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Abstract

In this paper, we show that for panel AR(p) models with éid errors, an instrumen-
tal variable (IV) estimator with instruments in the backward orthogonal deviation
has the same asymptotic distribution as the infeasible optimal IV estimator when
both N and T, the dimensions of the cross section and the time series, are large. If
we assume that the errors are normally distributed, the asymptotic variance of the
proposed IV estimator is shown to attain the lower bound when both N and T are

large. A simulation study is conducted to assess the estimator.
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1 Introduction

Since the work of Anderson and Hsiao (1981, 1982), instrumental variables have
been widely used for the estimation of dynamic panel data models."! However, since
the IV estimator is not generally efficient, Holtz-Eakin, Newey, and Rosen (1988)
and Arellano and Bond (1991) proposed to use the generalized method of moments
(GMM) estimator to improve efficiency. The GMM estimator has subsequently
been refined in a number of studies, including Arellano and Bover (1995), Ahn and
Schmidt (1995, 1997) and Blundell and Bond (1998). However, although the GMM
estimator is generally more efficient than the IV estimator, it is well known that the
GMM estimator is more biased than the IV estimator in finite sample.

In this paper, we focus on the IV estimator and address the efficiency problem of
the IV estimator. Specifically, we show that, for panel AR(p) models with #id errors,
a simple one-step IV estimator is obtained from the backward orthogonal deviation
(BOD) transformation that has the same asymptotic distribution as the infeasible
optimal IV estimator derived by Arellano (2003b) when both N and T are large.
If normality is assumed on the errors, the proposed IV estimator is shown to be
asymptotically efficient. Simulation results reveal that the proposed IV estimator is
almost unbiased, and the difference in dispersions between the feasible optimal IV
estimator and the proposed IV estimator is small when T is large.

The remainder of this paper is organized as follows. Section 2 provides the setup
and the main result. Section 3 presents a Monte Carlo simulation and assess the
theoretical result. Finally, Section 4 concludes.

A word on notation. For a vector  and a matrix A, we define ||z|?> = 'z and

|A||?> = tr(A’A) where tr(-) denotes the trace operator.

'Recent papers that discuss the IV estimator are Arellano (2003b) and Hahn, Hausman, and Kuer-
steiner (2007), proposing two-step efficient IV estimators and the long difference IV estimator are pro-

posed, respectively.



2 Setup and Result

2.1 The model and assumptions
Let us consider the following panel AR(p) model:

Yit = Q1Yit—1+aoyir—2+ -+ apYit—p + M + Vit (1)

= oz + 0 + vy (i=1,.,N, t=1,..,T) (2)

_ / _ / :
where a = (a1, ..., )", it = (Yit—1, -, Yit—p)', Vit has zero mean given by s, yio, ..., Yit—1
and p is fixed and known.? For convenience, we assume that Yi,04e+->Yi,1—p are ob-
served.

(2) can be written in a companion form as
xi 1 = Hay + di(n; + vir) (3)
where d; = (1,0, ...,0)" of dimension p and II is the p x p matrix given by

al ... a
I - v (4)
I,i | Op-1nx
where I is an identity matrix of order k and Oy, is a k x £ matrix of zeros.
We make the following assumptions, which are part of the assumptions made by

Lee (2005).

Assumption 1. {vy} (t =1,....,T,i = 1,...,N) are iid over i and t and indepen-
dent of m; and x;1, with E(vy) = 0, var(vy) = o2 and finite fourth order moment.
{ni}(i=1,..,N) are iid over i with E(1;) = 0 and var(n) = o;.

Assumption 2. The initial observations satisfy

zi = (I, — ) 'din; + wig (5)
where w;p = (Z;io vai,,]) d;.
Assumption 3. det [I, —I1z] # 0 for all |z| < 1.

Assumption 4. Let m;(i,t) = delviyt_l_j. For all i, t, and for any r1,...,74 €

{172a"'p}7

(e 9]

Z ’C’umm,"wm (mjl (ivt)vmjé (i?t)amjé (ivt)vmj4(i?t))‘ < 0. (6)
J1y53a=0

2The problem how to choose p is extensively discussed by Lee (2005).



Unlike Lee (2005), we do not need to impose the asymptotic relative ratio be-
tween N and T'. Assumptions 1 and 2 are standard ones in the literature.®> Although
Assumption 2 can be relaxed to nonstationary initial conditions, we do not pursue
this here for the purpose of simplicity. However, the main result of this paper is
expected to hold since the initial conditions are negligible when 7' is large and since
we do not use moment conditions that rely on stationary initial conditions as Blun-
dell and Bond (1998) do. Assumption 3 is the stability condition, and Assumption
4

4 is necessary to use the central limit theorem for double indexed processes.

Under Assumptions 2 and 3, x;; can be written as

igr1 = (Ip — )~ dargi + wiy (7)
where
i .
wiy = (Y Moy, | dy. (8)
=0

The model to be estimated is given by
yh = o'z}, + v (i=1,..,N, t=1,.,T—1) (9)

where yi; = ¢ [y — Wigr1 + - +yir) /(T = H)], @y = ¢ [ — (i1 + -+ 2ir) /(T = 1)),
v =t [vit — (Wigp1 + o) /(T —t)], and ¢ = (T —t)/(T —t +1).

2.2 The instrumental variable estimators
The infeasible optimal instruments

Following Arellano (2003a, b), the infeasible optimal IV estimator in a large N and

small T' context takes the following form:

N T-1 - N T-1
1
o= (7 o X s <NTZ o ()
1

i=1 t=1 i=1 t=
where hj; = E(z} |yl 1) and yf_l = (Yit—1,---,Yi,0)". One of the feasible optimal IV

estimators is obtained using a sample linear projection of h;;, which is given by

—1
ALEV / ’ o
(Zwtyf 1) <Zyt yl~ 1) yi . (11)

3See Alvarez and Arellano (2003) for the AR(1) case.
4See Phillips and Moon (1999) and Hahn and Kuersteiner (2002).
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In this case, the feasible optimal IV estimator is equivalent to the GMM estimator

using yf_l as instruments:

-1 -1 T-1
1 / 1 /
ALEV _ * LEV % * LEV  x
oMM = (ﬁ;Xt M} Xt) (W;Xt M; yt) (12)
where X; = (i ay,)s MEFV = ZEEV(ZEEV gUEV) A ghey' | Loy

(Yt Lyl and yi = (Yl e Ui)

One problem of aéﬂ?w is that if V and T increase at the same rate, the estimate
of hiLtEV is asymptotically biased (see Arellano 2003a, p.170). This causes a bias
in aZ5). In fact, for the case of p = 1, Alvarez and Arellano (2003) show that

alh) has a bias of the order O(1/N).?

Using the structure of AR(p) models, Arellano (2003b) shows that the infeasible

optimal IV h;; can be rewritten in the following form:

1 - - —
B(xply™) = o |1 - tH(Ip_HT NI, -1~ (@it — LB (1Y} 1)]

T3
(13)

Under the assumption that E( ui\yﬁ_l) coincides with the linear projection, we have

Blulyt™) = —— 2 vyt 14
(MZ‘yz ) 1 + QZ)(L;V;lLt) t¥t yz ( )
where ¢ = 02/03, Vi=0,°E [(yﬁ_l — uibt)(yﬁ_l — ,uil,t)]/, pi =ni/(1—a'ty), and

02 = var(p;). Hence, the infeasible optimal IV estimator is given by

1%
N T-1 -1 | N.T-l
a?‘fT _ ZZhOPT * _Z hOPTy;kt (15)
NT NT 4
i=1 t=1 i=1 t=1
oPT\ ~1 ~OPT
= a+<AIV ) bry (16)
where
hOPT = ¢, I —LH(I NI, I xy — e LLQV Lyt=t.an)
1 p T_t p p p1+¢(bgvglbt) t 1

5Also see Bun and Kiviet (2006).



Instruments in the backward orthogonal deviation

We consider the IV estimator using instruments transformed by the BOD trans-

formation.5

Specifically, let us define the variables in the backward orthogonal
deviation as follows:

| T 1+ +xi
Tyg = | Tit —
Ct t—1

t=2,..,T—1. (18)

Since x;; contains all past values of x;, it is expected that linear projection of
x;, on xj; has the same information as that of =, on y . Furthermore, we find
that the second parenthesis in (13) can be regarded as demeaning, while the BOD
transformation is a demeaning transformation.” Thus, we find that x;; has a similar

structure as hOP T

The IV estimator using x}* as instruments is given by

N T-1 -1 | NT

~BOD kok %

R E S I S 9 3 )
i=1 t=2 i=1 t=2

BOD) 1 .BOD

The following proposition establishes the asymptotic equivalence of the infeasible

BO

optimal IV estimator, &?‘f T and & 1o%; in the sense that both estimators have the

same asymptotic distribution.

Proposition 1. Let Assumptions 1, 2, and 8 hold. Then, as both N and T tend

O

to infinity, the infeasible optimal IV estimator o T and the feasible IV estimator

aIB‘S) are consistent. If we further assume that Assumption 4 holds, then, as both

N and T tend to infinity, we have

VNT (@ - a) -7 N (0,02 [B(w 1w, )] ") (22)

where @y denotes &SET and abOP .

-1
Note that the asymptotic variance o2 [E('wi,t,lwg t—l)] is of the same form

as the within groups (WG) estimator derived by Lee (2005).

6The BOD transformation was originally considered by So and Shin (1999) in a time series context.
"Note that x;; can be rewritten as

Tit = Lpll; + Wi ¢—1 (19)

: -1 1
since (Ip — H) dl = mbp.



Remark 1. For the case of p = 1, Alvarez and Arellano (2003) show that aZ5},

and the WG estimator, aw ¢, has the following asymptotic distribution:

VNT [ag% - (a1 — %(1 + 041))] —4 N (0,1-0a2), (23)

\/W[aw(;— <a1—%(1+a1)>] —4IN(0,1-a?). (24)

Also, from Proposition 1, we have
VNT [af?P — 1] =4 N (0,1 - af). (25)

Comparing (23), (24) and (25), we find that although all estimators have the
same asymptotic variance, aé%%/[ and aQw g have asymptotic biases of the order

O(1/N) and O(1/T), respectively, while aB?P — a4 is centered at zero.

Remark 2. Hahn and Kuersteiner (2002) show that if we further assume normality

2

- [E(wiyt_lw;tfl)] is equal to the lower bound under large N and

on v, then o
large T" asymptotics. Hence, &?‘9 D is an efficient IV estimator under large N and

large T" asymptotics without an asymptotic bias when v;; is normally distributed.

Remark 3. Another advantage of &}BVO P is that since the individual effects are

completely eliminated from both the model and instruments under stationary initial
conditions, the performance of a?‘g) P is not affected by the variance ratio of the
individual effects to the disturbances although the typical GMM estimators using

instruments in levels are.8

3 Monte Carlo Simulation

In this section, we compare aIB‘S) D with other estimators by Monte Carlo simula-

tion. We consider AR(1) and AR(2) models. v; and 7; are drawn from N(0,1)
independently. We consider the cases of (7, N) = (10,100), (10,500), (15,100),
(15,300), (20,100), (20,200), (50,100), and (100,100). For the AR(1) model, we set
a1 = 0.3,0.6,0.9, and for the AR(2) model, we set (a1, as) = (0.45,0.45),(0.6,0.3).
We generate T 4+ p 4+ 50 observations for each ¢ and discard the first 50 periods

to diminish the effect of initial conditions. We compute the median (Median), the

8See Bun and Kiviet (2006), Hayakawa (2007a), and Bun and Windmeijer (2007).

7



interquartile range (IQR), and the median absolute error (MAE). The number of
replications is 5000 for all cases.

The estimators to be compared are aG?/KV[, AB PP the GMM estimator using
;" as instruments, and the IV estimator using x;; as instruments. The GMM
estimator where ;" are used as instruments is defined by

T—1 -1 T-1
1 / 1 '

t=2 t=2

where MBOD — zBOD (ZBOD’ZBOD) ZBOD' and ZBOP — (zir, .. @y,
&5]\0/[ s does not share the problem with & aG M v that the number of parameters
increases as T gets larger. Although we suspect that discarding some available
instruments results in an efficiency loss, for the case of p = 1, Hayakawa (2007b)
shows that & aG has the same asymptotic variance as aGﬁ%\/p while its asymptotic

bias is of the order O(1/NT).?

The IV estimator using x;; as instruments is given by

N T-1 - N T-1
S S 9 o) (NTzzxn@. o)

i=1 t=1 i=1 t=1

Note that aLEV is not exactly the same IV estimator as the one by Anderson
and Hsiao (1981, 1982) since they used the first-difference to remove the individual
effects from the model.

The simulation results for AR(1) and AR(2) model are provided in Tables 1 and
2, respectively. We first consider the AR(1) case. We find from Table 1 that, in
terms of the bias, the IV estimators, a%f V and a?‘g) b , have little bias for all cases,
while the GMM estimators have non-negligible bias when o = 0.9 and T is less
than 15. Especially &éﬁ% has large bias for all cases. However, with regard to the
IQR, aéﬁ%\/[ has the smallest dispersion and & [E V has the largest dispersion. Also,
we find that the differences in the IQR of a2}, @B9h, and aP9P become quite
small when T is as large as 50. This result is consistent with Proposition 1 where

BO

&éﬁm, which is a feasible optimal IV estimator, and &y are shown to have the

same asymptotic variance when N and T are large. For the median absolute error,

9 Although we expect that similar results hold for AR(p) models, we do not provide a proof here since

it would become quite long.



we find that ag%@ has the smallest MAE in many cases. However, the difference
in the MAE between a2/, and ab¢” is fairly small. Next, we discuss the results
for the AR(2) case. The IV estimators are virtually median unbiased and &Z%}),
has the largest bias. In terms of the IQR, unlike in the AR(1) case, &by is not
least dispersed for all cases. For instance, in the case of T' > 20, the IQR of &21\04[]\)4
is smaller than that of &5%}}, in almost all cases. Also, we find that the difference
in the IQR between &by, abSh,, and abP” becomes small when T is large.
In terms of the MAE, although &Z%/;, performs best in many cases, the difference

between ab$ih, and aP?P is quite small.

4 Conclusion

In this paper, we showed that the infeasible optimal IV estimator and the IV esti-
mator using instruments in the backward orthogonal deviation are asymptotically
equivalent in the sense that both estimators have the same asymptotic distribution
when both N and T are large. We further showed that if we assume normality on
the errors, the proposed IV estimator is asymptotically efficient when both N and
T are large. Simulation results demonstrated that in terms of the bias and median
absolute error, the new IV estimator outperforms the GMM and IV estimators using
instruments in levels, which are commonly used in the literature.

Lastly, we note some possible extensions. Although we considered an AR(p)
model with iid errors, it is of great interest to investigate whether the results ob-
tained in this paper apply to more general models and errors, say, models that in-
clude additional regressors besides the lagged dependent variables (Arellano, 2003b)
and/or heteroskedastic errors (Alvarez and Arellano, 2004). Also, it may be inter-
esting to apply Okui’s (2006) method, i.e., a procedure to select the number of
moment conditions so as to minimize the MSE of the estimators, to improve the
GMM/IV estimators using instruments in the backward orthogonal deviation. But

these tasks are left for future research.



Appendix

Lemma A Let Assumptions 1, 2, and 8 hold. Then, hZ-OtPT and thD can be

written as
1

thT = G [It -0 (T——t)] [wi,t—l +93PT} )

hiOP = wy_y —gijo" (28)
where

gOPT — |1 (1 + ¢r), R?hp) — ¢ [(1 — ') (vig—1 + -~ +vip) + K, RG] (29)

T T+ 0 {(1— o/t 2(t — p) + )R Ky} |
B0, 04+ B, ov1)d + B w;
gBoD — (Prvig—2+---+ tt_ivzl) 1+ Py 1Wio (30)
O, =T+ 1"+ + IV = (I, - )~ (I, - TY) (31)

and Ky, R?2, and ; are defined later.

Proof of Lemma A Following Whittle (1951) and Wise (1955), let us define the

t x t matrix Uy as follows.

O I,_
U, - (t—1)x1 t—1 . (32)

O1x1 Oix-1)

Then, we have

U? = , U= :
O2x2  Oagx(i-2) Osx3  Osx(1-3)
Uffl _ Ot—p+1)x(p-1) It pya , UP= O(—p)xp I p
Op-1xp-1)  O@p-1)x(t-p+1) Opxp  Opx(t—p)
Using these expressions, yf_l can be written as
_ _ _ _ Li—1 _ _
Yl = Uyl ™ + Uiyl + -+ o, Uyl 4y, + vt 4 rl71(33)

/
t—1 __ I / _ ! —
where v;"" = (vi¢-1,..,vi1,0) = (U(1)7Z~,U(2)7i) s V(1) = Wit—1, - Vip)s V(2); =
/

(Uﬁp*la -+ Vil 0)/’ 7“571 = (rl(l)7i7 T,(2),i> y (1), = O(tfp)xla and T©2),: = (O‘pyi,fla op—1Yi,—1+
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01Yi,—2, 02y 1+ -+ Qi —pt1,Yi0). Since y; is stationary and its condi-

tional mean given by n; is p; = 7;/(1 — &'tp),

~t L1 _ _
(It_At)yE b=y —Mz‘(It—At)Lt‘f‘UE 1‘“‘2 !
0
0(—p)x1
= Ly ’ +olt 4t
T 1-alt,
0
= vﬁ ! —i—?ﬁ_l
— R;F—l
where @E_l = yﬁ_l—uibt, A= (OélUt +aU? + -+ apr), ?E‘l = (le(tfp)7Fz2),i),’
and
ap(yi,—l — 1)
ap—1(Yi,—1 — pi) + ap(Yi,—2 — i)
T, = :

042(yz‘,71 — i)+t ap(yi,prrl — 1)

i Yio — Hi ]
Then, it follows that
I 0
Vil=(I-AY) Op 2 (I — Ay) (34)

-1
where R? = [OJQE(T(z),iT/(z),i)] :

Therefore, using

t—p(l —a'ty)
1—a1—a2—---—ap,2—ozp,1
l—a;—ag— - —Qp_9 t—p(1—aL

L= A)u—| P | p( ») (35)
: Ky
1— aq
1

we have
GVity = (1—a'y)*(t—p)+ R;R?chp, (36)



uVity ™t = (L= alty) it = p) + vig—1 + - + vip) + KRG (37)
1
C;i =i + V(2); + T(2)i- (38)
The result for hﬁOD is readily obtained after a simple manipulation.

Lemma B Let Assumptions 1, 2, and 3 hold. Then,
are O(1/t).

OPT BOD
(gzt zt 1 H andHE it zt 1)”

Proof of Lemma B First, note that E(p;w;;—1) = Opx1. Next, since p is fixed,

we have
1B [(wig1+ - +vip)w), ] || = o2 ||d; [(T, - )7L, - T7P)]'|| = O(1),
HE[ RQZ(CZ) zt 1]“ - (1)7
t—2 ‘
|E [(®1vig—2 + - + ®rsvin) diwf, ||| = op | ®;didi(IV) | = O(1).
j=1

The second result holds since all the elements are of dimension p x 1 or p X p. Then,

the result follows from the fact that the denominators of gOP T and gBOD are O(t).

Next, we derive the asymptotic properties of the IV estimators. Note that IV

BO

estimators a?v and af can be written as

VNT @y —a)=A VNTb=A ¢ (39)

~ ~OPT BOD
where A denotes Ay, , and Aj, , and so on.
The asymptotic behavior of ;1, b and € are given in the following lemma.

Lemma C Let Assumptions 1, 2, and 3 hold. Then, as both N and T tend to

nfinity,
~OPT ~BOD
(a) Apy 7AIV _)pE(wi,tflwg,tfl)v (40)
() by by 0. (41)

If we further assume that Assumption 4 holds, then as both N and T tend to infinity,
() e, en?? = N [0,00E (wig—rwf,_y)] - (42)
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Proof of Lemma C To derive the results, we use the following decomposition:

*
Ly

v,

VitT

= ‘I’th‘,t—l - Ct%itTa (43)
1
= Ct <Ip — ﬁﬂ@’]"_t> ; (44)
(Pr_rvit + Povir—o+ -+ Prvyr_1) dy
- 2t . (45)

~OPT
(a): First, we consider A, . Using Lemma A, B, and the above decomposition,

we have
~OPT 1 T-1
B(An) = 7 p(h"er)
t=1
T-1
1 1 1
= 7 pot |:Ip -0 <T——t>] [E (wi,t—1w;7t_1) +0 <¥>]
— B (wiiwi; )

The last convergence comes from T~! ZtT;ll O1/(T —t)) = O(logT/T) — 0.

~OPT ) .
var (A v ) are easily shown to tend to zero. For a?vo P we have

(@) - 38 o fao(72)) o )

- B(wig1wi; ).

(b),(c): First, we consider €97, Since E (Elo‘fT> =0, and E(thijtv;ksthT') _

E (thTEt(v;‘tvfs)hiotPTl> = 0 for t > s, where E;(-) denotes the conditional expec-

tation given n; and {Ui,t—j}}?ila we have

var (

T-1 T-1
1 0'2 ’
~OPT O * O OPT
Crv ) = puar <§ hz‘tPTUz‘t> = TU E B (hitPThit )
t=1 t=1
9 T—1
g ’ 1
= TU |:E (wz t_lwi7t_1) + O <_):|
t
t=1
— O'gE (wi’t,1w27t71> .

Then, using the similar argument as Hahn and Kuersteiner (2002) and Lee (2005),

we have

/C\IO‘fT —>d N [0, JgE (wiyt_lw;t,l)] . (46)

The result for €297 is obtained in a similar way.

13



~BOD ~OPT

From (c), it is straightforward to show that by, b, —P 0.

Proof of Proposition 1 Using Lemma C, the results are easily obtained.
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