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Abstract: A product set of pure strategies is a prep set (‘prep’ is short for ‘preparation’)

if it contains at least one best reply to any consistent belief that a player may have

about the strategic behavior of his opponents. Minimal prep sets are shown to exist in a

class of strategic games satisfying minor topological conditions. The concept of minimal

prep sets is compared with (pure and mixed) Nash equilibria, minimal curb sets, and

rationalizability. Additional dynamic motivation for the concept is provided by a model

of adaptive play that is shown to settle down in minimal prep sets.
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1 Introduction

Simplicity, the bias towards strategic behavior of low complexity, is a major driving force

in actual decision making and game theory. This can be due to various reasons: complex

plans may be hard to implement and likely to break down, since they are more susceptible

to mistakes. They are more difficult to learn, and a decision maker may not have access

to extremely intricate strategies due to bounds on his rationality or cognition.

Pure Nash equilibria of strategic games have several advantages over equilibria in

mixed strategies, most of which boil down to their simplicity. In the first place, they

provide clear and unambiguous recommendations by avoiding complicated randomization

devices. In the second place, pure strategies are directly observable, but it is hard to

observe mixed strategies, unless as an aggregate of long run behavior. Moreover, mixed

strategies may in some occasions not be reasonable objects of choice; see for instance

the discussion in section 3.2 of Osborne and Rubinstein (1994). Finally, experimental

evidence seems to point out that players relatively easily learn to play pure equilibria,

while it is intuitively much more difficult to learn the exact probability measures that

constitute a mixed equilibrium. Selten et al. (2001, p. 23), for instance, state that:

“...under favorable conditions the game theoretic notion of a pure strategy

equilibrium is strongly supported by the observed behavior of sophisticated

players. Of course the tendency towards pure strategy equilibrium plays was

much less pronounced in the beginning. The game theoretic equilibrium notion

is not naturally present in the minds of most unexperienced subjects. But, as

far as pure strategy equilibrium is concerned, it is clearly learned in repeated

tournaments.”

On the other hand (ibid, p. 16):

“In the case of games without pure strategy equilibria, we do not observe a

tendency towards a similarly clear answer to the question how to play such

games.”
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The attraction of pure equilibria induces an interest in strategic games possessing such

equilibria, like the different classes of potential games studied by Monderer and Shap-

ley (1996), Voorneveld and Norde (1997), and Voorneveld (2000). In general, however,

existence of pure equilibria is not guaranteed.

This paper introduces a set-valued extension of the pure Nash equilibrium concept

that is shown to give a nonempty set of recommendations in a large class of strategic

games. Players, whether they are organizations (households, firms, boards of directors,

etc.) or individual decision makers, often do not stick to playing a single action. Rather,

they seek recourse to a certain ‘toolkit’ of strategies that is supposed to provide optimal

responses to the eventualities expected by each player in the game. This insight has

generated a body of literature suggesting set-valued solutions instead of the usual point-

valued solutions like the Nash equilibrium concept and its refinements. Examples of such

set-valued solution concepts include the product sets of minimax/maximin strategies in

two-player zero-sum games (von Neumann, 1928) or rationalizable strategies (Bernheim,

1984, Pearce, 1984), persistent retracts (Kalai and Samet, 1984), curb sets (Basu and

Weibull, 1991), and cyclically stable sets (Matsui, 1992).

The set-valued solution concept introduced in this paper combines a standard rational-

ity condition, stating that the set of recommended strategies to each player must contain

at least one best reply to whatever belief he may have that is consistent with the rec-

ommendations to the other players, with the players’ aim at simplicity, which encourages

them to maintain a set of strategies that is as small as possible. These are two opposite

effects in our minimal prep sets (‘prep’ is short for ‘preparation’). On one hand, each

player has to be prepared: each player’s toolkit must be sufficiently large, so that it con-

tains at least one best reply against any belief he may entertain about the behavior of

his opponents that is consistent with the solution. On the other hand, the decision mak-

ers’ aim at simplicity motivates a set that is as small as possible. This is what discerns

minimal prep sets from the minimal curb sets introduced by Basu and Weibull (1991),

which are product sets of pure strategies containing not just some, but all best responses

against beliefs restricted to opponents’ recommendations.
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Notice that the strategies played in a pure equilibrium indeed constitute a minimal

prep set: each player uses one pure strategy, which is as far as one can go without violating

nonemptiness, and it provides him with a best response against the unique belief on the

opponents’ strategy profile that is consistent with this recommendation.

In the game in Figure 1, the subgame perfect Nash equilibrium (L, r) is the unique

pure Nash equilibrium. The unique minimal prep set {L} × {r} provides the same rec-

ommendation, but the curb notion has no cutting power: the only curb set is the entire

strategy space. In this example, the minimal prep set provides a clearer recommenda-
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Figure 1: An extensive form game and its associated strategic form

tion than the curb notion, but there is always a trade-off between robustness and cutting

power. The curb notion, by requiring that a curb set contains all its best replies, is a

very robust concept, but – as in the example – may not be very selective. On the other

hand, minimal prep sets, while typically singling out smaller sets, may exclude equivalent

best replies. Thus, minimal prep sets put more stress on the simplicity of behavior, one

of the major concerns in procedurally rational decision making (Rubinstein, 1998). There

is substantial empirical support for this type of behavior that can be due to inertia or

a status quo bias; see Kahneman et al. (1991) for an overview of experimental findings

and Vega-Redondo (1993) for possible theoretical underpinnings. This motivates a closer

study of simple and inertial behavior in a game theoretic context, aspects that minimal

prep sets are meant to capture.

Different types of learning processes have been shown to eventually settle down within

the minimal curb sets of a strategic game (cf. Hurkens, 1995, Young, 1998, and Kosfeld et

al., 2001), thus providing dynamic support for the notion of minimal curb sets. The final
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part of this paper introduces a class of finite Markov processes as a model of adaptive

play in finite strategic games to support the notion of minimal prep sets. Each player

adjusts over time the toolkit of actions that he considers appropriate by selecting some

pure strategies and discarding others. Players have a limited memory and choose best

responses to beliefs supported by observed past play. This conforms with much of the

literature on learning (cf. Fudenberg and Levine, 1998). Two distinctive features of the

model are the following:

Status quo bias/inertia: Each time the game is played, each player first checks whether

his current toolkit contains a best reply to his belief about the strategic behavior of

his opponents; this conforms with a status quo bias (cf. Kahneman et al., 1991).

Recent past as focal point: If the toolkit does not leave the player prepared with a

best response, he adds a new pure strategy to his toolkit by backtracking and

selecting one of the most recently discarded best replies (or an arbitrary best reply

in case he has not played such before).

If players act in accordance with such an adjustment process, play eventually settles down

in a minimal prep set.

The material is organized as follows. Section 2 contains notation and preliminaries.

In Section 3, prep sets are formally defined and minimal prep sets are shown to exist

subject to minor topological constraints. Moreover, the concept is compared with other

solution concepts: the Nash equilibrium concept, rationalizability, and curb sets. Section

4 discusses a class of adjustment processes which in Section 5 are shown to settle down

to play within minimal prep sets. Section 6 contains concluding remarks, including a

discussion of consistency of minimal prep sets and experimental support.

2 Notation and preliminaries

Some set-theoretical notation: ⊆ denotes weak set inclusion, ⊂ denotes proper set inclu-

sion. For a fixed set X, the complement of Y ⊆ X (w.r.t. X) is denoted by Y c := X \ Y .
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A strategic game is a tuple G = 〈N, (Ai)i∈N , (ui)i∈N 〉, where N is a nonempty, finite

set of players, each player i ∈ N has a nonempty set of pure strategies (or actions) Ai

and a von Neumann-Morgenstern utility function ui : ×j∈N Aj → R. Write A = ×i∈N Ai

and for each i ∈ N , A−i = ×j∈N\{i}Aj.

Payoffs are extended to mixed strategies in the usual way. Assuming each Ai to be a

topological space, ∆(Ai) denotes the set of Borel probability measures over Ai. Using a

common, minor abuse of notation, α−i denotes both an element of ×j∈N\{i}∆(Aj) speci-

fying a profile of mixed strategies of the opponents of player i ∈ N , and the probability

measure it induces over the set A−i of pure strategy profiles of his opponents. Beliefs of

player i take the form of such a mixed strategy profile. Similarly, if Bi ⊆ Ai is a Borel

set, then ∆(Bi) denotes the set of Borel probability measures with support in Bi:

∆(Bi) = {αi ∈ ∆(Ai) | αi(Bi) = 1}.

As usual, (ai, α−i) is the profile of strategies where player i ∈ N plays ai ∈ Ai and his op-

ponents play according to the mixed strategy profile α−i = (αj)j∈N\{i} ∈ ×j∈N\{i}∆(Aj).

G is the class of strategic games G = 〈N, (Ai)i∈N , (ui)i∈N 〉 where for each player i ∈ N :

(a) Ai is a compact Hausdorff topological space;

(b) ui is sufficiently measurable: for each ai ∈ Ai and each α−i ∈ ×j∈N\{i}∆(Aj), the

expected payoff ui(ai, α−i) =
∫
A

−i

ui(ai, a−i) dα−i is well-defined and finite;

(c) ui is upper semicontinuous (u.s.c.) on Ai, i.e., for each α−i ∈ ×j∈N\{i}∆(Aj) and

each r ∈ R, the set {ai ∈ Ai | ui(ai, α−i) ≥ r} is closed.

The set G contains two subclasses that are of importance in the remainder of the paper,

namely the set of games where each Ai is a compact subset of a metric space and each ui

is continuous (as in Proposition 3.3), and the set of finite strategic games, i.e., the set of

strategic games in which each of the players has a finite set of pure strategies (as in the

examples and Sections 4 and 5).

Let i ∈ N and let α−i ∈ ×j∈N\{i}∆(Aj) be a belief of player i. The set

BRi(α−i) = {ai ∈ Ai | ∀bi ∈ Ai : ui(ai, α−i) ≥ ui(bi, α−i)}

6



is the set of pure best responses of player i against α−i. Since every u.s.c. function on a

compact set achieves a maximum, it follows by definition of G that each player in a game

G ∈ G always has a nonempty set of best responses against an arbitrary belief.

Theorem 3.2, the existence theorem for minimal prep sets, uses the following version

of the Cantor Intersection Principle, a proof of which is included for easy reference.

Lemma 2.1 [Cantor Intersection Principle] Let X be a compact Hausdorff topologi-

cal space and {Fk | k ∈ I} a collection of compact subsets of X with the finite intersection

property:

∀J ⊆ I, J finite: ∩k∈J Fk �= ∅.

Then ∩k∈IFk is nonempty and compact.

Proof. Suppose that ∩k∈IFk = ∅. Then

X = (∩k∈IFk)
c = ∪k∈IF

c
k . (1)

Since each Fk is a compact subset of the Hausdorff space X, each Fk is closed (Aliprantis

and Border, 1994, Lemma 2.30. Recall that compact subsets of non-Hausdorff spaces

need not be closed, ibid, Example 2.31), so its complement F c
k is open. By (1), the sets

{F c
k | k ∈ I} form an open cover of the compact set X, so there is a finite set J ⊆ I with

X = ∪k∈JF
c
k . This implies that ∩k∈JFk = ∅, contradicting the finite intersection property.

So ∩k∈IFk �= ∅. Since each Fk is closed, ∩k∈IFk is a closed subset of the compact set X,

hence compact. �

3 Preparation

The set-valued solution concept introduced in this paper combines a standard rationality

condition, stating that the set of recommended strategies to each player must contain at

least one best reply to whatever belief he may have that is consistent with the recommen-

dations to the other players, with the players’ aim at simplicity, which encourages them
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to maintain a set of strategies that is as small as possible. Formally, (minimal) prep sets

are defined as follows.

Definition 3.1 Let G = 〈N, (Ai)i∈N , (ui)i∈N〉 ∈ G. A prep set is a product set X =

×i∈N Xi, where

(a) for each i ∈ N , Xi ⊆ Ai is a nonempty, compact set of pure strategies;

(b) for each i ∈ N and each belief α−i of player i with support in X−i, the set Xi

contains at least one best response of player i against his belief:

∀i ∈ N,∀α−i ∈ ×j∈N\{i}∆(Xj) : BRi(α−i) ∩Xi �= ∅.

A prep set X is minimal if no prep set is a proper subset of X. �

Every strategic game in G has a minimal prep set.

Theorem 3.2 Let G = 〈N, (Ai)i∈N , (ui)i∈N 〉 ∈ G. Then G has a minimal prep set.

Proof. Let Q denote the set of all prep sets of G. Since ui is u.s.c. in the i-th coordinate

and Ai is compact, Ai contains a best response against any belief α−i ∈ ×j∈N\{i}∆(Aj)

that an arbitrary player i ∈ N may have: the entire strategy space A is a prep set. So Q is

nonempty and partially ordered via set inclusion. According to the Hausdorff Maximality

Principle, Q contains a maximal nested subset R. For each i ∈ N , let Xi = ∩Y ∈RYi be

the intersection of player i’s strategies in the nested set R. The product set X = ×i∈N Xi

is shown to be a minimal prep set.

Let i ∈ N . Since Yi is nonempty and compact for each prep set Y ∈ R and the

collection {Yi | Y ∈ R} is nested, Lemma 2.1 implies that Xi is nonempty and compact.

Let α−i be a belief of player i over ×j∈N\{i}Xj. To see that Xi ∩BRi(α−i) �= ∅, write

Xi ∩BRi(α−i) = [∩Y ∈RYi] ∩BRi(α−i)

= ∩Y ∈R[Yi ∩BRi(α−i)]. (2)

For each Y ∈ R, the set Yi ∩ BRi(α−i) is nonempty (since Y is a prep set and α−i ∈

×j∈N\{i}∆(Xj) ⊆ ×j∈N\{i}∆(Yj)) and compact, since it is an intersection of the compact
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set Yi and the set BRi(α−i), which is closed, since it is the set of maximizers of an u.s.c.

function. Moreover, the collection {Yi ∩ BRi(α−i) | Y ∈ R} is nested, since R is nested.

Again applying Lemma 2.1 yields that the set in (2) is nonempty. So X is indeed a prep

set. The fact that it is minimal follows directly from the fact that R is a maximal nested

subset of Q. �

Having proved the existence of minimal prep sets in a wide class of games, let us compare

the concept with other solution concepts. As mentioned before, if a ∈ A is a pure strategy

Nash equilibrium, then ×i∈N {ai} is easily seen to be a minimal prep set. Consequently,

the minimal prep notion can be seen as a set-valued extension of the pure Nash equilibrium

concept. Every prep set of a sufficiently structured game contains the support of a Nash

equilibrium.

Proposition 3.3 Let G = 〈N, (Ai)i∈N , (ui)i∈N 〉 be a strategic game where for each i ∈ N :

• Ai is a compact subset of a metric space;

• ui is a continuous von Neumann-Morgenstern utility function.

Then every prep set of G contains the support of a Nash equilibrium in mixed strategies.

Proof. Let X = ×i∈N Xi ⊆ ×i∈N Ai be a prep set of G. The game 〈N, (Xi)i∈N , (ui)i∈N〉

obtained from G by restricting attention to the nonempty and compact strategy sets

(Xi)i∈N meets the conditions of Glicksberg’s (1952) theorem for the existence of a mixed

strategy Nash equilibrium, say α. This is also a Nash equilibrium of the original game

G, since X was assumed to be a prep set and consequently contains at least one best

response in G to α−i for each player i ∈ N : although Ai \Xi may contain alternative best

responses to α−i, there are no better options. �

Conversely, not every strategy in the support of a mixed Nash equilibrium is necessarily

contained in a minimal prep set. See Example 3.4.
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It is easy to see that every strategy in a minimal prep set X = ×i∈N Xi of a finite

strategic game is rationalizable: for every i ∈ N and xi ∈ Xi, strategy xi has to be a

best response to some belief α−i over X−i, otherwise X would not be a minimal prep set,

since xi can be omitted from Xi and the resulting product set would be a smaller prep

set. Example 3.4 indicates that the set of strategies included in a minimal prep set can

be a proper subset of the set of rationalizable strategies.

Recall from Basu and Weibull (1991) that a curb set (‘curb’ is mnemonic for ‘closed

under rational behavior’) of a strategic game G = 〈N, (Ai)i∈N , (ui)i∈N〉 is a product set

X = ×i∈N Xi, where

(a) for each i ∈ N , Xi ⊆ Ai is a nonempty, compact set of pure strategies;

(b) for each i ∈ N and each belief α−i of player i with support in X−i, the set Xi

contains all best responses of player i against his belief:

∀i ∈ N,∀α−i ∈ ×j∈N\{i}∆(Xj) : BRi(α−i) ⊆ Xi.

A curb set X is minimal if no curb set is a proper subset of X. Comparing this with

Definition 3.1, one sees that minimal curb sets are highly robust by requiring all best

replies against beliefs consistent with the solution concept to be included in the solution,

while prep sets require that every player is prepared against such beliefs by including

at least some best replies. Thus, minimal prep sets put more stress on the simplicity of

behavior, one of the major concerns in procedurally rational decision making (Rubinstein,

1998). Recall from the example in Figure 1 that this may provide significant additional

cutting power over the curb notion.

Example 3.4 The minimal prep sets and minimal curb sets of the game in Figure 2 are

{T}×{L} and {M}×{R}. The strategy combination (B, 1

2
L+ 1

2
R) is a Nash equilibrium,

so B is rationalizable, but not included in any of the minimal prep or curb sets. �

Every curb set of a game G = 〈N, (Ai)i∈N , (ui)i∈N〉 ∈ G contains a minimal prep set: if

X = ×i∈N Xi ⊆ A is a curb set of G, the game 〈N, (Xi)i∈N , (ui)i∈N 〉 obtained from G
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L R

T 4,1 0, 0

M 0,0 4, 1

B 3,1 3, 1

Figure 2: Proper selection of rationalizable strategies

by restricting attention to the nonempty and compact strategy sets (Xi)i∈N is again an

element of G and consequently contains a minimal prep set. Since X was a curb set, this is

easily seen to be a minimal prep set of the original game G as well. Example 3.5 indicates

that the minimal prep sets may contain a proper subset of the strategies contained in the

minimal curb sets. Finally, every curb set is a prep set, so if a curb set is contained in a

minimal prep set, the two sets are necessarily equal.

Example 3.5 All pure strategies in the game in Figure 3 are rationalizable. The unique

(minimal) curb set is {T,B}×{L,R}, the minimal prep sets are {T}×{L} and {B}×{L}.

Pure strategy R, which is included in the minimal curb set of the game, is not contained

in any of its minimal prep sets. �

L R

T 1, 1 1,0

B 1, 0 0,0

Figure 3: Proper selection of curb strategies

Another example illustrating the difference in the cutting power between curb and prep

sets is the following class of games. Consider a two-player game G = 〈N, (Ai)i∈N , (ui)i∈N 〉,

where A1 = A2 = {a1, . . . , ak} for some k ∈ N, k ≥ 2. Assume that player 1’s unique best

reply to an action of player 2 is to play the same action:

BR1(a�) = {a�} for all a� ∈ A2. (3)
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Player 2 is indifferent between his actions if player 1 chooses a1:

BR2(a1) = A2. (4)

If player 1 chooses a different action, the best replies of player 2 are a nonempty subset

of actions with a lower index:

BR2(a�) �= ∅, BR2(a�) ⊆ {a1, . . . , a�−1} if 1 < � ≤ k. (5)

Let us sketch an economic examples of this class of games: The two players may – for

instance – have produced a software package and decide on which of k possible dates

to release its product. Firm 1, an incumbent in the market, knows that if he releases

the package at the same moment as or earlier than Firm 2, a market entrant, he will

get the entire market due to its good reputation. To guarantee maximal profit, Firm 1

(for instance due to the ability of further debugging) has an incentive to release at the

same moment as Firm 2 does, thus motivating (3). If Firm 1 releases immediately, the

market is satiated, making Firm 2 indifferent between his release dates, motivating (4);

releasing ahead of Firm 1 will give Firm 2 a fixed part of the market, thus motivating a

best-response correspondence of type (5).

This is a class of games in which the unique minimal prep set coincides with the unique

pure Nash equilibrium of the game. The curb notion, however, has no cutting power: the

unique curb set consists of the entire set of pure strategy profiles.

Proposition 3.6 In the game G the following hold:

(a) the unique pure Nash equilibrium equals (a1, a1);

(b) If X1 ×X2 is a prep set of G, then a1 ∈ X1;

(c) the unique minimal prep set equals {a1} × {a1};

(d) the unique (hence minimal) curb set equals A1 ×A2.
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Proof. (a): follows easily from the best reply functions.

(b): Suppose a1 /∈ X1. Let a� ∈ X1 be the element of X1 with lowest index � > 1. Since

X1×X2 is a prep set, (5) implies that there is an am ∈ BR2(a�)∩X2 ⊆ {a1, . . . , a�−1}∩X2,

which implies m < �. But then BR1(am) ∩X1 = {am} ∩X1 �= ∅, so that am ∈ X1. Since

m < �, this contradicts our assumption that a� is the element of X1 with lowest index.

Hence a1 ∈ X1.

(c): Since (a1, a1) is a pure Nash equilibrium, it follows that {a1} × {a1} is a minimal

prep set. Suppose there exists a different minimal prep set X = X1 ×X2. Then a1 ∈ X1

by (b) and a1 /∈ X2, otherwise {a1}×{a1} ⊂ X, contradicting minimality of X. We prove

by induction that a� /∈ X1 and a� /∈ X2 for all � ∈ {2, . . . , k}. With a1 /∈ X2 this implies

that X2 = ∅, a contradiction.

Since a1 /∈ X2, andBR2(a2) = {a1} by (5), andX is a prep set, it follows that a2 /∈ X1.

Since a2 /∈ X1, BR1(a2) = {a2}, and X is a prep set, it follows that a2 /∈ X2. This proves

the claim for � = 1.

Assume the claim is true for all indices in {2, . . . , �} with � < k. To show: a�+1 /∈ X1

and a�+1 /∈ X2. We know by induction and (5) that BR2(a�+1) ∩ X2 ⊆ {a1, . . . , a�} ∩

X2 = ∅, so the fact that X is a prep set implies that a�+1 /∈ X1. Since a�+1 /∈ X1,

BR1(a�+1) = {a�+1}, and X is a prep set, it follows that a�+1 /∈ X2. This finishes the

inductive proof: {a1} × {a1} is indeed the unique minimal prep set.

(d): Let X = X1 ×X2 be a curb set of G. Every curb set of G is a prep set, so a1 ∈ X1

by (b). Since X is curb and BR2(a1) = A2 by (4), this implies that X2 = A2. Moreover,

for every � ∈ {1, . . . , k} it holds that a� ∈ X2 = A2 and BR1(a�) = {a�}, so a� ∈ X1.

Conclude that X1 = A1, finishing the proof. �

4 Myopic adaptive play

This section presents a class of finite Markov chains as a model of adaptive play to support

the notion of minimal prep sets: each player adjusts over time the toolkit of actions that

he considers appropriate by selecting some pure strategies and discarding others. In line
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with much of the literature on learning models (cf. Young, 1998, Fudenberg and Levine,

1998), players have a limited memory and choose best responses to beliefs supported by

observed past play. Two distinctive features of the learning model are the following:

Status quo bias/inertia: Each time the game is played, each player first checks whether

his current toolkit contains a best reply to his belief about the strategic behavior of

his opponents.

Recent past as focal point: If the toolkit does not leave the player prepared with a

best response, he adds a new pure strategy to his toolkit by backtracking and

selecting one of the most recently discarded best replies (or an arbitrary best reply

in case he has not played such before).

Thus, the learning model aims to capture two common experimental observations: the

‘unwillingness’ to change strategic behavior as predicted by the literature on status quo

biases and inertia (cf. Kahneman et al., 1991) and the presence of focal points (cf.

Schelling, 1960).

4.1 State space

A finite strategic game G = 〈N, (Ai)i∈N , (ui)i∈N 〉 is played once every time period in

discrete time. At an arbitrary time t, each player i ∈ N is characterized by

• a nonempty ‘toolkit’ Xi ⊆ Ai of actions that he considers appropriate at time t,

• a linear (i.e., complete, reflexive, and transitive) order Ri on the set of remaining

actions Ai \Xi, where xRiy indicates that x ∈ Ai \Xi is ranked at least as high as

y ∈ Ai \Xi,

and only observes a sequence with fixed length T ∈ N of past action profiles. In this

section and the next, the Markov process specifies an adjustment process for a fixed finite

strategic game G and histories of fixed length T . The suffixes G and T are suppressed for

notational convenience.
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Formally, each element s of the finite set S of states of the Markov process is described

by a tuple

s = (h, (Xi)i∈N , (Ri)i∈N),

with a history h = (aT , aT−1, . . . , a1) ∈ AT of past play indicating that for each k ∈

{1, . . . , T}, the profile of actions played k periods ago was ak = (aki )i∈N ∈ A, a sequence

(Xi)i∈N of toolkits, and a sequence (Ri)i∈N of linear orders over (Ai \Xi)i∈N .

Notice two specific features here. First of all, players adjust sets of strategies, rather

than a single strategy. This corresponds with the models in Artificial Intelligence and

psychology that consider learning as the acquisition and modification of a collection of

skills or methods. In these models, computers and human subjects learn to respond to

a changing environment by adopting and adjusting a set of skills or methods within the

limits set by their technological and cognitional constraints (their strategy space). More-

over, it corresponds with Popper’s evolutionary approach to interactive learning, where

people hold a number of provisional hypotheses or responses to the current environment

and apply a process of adjustment and refutal. His theory (Popper, 1979, p. 261) ‘...is a

largely Darwinian theory...: we try to solve our problems, and to obtain, by a process of

elimination, something approaching adequacy in our tentative solutions.’

Secondly, in state s = (h, (Xi)i∈N , (Ri)i∈N), the set Xc
i of actions outside i’s current

toolkit is assumed to be linearly ordered. This is simply an assumption that specifies how

the players store the elements of their pure strategy set in their memory. The properties of

the myopic adjustment process explained in the next subsection – in particular property

A4 – guarantee that this will be a temporal order. This corresponds in a natural way

with actual learning by both machines and humans. In artificial intelligence, the potential

choices of a machine are typically ordered in a list of records; new items are often stacked

on top of the list, so that a search for items satisfying certain criteria proceeds according

to a last-in-first-out principle. The same ordering on basis of time is common in human

learning: it is easiest to remember that which has been addedmost recently to the memory.

Consequently, in both cases, there is a clear focality on the recent past, justifying a

temporal ordering Ri.
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Given a history h = (aT , aT−1, . . . , a1) ∈ AT of past play, let r(h) = a1 ∈ A denote the

rightmost element of h, the profile of actions played in the previous period according to

history h. For each i ∈ N and each k ∈ {1, . . . , T}, pi(h, k) = {aki , a
k−1

i , . . . , a1i } is the set

of actions played by i in the previous k periods and pi(h) := pi(h, T ) is the set of actions

played by i in the entire history of length T that he can remember. A successor of history

h is any history h′ ∈ AT obtained by deleting the leftmost element of h and attaching a

new rightmost element.

4.2 Transition matrices

Having defined the set S of states, we proceed to the set of transition matrices P : S×S →

[0, 1], where P (s, s′) indicates the probability of a transition from state s to state s′ in

one period. Let P be the set of transition matrices P where P (s, s′) > 0 if and only if

states s = (h, (Xi)i∈N , (Ri)i∈N) and s′ = (h′, (X ′
i)i∈N , (R

′
i)i∈N) satisfy conditions A1 to A4

below. Conditions A1 and A2 are standard: history h is replaced by a successor h′ where

the pure strategy ri(h′) ∈ Ai chosen by each player i ∈ N is a best response from his

toolkit X ′
i to some belief α

∗
−i ∈ ×j∈N\{i}∆(pj(h)) over the observed past play. Condition

A3 indicates that player i will check whether his current toolkit Xi contains a best reply

against his belief α∗
−i. If so, there is no reason to expand it: X ′

i \ Xi = ∅. Otherwise,

he plays and adds to his toolkit the best response (see A2) ri(h′) that is selected by

checking the pure strategies in Ai \ Xi in the order indicated by Ri and choosing the

first/highest ranked best response he encounters (if there are several such highest ranked

best responses, he chooses among them arbitrarily). This condition states that addition

of actions to a toolkit only happens if the current toolkit is insufficient. This leaves space

for players to actually discard certain actions from their toolkit between two periods, for

instance because such actions may be considered unnecessary. As mentioned in section 4.1,

condition A4 guarantees that the order on the actions outside a player’s toolkit coincides

with the order in which they have been discarded: the most recently discarded actions

will be ranked highest. Together with condition A3, this implies that if an action is added
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to a toolkit, this action is a most recently discarded best response.

[A1] h′ is a successor of h;

And for each player i ∈ N :

[A2: best response] ri(h′) ∈ X ′
i ∩BRi(α∗

−i) for some belief α
∗
−i ∈ ×j∈N\{i}∆(pj(h));

[A3: inertia and backtracking] If BRi(α
∗
−i) ∩ Xi �= ∅, then X ′

i \Xi = ∅. Otherwise,

ri(h′) ∈ {ai ∈ BRi(α∗
−i) | aiRibi for all bi ∈ BRi(α∗

−i)} is a highest ranked best

reply against α∗
−i, and X ′

i \Xi = {ri(h
′)}.

[A4, Last in, first out] the ranking R′
i is obtained from Ri by stacking all recently

dismissed actions on top: Let xi, yi ∈ Ai \X
′
i. Then R′

i satisfies:

• if xi, yi ∈ Ai \Xi, then xiR
′
iyi ⇔ xiRiyi;

• if xi ∈ Xi, but yi /∈ Xi, then xiR
′
iyi, but not yiR

′
ixi.

The first point requires that elements that remain outside the toolkit keep the same

order. The second point indicates that newly rejected elements rank higher than

elements that already were outside the toolkit in the previous period.

In these two subsections, we specified the state space and conditions on the transition

matrices underlying the myopic adjustment process. The process aims to capture a num-

ber of practical aspects of learning by humans and machines: what is learned is a set of

tools or skills that are meant to prepare the players with optimal reactions against beliefs

they might have about opponents’ behavior. These beliefs are based on observations from

a limited past (the last T rounds of play). Players display a status quo bias or inertial

behavior by sticking to their toolkit whenever this provides a best response against their

belief. If no best response is contained in the current toolkit, a most recently played best

response is added, thus stressing the focality of the recent past.
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5 Convergence of adaptive play

The purpose of this section is to show that for an arbitrary finite game and a sufficiently

long memory, each of the adjustment processes in the class P satisfying conditions A1 to

A4 eventually settles down within a minimal prep set. Three lemmas will pave the road.

The first (see also Hurkens, 1995, Lemma 1) indicates that a sequence a1, . . . , aK ∈ A of

pure strategy profiles with the property that for each k = 2, . . . ,K some player i selects

a pure strategy aki /∈ {a1i , . . . , a
k−1

i }, i.e., a pure strategy that he has not used earlier in

the sequence, can have at most length
∑

i∈N |Ai|− |N |+1. The proof is simple: there are
∑

i∈N |Ai| pure strategies, a1 ∈ A captures |N | of them, and at least one pure strategy is

added in each step.

Lemma 5.1 Let G = 〈N, (Ai)i∈N , (ui)i∈N 〉 be a finite strategic game and let a1, . . . , aK ∈

A be pure strategy profiles such that

∀k = 1, . . . ,K − 1 : ×i∈N {a1i , . . . , a
k
i } ⊂ ×i∈N {a1i , . . . , a

k+1

i }.

Then K ≤
∑

i∈N |Ai| − |N |+ 1.

The following lemma deals with the expansion of toolboxes. Suppose the process is in

a state where the action of each player in the past t periods is contained in his current

toolbox, but these actions do not constitute a prep set. Then there is a positive probability

of moving to a state where the actions from the past t + 1 periods are contained in the

players’ toolkits and the product set of these actions is strictly larger than in the previous

period.

This lemma will be used to construct an increasing sequence of product sets, which

according to the bound set in Lemma 5.1 must yield a prep set after at most
∑

i∈N |Ai| −

|N |+ 1 steps.

Lemma 5.2 Consider a state st = (ht, (X t
i )i∈N , (R

t
i)i∈N ) with

ht = (aT−t, . . . , a1, b1, . . . , bt),

pi(h
t, t) = {b1i , . . . , b

t
i} ⊆ X t

i for each i ∈ N,
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and suppose that ×i∈N pi(h
t, t) is not a prep set. Then the process moves with positive

probability to a state st+1 = (ht+1, (Xt+1

i )i∈N , (R
t+1

i )i∈N ) where

ht+1 = (aT−t−1, . . . , a1, b1, . . . , bt, bt+1),

pi(h
t+1, t+ 1) = {b1i , . . . , b

t
i, b

t+1

i } ⊆ Xt+1

i for each i ∈ N, (6)

×i∈N pi(h
t, t) ⊂ ×i∈N pi(h

t+1, t+ 1). (7)

Proof. Since ×i∈N pi(h
t, t) is not a prep set, there is a nonempty set T ⊆ N of players

i ∈ N with a belief α∗
−i ∈ ×j∈N\{i}∆(pj(ht, t)) over the play in the past t periods such

that BRi(α∗
−i) ∩ pi(ht, t) = ∅. Fix such a belief α∗

−i for each i ∈ T , let bt+1

i ∈ {bi ∈

BRi(α
∗
−i) | biR

t
iai for all ai ∈ BRi(α

∗
−i)} be a highest ranked best reply against α

∗
−i, and

define Xt+1

i := X t
i ∪ {bt+1

i }. For each i ∈ N \ T , let bt+1

i ∈ pi(h
t, t) be a best response

against an arbitrary belief over play in the past t periods and define X t+1

i := Xt
i .

Conditions A1 to A4 imply that the process moves with positive probability from state

st to state st+1 = (ht+1, (X t+1

i )i∈N , (R
t+1

i )i∈N ) where h
t+1 = (aT−t−1, . . . , a1, b1, . . . , bt, bt+1),

the set X t+1

i by construction satisfies (6) for each player i ∈ N , and the linear orders Rt+1

i

coincide with the linear orders Rt
i restricted to the subsets Ai \ X t+1

i for each i ∈ N .

Moreover, (7) holds, since pi(h
t, t) ⊆ pi(h

t+1, t+ 1) for each i ∈ N , with strict inclusion

for each i ∈ T . �

A history h = (aT , . . . , a1) lies in X ⊆ A if at ∈ X for each t = 1, . . . , T . The final lemma

indicates that an absorbing set of the Markov chain has been reached if the process is

in a state s = (h, (Xi)i∈N , (Ri)i∈N ) where X := ×i∈N Xi is a minimal prep set and the

history h of observed past play lies in X: all future action profiles and all future toolkits

are contained in the minimal prep set X.

Lemma 5.3 Consider a state s = (h, (Xi)i∈N , (Ri)i∈N ), where X := ×i∈N Xi is a mini-

mal prep set and the history h lies in X. Every state st = (ht, (Xt
i )i∈N , (R

t
i)i∈N ) that can

be reached from s with positive probability in a finite number t ∈ N of steps satisfies:

(i) ht lies in X,
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and for each player i ∈ N :

(ii) Xt
i ⊆ Xi,

(iii) if x ∈ Ai \Xi and y ∈ Xi \X t
i , then yRt

ix, but not xR
t
iy.

Proof. The proof is by induction on t ∈ N. Let s1 = (h1, (X1
i )i∈N , (R

1
i )i∈N ) be a state

reached from s within one period, let i ∈ N , and let ri(h
1) ∈ Ai be the last action played

by i. A2 implies that ri(h1) ∈ X1
i ∩ BRi(α∗

−i) for some α
∗
−i ∈ ×j∈N\{i}∆(pj(h)). X is a

minimal prep set and h lies inX, so BRi(α
∗
−i)∩Xi �= ∅. A3 then implies that X1

i \Xi = ∅,

i.e., X1
i ⊆ Xi, proving (ii) for t = 1. Since h lies in X and ri(h

1) ∈ X1
i ⊆ Xi for each

i ∈ N , it follows that h1 lies in X, proving (i) for t = 1. Assumption A4 directly implies

(iii) for t = 1.

Now assume the statement is true up to a certain t ∈ N and consider a state st+1 =

(ht+1, (Xt+1

i )i∈N , (R
t+1

i )i∈N ) that can be reached from s with positive probability in t+ 1

steps. Let i ∈ N and let ri(ht+1) ∈ Ai be the last action played by i. A2 implies that

ri(h
t+1) ∈ Xt+1

i ∩ BRi(α
∗
−i) for some α

∗
−i ∈ ×j∈N\{i}∆(pj(h

t)).

If BRi(α
∗
−i)∩X t

i �= ∅, A3 implies Xt+1

i \X t
i = ∅, so that X t+1

i ⊆ X t
i ⊆ Xi by part (ii)

of the induction hypothesis. On the other hand, if BRi(α∗
−i) ∩ Xt

i = ∅, part (iii) of the

induction hypothesis guarantees that all actions in Xi \ Xt
i are ranked above actions in

Ai \Xi. Moreover, BRi(α
∗
−i) ∩Xi �= ∅ since X is a minimal prep set and ht lies in X by

part (i) of the induction hypothesis. A3 then implies that ri(h
t+1) is a highest ranked best

response against α∗
−i, i.e., an element of Xi \Xt

i ⊆ Xi, and Xt+1

i = X t
i ∪ {ri(ht+1)} ⊆ Xi.

Conclude that in both cases X t+1

i ⊆ Xi, proving (ii) for t + 1. History ht lies in X by

part (i) of the induction hypothesis and ri(h
t+1

i ) ∈ Xi for each i ∈ N , so ht+1 lies in X,

proving (i) for t + 1. A4 and part (iii) of the induction hypothesis immediately imply

(iii) for t+ 1, completing the inductive argument. �

The three lemmas provide the basis for the convergence theorem, according to which

players eventually learn to coordinate on play inside a minimal prep set. The proof roughly

proceeds as follows. Starting from an arbitrary state, Lemma 5.2 is used to construct an
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increasing sequence of product sets of actions used inside the players’ toolboxes. Lemma

5.1 indicates a bound for the length of this sequence, assuring that after a certain number

of steps, the product set of toolboxes must contain a prep set. Choosing a minimal prep

set from this collection, it is shown that the process proceeds with positive probability

to a state where the players’ toolboxes coincide with their components from the minimal

prep set and the entire observed history of observed past play lies inside this minimal prep

set. Lemma 5.3 indicates that the process has then reached an absorbing set: the process

settles down inside this minimal prep set. Since this happens with positive probability

for every state, it eventually happens with probability one.

Theorem 5.4 For any finite strategic game G = 〈N, (Ai)i∈N , (ui)i∈N〉, memory length

T ≥
∑

i∈N |Ai| − |N | + 1, and any adjustment process P ∈ P satisfying A1 to A4, play

eventually settles down in a minimal prep set.

Proof. The proof proceeds in three steps.

Step 1: From an arbitrary state s = (h, (Xi)i∈N , (Ri)i∈N ) with h = (aT , aT−1, . . . , a1), the

process always moves to a state s1 = (h1, (X1
i )i∈N , (R

1
i )i∈N) with h1 = (aT−1, . . . , a1, b1)

by A1 and satisfying, by A2, for each i ∈ N :

pi(h
1, 1) = ri(h

1) = {b1i } ⊆ X1

i .

Starting from s1, Lemma 5.2 can be applied repeatedly. Using the bound from Lemma

5.1, there is a K ∈ N,K ≤
∑

i∈N |Ai| − |N | + 1 ≤ T such that the process moves

with positive probability in K steps to a state sK = (hK, (XK
i )i∈N , (RK

i )i∈N) where

hK = (aT−K, . . . , a1, b1, . . . , bK), pi(hK,K) = {b1i , . . . , b
K
i } ⊆ XK

i for each i ∈ N , and

×i∈N pi(h
K,K) is a prep set.

Step 2: Let X = ×i∈N Xi ⊆ ×i∈N pi(h
K,K) be a minimal prep set. For each i ∈ N , let

Ri be a linear order on Ai \Xi that (analogous with condition A4) coincides with RK
i on

the subset Ai \XK
i and ranks the additional elements, i.e., those in XK

i \Xi, above the

elements in Ai \X
K
i : if x ∈ XK

i \Xi and y ∈ Ai \X
K
i , then xRiy, but not yRix.

For each t = 1, . . . , T , recursively define the strategy profile ct = (cti)i∈N ∈ A as

follows. For each player i ∈ N , c1i ∈ Xi is a best response to an arbitrary belief α−i ∈
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×j∈N\{i}∆(Xj) over X−i and from them on, ct+1

i is a best response in Xi to the previous

pure strategy profile ct−i:

∀i ∈ N,∀t = 1, . . . , T − 1 : ct+1

i ∈ BRi(c
t
−i) ∩Xi.

Since X is a prep set, the profiles c1, . . . , cT are well-defined.

Conditions A1 to A4 imply that the process moves with positive probability from state

sK to state

sK+1 = ((aT−K−1, . . . , a1, b1, . . . , bK, c1), (Xi)i∈N , (Ri)i∈N)

in one period, to state

sK+2 = ((aT−K−2, . . . , a1, b1, . . . , bK, c1, c2), (Xi)i∈N , (Ri)i∈N )

in two periods, and, continuing, to state

sK+T = ((c1, c2, . . . , cT ), (Xi)i∈N , (Ri)i∈N )

in T periods.

Step 3: State sK+T satisfies the conditions of Lemma 5.3, so from this state onward,

players only play actions from the minimal prep set X.

In conclusion, starting from state s ∈ S, there is a positive probability of proceeding

to a state meeting the requirements of Lemma 5.3, after which play settles down in a

minimal prep set, i.e., a positive probability of proceeding to an absorbing set of states.

Since s ∈ S was chosen arbitrarily, this eventually happens with probability one, finishing

the proof. �

6 Concluding remarks

Motivated in part by the prominence of pure Nash equilibria in game theoretic exper-

iments, minimal prep sets were introduced as a set-valued extension of the pure Nash

equilibrium concept. As a consequence, minimal prep sets have the same robustness prob-

lem as pure equilibria: as opposed to minimal curb sets, equivalent best replies against
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beliefs that are consistent with the solution may be excluded from a minimal prep set.

Such behavior, however, has substantial empirical support: human choice behavior often

reflects a tendency towards some inertia by favoring the status quo, and one of the basic

tenets from bounded rationality is the urge towards relatively simple behavior. Moreover,

dynamic support for the concept was provided by a myopic adjustment process leading

players to eventually coordinate on play within minimal prep sets. The learning process

was motivated by common experimental observations: status quo bias/inertia and the

presence of focal points, in this case the fact that more importance was assigned to the

recent past than to older observations.

C���������	: The notion of minimal prep sets fits into the research program initiated

by Peleg and Tijs (1996) and Peleg, Potters, and Tijs (1996), who concentrate on the

consistency of behavior of players in strategic games. Consistency essentially requires

that if a nonempty set of players commits to playing according to a certain solution,

the players in the reduced game should not have an incentive to deviate from the initial

solution. This appears to be a minimal property that a solution concept should satisfy (see

Aumann, 1987, pp. 478-479, for a general appraisal): if others play the game according to

a certain equilibrium, the solution concept should recommend you to do the same. Yet,

the axiom has a rather dramatic impact: Norde et al. (1996) proved that the unique point-

valued solution concept for the set of strategic games satisfying consistency, in combination

with standard utility maximizing behavior in one-player games and nonemptiness, is the

Nash equilibrium concept. This implies that none of the concepts from the equilibrium

refinement literature is actually consistent. Dufwenberg et al. (1998) indicate that a

transition to set-valued solution concepts overcomes this problem: there is a multiplicity of

consistent set-valued solution concepts that satisfy nonemptiness and recommend utility

maximization in one-player games. Minimal prep sets constitute one such a solution

concept. To see that it is consistent, let X = ×i∈N Xi be a minimal prep set of a strategic

game G = 〈N, (Ai)i∈N , (ui)i∈N 〉. Suppose that a set S ⊂ N of players commits to playing

according to their recommendation ×i∈S Xi from the minimal prep set X. In the reduced

game G′, this implies that the set Ai of each player i ∈ S is reduced to the set Xi, while
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each player i ∈ N \ S is still allowed to choose freely from Ai. The set X is easily seen

to be a minimal prep set of the reduced game G′ as well. Consequently, the notion of

minimal prep sets contributes to the research on consistent behavior in strategic games.

E�
��������� ��������: The author does not have the facilities to conduct large scale

experiments to test the prominence of minimal prep sets in a controlled environment. Still,

the minimal prep sets and the corresponding adjustment process were motivated by simple

and inertial behavior of the players, assumptions for which ample experimental evidence is

available. An experimental study of minimal prep sets is an interesting venue for further

research.
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