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Abstract

In this paper, we consider dynamic panel data models with possibly nonstationary
initial conditions. We derive the asymptotic properties of the GMM estimators with
various kinds of instruments when both N and T are large, where N and T denote the
dimensions of the cross section and time series. We find that when initial conditions are
nonstationary and the degree of heterogeneity, which is measured by the variance ratio
of individual effects to the disturbances, is large, the biases and variances of the GMM
estimators become small. We demonstrate that this is because the correlation between the
lagged dependent variable and instruments gets larger due to the unremoved individual
effects. This implies that the instruments become strong when initial conditions are
nonstationary and the degree of heterogeneity is large. For the purpose of comparison,
we also derive the asymptotic properties of the within groups and the LIML estimators.

Numerical studies are conducted to assess the properties of these estimators.
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1 Introduction

In cross-sectional data models, since the famous work of Angrist and Krueger (1991),
the “many instruments” and “weak instruments” problems of the two-stage least squares
(2SLS) estimator, which is a special case of the generalized method of moments (GMM)
estimator, have been intensively discussed.! However, while there are many studies on the
many /weak instruments problem in the context of cross-sectional data models, not much
research has been conducted in the case of a dynamic panel data model even though this
type of model faces the same problems.?

For the many instruments problem in dynamic panel data models, it is well known
that one of the important features of dynamic panel data models is that the number of
available instruments increases as T', the dimension of the time series, expands. Hence,
when we use large T" panel data, a large number of instruments become available. In such
cases, it is suspected that the properties of estimators obtained under large N and fixed
T asymptotics cannot explain the finite sample behavior well, creating the need to assess
the estimators under large N and large T asymptotics.?

There are several studies that provide theoretical discussion of the asymptotic prop-
erties of estimators under large N and large T asymptotics.® One such study is that
by Alvarez and Arellano (2003). They derived the asymptotic properties of the within
groups (WG), the GMM, the limited information maximum likelihood (LIML) analog,
the non-optimal first-difference GMM, and the random effect pseudo maximum likelihood
(RML) estimators and showed that the WG, GMM, LIML, and RML estimators have a
different order of asymptotic bias. Another study is that by Bun and Kiviet (2006), who
derived the orders of the finite sample bias of several GMM estimators with various kinds
of instruments.® Yet, another paper that discusses the many instruments problem in dy-
namic panel data models under large N and large T asymptotics is that by Okui (2005b).
Based on Donald and Newey (2001) and Okui (2005a), this work develops a procedure to
select the instruments in order to minimize the mean squared error (MSE) of the GMM
estimator and improves the accuracy of inference. Finally, although not related to the
many instruments problem, Hahn and Kuersteiner’s (2002) study provides an important
contribution. They derived the asymptotic distribution of the maximum likelihood or the
WG estimator and proposed a bias-corrected WG estimator which corrects the bias of
O(T~1) without efficiency loss.

With regard to the weak instruments problem in dynamic panel data models, it is
well known that the first difference GMM estimator of Holtz-Eakin, Newey and Rosen

IFor recent studies, see Andrews and Stock (2006) and the papers cited therein.

2 An analysis of the many instruments problem in the context of static panel data models with predetermined
variables is provided by Ziliak (1997).

3Recent studies on dynamic panel data estimators under large N and fixed T" asymptotics include Hsiao
(2003), Arellano (2003a), and Baltagi (2005).

4As for simulation studies examining the finite sample properties of several dynamic panel estimators when
both N and T are large, an example is Judson and Owen (1999).

5In fact, they consider an asymptotic expansion.



(1988) and Arellano and Bond (1991) suffers from the weak instruments problem when
persistency is strong and/or the degree of heterogeneity is large (e.g. Blundell and Bond
1998; Blundell, Bond and Windmeijer 2000). Blundell and Bond (1998) therefore propose
to use the system GMM estimator of Arellano and Bover (1995) which does not suffer
from the weak instruments problem even when persistency is strong and is more efficient
than the first difference GMM estimator. Because of these desirable properties, it is a
common strategy in empirical studies to use the system GMM estimator to avoid the
weak instruments problem and improve efficiency.

However, we should note that all the results mentioned above are derived under the
assumption of (mean) stationary initial conditions, which may not hold in practice.”
Although it is well known that the initial conditions do not matter for long time series, this
is not the case for panel data, the time series dimension of which is usually short. Hence,
the treatment of initial conditions is an important issue in dynamic panel data models.
Recent papers that discuss the initial condition problem are Arellano (2003) and Kiviet
(2007).8  Arellano (2003) provides a comprehensive discussion of the initial conditions
problem, and one of the issues raised that is relevant to this paper is the discussion of
the asymptotic bias of the inconsistent instrumental variables estimator derived from the
invalid moment conditions.” Kiviet (2007), on the other hand, conducts a large scale
Monte Carlo simulation for the GMM estimators with various kinds of weighting matrices
when initial conditions are nonstationary.

This paper attempts to contribute to the literature on initial conditions in dynamic
panel data models. Specifically, we relax the assumption used in Alvarez and Arellano
(2003) to allow for nonstationary initial conditions, and derive the asymptotic properties
of the GMM estimators using various kinds of instruments. Although this extension
seems to be trivial, it is shown that there are significant differences in the properties of
estimators. Indeed, we show that the strength of instruments is closely related to the
assumption of initial conditions, and that the first difference GMM estimator does not
always suffer from the weak instruments problem even when persistency is strong. In
fact, we show that, in some cases, the instruments becomes strong. In particular, we
investigate the relationship between the initial conditions and the degree of heterogeneity
that is measured by the variance ratio of individual effects to the disturbances. Our focus
is the effect of large heterogeneity on the performance of estimators, an issue that, as
highlighted by Kiviet (2007), has been hardly discussed in the literature.'?

We find that if the initial conditions are stationary, the GMM estimators with in-

struments in levels have large bias and variability when the degree of heterogeneity is

6Note that Bun and Windmeijer (2007) show that the system GMM estimator suffers from the weak instru-
ments problem when the degree of heterogeneity is large.

"As is well known, the system GMM estimator is not consistent when initial conditions are nonstationary
since the moment conditions are invalid.

8The first to consider initial conditions in dynamic panel data models is Anderson and Hsiao (1982).

9See Sections 6.4 and 6.5 in Arellano (2003).

10Some exceptions are Bun and Kiviet (2006) and Hayakawa (2007a), which theoretically discuss the rela-
tionship between the finite sample bias of several estimators and the degree of heterogeneity.



large, i.e., when the variance ratio of the individual effects to the disturbances is large.
This result is consistent with the literature (see Bun and Kiviet (2006) and Hayakawa
(2007)). However, in the case of nonstationary initial conditions, we show that the GMM
estimators with instruments in levels have small bias and variability when the degree of
heterogeneity is large. We demonstrate that when initial conditions are nonstationary, an
additional correlation between the lagged dependent variable and instruments appears.
Especially, we find that, when the degree of heterogeneity is large, the instruments become
strong. Also, we find that, when the degree of heterogeneity is not so large, instruments
may be weak, depending on initial conditions. For the GMM estimators with instruments
in first difference or backward orthogonal deviation (BOD), they are not affected by the
degree of heterogeneity when initial conditions are stationary, while their performance
may improve when initial conditions are nonstationary and the degree of heterogeneity is
large.

For the purpose of comparison, we also derive the asymptotic properties of the WG
estimator and the LIML analog estimators with the same kinds of instruments as the
GMM estimators. As a result, we find that although the WG estimator is not affected by
the degree of heterogeneity in the case of stationary initial conditions, a large degree of
heterogeneity helps the WG estimator to have a small bias. This feature causes a problem
in the bias-corrected WG estimator of Hahn and Kuersteiner (2002). Since, as will be
described, the bias corrected WG estimator has the correction term 1/7, it is upwardly
biased by construction when the initial conditions are nonstationary and the degree of
heterogeneity is large. With regards to the LIML estimators, similar results are found as
in the case of the GMM estimators. With stationary initial conditions, the performance
of the LIML estimators with instruments in levels are negatively affected if the degree
of heterogeneity is large. However, with nonstationary initial conditions, the bias and
variability of the LIML estimators with instruments in levels become quite small when
the degree of heterogeneity is large. We also find that the GMM and LIML estimators
with instruments in backward orthogonal deviation have the same asymptotic properties.

The remainder of this paper is organized as follows. Section 2 introduces the model and
the assumptions and defines the GMM estimator. Section 3 investigates the effect of the
degree of heterogeneity and initial conditions on the GMM estimators with instruments in
levels. Section 4 considers the removal of the individual effects from the instruments and
derives the asymptotic properties of the GMM estimators. Section 5 derives the asymp-
totic properties of the WG and LIML estimators for the purpose of comparison. Section 6
then reports Monte Carlo simulation results to assess the theoretical implications. Finally,
Section 7 provides some concluding remarks.

Note that throughout the paper, T, denotes T'— 1 or T' — 2 when the range of a
summation in estimators ist =1,...,T — 1l or t = 2,...,T — 1, respectively. All the proofs

of theorems are included in the appendix.



2 The model, the assumptions, and the GMM
estimator

We consider an AR(1) panel data model given by

Yit = QY e—1 + Mi + Vig, i=1,....N and t=1,..T (1)

where « is the parameter of interest with |a| < 1 and v;; has mean zero given 1;, Yo, ..., Yit—1.1*

We assume that y,o is observable. By letting zix = vir—1, ¥i = Wit Y1), i =
(@it zir), vr = (1,..,1) and v; = (v;1,...,v;1), (1) can be expressed in a vector form

as follows:
Yi = Qi + il + U5 (2)

To define the GMM estimator, let us define the forward orthogonal deviation (FOD)

transformation matrix F' as follows:

1 1 1 1 1

I =75 —773 71 T T

0 1 -l ... -1 _ 1 1

T— 1 1 T-2 T—-2 T-2 T—-2
0 0 o .- 1 -1 1
0 0 0 -~ 0 1 1

Fis a (T'—1) x T matrix such that F'F = Qr and FF' = Ir_;, where Qr = It —upip/T.
Premultiplying F' in (2), we have

yi = axi +vj, (4)

where yf = Fy;, ] = Fx;, and v] = Fv;. The t-th element of v} is given by

i
1

ﬁ(vi,t-i—l‘i'““i‘vi,T) , t=1,....,T —1 (5)

*
Uit = Ct | Vit —

where ¢ = (T —t)/(T —t +1).

Next, we define the GMM estimator. Let z; be a generic instruments vector that is

orthogonal to vj;. Then, the GMM estimator can be written as'?

e — o My* Zt L xy Myy; Zt R Mtxff - QlaSLS,t (©)
= :
x* Ma* Zt 1Tt Mtxt Zt 1y Mtxt

where zf = (27, ..., xNy) s Ui = Wip - UNy)s My = Z(Z1Z) 717!, Zy = (214, ..., 2n¢)', and
Q25LSt = (fotyf)/(fotxf).m Note that @ can be written as a weighted sum of the

HHere, we limit ourselves to a simple stable AR(1) model. Possible extensions are discussed in the conclusion.
12We do not employ the level (Arellano and Bover, 1995) or the system (Arellano and Bover 1995; Blundell

and Bond 1998) GMM estimators because these GMM estimators are known to be inconsistent under large N

and fixed T asymptotics when initial conditions are nonstationary.
13When the invertibility condition of Z’Z, i.e., N > T — 1, does not hold, we can use the Moore-Penrose

inverse. For a detailed discussion of this problem, see Alvarez and Arellano (2003).



cross section 2SLS estimator at time ¢, diasrs+. This implies that the properties of ag

are closely related to those of Qagrs:.

To derive the asymptotic properties of the GMM estimator, we impose the following

assumptions that relax those of Alvarez and Arellano (2003):

Assumption 1. {v;} (t=1,....,T;i=1,...,N) are i.i.d across time and indwiduals and
independent of 1; and y;o with E(vy) = 0, var(vy) = o2, and finite moments up to the

fourth order.

Assumption 2. The initial observations satisfy

l—«o

Yo = 0 ( il ) + wjp for i=1...,N (7)
= Op; + wip, (8)
where w;g 18 wig = Z;io aJv; _j and is independent of n;, and p; = n;/(1 — ).

Assumption 3. n; are i.i.d across individuals with E(n;) = 0, var(n;) = 0727, and finite

moments up to the fourth order.

Assumptions 1 and 3 are identical to those of Alvarez and Arellano (2003). Assumption
2 allows y;; to be nonstationary in the sense that the conditional mean of y;; given n;

depends on t.14 In fact, under Assumption 2, y;; can be expressed as

Yit = [1 — (1 — 5)Oét] j2% + Wit (9)
= /th + wit, (10)

where w;; = Z;io adv;p—j and pf, = [1 - (1- 5)at] 1i. The conditional mean of y;; given
;i 18
1—(1-9)at

Elyalm) = —————"- (11)

Thus, we find that when § # 1, y;; is nonstationary due to the dependence on t, and
when § = 1, y;; is stationary. Therefore, we extend Alvarez and Arellano (2003) to allow
nonstationary initial conditions.

This extension to allow for nonstationary initial conditions has important implications
for empirical analyses. For example, when we consider a cross-country panel data set that
begins after a war or another large historical event, it is unlikely that initial conditions
are distributed according to the steady state (Barro and Sala-i-Martin, 1995). Another
example of nonstationary initial conditions is young workers or new firms, for whom initial

conditions have little relation to steady state conditions (Hause, 1980).

4Note that this type of initial conditions is also used by Arellano (2003) and Kiviet (2007).

6



3 The asymptotic properties of GMM estimators

with instruments in levels

3.1 The GMM estimator with all instruments in levels

Let us define a1 as the GMM estimator with instruments z; = z = (Yi0s -, Yit—1)" as
follows:
~ z¥ M1
agn = t 1 i/ t“yt (12)
M;

t 1
where M}' = ZM(ZIV ZI)~1 Z]Y and Z}' = (2, ..., 24,)".

The following lemma is used to derive the asymptotic properties of g 1:

Lemma 1. Let Assumptions 1-8 hold. Then, we have

T o2 Ty
E Mll * _ v
(a) \/NTZ (2% NT.1—a 1—@;1
= K1G,i1s
1 My G
O N7 th e B

Moreover, as both N and T tend to infinity, provided (logT)?/N — 0, we have

Tl o
11 v
(C) var <\/NT* ;xtM > N, T — oo 1-@2’
T—1
1 s/ rll % p 012)
(d) —NT* ;xt My xy NT - o (1—042 )
where
o2 2 1
RGH = T v [1 S —2X(1 = 0)a' 1 — (1= 0)a' 1] + A2(1 - 6)%a? Vg
* =1 -G
A {1 = (1=8)a" Y = A1 = 8)at g},
1 + )\qt
2
2 _ 9n
O-LL - U‘IT(M) - (1 . CY)Q’
P R S
o2 (1—-a)?o2’
¢ = 1-—a? —l—(t—1)(1—04)2—(1—(52)(1—oz2),
adT_
Y = ¢ (1 - %) )
1—ad
0 = 1—a

Theorem 1. Let Assumptions 1-3 hold. Then, as both N and T tend to infinity, provided
(log T)?/N — 0, we have

agu1 = o. (13)



Moreover, provided T/N — ¢, (0 < ¢ < o0), we have

. d
VNT.(@g1 — a— Bau) — N(0,1 —a?), (14)
where
1 pen 1
B = — =0 =]. 15
on = gwrgn =0 (v) )

In relation to the above, we provide the following remarks.

Remark 1. Although, as is well known, the initial conditions do not matter when T is
large, this is not the case here, since Bg;; can be seen as a finite sample bias which is

naturally affected by the initial conditions.

Remark 2. Hahn and Kuersteiner (2002) show that if we further assume normality on
vit, then A(0,1— o?) is the minimal asymptotic distribution. Hence, (1 — a?) is the lower
bound of the asymptotic variance when both IV and T are large under the assumption of

normality on v;;.

Remark 3. In the case of § = 1, we find that Rg’“ is bounded when A\ — c0.'® This

result is related to the evaluation of the asymptotic bias and variance. From (15), we
find that the asymptotic bias is bounded, i.e., 0 < Bg;; < oo for any A, including zero
and infinity. Although the asymptotic variance under large N and large 1" asymptotics is
not affected by the degree of heterogeneity, that under large N and fixed T asymptotics,
given by o2/ Rg’”, depends on the degree of heterogeneity despite it being bounded even
when X is large.

Further, using Lemma 1(d), (14) can be alternatively expressed as follows:

V/NT, [ag,,l - <a - %(1 + a))] LN (0,1—0a?). (16)

This is the result derived by Alvarez and Arellano (2003).

Remark 4. In the case of § # 1, we find that for given N and T, as A — oo, Rg’ll — 00,

Bji — 0. Therefore, large heterogeneity makes the GMM estimator, &g 1, to have a small
bias under nonstationary initial conditions. Note that this result is in conflict with the
one obtained by Bun and Kiviet (2006), who imposed mean stationarity. Further, note
that the asymptotic variance under large N and large 1" asymptotics is not affected by
the degree of heterogeneity, unlike that under large N and fixed T asymptotics, which is
given by o2/ Rg’”. In fact, we find that the asymptotic variance under large N and fixed
T asymptotics tends to zero as A — oo. This difference arises since the terms associated

with A vanish asymptotically as T" — oc.

15 Although A is finite in practice, we use this notation to indicate that A becomes large.



Remark 5. The intuition behind the result of Remark 3 is that when initial conditions
are nonstationary, instruments become strong as A gets larger. To see this, consider the

following cross section 2SLS regression at time ¢:
Yy = axl +v) i=1,..,N (17)
o, = w2l ey (18)

As is well known, the correlation between z}, and zftl plays a very important role for

the performance of the 2SLS estimator ak, ¢, = «f M{'y;/x} M}'z}. Since 2, can be

written as
zy = Py [wig1 — (1= 0)a" ™ ] — cybur (19)
where
P = <1 — O}(bi_tt) ; (20)
Gir = GT 1Vt +1'1 _1— ¢1'Ui,T—1’ (21)
¢; = 11__05_1+04+"-+04j_1, (22)

we find that the individual effect p; is removed from z, when § = 1, while this is not the
case when § # 1. Using (19), we have

E(zzt) = eBlwig-1zig] — (1= 6)dra’ ™ Elpizi] (23)
= “idiosyncratic part” + “individual effects part” (24)

!

!l is composed of only the

From (23), we find that the correlation between z}, and z
idiosyncratic term when 6 = 1, while it is composed of the “idiosyncratic part” and the
“individual effects part” when § # 1. This implies that nonstationary initial conditions
provide an additional correlation between x3, and zftl through individual effects. However,
we have to investigate the “individual effects part” carefully since it can be negative, while
the “idiosyncratic part” is always positive. When § > 1, since the “individual effects part”
is always positive, E[z},2!!] gets larger as O'Z grows. However, when § < 1, E(x}24) might
be close to zero since the “idiosyncratic part” is positive while the “individual effects part”
is negative. In this case, the instruments may be weak. However, if A is large enough,
the “individual effects part” becomes much smaller than the “idiosyncratic part” and
E(x}2l!) can be large in absolute value. Therefore, when A is large, the instruments
become strong regardless of § > 1 or § < 1.16

Finally, although these properties are obtained for the cross section 2SLS estimator at
time ¢, 621215 s> similar properties will carry over to a1, since these properties do not

depend on time t and &g ; is a weighted sum of cross section 2SLS estimators as in (6).

16 Although, following Bun and Windmeijer (2007), this statement can be explained by deriving the concen-
tration parameter that measures the strength of instruments, we do not report the results to save space.



Although a¢ ;1 has some desirable properties, that is, consistency and asymptotic
normality, as shown in Okui (2005b) and Section 6 below, the size distortion of the test
for the hypothesis Hy : a = «,, where a, is the true value, is very large. We suspect that
the source of the size distortion is the bias that results from using all the instruments.
Therefore, we expect that reducing the number of instruments will mitigate this problem
because as per the literature on cross-sectional data models, using fewer instruments

reduces the bias of the estimator.

3.2 The GMM estimator with a reduced number of instru-
ments in levels

Let us define aig 2 as the GMM estimator with instruments z;; = zf? = y;1—1 as follows:

Zt 1 xt Mtlet (25)
Zt | af Moy
where M}? = ZIQ(Z”/Z”) 1717 and 7% = (212, ..., 2%,

agz2 =

Lemma 2. Let Assumptions 1-8 hold. Then, we have

1 — 1 o b1
E *’MZQ A v - -
@) &7 ; (@8 M) =~ X1 a ( T — 1>
= MG,12s
(b) ! Tzlx*’M%* —r L RGE
NT. - t My Xy = T

Moreover, as both N and T tend to infinity,

1 T-1 0_4
MZQ v
(C) var < —NT* ; xt > N.T — oo pPi2 (1 — a2> )

1 T-1 J2
Ml2 v
NT, Tt N, T — oo pl2<1—042>’

t=1
where
G _ ng 2[1 ag—)\(l—éatfl{l— tl}}
! Lo L+ AL (1—8)at1]?
p2 = [1+A(1—a2)]*1.

Remark 6. In the case of § # 1, there is a substantial difference in the convergence of
:c*/MZQx*/NT. Under large N and fixed T" asymptotics, Rg,m — 00 as A — oco. However,
under large N and large T asymptotics, pp02/(1 —a?) — 0 as A — co. As shown below,

this difference plays an important role in assessing the asymptotic variance.
Theorem 2. Let Assumptions 1-8 hold. Then, we have

~ p
agl2 — Q,

10



VNT.(ag2 — o — Ba2) LN (07 (1- 042)%31) ’ (26)

where

Bon - b9 o (L),
2= UNT rgE ~ O\NT
Remark 7. Note that the conditions (logT)?/N — 0 and T/N — ¢, (0 < ¢ < o), which
are imposed in Theorem 1, are unnecessary in Theorem 2. This is because the number
of instruments zf? grows at rate T, not T2 like zftl, and we do not have terms of order
(log N)?/T and T/N. This implies that we do not need to impose conditions on the
relative speed of N and T'. This is also true for the two cases that will be discussed in the

next section.

Remark 8. In the case of 6 =1, as A — oo, Rg’m — 0 for given N and T’; this indicates
that as A — oo, Bg 2 — o0o. The asymptotic variance also becomes substantial when
A is large. This indicates that if we use a smaller number of instruments to reduce the
bias arising from the use of many instruments, then a bias due to large heterogeneity may
appear. To examine this more precisely, we derive the following alternative expression of
(26), using Lemma 2(d):

VNT, [a(;,m - <Oé -

Comparing (16) and (27), we find that if T, < pl_21, the asymptotic bias of ag 2 will be

Tt ) | = A 0.0 - @), (21)

larger than that of a1, although a2 uses a smaller number of instruments than aig ;.
Hence, if a large degree of heterogeneity is present, reducing the number of instruments
to decrease the bias may not work well. Furthermore, the asymptotic variance becomes

quite large.

Remark 9. In the case of § # 1, as A — oo, Rg’m — 00; this indicates that, for given
N and T, Bgy2 — 0 as A — oo. The intuitive reason for this is similar to the case
of aG711.17 Further, we find that the asymptotic variance under large N and large T
asymptotics tends to infinity. However, the asymptotic variance under large N and fixed
T asymptotics, given by o2/ Rg’m, tends to zero when A — oco. This difference stems from
the fact that the terms associated with A vanish asymptotically when 7' — oo as in the
case of ag ;. From the simulation studies in Okui (2005b), we expect that the asymptotic
variance under large N and fixed T asymptotics captures the finite sample behavior more

closely than the variance under large N and large T" asymptotics.

4 Removing the individual effects from the in-

struments

Since the asymptotic distribution of g2 under stationary initial conditions is heavily

affected by the degree of heterogeneity arising from the instruments, we expect that if we

17See Remark 5.
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use the instruments without the individual effects, the GMM estimator will not be affected
by the degree of heterogeneity. Therefore, we consider the removal of the individual effects
from the instruments. We employ two methods to do so. The first involves simply taking
the first-difference. In the second method, we use a transformation known as the backward
orthogonal deviation (BOD) transformation. The BOD transformation is a modification
of the FOD transformation. While the FOD transformation induces a deviation from the
mean of all future values, the BOD transformation induces a deviation from the mean of
all past values. To rid the instruments of the individual effects, we only have to multiply

the following matrix by z;:

[ 1 1 0 0 |
1 1
. 0 0 0
B = : : : : (28)
1 1 1 1
T3 T3 ~T2 75 1L 0
11 1 1 1
| T—1 T—1 T—1 T—1 T—1

By multiplying above matrix by x;, we get the following expression:
Yio+ -+ Yir—2
t—1

= <wi,t1 _ Lt :—_1 i wi,0> —(1-9) <Oét1 — fr-1 > i (30)

t=2,..,T—1 (29)

b —
Yig—1 = Yit-1—

Thus, under the assumption of stationary initial conditions, i.e., 6 = 1, yg’,tfl no longer
has individual effects. This method is known as the recursive mean adjustment method
in the context of a pure time series model (So and Shin, 1999), and is considered in
Hayakawa (2007b) in the context of the instrumental variable (IV) estimation of panel
AR(p) models.!8

The GMM estimators with instruments z; = zftz = Ay;4—1 and z; = zé’f = yib’t_1 are

defined as follows:?

d2
~ t 2 Ty Mt yt
aGgd2 = (31)
I’ ! d
t 2 xy M 2

- b2
Mt

~ _ t 2 Ty
aGgp2 = T—2 */MbQ (32)
t=2 Lt My 9%

where M2 = Z{#2(Z# 7#2)71 78, 782 = (282,282, MP? = ZP*(Z0? ZP*)~1 ZP% | and
Z* (Zlf%v - Zjb\?t)
Asymptotic properties of these two estimators are given in the following lemmas and

theorems.

18Hayakawa (2007b) shows that yf’tf1 is asymptotically equivalent to the infeasible optimal instruments, and
the IV estimator using yzt_l as instruments has the same asymptotic distribution as the infeasible optimal IV

estimator when both N and T are large.
We do not consider the case where all instruments are used since it is suspected that inference would be

unreliable as for the case of ag 1.
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Lemma 3. Let Assumptions 1-83 hold. Then, we have

T—
1 ol dT—2
Md2 * — v 1_
< Bt NT*l—a< T—2
= MG,d2s
1 T-1
! d2 p G2
®) ¥ 2 v MiTey o B

* t=2
T—1
1 * d2 _x 0'12)
(d) NT, p xy M, NT = Pd2 (1_a2
where
2
_ 1 B
RO _ O & 1¢2 [H—a — A1 =621 - a)a* 3] »
- v : o
' T. &= ' i + A1 = 6)%(1 - a?)a2(t=2)
11—«
pd2 = 5 (34)

Theorem 3. Let Assumptions 1-8 hold. Then, as both N and T tend to infinity, we have

Aga2 > a, (35)

~ d _
VNT.(ag,a2 — o — Bg,d2) —N (07 (1- a2)ﬂd2l) ) (36)
where

HhaG,d2

1

Lemma 4. Let Assumptions 1-83 hold. Then, we have

T-1
Z E(a} MP*}) = pc,a = 1,2,

(CL) \/W

—_

Gb

— OQ

NT*

Moreover, as both N and T tend to infinity,

4
Mb2 Oy
(C) U(IT( th > N, T — oo 1—062’

* t=2
T—1
1 /3 rb2 % p 012)
(d) ]\[Tl;< —2 e Mt t N, T — o0 1—a? ’
where
T 2
PO P CH e IS
T t a fe fe — 2
L1 Mfﬂlﬂt 2 {(t Dllte) 2 870521)}]+)\(175)2(at—17%)
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Theorem 4. Let Assumptions 1-8 hold. Then, as both N and T tend to infinity, we have

Qa2 a, (38)
VNT.(@gm — @ — Baw) S N(0,1 - a?), (39)
where
L pep2 1
Bap = ——12 _ 0 — ). 40
G,b2 /—NT* Rg,bz (NT) ( )

Remark 10. When § = 1, we find that Rg’dQ, Rg’bz, Bg 42, and Bg o are not affected
by A. Using Lemmas 3(d) and 4(d), we have

VN o~ (@ gk o )| 407 (0.0 - @2)0g). (a1)
V/NT. [aw - (a -+ a))] LN (0,1-0a?). (42)

We find that the asymptotic biases and variances of dig 42 and g p2 are not affected by
the degree of heterogeneity. However, there is a notable difference both in the asymptotic
biases and in the variances of dig 42 and aig 2. Since p;; is strictly larger than one, both
the asymptotic bias and variance of a g2 are strictly larger than those of @ig p2. Therefore,
we can state that g o is superior to ag 42. Furthermore, the asymptotic variance of ag g2
is strictly larger than the lower bound and can never be efficient. However, the asymptotic
variance of aig 2 is equal to the lower bound, and hence a2 is asymptotically efficient
when v is normally distributed. However, it is noteworthy that although g ;1 becomes
asymptotically efficient by using all instruments, a2 is asymptotically efficient by using
a smaller number of instruments. This implies that instruments that are not used, i.e.,

(yfz, ...,yﬁ’,td), are asymptotically redundant.

Remark 11. When § # 1, as A — oo, Rg’dQ, Rg’w — oo. This indicates that as A — oo,
Bg.a2, Bap2 — 0 for given N and T'. The intuition behind this result is similar to the
case of &g 1. Further, note that the asymptotic variances of ag 42 and @ 2 under large
N and large T asymptotics are not affected by the degree of heterogeneity, unlike those
under large N and fixed T asymptotics. In fact, the asymptotic variances under large N

and fixed T asymptotics, given by o2/ Rg’dQ and o2/ Rg’w, tend to zero as A — oo.

5 A comparison of the GMM, WG and LIML es-

timators

In this section, we derive the asymptotic properties of the WG and LIML (analog) esti-
mators with possibly nonstationary initial conditions and investigate whether the results

are similar to those of the GMM estimators.
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5.1 The (bias-corrected) within groups estimator

The WG estimator is the OLS estimator of (4) and can be written as follows:

!

N
xy* B Zi:l %QT%

! - N b
ez Zi:l x;Qsz

where z* = (2%, ...,z%) and y* = (v, ..., y%)"

(43)

awg ==

Hahn and Kuersteiner (2002) proposed a bias-corrected WG estimator of the form

~ T+1_. 1
Apf = Tawg + f (44)

Note that @y, corrects for the bias of order T71.
To derive the asymptotic properties of the WG estimator, the following lemma is

useful.

Lemma 5. Let Assumptions 1-8 hold. Then, we have

() E ¥ o _ o2 1 o2 1+a_l2a(1—aT)
NT 1—-a?2 Tl1-0a?2|1l—-a T (1-a«)?

op(1-6?2[1-0a" 1 /1-a"\?
1-a2 T\1-«

T

2

g
:R%}géiv s
T — oo 1—0&2

o 5(58)-H(E)bH (=)

1 ’ 0'4
(C) var (ﬁx* ’U*> m 1 —Ua2 .

The following theorem establishes the asymptotic properties of the WG estimator with

possibly nonstationary initial conditions.

Theorem 5. Let Assumptions 1-8 hold. Then, as T — oo, regardless of whether N is

fizxed or tends to infinity, we have

~ P
Qg — Q,

VNT(Qy — o — Bug) 5 N(0,1 — o),

where
1ta _ 1 (+a)(1-a")
B g = — T T2 11—«
v 1 J 1+a 1 2a(1—aT 1 1 (14a)(1—aT)2 ) *
1‘?{%‘?%}+T)‘(1_5)2{1_O‘2T_77( e }

Theorem 5 extends the result of Arellano (2003a, p.86) who only considers the case of
T=2.

15



Remark 12. Under the assumption of stationary initial conditions, i.e., § = 1, we find
that @, is not affected by the degree of heterogeneity. In this case, the bias-corrected
estimator of Hahn and Kuersteiner (2002), oy, works well since &, has a bias of order
O(T~1) for any value of \.

Remark 13. Under the assumption of nonstationary initial conditions, i.e., § # 1, we find
that as A — 00, By,g — 0. This implies that large heterogeneity makes the WG estimator
to have a smaller bias provided that the initial conditions are nonstationary. The intuition
behind this result is that nonstationary initial conditions make E(z* 2*/NT), which is the
denominator of B4, larger as A grows since the third term in (45) is positive. Therefore,
when there is large heterogeneity, i does not work well since it has the positive bias
1/T by construction. Further, note that this result conflicts with Bun and Kiviet’s (2006)
result, obtained under mean stationarity, that the bias of the WG estimator is not affected
by the degree of heterogeneity. This difference comes from the fact that, when initial
conditions are nonstationary, the within-group transformation does not completely remove
the individual effects and the properties are affected by the distribution of the individual

effects.20

5.2 The LIML estimator

Let z; be a generic instruments vector that is orthogonal to v};. Then, the non-robust
LIML analog estimator considered by Alonso-Borrego and Arellano (1999) and Alvarez
and Arellano (2003) takes the following form:
aL _ .’E*/My* - gx*ly* _ Zzﬂ_ll x;fk/Mtyt th 1 xt yt (47)
¥ Ma* — bz o ey My — 0w ay
where 7 is the minimum eigenvalue of W* MW*(W* W*)~! with W* = (y*, x*). If we set

zi to be 2}, 212, 242 and 2?2, then the corresponding LIML estimators can be defined as

follows:
11 7 T-1_ % %
a _ t 1 Ty Mt =l i Yr T (48)
L,ll - T-—1 Mll Z T-—1 « *7
t—1 Tt =l Yy wf T
T-1 -~ T—1 &
~ 195tMt yt_€l2z 1%%
arge = = = (49)

12 ’
t= 15’3tM Ty — 51221: 1 9%5%

d2
~ o Zt2xtMt yt—£d22t2xt9t
t= 2 xy M xy _£d22t 2 xt xt

~ MPy; — b
Grpe = Zt 2 Ty tbzyt b2 Zt 2 Ty xt' (51)
Zt 9 Tf M Ty — €b2 Zt 9 Xf xt

First, we consider ay, ;. The probability limit of El is given in the following Lemma.

Lemma 6. Let Assumptions 1-3 hold. Then, as both N and T tend to infinity with
T/N — ¢, (0 <c¢<2), we have
c

le &5.

20This interpretation was suggested by a referee.
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The following theorem establishes the consistency and asymptotic normality of ay ;.

Theorem 6. Let Assumptions 1-3 hold. Then as both N and T tend to infinity, provided
T/N — ¢ (0 <c¢<2), we have

arn 2 a, (52)
~ d
VNT.(@p 1 —a — Brp) = N(0,1—a?), (53)
where
T*
HGi11 — sk
Brn = o

1
) /NT pG,ll T, :
NT RT ~ 3N R$g

Remark 14. In the case of § = 1, since R(T;’l1 is bounded even when A — oo and R7Y

does not depend on A, BI:;’” is bounded as the GMM estimator & ;. Using Lemmas 1(d)

and 5(a), we have

1
VT | (- gytg )| £ N0 - a2, (54)
This is the result obtained by Alvarez and Arellano (2003).

Remark 15. In the case of § # 1, since both Rg’ll and RyY approach infinity as A — oo,
Br 1 tends to zero as A — oo. This implies that, as in the case of the GMM and WG
estimators, a large degree of heterogeneity makes the LIML estimators to have a small

bias when initial conditions are nonstationary.
Next, we consider ar, 2, ar 42, and Q, po.
Lemma 7. Let Assumptions 1-8 hold. Then, as both N and T tend to infinity,

~

ly 50,
where (72 denotes Eg, ng, and E,g.

Theorem 7. Let Assumptions 1-3 hold. Then, when both N and T are large, ap 2,

Qrq42, and Qg are asymptotically equivalent to aig 2, Qg a2, and Qg 2, respectively.

Remark 16. We find that the difference in the asymptotic distribution between the
GMM and LIML estimators exists only when all the instruments are used. If we use
a smaller number of instruments, for example, ag 2 and oy 2, the GMM and LIML

estimators have the same asymptotic distribution as in the large N and fixed T case.

6 Numerical studies

6.1 Monte Carlo studies with stationary initial conditions

In this subsection, we conduct Monte Carlo experiments to examine the performance of

the estimators with stationary initial conditions. We consider the following AR(1) model:

yi,t = Oéy'i,tfl + i + Vit (Z = 1, ,N,t = 2, ,T + 1), (55)
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where 7; ~ “dN(0,07), yio ~ “dN(ni/(1 — a),02/(1 — a?)), and vy ~ iidN(0,07).
We consider (7', N) = (10,50), (10, 100), (10,500), (15,50), (15,100), (15,300), (25,50),
(25,100), (50,50), v = 0.5,0.8,0.9, and o7 = 0.2,1,10. 07 is set to be 1. The number of
replications is 5,000 for all cases.

For each estimator, we compute the median, the interquartile range (IQR), the median
absolute error (MAE),?! and the size of the Wald test for Hy : o = v, with a 5% level of

significance.??

Median. Table 1 reports the simulation results for the median of the estimators dis-
cussed in the previous sections. Among the GMM estimators, aig p2 has the smallest bias
in almost all cases except when 0,27 = 0.2 and T is less than 15. Although the biases of
Qg pe in the near unit root case, i.e., @ = 0.9, are somewhat large in small samples, for
example, (T, N) = (10,100), &g p2 performs quite well when IV is as large as 500 or when
T is larger than 25. Further, we find that ag 1 and ag o are affected by the degree of
heterogeneity, while dig g2 and @2 are not. For example, when o = 0.9, T' = 15, and
N =100, the medians of ag,;; and a2 are 0.790 and 0.867 in the case of 0,2] = 0.2 and
0.742 and 0.675 in the case of 0727 = 10. This demonstrates that qig 2 is more seriously
affected than g1 by large heterogeneity. It is also worth noting that when 0,27 = 10,
a2 has a larger bias than a; despite the fact that the former uses fewer instruments
than the latter.

With regard to the bias-corrected WG estimator, we find that @, works well in the
near unit root case when T is as large as 25. As for other features, we find that the
bias of ajyy is not affected by the degree of heterogeneity and the cross-sectional sample
size N. The latter feature is particularly important when we compare aypy, with the GMM
estimators. For instance, when o = 0.9, the medians of a2 and ayy, are 0.734 and 0.810,
respectively, in the case of T' = 10 and N = 50, but 0.872 and 0.812 when 7" = 10 and
N = 500. This implies that ag p2 is preferable to apy, especially when N is large. Further,
note that this result is consistent with the theoretical result of aig ;1 being consistent when
N is large regardless of T', whereas ;4 can never be consistent unless 7" is large.

As for the LIML estimators, similar comments as those regarding the GMM estimators
apply. @ p2 performs best in many cases, particularly when 0,27 is larger than one. Further,
we find that oy, ;; and ay, ;2 are negatively affected by the degree of heterogeneity, and the
magnitude of the effects is more serious than in the case of the GMM estimators. Even
with a large sample, say, T' = 50 and N = 50, when o = 0.9 and 0727 =10, a1 and ag o
have quite large biases.

Among all the estimators, o, jo has the smallest bias for a wide range of sample sizes,

although the difference between a2 and @y po is quite small when N is as large as 300

21We use these robust statistics since the LIML estimators we compute are suspected to have no moments.

22The standard errors are calculated under large N and fixed T asymptotics, i.e., se(@) = \/o2(x* Mxz*)~1 for
the GMM and LIML estimators and se(®) = 1/52(x* 2*)~! for the (bias-corrected) WG estimators. Although
the standard error of the bias-corrected WG estimators cannot be estimated consistently under large N and
fixed T asymptotics, it is expected that it will work well if the bias-correction works well.
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or T is as large as 25. This result is quite different from the cross-sectional case where the
GMM estimator has a much larger bias than the LIML estimators (see, e.g. Anderson,
Kunitomo, and Matsushita, 2005).

Interquartile range. Table 2 shows the simulation results for the interquartile range
of the estimators. Among the GMM estimators, the variability of &g, is the smallest
in all cases. Although both ag ;1 and g pe are asymptotically efficient, they differ in
a finite sample, and this difference becomes smaller as N or T" becomes large. We also
find that the effect of a large degree of heterogeneity is serious for ag 2. As 072] gets
larger, dig 2 becomes more dispersed. If we compare ag g2 and a2, we observe that
the former is more dispersed than the latter; this result is consistent with the theoretical
results. For the bias-corrected WG estimator, the IQR is quite small in all cases, and as
N or T becomes large, the IQR becomes small. With regard to the LIML estimators, we
observe that they have quite large dispersion, particularly when « is large, for example,
a = 0.8,0.9. Moreover, we find that the IQRs of the LIML estimators are larger than
those of the GMM estimators in all cases. In particular, ar, ;1 and ay, ;2 are greatly affected
by a large degree of heterogeneity. In addition, we find that the LIML estimators have

quite large dispersion when N is as small as 50.

Median absolute error. The results for the median absolute error of the estimators
are summarized in Table 3. Among the GMM estimators, we observe that the MAE of
Qg pe is the smallest, except for some cases of 0,27 = 0.2,1. Particularly, in the range of
T > 15, improvements of &g compared to ag 1 are significant, and the performance
of Qg2 is the best in almost all the cases when 0727 = 1,10. As for the bias-corrected
WG estimator, its MAE is not affected by the degree of heterogeneity and is smaller than

that of ag p2, except for the case of large N. With regard to the LIML estimators, ap, po

2:
n

0727 = 0.2. We also find that in all cases, the MAEs of the LIML estimators are larger
than those of the GMM estimators. Hence, in terms of the MAE, g s is preferable to

arp2. Although aypy performs quite well, this estimator is not recommended since it is

performs well when o 10, although @, ;1 and @y ;2 may be preferable in the case of

not robust to nonstationary initial conditions, as will be discussed in the next subsection.

Size. The results of the empirical size of the Wald test are given in Table 4. Among the
GMM estimators, we find that the size distortion of a1 is substantial, particularly when
a = 0.9. However, the empirical sizes of the GMM estimators with a smaller number of
instruments, Qg 2, ¢ d2, and g p2 are close to the nominal size, with a few exceptions
in the case of small samples, for instance, when 1" = 10 and N = 50. With regard to the
bias-corrected WG estimators, the size distortion is quite large in many cases. For the
LIML estimators, we observe that the size distortion of &, ;; is substantial when o = 0.9;
a2 is also severely oversized, particularly when 0727 /o2 is large. For @ 2, although its
empirical size is closer to the nominal size than in the case of other LIML estimators, it

is not very close to the size of the GMM estimator ag po.
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6.2 Numerical studies with nonstationary initial conditions

The theoretical analysis showed that large heterogeneity makes the GMM, WG, and LIML
estimators to have small bias if initial conditions are nonstationary. In this subsection,
we confirm this theoretical prediction numerically for some value of 0 and .

We computed the median and the interquartile range of each estimator with (T, N) =
(10,200), (15,100) where T = T + 1 for the case of a = 0.9. As for §, we use § =
(1 —a)/(1 — &) with @ from 0.800 to 0.995 in steps of 0.0025.2 Note that & = 0.9
corresponds to the stationary case. (1 — )\ = U?)/Ug is set to be 0.2,0.5,1,3,10. The

number of replications is 2,500 for each a.

Median. Figures 1 to 20 depict the simulation values of the medians of the GMM, (bias-
corrected) WG, and LIML estimators. Comparing the cases of T = 10,15, we find that
the shapes of the graphs for each of the estimators are very similar, but their magnitudes
(as indicated by the different scales of the vertical axes) differ. Thus, in what follows we
consider each estimator in turn. We begin with a1 and 2. What is common to both
estimators is that the bias becomes very small as & approaches one. In particular, we
find that for the range of & > 0.9, i.e., § > 1, the biases are smaller than the case where
a = 0.9, i.e., § = 1. This is consistent with the theoretical result that the instruments
become strong when § > 1 as discussed in Remark 5. We also find that ag 2 is more
sensitive to the degree of heterogeneity than a;;. For example, in the case of T = 15
and 0727 = 10, the simulation value of &g changes from 0.742 to 0.870 when & moves
from 0.9 to 0.91, while that of a2 changes from 0.675 to 0.895. This illustrates the
sensitivity of aig 2 to the degree of heterogeneity. With regard to g 42 and ag p2, we find
that the shape of the graphs is different from that of &g and g 2. While the graphs
for a1 and age are “U” or “V” shaped, those for ag g2 and agpe are “W” shaped.
In both cases, although the magnitude of the local maximum bias is almost the same for
any value of U% /o2, & that takes the local maximum bias approaches & = 0.9 as 0,27 o2
becomes larger. We also find that when T = 15 and 0727/012) = 10, ag a2 and ag o are
almost unbiased when & < 0.87 and & > 0.92.

We proceed to consider a,g. We find that when the degree of heterogeneity is small,

2:
n

as the degree of heterogeneity gets larger, the bias of &, becomes small. Therefore, it

i.e., for instance, o 0.2, the estimate of Qg is nearly flat around & = 0.9. However,
follows that large heterogeneity makes the WG estimator to have small bias. However,
this feature exacerbates the result of djpg. Since Qjpy corrects for the negative bias by
adding 1/T as shown in (44), it becomes upwardly biased by construction when the initial
conditions are nonstationary and heterogeneity is large. This can be seen by observing

that the scale of the vertical axis in Figures 6 and 16 is different from the figures for other

23Note that y;0 can be written as

1 1
Yio =0 | —— | mi + wio = ——=n; + Wio,
11—« 11—«

where § = (1 — a)/(1 — @).
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estimators.

With regard to the LIML estimators, the effect of the degree of heterogeneity is quite
large. In the case of ay 1, as 0,27 /o2 becomes small, the magnitude of the local maximum
bias becomes large, although ar, ;i is not very much affected at & = 0.9. On the other
hand, &z, j2, as mentioned above, has substantial bias when & = 0.9 and 0727 /o2 is large.
We also find that &z ;2 has quite a large local maximum bias. Although the movement
of ag 2 and a9 is similar, the magnitude of the bias is quite different. The shape of
the graphs for o, 4o and Qo is quite similar to that of the graphs for aig 42 and a2,

except that the former has a smaller bias at @ = 0.9 than the latter.

Interquartile range. Figures 21 to 40 depict the simulation values for the IQR of
the GMM, (bias-corrected) WG, and LIML estimators. As in the case of the median, the
IQR of a1 and ag 2 becomes small as the degree of heterogeneity becomes large under
nonstationary initial conditions. We also find that although &g 2 is quite dispersed when
0727 /o2 =10 and a = 0.9, its variation becomes quite small as @ moves away from 0.9,
particularly as @ approaches one. For example, in the case of T = 15 and 0727 /o2 = 10,
the IQR of g1 decreases from 0.103 to 0.005 when & moves from 0.9 to 0.95 and that
of a2 falls from 0.305 to 0.005. The shape of of the graphs for ag 42 and Qg is quite
similar although & p2 has a smaller variation than g g2 at & = 0.9.

For the (bias-corrected) WG estimators, we find that they have the largest IQR around
a = 0.9, and as & moves away from 0.9, the IQR becomes quite small. Moreover, the IQRs
of Qlwg and apy, are much smaller than those of the GMM estimators (note the different
scale of the vertical axis in the graphs for these estimators).

With regard to the LIML estimators, note that the scale of the vertical axis in the
graph is much larger than those of the GMM and (bias-corrected) WG estimators. We
find that the IQR of &y, ;1 becomes substantially large when & = 0.8 and 0727/012) =0.2. In
the case of ay, j2, the sensitivity of the IQR to large heterogeneity is noteworthy. If 7' = 15
and o7 /o7 = 10, the IQR of & jp with & = 0.9 is 1.907, while that with & = 0.91 is 0.043.
The shapes of &y, g2 and &y 42 are quite similar to those of &g 42 and @ p2, although the

scale is quite different.

7 Conclusion

In this paper, we considered the asymptotic properties of GMM estimators with various
kinds of instruments in a dynamic panel data model with possibly nonstationary initial
conditions. We showed that the GMM estimators with instruments in levels perform
poorly under stationary initial conditions and that they perform well under nonstationary
initial conditions if the degree of heterogeneity is large. We demonstrated that this result
comes from the fact that nonstationary initial conditions provide an additional correlation
between the lagged dependent variable and the instruments, and found that, as the degree

of heterogeneity gets larger, the instruments become strong.
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For the purpose of comparison, we also derived the asymptotic properties of WG
and LIML estimators. We showed that under stationary initial conditions, the perfor-
mance of the WG estimator is not affected by the degree of heterogeneity, while, under
nonstationary initial conditions, the bias of the WG estimator becomes small if the de-
gree of heterogeneity is large. For the LIML estimators, we found that the results are
similar to those of the GMM estimators. We conducted Monte Carlo simulations to as-
sess the estimators. The simulation results indicate that the LIML estimator with the
BOD-transformed instruments has smaller bias than the GMM estimator, although the
difference becomes small as the sample size becomes larger. However, in terms of the
median absolute error, the GMM estimator outperforms the LIML estimator in almost
all cases.

Finally, we note some possible extensions. First, although the model considered in this
paper is limited to a stable AR(1) panel model, for practical application, it is important to
extend the analysis to models with additional regressors and/or unobserved heterogeneous
time trends, or unit root models. In the case of the former, however, it is likely that the
points made in Remark 5 will apply. In the case of the latter, it is well known from the
literature on pure time series models that initial conditions affect the performance of unit
root tests (see, e.g. Elliott and Miiller, 2003; Miiller and Elliott, 2006). However, to the
best of our knowledge, there are no studies that investigate the effect of initial conditions
on the performance of panel unit root tests. These extensions are particularly important
in practice. Second, it would be interesting to investigate the properties of inconsistent
estimators. Although Arellano (2003) discusses an inconsistent IV estimator of models
in levels, it would be interesting to extend it to the level and system GMM estimators
which are known to be inconsistent when initial conditions are nonstationary. In terms of
practical application, it would be particularly important to investigate the power of the

over-identification test. These topics are left for future research.
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A Mathematical Proofs

A.1 The GMM estimator

Throughout the appendix, let us denote ty = 1 for the case of M; = Mt”, M,fQ, and ty = 2
for the case of My = M2, M2

We collect some results which are useful to prove the main results.
Lemma Al. Let a,b,c,d be constants satisfying a > 0, and a + bpt > 0 for all t. We

also assume |p1],|p2| < 1. Then as T — oo,

1 <~ c+dphy ¢
—

S=_— £ —, (56)
T* t:to a + bpl a
Proof: Since 0 < 1+ (b/a)pt for t = tg,..., Tk, it follows that
T. T,
¢ _ clN~lEgh el .
ol o1+ ot o S L+ 2pf
Tx
— El_izw ~‘li-o 1 ¢
a T. = 1+ 3/)3 a T a
Lemma A2. Let Assumption 1-3 hold. Then, we have
1 —112
(@) E(yi—1) =0, [1—7042 +A 1= (1= d)a"] ] :
()  E(uiyiz—1) =0, [1—(1=0)a'"],
2
O-'U
() E(wit-1yit—1) = T— o2
2 _
(@ BlOsE) =0k |2 + A1 - 0P - aPat?)].
1
() E(yit-1Ayi1) =02 T a +A1=6)(1—a)[1—(1- 5)at_1] o2
2
o
E(wii—1Ay;1-1) = ——,
(f)  E(wiz-1Ayiz-1) Tta
(9)  E(uildyi—1) = op(1 = 0)(1 —a)a'?,
1 200041 1 (t—1)(1+a) 2a(l-at)
E[(?, )% = o2 1— _
(h) [(yz,t 1)] Oy |:1_a2( t—1 +(t—1)2{ 1—a (1—04)2
A1 —6)? (! — d1)”
t—1 ’
. 1 adi—1 - -1 P
() Bsenten) = |12 (1- 525 ) = A= 9 [1- @ = o) (a2 - 251,

o (1.
1—a?2

(7) B(wie1yiy1) =

agi_q
t—1

)
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(k) E(Miyi?yt_l) = —o'i(l — 5) (at—l . ft_—ll) '

Proof: Using

o1 = [1= (=)' s+ wip,
Ayiz—1 = (1-0)(1— Oé)OéFQMz‘ T W1 — Wit—2,
b - Pt—1 Wit—2 + -+ Wi
and
2
Wit—2 + - Wi
E A )
(wz,t 1 f—1 >
o 20011 1 (t—1)(1+a) 2a(l-at)
_ 1 _ + _ ’
1—a? t—1 (t—1)2 11—« (1—-a)?

it is straightforward to prove.

Lemma A3. Let k3 and k4 denote the third and fourth-order cumulants of vi. Also let
dy and dg be (N x 1) vectors containing the diagonal elements of M; and M, respectively,
so that tr(M;) = dju, = 1, tr(Ms) = du = 1, and djds < 1. Then under Assumption 1,
forl>r>t,p>q>s, andt > s, we have

204 tr(My M) + kyE(ddy) < (202 +k4) I=r=p=g¢q

E(d,M e —
cov(vfMth,v;Mqu) — “Z (di Msvgq) ) r=p+g
optr(MMs) < o, l=ptr=g
0 otherwise,

|E(déMqu)| < oy

Proof Using the similar arguments to Alvarez and Arellano (2003), it is straightforward
to show.
Lemma A4. Let Assumptions 1, 2, 8 hold. Then as both N and T tend to infinity,

| T 2
/ 12 p v
(a) NT. ;wt1Mt Wil o P <1 — a2> ,

1 T-1 0_2
/ d2 p v
(b) —NT Z wt—lMt Wt—-1 N.T — oo Pd2 <1 — a2> .

As T tends to infinity, regardless of whether N is fixed or tends to infinity,

1 T-1 0_2
/ 11 p v
(C) ]\[1’;< tzl wt—lMt Wt—-1 T - oo (1 B Oé2> ’

1 T-1 0_2
/ b2 p v
(d) NT, D wia M T — oo (1—a2)

t=
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where

pr = [1+X1-a?)] ",

l—«o
pd2 = 5 .

Proof: (a), (b): They are obtained using w)_;Z;/N = E(w;s—12it) + Op(l/\/ﬁ),
Z!Z;/N = E(2%) + Op(1/v/N), and Lemma A1, and A2 as follows:

T-1 .

1 / . - 1
T E Maw;, = — E E(w: + 12 [E(2 Elss o (L

NT. t=to Ho e T. t=to (wit-12it) [E ()] (zitwii—1) + Op <\/N)

o2
- P2 (1 _va2)

where z; denotes zf? or zftz, and py denotes pjo or pgs.

(c) As in Alvarez and Arellano (2003), let e; be the (N x 1) vector of errors of the

population linear projection of uf on Z!' as follows:
er = py — 24yt (57)

where pf = (uly, ..., pik,)" and vt = [E(zH2H0) " E(2H ut). We derive the explicit ex-

pression of ;. First, note that zftl can be expressed as
Zit = [t = (1= 6)ta] pi + i = bepti + P (58)

where ¢; is a (¢ x 1) vector of ones, ¢y = (1,0, ...,a!™ 1), and ¥y,; = (w; 0, ..., wit—1)". Let

V; denote a (t x t) matrix whose (4, k) element is al/=*!/(1 — a?). Then, we have
E() = olbib + 02Vi (59)

Using the formula (A + bb')~t = A= — A=toy A= /(1 + ' A~ 1b), it follows that

;11
|BG)]

_ —1
[02Vi+ a2btf] ™ = % [Vit (Vab) (Vb |
A
= o0,° [vtl - thbtbQth} .
L+ ALV, by

Next, we have
E(zftl,uft) = ai [tt — (1 = 0)q] [1 —(1- 5)04t] = aibt [1 - (1- 5)at] )

Then, we have

A

S A— Ak W NG R S 60
TV Tyt e[1— ( )a’] (60)

VMt

Using the expression of 7, the i-th component of e; is given by

T T [ui —A6(1 — a®)wip — M1 — a)(vig + -+ vu,l)] [1 - (1- 5)0/5}
it = Mg = Za = T+ MI1-a)+(t-1D)(I—a)2—(1-0))(1—a2)}
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where we use the results that bV, ' = (1 — a?) + (t — 1)(1 — a)? — (1 — 6*)(1 — a?),
and ¢! .V, by = 6(1 — a®)wig + (1 — @) (viy + - -+ +vis—1). Since e; is composed of (¢ + 1)
independent variables, its variance is given by
[02 — X28202(1 — a?) + (1 — a)?(t — 1)o?] [1 — (1 - §)af]”

T+ M1 —a?)+(t—1)(1—a)? - (1-38)1-a2)}]?

- of})

Now we consider the decomposition:

E(ezzt)

/ i1 / / i1
wy_ M w1 = wp_qwi—1 —wy_(In — M} )wi—y
/ / 1
= wi_qwi—1 — e (In — M{" e

where the second equality comes from the fact that w;_1 = g1 — Z,flfyél —eand (Iy —

MM (yi—1 — Z1') = 0. Hence we have

T-1 T-1
1 1
o O Bl M) = B} )~ o > By — Mer).
"=l * =1

Since the maximum eigenvalue of (Iy — M}!') is equal to 1,

| Tl | Tl =
N7 2 Bleiln = MYey) < 5o 3 Belen) = 7 > Blely) = 7-0(logT) — 0.
t=1 t=1 t=1
Hence, as T' — oo,
1« ;o oagll 2 o
NT. ;E(wt_lMt wi—1) = E(wi, ) = 1— a2

With regards to the proofs that the variance of (NT,) ™' S"r ' w)_qyw;_q and (NT,) " S35 eley
tend to zero, see Alvarez and Arellano (2003).
(d) The flow of the proof is the same as that of the proof of (c). Let e; denote the

(N x 1) vector of errors of the population linear projection of w;_; on ZP2:

b2, b2
Wiy = 2y F e

where V2 = E(2%2w;; 1)/ E(222)? = E(yﬁ’,tflwi?t_l)/[E(ygtfl)Q]. Using Lemma A2, the
i-th component of ; can be expressed as

b C
gt = Wit—1— 5yz‘,t—1 = D

where

C:

oW t—1 + A3(wWipo + -+ +w; 1\? _
[Aow; -1 + 35111,]512-1- + wip)] Y (at_l— on 1> Wig1+ As <at—1_ i1
= C1+Cy+Ch,

D = El(y;1)=0(),

_Uga¢t—1

)\1 1—0&2’
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N — 1 < o2 >{(t—1)(1—|—0¢)_2a(1—04t1)}’

t—1\1-a? 11—« (1—)?

o2 appq
Ny = o) (1-
o= () (),

Moo= (1-96)? Z,

A5 = (1_5)(1—3042) (1_%)7

)\12 = )\14‘)\2.

We derive the order of E(c%). Since D = O(1), we consider only C. Since u; and

wj+—1 are independent, we have

var(C) = war(Cy) +var(Cy) + var(C’ ) + 2cov(C1, Co) + 2cov(Cy, C3) + 2cov(C, Cs)
= wvar(Cy) +var(Cy) + var(Cs) + 200’0(01, Cs)

s ~+o<;>}< o) so(B)] o)
(B )

I
Q
A~

I
)
VRS
S N I S ol e TS N

N—— — 0

= 0 < + Aga2tD),
Hence
E(Eit)_T_O(g —i—ﬁa( ).

Given the existence of the fourth order moments of ¢;;, we also have

et — o (L) 2oL a2 o 26 e
(Ezt) - t2 + t (07 + D4Oé .

As in the proof of (c), we consider the decomposition:
/ b2 / / b2
wy_ M w1 = wy_qwi—q — wi_ (In — M) wi—q
/ / b2
= Wi Wt-1 — Et(IN - Mt )57&'

Since the maximum eigenvalue of (Iy — M}?) is equal to 1,

T-1 T-1 T-1

1 1 1
E(e/(In — MP?)e;) < E(eier) = = »  E(e})
NT t=2 NT. t=2 * $=2
6 a2(1 (T—Q))
= —O(logT .
7O+ s 0

Hence, as T' — oo,

2
Oy

1—a?’

T

1

NT > B(wi MPw 1) — B(wi,_y) =
* =2

Finally, the variance of (NT3)~! 3.7 €}e; is shown to tend to zero as follows:

1 T—-1 1 1 T—1
! _ 2
T (N—le tZQ €t€t> = NUCLT <i Z 5’it>



= % Tif zt:var(eft) + T%? 28: écov(ai,ei)]
< % % {O<12>+O<> 2(t1)+]_);—%1a4(t1)
* Y
Aol o) )
o) o) )
- 0

Proof of Lemma 1(a), 2(a), 3(a), 4(a)
We shall use the decomposition as follows:
Ty = U [wi,t—l -(1- 5)0}71#2‘] — CtUiT
= Ve(Yit—1 — M) — Clur
where
apr—¢
= 1 L=t
¢t Ct < T _+ ) )
GT—tVit + - -+ P11

Upr = T )

1—ad .
6 = —F —1tat--+ai L,
1l -«

Then, following Alvarez and Arellano (2003), we have

T-1
E@"Mv*) = = E(erMw})

t=to

_ZUtT‘Mt ¢Tt_ Pr—t41
l-« T—t T—-t+1)

t=to

Proof of Lemma 1(a) See Alvarez and Arellano (2003).

|

(66)

(67)

Proof of Lemma 2(a), 3(a), 4(a) Since tr(M;) = 1, the results follow from a simple

calculation.

Proof of Lemma 1(b), 2(b), 3(b), 4(b),

It is straightforward to show from Lemma A2 and a simple manipulation.

Proof of Lemma 1(c), 2(c), 3(c), 4(c),

Using vf = (v¢ — Uy)/ct, we have the following decomposition:

’ T-1
x* Mv* 1

NT, VNT. =

30

= Z wy_y Myvy — T1ine — Tiont — Yisne + Tuanr + Tisnr



—(YoinT — YoonT)

= Yhnr — Yiont — Yisnt + Yunt + Yisve — (Taive — Toonr)

where
T—1
1
T = ' My, 68
11INT \/N—T*);)wt—l tUtT (68)
1 T—1
TINT = \/N—T* ;} th£—1Mtvfa (69)
T—1
1 ctaqu,t ’ "
T = M, 70
12NT \/N—T*;) T _¢ Wy 1MtV ( )
T—1
1-6 _
Tisny = ( NT) > o My, (71)
* t=tg
T—1
(1 B 5) t—1 7 —
T = M, , 72
14NT \/N—T* t:tOOé W MO ( )
T—1
(1-9) N~ apr—t 41
T = w Moy, 73
15NT NT. P T_1 a Ut ( )
1 T—1
T = — Uy Myvy, 74
2INT \/N—T*;;Uﬁ tUt (74)
1 T—1
T = — 0 M0 , 75
22NT \/N—T,*;)UtT tutT ( )
_ vt tor
wmwr = T — ¢ + 1 . (76)

Proof of Lemma 1(b) For the case of M; = M}!, Alvarez and Arellano (2003) showed
that the variance of the leading term converges to o /(1—a?), and those of Y11 n7, T1onT,
Yo1n7, and Yooy tend to zero if (log T')?/N — 0. Hence, to complete the proof, we show
that the variances of Yi3ny7, YianT, and Y1557 tend to zero. First, we consider Yi3n7:

T-1
o (1=9) =1 | (= 2(t-1) /il
var(Tisnr) = N var Za WM v | = var (u' M; v
*
21— )2 1 1-4)2 =
= TN X e B ) = ]57 D)
t=1 t=1
— 0

Next, the variance of Ti4ny7 can be decomposed into two parts as follows:

UQT(TMLNT) — (1 — 5)27)(17- (TZl at 1 /Mt”’l) T)
NT, P
T—-1

Z var (atil,u’Mt“T)tT>

t=1

(1-9)?
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+2 Z Z cov(at_lu'Mt“@tT, Ozs_lu,MélvsT)] .

s 1>s
For the first term, since t/(T"—t+ 1) < T for t =1,...,T — 1, we have
Jgaitr(Mt”)

va?‘(at_IM,MflT)tT) = 2= T 111

< Ta2(t_1)aga

Then, it follows that

2 T-1 2 2 2 T-1
U li E 2(t—1) Jvau(l - 5) 2(t—1) _ 1
(6% i 1 < — (6% = O - — 0.

For the second term, since

lcov(a! ! MP oy, o "t/ M o) < \/var(oat*1 ’M“T}tT)\/var(asfl,u’Mélq_}ST)
Tolo?at1as~1

< LCITIE e ’
it follows that
t 1 /Mt“?) T, M“UST)|
s t>s
2 2 2
< O-vo-u(]]\-[_ 5) Z Z at—las—l
s t>s
o0 i -1 1
< Ly ey at=o(5) -0

Thus, the variance of Y147 is shown to tend to zero. Finally, we consider Ti557. The

variance of Y15n7 is shown to tend to zero as follows:

_5)2 =
var(Tisnr) = (1-9) var <Z GOPT— LN 'Ml1 >

NT, Tt

1_52T_102a2 2
- (NT) 2 (tT jﬁf);awﬂ)wr (“ /Mt“”:)
=1

T—-1
(102 o (=1 -
< NT, (I-ap ; T (24147

(1-6)? a?o2s> <T1 taQ(t—l)) .
— )2 2
NT, (1-a)p? \= (T-1)

To prove the result, we used the fact that Ei(viv}) = o2ly, Ei(vivy) = 0 for t > s,

¢z <1,and ¢%_, < 1/(1 — @)?, where E;(-) denotes an expectation conditional on 7; and

{1521
Proof of Lemma 2(b), 3(b), 4(b) First, we consider Y7, yp. Its variance is given by

1 T—1 | T-17-1
var(Yiin7) = NT*UM (Z th{t_lMtU?> NT. Z thcs (w;_ lMtvtvs Msws_1)
t=to t=tg s=to
o2 Tt 2
= ﬁ Z C?E(w,’tflMtwtfl) + NT Z Z ces E(wy_y Myvivl Mgws_1)
* t=to s t>s
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4
g,
- P2 <1 _va2>

where ps denotes pjo, pgo, 1 for the case of M; = th,MtdQ, and MtbQ, respectively. The
last convergence comes from Lemma A4, ¢? = 1—-0O(1/(T —t)) and E;(vjv?) = 0 for t > s.

Next, the variance of Yion7 is shown to tend to zero as follows:

1 e 16%0)
var(Tionr) = var (Z tiT_tw;_lMtvf>

NT, T—t
t=to
2 T-1 o?
Oy ¢T t /
= FE Miw—
Nﬂ;; T — 1) - Wi M)
=tlo
o T—1 2
g ¢T t 2
< v E F (w?
> T* < to — t —t+ 1) (wz,tfl)

T-1

constant 1
S Z — 0.
T, = (T—t)(T—-t+1)

The variances of Y13y and Y4n7 are shown to tend to zero in similar way to the case
of M,
We then turn to consider var(YoinT):
1 T-1

1
var(Yonr) = NT var E T tvéMt(QST,tvt + -+ drup—q)
*

t=to
= QaoNT + GINT

where
. B 1 Tzl gb%_tvar(ngtvt) -l—qblvar(vtMth 1)
ONT NT, & (T—ﬂ
1 Tzlsﬁ%_t[?UﬁtT(MtM)JrME(d' I+ (97 + -+ o)tr(M M) o,
NT. (T — 1)
t=to
and
= 100” UtMtUt+laUt+1Mt+wt+1)
o — z
~ ) (T —t—-1)
P %cov(vtMth,l, Vi Mr_qvr_1)
(T —1)
_ i: ¢T t 1“3E (dig Mevy) — @rsE(dp_ Myvy)
i —t)(T—t—1) (T —1t)

Using Lemma A3 and the fact that qb? <1/(1 —a)? for all j,

S | TZ‘I 200 + Fal + (65 1+ + 0D)0}
ONT ]\[1—1‘< = (T _ t)2

- 11 %fﬁw§+n4+«T—t—1wﬁ
= (1-a2NT, : (T — 1)2
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20’34—%4 1 = 1

—t—l
- (1_a)2NT*t:to(T ) + 1—042NTZ

— 0.

From the triangle inequality, Lemma A3, and the fact that |E(d]; iMivy)| < o,
T2

2|kglo, 1 1 1 1
< R
o] < u—apNﬂ;: A A

[ o

1

2’%&3’01, 1
(1—a)? NT, & T—t

Lastly, we consider the term T22 ~NT- We decompose the variance of Toon7 as follows:

-1
1
var(Toont) = NT. U <Z 'UtTMt'UtT> = bonT + DINT

t=to
where
| Tl
bonT = NT, 2 OtT)
and
binT = NT cov(Vyp Myyr, Vg MsDsT).
s s>t

From (A73) in Alvarez and Arellano (2003), we have

- 1
’U(IT(’DLTMtUt’T) =0 (m) .

Hence, by — 0. Next, with regard to the term by 7, we have

2 - -
|binT| < ﬁ Z Z |cov(6£7TMtvt7T, vgyTMsvsyT)\

s s>t

IN

var tTMtvtT)\/var( Mg )
NT .

S To(r)To () o (5) 0

Proof of Lemma 1(d), 2(d), 3(d), 4(d),

IN

We use the decomposition as follows:
T-1 2 T-1

¥ Mx* 1 9 2t
NT. NT, &= i My + ¢ Nﬂ tlwa Vi Map
T—1
-1,/
- Miw,_—
NT. £ n Miwg—1
| T2 o T-1
2~ ~ ~/

- Mgy — ——— My(ye—r — p).
+NT* ;Ct Uy Myver NT. 2 e Opp My (ye—1 — )

Since the last four terms are easily shown to tend to zero, we consider only the first term.
With regards to the first term, using Lemma A4 and noting ¢7 = 1 — O[1/(T — t)], the

results directly follow.
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Proof of Theorem 1

It is straightforward to show consistency from Lemma 1. Next, we show the asymptotic
normality of @lg 1. Alvarez and Arellano (2003) showed that

-1 T—1
— 1 «' il x o 1 / d 0.3
*NT* tzl Ty Mt Vg — HG,11 = \/TT* tzl Wy_10t + op(l) — N (0, m .

Hence, by Cramer’s theorem, we have

—1 —1
.CC*/MU.’E* .CC*/M“’U* pen CC*/M“.’E*
_ - JNT. ot
( NT, ) ( JNT, len e —o = InT \ TR

vV N OéGll —a—BG11]+0p(1)
( a?)

l& [

where
I pen
B = el
G,l1 NT* Rng

Proof of Theorem 2, 3

Consistency directly follows from Lemma 2 and 3. Next, we show the asymptotic normal-
ity. Using w}_,Z;/N = E(wis-12it) + Op(1/V/'N), and Z;Z;/N = E(22) + O,(1/V'N),

T— T—1
U = pgue = wy 1M Ut+0p(1)

2 : i,t—1 zt
N1 * E (Zzt) st P < >

t=

i=1
4
d Oy
4 N (0 e (12 a2>>.

Hence, by Cramer’s theorem, we have

! _1 !
T MZ2IE* T* MlQ,U*
NT, JNT, len

%H

[\
.

Lei2 .’E*,MQCC* -1
VNT, |ajg — .

- J/NT, NT,
= /NT,[ou2 — a— Bg 2] + 0p(1)
d
- ( (1- a’ )P )

where

B HaG 12
GJl2 — \/W RG 12

The proof of Theorem 3 can be done exactly in the same way as Theorem 2.

35



Proof of Theorem 4

It is straightforward to show consistency from Lemma 4. Next, we show the asymptotic
normality of &g p2. To begin with, since the variances of Y1i1n7, TionT, YTianT, TianT,
Yo1nT, and Yooy are shown to tend to zero, note that

T— T—1
1 * q b2 % 1
th M vy — pape = Zwt 1Mt Ut+0p(1)
vVNT, P vVNT, =
1 T—1 T—
= NT wg 1Ut Z ngQ)Ut+Op(1).
* =2 t=2

(77)

The second term in (77) is shown to be o0,(1) using the same argument as Alvarez and
Arellano (2003). Therefore,

1 T-1 1 T-1 J 0_4
M2y - = v op(1) SN (0, 2 ).
JNT. ; Ty My Uy — UGb2 NT. 2 wy_1 vt + 0p(1) — 1—a?)

Using Cramer’s theorem, we get the following result:

:):*/szx* -1 {L‘*/sz’l)*
NT. N

-1
N *’MbQ *
/—NT* Qg — 0 — UG b2 (x x )

VNT, NT;
= +/NT, [asz—a—BG,b2]+0p(1)
-4 N(0,1 - a?)

where

B = L pap

A.2 The WG estimator

Proof of Lemma 6 (a) ,

+ 1 1< 1< ’
E(NT> - Py fzx?t—(fzxit>

With regards to the first term, we have

o2 21—-0)1—al  (1-6)21-a?"
_ZE ) = T [1_ T 1-a T 1—a2]‘

For the second term, we have
| 2 L 2 L 2
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[1_(1—5)1—QT]2

02+l o2 1—|—a_12a(1—aT)
T 1-«

FoT\1-a?)|1l—-a T (1-a)?

Then the result follows. (b) See Alvarez and Arellano (2003). (c) We shall decompose as
follows:

x
% = \/—Zszt 1Vt + \/%ZZ’“E 1Vit

i=1 t=1 i=1 t=1
V¥ Zﬂz(l V¥ Zw 17
= \111+‘I/2—\113—\IJ4.

where ji5_y) = (X0 #f ) /T, 0 = (Syvi) /T, and wy 1y = (SLqwign ) /T.

Since n; and v; are independent, we have

« )k
var <%> = var(Vy) +var(Va) +var(Vs) + var(¥y) — 2cov(¥a, ¥3) — 2cov(¥y, Uy)

where

4
v

T
1 o
var(¥y1) = var s E Wig-1Vit | = 7 5
t=1

T

1 2 9 21—-0)1—-al (1-6)21-a%"7] ,
’UGT(\IIQ) - T tzlE(lu’i,t—lvit) - |:1 - T 1—a + T 1— 042 Uuava
2
_ T %2 =2y _ 2 2 (1-6)1-a”
var(Vs) = TUW(M(A)%) = TE(Ni(fl))E(Uz‘) = 00y (1 T 1-—a )

var(Vy) = Tvar(v;w;—1)) = o™,

lcov(Wy, Uy)| < Vvar(¥)v/var(¥y) = O <%> — 0,

() (1350 (1350

2
= 0,0, <1 T 1-a )

Collecting these terms, the result follows.

cov(VUqe,V3) = FE

Proof of Theorem 5 Let us define 1,4 as follows:

1 N 1—a
o ‘/ yEl 78
Mg N 1—Oé 3 ].—Oé ( )

Then using the similar arguments to Alvarez and Arellano (2003), it follows that

d
TV — ppg — N

& : <0, %) | (79)
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Hence from Cramer’s theorem,

, 1
g 1
or,
VNT (awg a4t Ewg) 4 N(0,1— a?) (81)

where By = (ftwg/VNT)/(z* 2* /NT). Since Byg = plimy oo Buwg+0,(1) = E(z* v*) /E(x* %)+
0p(1), the result follows.

A.3 The LIML estimator

Proof of Lemma 6

From Lemma 1 and Alvarez and Arellano (2003, p.1149-1150), it is straightforward to

show.

Proof of Theorem 6

It is straightforward to show consistency from Lemma 6. Next, we show the asymptotic

normality of @y, ;1. Alvarez and Arellano (2003) showed that

1 ’ ~ / N
TNT (x* MYo* — b x* v*) — (pan — i fiwg)

C g

. = d 2 .
- (1_§> ﬁ;wtwﬁ%(l) HN(O’ (1_§> 1—a2) '

Hence, using the similar arguments to Alvarez and Arellano (2003), we have

/ -~ ! _1 ! -~ !
z* M“LIZ‘* _ 5119&’* T* T* M”v* _ 5119&’* T* B ( B z\ )
NT. NT. Hma,i1 11 Hwg

—~ —~ -1
Tarll ! x
. paar — L p * M x* —lpa*x
VNT, |apn —a— Gl l wg( i

NT, NT,

= +/NT, [aL,ll - — BL,ZI] + Op(l)
4 N(0,1-0?)

T,
By = 1 HGi1 — o Hwg
Lil = G,l1 T. pwg'
NT. Ry — oy Bp

Proof of Lemma 7

Using y; = ax; + v{ and Lemma 2,3, and 4, we have

= o2 Tl =
NT Z?/t My, = NT, Mtﬂct NT th My + NT ZU; Myvf

t=to t=to t=to t=to

38



9 T-1

(@ « " 1 1
= NT* th Mtxt + Op (ﬁ) + Op (N) .

t=to

1 T-1 a T—-1 1 T-1
*’M ko *’M * *’M *
—NT* ;} Yy My NT, tzto xy Myxy + —NT* tzto Ty MUy

T—1
[0 ’ 1
= iy Myx; + O —)
NT”Z L p(\/N—T

=to
Then, as both N and T go to infinity, it follows that

*/ 1 T—1 % * 1 T—1_ ' * 2 2
WIMW. (w7 2=t Ye My w0 2uimgo Yt Mezi |\ ) o < oy > o? a

- 1 T—1 _« * 1 T—-1 % * ’
NT NT, 2=ty Lt Myy; NT. 2ut=to Tt My 1

Y17 % 2
w*w » 0y 1 « (82)
NT 1—a? a 1

where po denotes pjo, pge, and 1 for the case of My = M,fQ, Mtdz, and MtbQ, respectively.

After some manipulation, it follows that the smallest eigenvalue of the probability
limit of W* MW*(W*W*)~1 is 0.

Proof of Theorem 7

From Lemma 7, it is straightforward to show.
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Figure 1: Median of a1 (T' = 10, N = 200)  Figure 2: Median of ag 2 (T' = 10, N = 200)
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Figure 3: Median of ag g2 (' =10, N = 200) Figure 4: Median of ag e (7' = 10, N = 200)
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Figure 5: Median of a,,, ("= 10, N = 200) Figure 6: Median of ay, (T = 10, N = 200)
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Figure 7: Median of ap;; ("= 10, N =200) Figure 8: Median of &y (7' = 10, N = 200)

A 88 Ay
Loz oz 05 91 443 3¢ 10 O o i [+H02 BB 05 061 A4 3 %% 10]
0.9% Aoy 2006 -

08} 8§

071

06 sy
— 05 . . . . . . . . —
05 o« "0g0 08 08 08 08 090 092 094 09 098 o

I I I I I I I I
0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98
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Figure 11: Median of agy (7' = 15, N = 100)
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Figure 12: Median of ag o (T = 15, N = 100)
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Figure 13: Median of a4 (7' = 15, N = 100)
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Figure 14: Median of ag e (T = 15, N = 100)
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Figure 15: Median of @, (1" =15, N = 100)

Figure 16: Median of ay, (T' = 15, N = 100)
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Figure 17: Median of ay;y (7' = 15, N = 100)
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Figure 18: Median of ay ;» (T'= 15, N = 100)
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Figure 19: Median of ay 4 (T = 15, N = 100)
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Figure 21: IQR of ag;n (T"= 10, N = 200)

| | I I I Lo
0.80 0.82 0.84 0.86 0.88 0.92 0.94 0.98

045 [++02 8805 6 1 &4 3 3¢ 10

A
0 a2
040F

0357 4
030
0.25F
0.20F
0156
0.10F

0.05 st

QI

~ 0e8

Figure 23: IQR of ag 4 (T = 10, N = 200)
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Figure 25: IQR of &y, (7" = 10, N = 200)
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Figure 22: IQR of @g o (T = 10, N = 200)
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Figure 26: IQR of ap, (T = 10, N = 200)
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Figure 28: IQR of a4 (T = 10, N = 200)
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Figure 29: IQR of Az (T =10, N =200)  Figure 30: IQR of @4 (T = 10, N = 200)
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Figure 31: IQR of ag;n (T"= 15, N = 100)
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Figure 33: IQR of ag e (T = 15, N = 100)
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Figure 35: IQR of &y, (T" = 15, N = 100)
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Figure 32: IQR of dgo (T = 15, N = 100)
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Figure 34: IQR of Qg (T = 15, N = 100)
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Figure 36: IQR of ap, (T'= 15, N = 100)
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Figure 37: IQR of .y (T = 15, N = 100)
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Figure 39: IQR of 4. (T = 15, N = 100)
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Figure 38: IQR of a5 (T = 15, N = 100)
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Figure 40: IQR of @4 (T = 15, N = 100)
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