - - dyik - - - dyg, diyy
Cy O Olk Rn—k—1

=L o A ) )| L
dyn - - - dy, - - - dyi, dy,

-1

-1

- // / { fl(vl(yl,...,yn))dyl}fl(vg(yz,...,yn»---fl(vn@n))
Cll Clk Rn—k—1 1
dyn .. dylk .. 'dy11

< Klan| (e —a /o /C/R . 1 1(v2(Y2, -5 9n)) -+ f1(vn(yn))
11 1/ R™~ =

dylk dyh
= Kla1| ' (¢} — cl)Pr(Y}1 eC,,1,€Cy,,.... Y1, €C,),

-1

where the last equality follows from  fi(va(y2,---,yn)) - f1(vn(yn))|ITis aii|_1 =
n -1
f2,...,n(v2(y27 cee 7yn)7 ces 7Un(yn))|Hi:2 aii| = 92,...7n(y27 ces 7yn)'

Appendix B

To prove the asymptotic results in Section 3, let S.(8) = > ;' €7(8)/(2no3), Su.(d) =
Sy 6 (8)/(2n03), ue(8) = T30 mh (800t v = X3 u(8°)e0-x, and I(8) = Blun(d)u;” (8)+
ugl)(é)ugl)(é)’], where {e,}52_ is iid (0,03) and E[g;]” < oo for all positive integers 7. Then 5
minimizes S. (&), I(d) is continuous on d, and I(6°) = E[ugl)(éo)ugl)(éo)’]. Furthermore, by
Lemmas B 7, B 8, and B 9 of Katayama (2006):

sup |13V (@)(8) — - Sl @)l 0| 5 o, (A7)
den; | im0 n

sup l Zugi) (5)U§j) (6) —E [ugi) (5)u§j) (5)1:| a.c, 0,

deps | im0 —

as n — oo, where (i,75) = (1,0), (1,1), and (2,0).

Proof of (3.11):

We prove (3.11) by using Corollary 2.1. First, as we noted in Section 2, the conditions of (2.3a)
and (2.3b) can be replaced by the strong consistency of CSS (NLS) estimators 4, (3.8) and (3.9)
hold, and I(8°) is positive definite. On the conditions of (2.5) and (2.6), let:

LS eD (D60, and Ra(8Y) = S (8*) — Ta(8%), (A.8)

no,
0 ¢=1

I,(8% =
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where [|6* — 8°|| < ||6 — 6°||. Then, by (A.7), we obtain:

sup [S12(8) = I(8)| < sup ‘s§2>(a) —Sff)(é)‘ + sup [S(8) — I(8)] “S0,  (A.9)
deDs 0¢eD;s deDs
N n 1 n
1,(6°) —1(5")| < sup Z = — 2w (@) ()

dep, |90 121 190 1

o |3 ) —I1(8)| “S 0,

dep; | 1

S@(6%) — 1(8°)] 2% 0, and ‘ﬁn(a) = [5@(5*) = T.(6") =% o,

as n — oo. It follows that conditions of (2.5) and (2.6) are satisfied. The conditions of (2.13) and
(2.14) are satisfied by (3.9) and I,,(6°) =% I(8°). Finally, (c) of Assumption 2 is satisfied by (a)
of Assumption 3. Hence all conditions of Corollary 2.1 are satisfied, which proves (3.11).

Proof of (3.12):

From the RHS of (3.12):

n+h—1 n
Z ¢j(5)€n+h J Zw‘]—&-h 1 En—i—l —j = Z{ZI&; i+h— 1 5 (‘”}Z/n-&-l—ja (AlO)
j=h j=1

where the last equation follows from Z] DD aw = > DI Since

01/1] () Z( ) = 0 for j > 0, we have Y7 1; (8 8)mi(8) = 0 for j > 0. Hence, putting
i —71'1( )and U; = 0;(0):

j+h—1 j+h—1

j—1 h—1 h—1
Z"/}jfl?‘rhfl%i = Z Vj_ith—1Ti — Z Yiiph—1T = — Z"/}hfifl%z#j = - Z ViTjph—i—1-
=0 =0 i=j =0 =0
Substituting the RHS of the above equation for the RHS of (A.10), we obtain the result.

Proof of Theorem 3.1:

First, we will show that E[R; ,]* = o(n™!) uniformly in 6" € D; x Dg, |l = 1,2,3. Let 8(z) = 1,
0* =d*, and d,d € D3. Then, by the Cauchy—Schwarz inequality, we have:

47 1/2
b ~ 8 n ¢
E[Ri.]? < |E ‘ d— d‘ E (Z c§2>(h,d*)yn+1_j)
j=1
By Yajima (1985, (7)):
(n+1)t < <n*7', for0<a<1l,andn=1,2,...,
and Lemma 3.2, there exists a;(a), which does not depend on d* and satisfies

supg-ep, |7 (h,d*)| < aj(a), for j > 1 and a;(a) = O({logj}*j~*/>~*). It follows by the
Cauchy—Schwarz inequality that:

E (Z %ynﬂ ,) <E (Za] Nyn+1- ;') = [Z%‘(a)(E[yn+1—i]4)l/4

Jj=1

4

The RHS of the above equation is O({log n}*n?=%%) because {y;} has finite moments of all orders.
Since E|d — d|® = O(n™*) by (3.11) and a € (0,1/4), we have E[R; ] = o(n™!). The cases
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of Dy and D can be obtained similarly because the order of sequences corresponding to a;(a) is

o({logj}?j='/?=*). The case of the ARFISMA(p,d,q) model can be obtained similarly because

coefficients of partial derivatives consisting of 8 are absolutely summable and decay exponentially.
For the first term of the RHS of (3.16), we have:

n n—1 j n—1
S (0,81 = 3> A (1,608 1 (%en—; = Y 0;(h,0%)en;,
j=1 7=0 k=0 Jj=0

—1 h—1
@;(h,6°) = @1 (h—1,6%) — pn_1(8°)8,11 = —8;0n — > nr(8))0;4k = — D k(6°)8;1n—s,
k=1 k=0

for h > 2, and <pj(h,(50) =0(j 1), as j — oo, where we have used equation (A5.2.4) in Box and
Jenkins (1976), ; = O(j 1), as j — oo, and the fact that Zk 0 Tk(0)Y;_r(6) =0for j >1; =1
for j =0, 6; = i o ,(c ((50)1/JJ 1(8°), j > 1, similarly to Chung and Baillie (1993, p.804). It
follows that, as n — oo, ZJ 0 P; (h,8°)e,—; = O,(1) and has bounded moments for all orders.
Furthermore, from (3.8) and (3.11), we have, as n — oo, [(6 6°)’ >ico Lp](h 0%)e,—;]? = 0,(1/n),
E[(6 — 6°)' ZJ o i (h,6%)en_j]* = O(1/n), and, by the fact that E[Ry ,]*> = o(n™'):
2

O

Following from (3.8) and the Taylor expansion around 6= 0°, there exists ng > 0 such that, for
all n > ng, SN(8) = 0 = S(8°%) + I(8°)(8 — 6°) + {S (6) — I(6°)}(8 — 6°), almost certainly,
where ||6** — 6°|| < ||6 — 8°||. It follows that:

6—6°=—I(6°)""5M(5% + Ry, (A.12)

where Ry, = —I(8°)~1 {8 (8") —I(8°)}(6 —8°), and |Rs,| = 0,(1//n) by (A.7). Furthermore,
since 552)((5**) and v/n(8 — 6°) have finite moments of all orders, using Lemma A (ii) and Lemma
C (i) of Serfling (1980, pp.13-15), E||Ry.n||" = o(n~"/?) uniformly in 6** € D;, for r > 2, as
n — 0.

Combining (A.11) and (A.12), E[7.(h) — y.(h)]? is given by, as n — oc:

n—1

B [5a0) () | =B | 3 0;(h.8°) (5 - 8%)zss

Jj=0

2
n—2n—t—1

E[ﬂn(h)—yn(h) 2:% Z%h&)sn AE)TYT ST drenimren- t] +0<%>,

t=0 k=1

(A.13)
where we have used Sg(l)(éo) = ?;02 Z;ffl 0kEn—t—kEn—t/(nod). We note that, as j — oo,
©;(h,8%) = 0(i1), §; = O(j ) and, as n — oo, E[SV(8°)5"(8°)] ~ I(6°)/n. Hence we
obtain the result by (3.15a) of Lemma 3.1 and (A.13).

Proof of Corollary 3.1:

Although the result in (3.18) follows from Theorem 3.1, we present a direct proof since ¥n1+1 —yn(1)
is treated as a residual. Similar to the proof of Theorem 3.1 of Tanaka (1999), by a Taylor expansion
around d = §, we have:

Yni1 = Gn(1) =D 75 ()1 j =np1 + 3050 — 0%)ent1 j + Ran,

=1

where E[R3 ,]* = 0(1/n) by the same reasoning as R; , in the proof of Theorem 3.1. Similarly to
(A.11)-(A.13), we have, as n — oo,

2
E|yns1—0n(1)| ~ol+ 025150 —15; ~00{1+

(1(50)‘11(50))} _ 2<1+ M),

where we have used the fact that > 72, 805 = 1(6°).
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Proof of convergence of moments of § and 3 for the model (3.19) with 6 = ¢//n:

Note that, by (3.9) and (3.10), {dx} does not depend on d and hence I(6°) and {§;} are fixed

matrices. Therefore e, = u;(8°) = &,(8°), ()((50), and ugi)(éo) for ¢ = 1,2 are the same as those
of the model (1.1) with Assumption 3 (6 is fixed), and the results on convergence with probability
one, (A.7) and (A.9), still hold if d is replaced by d = dy + ¢/+/n.

First, we will show that there exists a number ng > 0, ¢ > r > 2 and for all and n > ng:

e {aen) .

where [|6* — &|| < ||d — 6| and Q@)( 8*) = 92S.(6")/0BOB. We shall consider the limiting
distribution of \/_(6 — 6Y%). Using the same argument as in Katayama (2006, Remark 2), strong
consistency of 8 is obtained, and for large n:

05.(0) _ o - 0S.(8")  9%S.(6%)  9*S.(67) (5
Vi gt = 0= Vi g e S vi(B-8), (A.15)

where [|6* — 8°|| < ||6 — 8°||. Since (A.7) and (A.9) hold when d is replaced by d = do + ¢//n:

<o and E HS— JOHT = O(n="/?), (A.14)

(
LR 06(0%) 020(8%) aey o O°S:(0")

T 0y

ITLJJ’(& ): no. (2) - a8 8,8’ — P, W — K, (A.lﬁ)
= _ 1< 8 1(8°) | [025:(8°)  0%S.(67)) e,

Hon, :_%;tz ) opog +{ oBoB  0pop’ }—””

(- *\ S( ) T g %\ @.C.

Quh0) = a5 = Lus0) + Rus(07) “5 @,

asn — oo. {015} is given by (3.9) and (3.10) does not depend on d and {e,(6°)de,(6°)/0B} is

a sequence of martingale differences. It follows that n'/29S.(6°)/08 4, N(0,®), as n — oo, by
a central limit theorem for martingale differences. See, for example, Fuller (1996, Theorem 5.3.4).
Combining this, (A.15), and (A.16), we obtain

V(6 =68 =[—c vaB-B)] L [-c N(® 'k, Y)].
'Now, to show (A.14), we first consider E||{Q(2)( )}’1||q5~< o0, Let Zlg(j) =
Si_1 @5l k)ex, and a, (j, k) = v8;11-k,5/00. Then, substituting Q) (8%), I, 5(6°), Ry 5(8%),

and Z,”g(j) into lez) (0%, I,(8°), R,(0"), and Z,(j) and borrowing the other notations in the
proof of Theorem 2.1, it is enough to show that:

—-q

lg—1
E [lilnf ) Z25(n(i) +5)| <C<ox (A.17)
=0

holds for all j =0,...,(1—4d)n/(lg) —1 and n > ng, where Z,,B( ) = Zk 1 a,,g(j, k)er, a4, k) =
véjt1-k,3/00. Note that as in the proof of Corollary 2.1, we obtain Pr(z . ZZ 5(n(i)) < Bi) <
const 82/% | B, > 0, because {05} does not depend on d and ® = Y7, d; 50, 5 is positive definite.
The rest of the proof of (A.17) is obtained in the same way as those in the proof of (A.1) of Theorem
2.1. Next we consider E||§ — 6°||" = O(n""/2) in (A.14). By ¢,-inequality,

1‘)‘

~ ” - 977/2
R L e

Therefore, it is enough to show E |8 — 8|2 = O(n~"/2). Now, from (A.15):

V(B -8) = {aren) a2 LEE
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For any ¢’ > 1 and n > no:

Hfas (6°) c<a25€(5*)>

’
q

e )

by Holder’s inequality. We have already shown that E ||{Qv$f}3(5*)}_1 | < oo and so the conditions

5060 (A.18)

8S.(8°) ||

<3q1E{H¢_

ql
+ el } < oo,

of uniform integrability of \/ﬁ(ﬁ — PB) is satisfied and leads to the conclusion.
Finally, we will show (3.11) for the model (3.19) with 6 = ¢//n. Namely:

~ ~

nE(E-8")(3-06") — 16" ad  E[5-8| =om ), (A.19)

for r > 2. (3.8), (3.9), and (3.10) still hold by Katayama (2006, Remark 3). Let I,,(6°) and R, (6%)
be defined by (A.8), Z,(j) = Zk:l 0,5(J, k)er, and oy 6(j, k) =v'0;41-k/00. Then, substituting
S2(5%), 1,(8°), R, (8%), and Z,(j) into Q2 (%), I,,(8°), R.(6*), and Z,(j) and borrowing the
other notations in the proof of Theorem 2.1, it is enough to show that:

—q

<0< (A.20)

lg—1

inf Zz
lV]|=1 Z

holds for all j = 0,...,(1 — d)n/(lg) — 1 and n > ng, where Z,(j) = Yoy ws(d, k)er and
,5(j,k) = V'8;41-1/00. Since {§;} does not depend on d and I(8°) = Pyt 9,0 is pos-
itive definite, we can use the same lines of the proof of Corollary 2.1. Namely, there ex-
ists k(i) (¢ = 0,1,...,lg — 1) such that k(i) = max[k||a,s(n(i), k)] > 0,k = n(i—1) +
1,...,n(Q)] for i = 1,...,lg — 1 and k(0) = max[k||aw,s(n(0),k)] > 0,k = 1,...,n(0)]. Then
Z,(n(i)) = Zi‘ " vy 5(n(i), t)e;. From this, (a) of Assumption 3 and (ii) of Lemma 2.1, we obtain
Pr(zlq L Z2(n(i) < B.) < constﬁlq/z, B« > 0. The rest of the proof of (A.20) for the model
(3.19) with 6 = ¢/y/n is obtained by the same way as those in the proof of Theorem 2.1. Since

1(6°) = Pyt 9,0} is positive definite and {8t(60)5§1)(60)} is a sequence of martingale differ-
ences, ||5(1)(60)|| and ||\/ES§1)(60)|| have finite moments of all orders. It follows that the uniform
integrability in the proof of Theorem 2.1 is satisfied, which proves (A.19).

Proof of Theorem 3.2:

Using the same argument as in (A.11) and (A.14), as n — oo:

E[%Uﬂ—ydhﬂ2=ﬂﬂ{Sf@ﬂhé%%g—é%&lj} +o(3). (A.21)

=0

The first term of the RHS of (A.21) is

== ' 0/ NCQ/" ZC(B—ﬂ)I/ﬁ S
E:XM%MJ)El<—dﬂ—ﬂW¢ﬁ m—ﬁﬂﬂ—m'>"]"k

7=0 k=0

ou(h,8%).  (A22)

Similar to (A.12), we can rewrite (A.15) as

dS.(6°%) 1
B %nc} + Ry, (A.23)

= o {2 6-0) (< ) )
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and E||Ry||" = o(n="/?) by (A.14) and (A.16). The first term of the RHS of (A.23) is:

n—2n—t—1
1| 1 1
. 1 ! W E E 6k755n7t7k5n7t_ WHC . (A24:)
t=0 k=1

Substituting (A.24) for (ﬁ— B) in (A.22), by Lemma 3.1 and Lemma 3.2, (A.22) demonstrates the
second term of the RHS of (3.21) and concludes the proof.

Proof of Corollary 3.2:

Using the same argument as in the proof of Theorem 3.1 and (A.19), we find that Theorem 3.1
still holds if the model (1.1) is replaced by the model (3.19) and 8 = ¢/+/n.
To make a comparison between g, (h) and y,(h) from ARE[,(h), Un.(h)], let v be a fixed
(p+ q + 1)-vector. Then we have:
1 2
v'I(8°) v —v'Tv =0/ (I(8°) ' —T)v = (w? — ¢?) {v' ( ﬂ .

It follows that the sign of the above equation depends on w? — ¢?, which yields the corollary.

Proof of Corollary 3.3:

The result in (3.24) is obtained similarly to the proofs of Corollary 3.1 and Theorem 3.2. Using a
Taylor series approximation, we have, as n — oco:

~ 2 02 & . tr(T1(6%)) . p+q+ A /w?
E yn+1—yn(1)] ~03+FOZ;5}I‘6]-~05{1+T =o; 1+T ,
=

where we have used the fact that 37, 8,67 = I(6°).
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Hereafter, we present proofs omitted from the paper, which are not to be published.

Omitted proofs A (omitted proofs relating to Section 2)

0.1 On the conditions of Assumption 2 (p.5)

0.1.1 Moments conditions

We establish (c) in Assumption 1 and (2.10) from (b) of Assumption 2.

Let © = (x1,2,...,7,) be a random vector. Then we have E|z|?? = E[z'z]! =
E[}F 2?7 < p? 12" E[z;]?? for ¢ > 1 because (3_F_ Ja;|)? < pT 1 3P a;|? for ¢ > 1
by Holder s inequality. Therefore, we consider the case of p = 1 for simplicity because the case of
p > 1 can be obtained similarly.

To show that (c) in Assumption 1 is satisfied, by Lyapunov’s inequality, it is sufficient to show
that E[Z;;i d;(0°)e,—;]*" < oo where r is any positive integer. We note that when S, |a/| is
convergent, > ;= |a|**9 is convergent for § > 0. (Proof: Since >/, |a;| is convergent, there exists
m such that |a;| < 1 for all I > m. Thus we have Y2 Jag|"*° = 3%, fa[*0 + 37721 lag|' T <
Sy a0+ Y2l < oo because |a['T < ay| for all I > m). Hence we obtain
Pyt |d;(0°)]*F% < oo by (2.14). Since {&:} is iid (0,03) and E[e;]” < oo for all positive in-
tegers r:

2r T
t—1 2 -1
E Z |d;(0)|er—;| < conmst ZZ |d;(0°)* | < oo, foranyt>2, (0.1)
j=1 k=2 j=1

which demonstrates (c) in Assumption 1 for the case of p = 1.
Next we establish (2.10) from (b) of Assumption 2. Let Z; = & Z;;i d;(0°)e; ;. Then

E[Z,]) =0, E[Z,Z;] =0 for t # s, E[Z;]" < oo for all positive integers r by (0.1), and:
1 & & " 1 const
ﬁZEtZd] Jei| = > ElZ, 2] < > 1<o,
t=2  j=1 2<t,t2,...,t2, <N 2<ty,t2,..,tr,<n

(0.2)
which establish (2.10) for the case of p = 1.

0.1.2 Asymptotic normality
We establish (2.7) from Assumption 2. Since:

n t—

8Qn(eo) 1 t—1 o n+2
Ve = e ;&Zd] (6 )ees = %;&J
t+1 n

t+1
ZEHZZd 5t+2,j+op thZd vt,j + 0p(1),

NG
Otl j=1

1
d;(6 5t7j + op(1)
1

as n — 0o, where v; = g,45 and {v,}$° _; is iid (0,03), it is sufficient to show that:

Su =3 Zin —5 N(0, NIA),  asn— oo, (0.3)

t=1

by the Cramer—Wold device, where I, is a p x p identity matrix, A is a fixed vector,

1 t+1
Zin = 10 S 0 fo
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and 1(6°)'/? is a p x p lower triangular matrix defined by I(8°) = I1(8°)'/2{1(8°)'/?}'. Since the
case of A = 0 is obvious, we consider the case of XA # 0.

To prove (0.3), we use a central limit theorem for martingale differences. Let {Z;,]0 < t <
n,n > 1} denote a triangular array of random variables defined on the probability space (2, A4, P),
and let Ay, (0 <t < n,n > 1) be the sigma field generated by {Z;,|0 < j < t}. Then Ay, is
contained in Ay, Zyy, is As,-measurable and E[Zy,| Ai—1.,] = 0 a.c. for 1 < ¢ < n. Therefore, we
prove (0.3) by showing that conditions (a) of Prakasha Rao (1987, Proposition 1.7.14) hold!. Let:

n t+1
=2 Bz Al = o Z“ (697728 37 s (6°)dk(0°)ur—juei ({1(6%) 72} A,
t=1 k=1
t+1 ’ ,
and st Z)\I 90 1/zzd 90 { (90) 1/2} A,

By (b) of Assumption 2, we have, as n — oo:

n_t-1 nt+l t—1
= ZZZdJOOdkOO Stk = — 222 d;(0°)d(0°) er—jei—i + 0p(1)
nao —2 j k=1 04 =2 j k=1
1 n—1 t+ n—1 t+1
=— Z Z dj 00 dk 5t+2 jE€t+2—k + Op = Z Z 00 dk ’Ut,j’l]t,k + Op(].)
[ Gk=1 Gk=
1 n t+1 t+1
=— DY di(6°)di(6°) vijuii + 0,(1) <5 1(6°) = lim >~ d;(6°)d; (6°)'.
0 =1 jk=1 *i=

By this and the Toeplitz Lemma, we obtain, as n — oo,
V2 NA>0, s2— XA, and VZ/s2 1.

Hence condition (ii) of (a) of Prakasha Rao (1987, Proposition 1.7.14) is satisfied. Now for any
€>0and d > 0:

*2ZE I(|1Zen| > €sn)] < 22 (esn) CE[|Zen|* 0 I(| Zsn| > €sn)]

2446
t+1

_ 0y-1/2 .
= z+665n1+5/2 2+5)ZE XI(6°) Zd "o o

(249) ¢ ~6,,-3/2,

< const s,

by (0.2) [See the proof of Theorem 5.5.1 of Fuller (1996)]. Hence condition (i) of (a) of Prakasha
Rao (1987, Proposition 1.7.14) is satisfied and:

Sn 1 = d
— =TT ZZtn +Op(].) — N(O,].),
(AN =

Sn

which establish (0.3).

0.2 Properties of eigenvalues of a non-singular, positive definite, and
symmetric matrix (p.17)

In the proof of Theorem 2.1, we argued that “v = (v1,...,v,)" be on the unit sphere S of R,

and Z,(j) = v'e}), (6°). Then [[{Q%(8")} |ls = Ay and Ao = infjp = »'QY (0")v. ”. This is
proven from the following properties:

IPrakasha Rao BLS. 1987. Asymptotic Theory of Statistical Inference. John Wiley: New York. This proposition
is also seen in Fuller (1996, Theorem 5.3.4), however, there is a typographical error in Fuller’s text.
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1. Let A be a non-singular, positive definite, and symmetric matrix and A; be the smallest
eigenvalue of A. Then supz|—; x'A 'z = A\t (Proof: Let  be a vector that satisfies
|lz|| = 1 and X be an eigenvalue of A. Then X is positive and Az = Az = = = \A"'z =
v’z = \'A7'z = 2’A7'e = A7! = (¢'Az)~'. It follows that supjg -, 'A” 'z =
SuprIl:l((ITIALE)_l = (lanszl (L'IA(L')_l = )\Il)

2. Let A be a positive definite and symmetric matrix. Then ||A||s is the largest eigenvalue of
A. (Proof: Following from P 11.2.13 of Rao and Rao (1998, p.371) 2 | for a square matrix
B, ||B||s is the largest singular value of B. Since A is a positive definite and symmetric
matrix, its eigenvalues are all positive real numbers. Therefore, the largest singular value of
A is the largest eigenvalue of A. ).

3. Let A be a non-singular, positive definite, and symmetric matrix and A; be the smallest
eigenvalue of A. Then [|[A™"||s = A\{*. (Proof: By assumption, A™" is also non-singular,
positive definite, and symmetric. Using 1 and 2, [|A™"||s = supg = 'A™ 'z = A;').

0.3 On a subset of S’ of S, with (const /¢ )*~? elements in the proof of
Theorem 2.1 (p.18)

Bhansali and Papangelou (1991, p.1159) showed that “there is a subset S’ of S, with fewer than
2[4p?/2]P~! elements”. Though we cannot prove this exactly, we deduce a similar result:
Note that, for any 2,y > 0 and € > 0, if |z — y| < €?, then |\/z — \/y| < e. (Proof: When

r>y lr—yl=r-y<e& 3> z<y+e = Jr<\Jy+e < y+e=> Jr—y<e
because va? +b? < a + b for any a,b > 0. Similarly, when = <y, \/y — x < ¢, it follows that
|V — \/y| < e. This also proves the uniform continuity of f(z) = /= for z > 0.)

Let v = (v1,...,vp)" be on the unit sphere S of R’ and let v = (v1,...,vp) be on the unit
sphere S" c S with |[v — v|| < € € (0,1). Then, for at least one i, |v;| > 1/,/p. Therefore, let

>1/\/_ UP_{l_Zz 1U2}1/2 Vp _{1_22 11/2}1/2 |U _V1|<EZ (Ovl)forizlvza"'apv
and6p<vp (0<vp—5p<l/p<vp+6p) Since |v;|, |vi] <1fori=1,2,...,p, and:

p—1 p—1
|U —1/2|—‘<1—va> <1—ZV5>‘:ZV—U
N i=1 3 =1
§2Z|Vi_vi|§225i;
1=1 1=1

< z:|yZ — vi||vi + vil

we have:
p—1 p—1
_ 2 :
|vp — vp| = 1_§ vy — 1_§:Vi
i=1 =1

» 1/2
and||v—u||:{2|vi—l/i|2} <{
i=1 =

It follows that if we put:

2Rao CR, Rao MB. 1998. Matriz Algebra and Its Applications to Statistics and Econometrics. World Scientific:
Singapore.
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then:

Ly 2212 ¢ 1
and &, =<2 &; <{——} < — < — < .
g ; 3p vp Pt

The case of vp < —1//p can be deduced similarly by putting v, = —{1 — >/, Lo}y, =
—{1 =P 2y 2 and v, < —g, (v) —p < 1y < Up +Ep < 0).

Since |v;| < 1, {—1+&;,—1 + 2e;,—1 + 3e4,...,1} have about 2/e; = 6p?/e? elements for
i=1,2,...,p— 1. Therefore, for any v € S and |v,| > 1/,/p, S’ needs 2(6p?/e?)?~! elements. It
follows that, in general, for any v € S, there is a subset S’ of S, with (C/e?)P~! elements for some
C > 0 where 2p(6p*/e*)P~! < (C/e?)P~1.

0.4 Properties of the norm in the proof of Theorem 2.1 (p.19)

In the last inequalities of the proof of Theorem 2.1, to prove (2.8) and (2.11), we use the following
properties: Let  be & = (z1,...,%,)" and A be a p X p matrix with (i, j)th element, a; ;. Then
() maxy<icp i < /pllzll and (ii) maxi<ij<plai;l = /pllAlls. (Proof: (i) maxi<icy |z <

Sl < XTI |waPY2 = pllell () Let Jaiz| be |ai;| = maxicricy lakg| and
e; =(0,...,0,1,0,...,0)" whose jth element is 1 and zero otherwise. Then |le;|| = 1 and |a; ;| <

Dot okl < /Pl Aejll < \/psupyg = |Az| = /pllAlls.)

Omitted proofs B (omitted proofs relating to Sections 3 and
4)

0.5 On the condition of {y; = 0,t < 0} or equivalently {¢, =0, ¢ < 0} in
Assumption 3 (p.6)

Let ¢;(d) = ¢; and m;(d) = m;. Then we have y, = 3% (e, and 3577 iy, j = €. For the

case of {y; =0, t < 0}, we have E;;é TjYi—j = & for t > 0 and:

t—j—1

ytzz jEt—j Z%& ]+Z¢]5t j Z@Z’] Z TkYt—j— k+2¢]5t J

Jj=0
t—1

= <Z¢] k77k>yt ]+Z¢]8t ]—yt+2¢]6t It fOI‘t>0),

where we have used the fact that Z;;B Z;J(.;l ag,j = E;;B Ei:o ag,j—k and Zi:o Yi_wm =0
for j > 1. It follows that y, = E;;E Pjer—j because Y 727, e = 0, which implies the condition
of {&, =0, ¢t <0} for y;, = Z;’;O VYjei_j.

Conversely, for the case of {&; =0, ¢t <0}, y; = Zz;é pjer—j for t > 0 and:

Z'N]yt j—zﬂjyt J+Z7T]yt ]_Zﬂ-] Z Yrer— j— k+2"/}]yt j
7=0
_Z<Z7r] kz/Jk)Et J+Z7r]yt J—5t+27rjyt i, (for t >0),
j=0 \k=0

where we have used the fact that ch o0 Tj—k¥r = 0 for j > 1. It follows that g, = Z;_E TiYe—j

because Y22, 7y, ; = 0, which implies the condition of {y, =0, t <0} for 3>7° 7y, j = &
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0.6 Proof of Lemma 3.1 (p.8)
We only prove (3.15b) because the same argument is easily applied to (3.15a).

|
-

Z 7]052,]651,771 E[an—jgn—ksn—l—msn—l]-

n

E[xl,na:?,nzl,n] =

™M
QM‘

<.
i
o

By assumption, when j =l+m #k=1and j=1#k=1+m, Elen_jen—kEn—1-men—1] = o* and
zero, otherwise. Therefore, by using Cauchy—Schwarz inequality, we obtain:

n—I[—1 n—I[—1

Elz) ntanzin] =0 Zau Z avitmbim + ot Zau Z 2,14mP1L,m
=0 <Z a271> +0 <Z a171> =o(v/n), as n — 0.
1=0 1=0

0.7 Detailed arguments of Section 4 (p.11)

To obtain the general theory of the asymptotic PMSE of predictors, z,(h), Z,(h), and Z,(h) in

Section 4, we review the following results. Since technical arguments relating to asymptotic PMSE

follow from those of Section 3, we almost omit the proof of the results given in this subsection.
To obtain the BLP, we use vector representation. Rewrite (4.1) as:

= Az, 1 +y, w—€Ax,_ 1 =(1—-L")"z =1y t>1, (0.4)

where x;, y,, and e are ms-vectors defined by xy = (x¢,...,Zi—ms+1)’, Y = (¥¢,0,...,0), and
e=(1,0,...,0), respectively,

a1 a2 Ceh e eee Qs
1 0 ... ... .. 0
a=|. | (1—zs>m=2<'>(—1>fzﬁ=1—2ajz%
S : =\J =
o ... ... 0 1 0
and aj =0 for j # s,2s,...,ms. Then we have:
h-1
Tnth = ATnih-1+Y,p = Az, + Z AlYin s
j=0
h—1
and T,yp = eAlx, + Z QjYnth—j,
j=0

where a; = e’ A’e. As in Brockwell and Davis (1991, Section 9.5), given the data {z;}i, ., from
(4.1), the best linear predictor of ,4+, based on &1, T2—ms, - - -, Tn is the projection Ps, x,p
where S, = 5p{Z1-ms,---,Z0,Y1,---,Yn} and Sp{x1_ms,...,To}LSP{Y1,...,yn} by assumption.
Hence the best linear predictor, denoted by z,(h), for a future value, ,,4p, is given by:

h—1

zn(h) =AMz, + Z ajyn(h —j), (0.5)
=0

where y,, (k) for £ = 1,...,h is defined by Section 3. Since the prediction error of z,(h) can be
written in the form:

Tn+h — -'Bn Z a]{ynJrh i yn - ,7 = Z <Z gy k"/}k >5n+hj7
=0 k=0

31



where t;(8°) is given by (3.7), we can express its PMSE as:

2

J h—1
Ui(h) =E Tn+h — -'Bn ] os Z <Z aj k"/}k > = Ug Z"/}Z,za (06)
7=0 \k=0 7=0

where 1; , = > 7_o @j—kx(6°) is given by Yt Vier = (1= 2°)""(1 = 2°)"B(2), |2] < 1.

First, we deal with estimated predictors when all parameters are estimated, as in Section 3.1.
We next deal with the effects of misspecification in non-stationary ARFISMA models as SARIMA
models, as in Section 3.2.

0.7.1 PMSE for z,(h) when d is fixed

Similarly to Section 3.1, we define the predictor with estimated parameters. The parameters
estimated here are 6° = (d, ,B') and o3. These are estimated by maximizing the CSS function

defined in Section 3.1. Let & be a corresponding CSS estimator of 8°, then the predictor, denoted

by Z,(h), is defined by:
h—1

Zn(h) =€ A"z + > ajjn(h — ), (0.7)
7=0
where y,,(k), k =1,...,h is given by (3.12). Its asymptotic PMSE is immediately obtained. Since
the error of Z,(h) can be evaluated by z,+p — Zn(h) = {Zptn — zn(h)} — {Zn(h) — zn(h)}, we
have:

52(h) =E [mn+h —an(h)]2 = 02(h) +E[ n(h) —mn(h)]z, (0.8)

and the second term on the RHS of the above equation is expressed as follows. We have al-
ready shown that, in the proof of Theorem 3.1, E[R; ,]> = o(1/n) uniformly in §* € Ds and

S M (b, 80y = >0y ©;(h,8%)en_j. It follows that:

]1J

B [#,(h) ~2,(0)] =E rzlaj{yn —J>—yn<h—y>}} (0.9)

= Z ajar E Z w,( Ven ,((5 (50) (3—60)I<pl(h—k,(50)5n,l +o<%>.

7,k=0 i,l=0

Since the above equation follows the similar representation of (A.13) by using (A.12), we obtain
the following theorem:

Theorem O.1 Let {:};—y_,,, be given by (4.1). Then it follows that, as n — co:

2
52(h) =E [:vn+h - an(h)] (0.10)
:O'A U_é 53 1]IZ:1aJak‘Pz _ja(so)lI(&O)1¢i(h_k750)l+0<1>7
n = 0 j=0 k=0 n

where @;(k,8°) is defined by Theorem 3.1 for k = 1,...,h, 02(h) and Z,(h) are given by (0.6)
and (0.7), respectively.

For the case of h = 1, we can simplify the preceding result. The following corollary gives the
asymptotic PMSE of ;z:n( ) = €' Az, + §,(1), where g, (1) = — 37 7;(d )yn+1_]

Corollary O.1 Under the same conditions as in Theorem 0.1, it follows that, as n — oco:

2
70 = B [0 = 3(0)] =0 (14 22 ) (1), 0.11)

-~

The proof is omitted since its error is wn+1 — Z,(1) = 37—, 7j(0)Ynt1-j, the second moments of
which can be obtained by Corollary 3.1.
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0.7.2 PMSE for integrated long-memory processes when d = ¢/\/n

We next consider the model (4.1) when d = ¢/+4/n. The predictors considered here are Z,(h)
discussed in Section O.7.1 and, similarly to g, (h) in Section 3.2, Z,,(h), which is given by the fixed

differencing parameter m with d = 0 and estimators of ARMA(p, ¢q) parameters, denoted by 3,
from the process {(1 — L®)™z,}, t > 1. This is expressed as:

h—1
Zn(h) =€ A"z + > ajin(h - ), (0.12)

=0

where §,(k) for k = 1,...,h is defined by (3.20) and § = (O,BI)'. Note that the expression for
Zn(h) is a predictor of the ARIMA(p, m,q) model with estimated coefficients when s = 1, and is
a corresponding predictor of the SARIMA model when s is even.

An asymptotic PMSE of Z,(h) is given by the following theorem.

Theorem 0.2 Let {z;}}, .5 be given by (4.1), d = ¢/+/n, where ¢ is a fized constant. Then it
follows that, as n — oo:

2
F2(h) =E [:vn+h - gn(h)] (0.13)
0_2 oo h—1h-—1 1
=02+ 2 Y33 ajauee - 0.0 Tepu(h .87 + o 1),
i=0 j=0 k=0

where @, (k,8°) is defined by Theorem 3.1 fork =1,..., h, T,(h), 02(h), and T is given by (0.12),
(0.6), and Theorem 3.2, respectively.

We omit the proof since it can be obtained by Theorem 3.2.
The asymptotic PMSE of Z,,(h) is given by (0.10), which leads to the following result.

Corollary O.2 Under the same conditions as in Theorem 0.2, it follows that:

20 iffw>]cl;

: (0.14)
<0 iffw<]el;,

ARE [Z,,(h), Zn(h) ] {
where w is given by Corollary 3.2.

We omit the proof since it can be obtained similarly to the proof of Corollary 3.2.

Remark 2 The following arguments are applicable to Example 4.2 and DGP 2 in Section 5: Let
s be an even integer and h < s. Then z,+n = € A®pirh—1 + Yntn:

Tn(h) = € Axpip 1+ yn(h), o2(h) = a;(h),
Tn(h) =€ Az, n_1 +Un(h), 2(h) = E;(h),
Tn(h) =€ Ax,n_1 + Gn(h), 2(h) = a,(h),

and we can compare Z, (h) and Z, (h) on the basis of PMSEs by Corollaries 3.2 and 3.3 with dg =0
because a; = --- = a,_; = 0. Furthermore, when (z) = 1, 02(h) = o, (h) = 0§ by the definition
of ¢;(d) in (3.5).

0.8 Proof of (A.7) when d =dy+ ¢/\/n (p.-21)

In Appendix B, referring to the results in Katayama (2006), we used the fact that (A.7) holds if
fixed d is replaced by d = dy +¢/+/n in the proof of results of Section 3.2. However, since Katayama
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(2006) omit this proof, we prove this result. For simplicity, we focus on the case of 5(z) = 1. Let
d,do,d*,d** € Dy, u(d*) = Zk 07Tk( Vi, v = E;io Y (d)er—i:

t—1 oo
ye =Y vi(de_;, ¢ ij Wiejs  u(d*,d™) =3 mi(d o (d*),
7=0 7=0

v (d*) = Z i(d)er— j= Z"/}] d*)es J +Z¢] )t =0 t(d*) +U27t(d*)7 (say).

Jj=

Then, y: = v1,4(d), ue(d*) = ue(d*, d), vi = v¢(d), er = ue(d) = we(d, d) = €4(d), and:

t—1 t—j—1
ZWJ )Ye—j —ZWJ )1, ( ):Zﬂj(d*) Z Vi (d)er—j—k
7=0 k=0
t—1 t—j—1 t—1
= ij(d* +a) Z Yr(d+ c)e—j_i = Zﬂ'j(d* +a)vi—j(d+a),
j=0 k=0 j=0
where (c1,¢2,¢3) = (0,1/4,1/2) and we have used the fact that Z;;B Z;{;l ay ;
Xm0 Theo Gt mi(d) = $i(=d), mila +b) = Xi_gm(@)mj (), and Yi(a +b) =

Zi:o Yr(a)yj—r(b). [This technique of the proof is also used to prove the strong consistency
and the asymptotic normality of the CSS estimators in Lemma B 9 of Katayama (2006)]. It
follows that:

t—1

wj(l) d* + c)vi —j(d + cr), (0.15)
7=0
0 * i s\d*+c s\—d—c
()(d*):{ad*Al—LS)d }(1—L5>dst={log(1—LS>} (1= Lo)a+e (1= L%) 441z, (0.16)
i1
_Z’]T() (d* + c)ve—j(d + ) —}—Zwl d* + c)v—j(d + ¢)

j=t

= Zw() d* +c)vr—j(d+e) + Zw() d* + c)va—i(d+ ) + Zw](-i)(d* +c)v_i(d+ )
Jj=t

j=0 7=0
= e (@) + wl)(d") +wi)(d*), i=0,1,2, (say).
Since d* + ¢,d+ ¢ € D1 = [o, 1/2 a], a € (0,1/4), it is enough to consider the case of D; and
¢1 = 0. Note that m;(d*) = ¢;(—d*) =T(j — d*)/{C(j + 1)['(—d*)} for s = 1:
m(d) = =i — d)my(d) + 6 (=d )y (),
my (@) = m (@' (G~ d7) = ¢ (=d")} =) (@)~ d7) = (=)},

where 1)(2) and 1'(z) is defined by 9(z) = TV (2)/T'(2) and ' (z) = ¥ (2), respectively. These
are known as the Digamma function and Polygamma function, respectively, having the following
properties: ¥(z) = O(logz) and ¢'(z) = O(z7!), as z — oo. For any d* € D; and s = 1:

0 < t;(d*) <T(d)~'j* " <constj—>1/2, j>1, (0.17)
|7 (d*)] < |D(=d")| 7' — 1)~ 7 < comst(j — 1)7>71, j > 2,

by Yajima (1985, (7)). It follows that there exist positive sequences {cy j(«)} and {cx j(a)}, which
depend on «, such that:

sup [\ (d)] < eyj(a) = O3, (0.18)
d*eDq

sup [787(d*)] < erjl@) =0(G™7Y), i=0,1,2,

d*€D
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as j — oo, where we have used the fact that lim; . logj/jc =0, € > 0.
If one can show that:

1 - (4) ¢ g% (] * - a.c,
sup |— E g, (d")e,” (d") — E -0, 0.19
d*egl n ¢ ( . d*) ( )
1 ¢ (4) (g%, (3) (g% (4) g%y, (3) (g%
sup |— E w,  (d)w” (d*) — E |u; ’ (d")u;”’ (d 0.20
d*egl n & ¢ (d)uy (d") [ ¢ (d)ug ( )] ( )

for (i,7) = (1,0),(1,1),(2,0), then the result follows. We first consider (0.19). For any positive
integer r:

E[vs(d)]*" < const (ZZ |z/1j(d)|k) < const (Z chﬂ-(a)k) < 00, (0.21)

k=2 j=0 k=2 j=0

E[vy¢(d)]*" < const (Z z_: |¢j(d)|k> < const (Z Zc%j(a)’“) < o0,
k=2 j=0 k=2 j=0
E[va,(d)]" < const (Z > |¢j(d)|k) < const (Z ch,j(a)’“) = 0(t7%7),

k=2 j=t k=2 j=t

as t — oo. Note that these inequalities also hold if d is fixed. Using (0.18), (0.21), and Jensen’s
Theorem, we obtain:

E { sup 5( ) } <E [Z e j(@)|vr—;(d |] < const (Z cﬂ,j(a)> < 00, (0.22)
d*€D; =0
. 2 .
E { sup [wi’}(d") ] < constz sup |74 (d")| E [vz,—j (d)]*"
d*eD, -0 d*€eD,
[¢/2] t—1
< const Z ¢ (@) Efvas—;(d)]”" + const Z Cr (@) Efva—;(d)]*"

j={t/24+1

[t/2]
_O(t Zarzcm] >+O(t a— 1ZJZ(M‘) :O(tia),
=1

] <E[Zc,,, Noe—;j )|] < (ir“‘l) =0(t™"),

i=0,1,2, as t = 0o. Note that these inequalities also hold if d is fixed. Since:

_Z (4) d* ]) d*)_ i ()(d*)EE])(d*)

t 1

wy(d

E { sup
d*€D,

= LS @l @) + @yl 07) + wlh @) (@) + wf ) )
t=1

+wl)(d)wd) (@) + Wi (@)l (d) + wi) (d)wl) (@) + w§ ) (dyws) ()},

following from Katayama (2006, Lemma B 3) and (0.22), we obtain (0O.19).
To prove (0.20), by a Taylor series expansion:

ld) = (1= 7)™y = (1= 1) ~oe, — - log(1 = L) (1= L7) 0= Vg
= uu(do) + i /v,
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where wi, = —clog(l — L*)(1 — L#)=do=<"/Vig, and 0 < |¢*| < |¢|, we can rewrite ugi) (d*) =
ugi) (d*,d) as

Zﬂ'l Yui—j(do) + \/_Zﬂ' () (d*)wi 4—; utl)(d* do) + \/ﬁ f%(d*), (say).
Since —log(1 — L)(1 = L*) = X232 {00 67+ (@)sws1 FA*, and:

WAZDLTES

k=[j/21+1

/2] j
_0< —a- 1/22 k+1)” 12%4(@)) =03 10g ).
k=0

[i/2] j
< const {Z Coj—k(Q)Sp41 + Z Cw7jk(a)8k+1}

as j — 0o, we obtain, E[w} ]*" < cons‘c[ZZkTZZ(Z;’;l{j—“—l/2 log j}* + 1)]" < oo. It follows that:

E [ sup wg’%(d*) ] < const (Z cmj(a)) < o0, (0.23)
d*€D, =0

E [ sup ugi) (d*,do)” < const (Z cﬂ,j(a)) <oo, t=0,1,2.
d*€Dq j=0

For the LHS of (0.20), we have:

‘% g ugi) (d~, d)u§j) (d*,d) —E [ugi) (d*, d)uy) (d*, d)] ‘ (0.24)
< %g“gl (d*, do)uy” (d*, do) — [ (@, do)u? (@, do)}‘
2 > [l (@, do) [} (") 172 | + %zﬂ: w2 [uf? @, do)|
t=1 t=1
S bt 2 e o ] - B ]

The RHS of the above equation converges almost certainly to zero uniformly in d* € D;, which
proves (0.20). This is because the first term follows from Lemma B 8 of Katayama (2006), the
second, third, and fourth terms follow from (0.23) and Lemma B 3 of Katayama (2006), and the
last term follows from (0.23) and the fact that:

sup ‘E [ug") (@, do)u’? (d*,do)] _E [ug") (@, dyu? (d*,d)”

d*€eD,
() (g* () 7%y ., ( 7%
(3) Wa i (d*) w ( ) " ‘*’u(d )‘*’27t (d")
< sup E ||u; " (d%,d + d*,d — 0, asn — o0
< Jup B[ do) =05+ S @) + = s
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0.9 Proof of convergence with probability one and convergence in the
rth mean for R, ,, (either fixed d or d = dy+c/\/n) , Ry, (d = do+c/\/1)
and (A.18) (d =dy+¢/y/n) [(A.12), p.23; (A.23), p.25; (A.18), p.25]

We prove the following convergence of the rth mean:

2 *ok r
HILH;OE [%}9{;’) - I(JO)] y =0, (either fixed d or d = dy + ¢//n), (0.25)
, 925:(6) " B
, 925.(5" '
"ILH;"E [@‘T(ﬂ') - (}] irj - (d=dot e/ )

for r > 1, where [A], ; denotes (i, j) element of a matrix A, [|6™" — 8% < |16 —68°|, and ||6* — 8°|| <

|6 — 6°)|. By Katayama (2006 Theorem 1, Remarks 2 and 3, Lemmas B 7, B 8, and B 9) and
Section 0.8, § %5 §°, § 25 §°, I(d) is continuous on ¢, and (A.7) holds either fixed d or
d=dy+ c/\/_ It follows that:

S8 - 1(8")

< ‘552)(6**) _ (2) 5* + |I(5**) _ 1(50)|

‘5 (67) — 1(5°)

< sup [52(6) = S2(9)| + sup
deD; deD;s

2% 0 (either fixed d or d = do + ¢/+/n).

D(0) — 1(8)| + 1(6") = 1(8”)|

Similarly:

925.(8")
8dop

825.(6%)
0B0p’

To show (0.25), it is sufficient to check the rth moments of second derivatives of S.(6™) for any
r > 1 [see Lemma A (ii) and Lemma C (i) of Serfling (1980, pp.13-15)]. We focus on the case of
B(z) = 1 because coefficients of partial derivatives consisting of 3 are absolutely summable and
decay exponentially and the same argument is easily applied to the general {y;}. For d,d* € Dy,
1=1,2,3:

a.c.

-0, and -® 250 (d = dy + ¢/\/n).

S (d) = 2§:s@)d* ) 2§:s“’d* (d"),
TLO’Ot 1

where sgi)(d*) is given by (0.15). For (0.15), since d* +¢;,d+¢; € D1 = [a,1/2—a], a € (0,1/4),
it is enough to consider the case of D; and ¢; = 0. To check E[S§2) (d*)]", from c¢,-inequality, it is

sufficient to show that:
1 - i * j *
B2 e @)e @)
t=1

for (i,5) = (2,0),(1,1), uniformly in d*,d € D;. By the convexity of function z", z > 0, r > 1,
Jensen’s Theorem, and Cauchy—Schwarz inequality:

e[S <o[ES e
t=1

<= \/E an|] E

e e

which proves (0.26) from (0.22).

T

< 00, (0.26)

‘ (4) d*

)| 2 @)

| <25l
I"

el (d)
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0.10 Proof of (A.21) (p.25)

For simplicity, let 8(z) = 1, 5 =d. Then, using the similar argument as in (3.13), (3.14), (3.16),
and (A.11), we obtain:

q92

h—1
E Ynin — 0n(W)] = EYnsn — Yn(h) + yn(h) — Gu(h)]> = E [Z Vi (d)ensn_j + yn(h) = Gn(h)

-2
n

=0y (h) + Efya(h) = (W] = o5 (h) + E [Z {ehd) = (1, 0°) by

Jj=1 i
2
~ n—1
= Uz(h) +E (d - d) Z P (h‘a d)snfj + R57n )
7=0

where Rs . = (d— d)> Y7, ¢ (h, d*)yn+1-, and |d* — d| < |d —d|. 1t follows that it is sufficient
to show that E[R;,])? =o(n™!), as n — cc.
Note that, by Yajima (1985, (7)) and Lemma 3.2, there exists a;;(«), which does not depend

on d and d*, satisfies:

¢ (h, d*)

sup < aji(a) = O({logj}?j =+ 1), (0.27)

d*eD;

for 1 =1,2,3, as j — oo, where (¢1,¢a,c3) = (0,1/4,1/2). Furthermore, by Yajima (1985, (7)),
[;(d)| < Cj—=*"1/2 for j > 1, and:

2

Ely]* =E [Z ¢j(d)etj] < const {ij(d)Q} + iwj(d)‘* (0.28)

t—1 S
< const Zj_za_l + Zj_4a_2 + const < oo,
j=1 j=1

for ¢t > 2, which implies that E[y,]* is finite for any d € D;, [ = 1,2,3 and t > 1.
For the case of d € D3, as in the proof of E[R; ,,]> = o(n™!) in the proof of Theorem 3.1, using
(A.14), (0.27), (0.28), Cauchy—Schwarz inequality, we have:

E (Z 05'2) (h7d*)yn+1j) S E (Z aj73(a)yn+1j) S [Z aj73(04) (E[yn+1j]4)1/4]

=0 ({log n}4n2*4“) ,

4

41 1/2

E[R;.]* < |E ‘ d—d ‘8 E (i: 05-2)(’% d*)yn+1—j) = 0(\/71—4 x {log n}4n2—4a)
j=1

=o(n1), as n — 0o.

The cases of D; and D, can be obtained similarly because the order of sequences corresponding to
aji(a) is o({logj}2j~'/2=). The case of the ARFISMA(p,d,q) model can be obtained similarly
because the coefficients of the partial derivatives consisting of B are absolutely summable and
decay exponentially.

0.11 Proof of Corollary 3.2 (p.10 and p.26)

We prove that Theorem 3.1 still hold if the model (1.1) is replaced by the model (3.19) and
6 =c/\/n.
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We borrow the notations of the proof of Theorem 3.1. Equations (A.19), (0.27) and (0.28)
implies E[R; ,,]> = o(n™") uniformly in §* € Ds. Also, (3.8), (3.9), and (3.10) hold by Katayama
(2006, Remark 3), and (A.19) and (0.25) hold which follows (A.11), (A.12), and (A.13). The
remainder of the proof is obvious from the fact that §; does not depend on d, ¢;(h,d°) = O(;)
as j — oo, and the last paragraph of the proof of Theorem 3.1.
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