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Abstract

Within the framework of transitive sufficient processes we investigate
identifiability properties of unknown parameters. In particular we con-
sider unbiased parameter estimators, which are shown to be closely con-
nected to time reversal and to reverse martingales. One of the main
results is that, within our framework, every unbiased estimator process
is a reverse martingale, thus automatically giving us strong consistency
results. We also study structural properties of unbiased estimators, and it
is shown that the existence of an unbiased parameter estimator is equiva-
lent to the existence of a solution to an inverse boundary value problem.
We give explicit representation formulas for the estimators in terms of
Feynman-Kac type representations using complex valued diffusions, and
we also give Cramér-Rao bounds for the estimation error.

Keywords: Parameter estimation, reverse martingales, martingale
theory, diffusions, time reversal.
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1 Basic Definitions

We consider a statistical model, i.e. a family Π of probability measures on
a measurable space (Ω,F). Given is also a k-dimensional stochastic process
X = {X(t); t ≥ 0} on (Ω,F), and for any subset I of R+, we denote by FX

I

the σ-field generated by the random variables {X(t); t ∈ I}. We assume that
the measures in Π are equivalent on Ft = FX

[0,t] for each t > 0. The intuitive
interpretation of this model is that the stochastic process X is governed by some
measure P ∈ Π, but we do not know exactly which P . The family Π formalizes
the a priori information available to us, and to obtain further information we are
allowed to observe the process X over time. Thus the information accesssible to
us through observations is represented by the filtration F = {Ft}t≥0. A number
of concrete examples will be given below.

We will study various estimation problems in connection with the model
above, and in particular we will be concerned with unbiased parameter estima-
tion problems and their relations to the theory of reverse martingales. Our work
is to a large extent inspired by Lauritzen [Laur 88]. The results in the present
paper are also closely related to the theory of adaptive prediction developed by
the authors in an earlier paper [Bjö & Joh, 92].

We begin by giving precise definitions of the concepts of parameter, unbiased
estimator, sufficiency, transitivity, and completeness.

Definition 1.1 Consider the model (Ω,F , Π, X,F).

1. We endow the family Π with the σ-algebra Σπ defined as

Σπ = σ{FA; A ∈ F∞},

where, for each A ∈ F∞ the mapping FA : Π → RI is defined by

FA(P ) = P (A).

2. A parameter Φ is a measurable mapping

Φ : Π → R

.

The value of Φ(P ) is to be interpreted as “an aspect of the measure P”, and a
parameter is thus something very much like a local coordinate on a manifold. We
could of course also consider parameters taking values in more general spaces,
but for us R will do nicely.

Our main goal in the sequel will be that of estimating parameter values,
based on observations of the process X .

Definition 1.2 Consider a fixed parameter Φ.
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1. A t-estimator is any Ft-measurable random variable V .

2. A t-estimator V is said to be an unbiased t-estimator of Φ if the following
conditions are satisfied

V ∈ L1(Ω,Ft, P ), for all P ∈ Π.

EP [V ] = Φ(P ), for all P ∈ Π.

3. An optional process Y is called an unbiased estimator process of Φ
on the time interval [T,∞) if Y (t) is unbiased in the sense of 2 above for
every t ≥ T .

4. An optional process Y is said to be a consistent estimator of Φ if

lim
t→∞ Y (t) = Φ(P ), P − a.s. for all P ∈ Π.

5. A parameter is said to be identifiable if there exists an F∞-measurable
stochastic variable V , satisfying

V = Φ(P ), P − a.s. for all P ∈ Π.

It is obvious that if a parameter Φ can be consistently estimated, then Φ is
identifiable. It is however an open question whether identifiability of a parameter
implies the existence of a consitent estimator. We believe that this is not the
case (see Section 7).

The main questions which we will try to answer in this paper are the follow-
ing.

• Which parameters have unbiased estimators?

• Which parameters can be consistently estimated?

• Which parameters can be identified?

In the sequel we will work within a framework of so called transitive sufficient
processes, for which we now give the definitions.

Definition 1.3

1. An Ft-measurable random k-vector V is said to be sufficient for Π re-
stricted to Ft, if for each bounded random variable U in Ft there exists a
Borel function f : Rk → R such that

EP [U |V ] = f(V ), for all P ∈ Π.

2. An F-optional process Z is called sufficient for Π if Z(t) is sufficient for
Π restricted to Ft, for each t ≥ 0.
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We will often use the well known fact that a random vector V is sufficient
for Π restricted to Ft if, for some P0 ∈ Π the Radon-Nikodym derivative

dP

dP0

∣∣∣∣Ft

s is σ{V }-measurable for each P ∈ Π.

Definition 1.4 An F-optional process Z is called transitive if it is a (P,F)-
Markov process for each P ∈ Π, i.e. if the σ-fields Ft and FZ

[t,∞) are P -
conditionally independent given Z(t).

The notion of a transitive sequence of statistics was introduced by Bahadur
[Baha, 54]. Definition 1.4 is equivalent to stating that for each P ∈ Π, each
t ≥ 0 and and each bounded random variable U in Ft, we have

EP [U |Z(t) ] = EP

[
U

∣∣∣FZ
[t,∞)

]
.

Definition 1.5 An F-optional process X is called complete if, for every t and
every Borel function g, the condition

EP [g(X(t))] = 0, for all P ∈ Π,

implies
g(X(t)) = 0, Π − a.s.

To construct a transitive sufficient process in a Markovian case we will typ-
ically use the following ”algorithm”.

1. For every fixed t we apply the Girsanov Theorem to find a sufficient sta-
tistic for Π restricted to F.

2. If no finite-dimensional statistic exists then we are stuck and cannot apply
the theory below.

3. If there exists a finite dimensional sufficient process Y , then Y itself is not
necessarily transitive (it need not be Markovian). In most cases, however,
the extended process (X, Y ) will be transitive and sufficient.

4. Now we regard (X, V ) as our basic process instead of X .

For a discussion of some concrete examples of this technique see [Bjö & Joh, 92]
p.194.

To illustrate technique and ideas we will use three simple concrete scalar
models. In all cases Ω is the space C[0,∞) and X is the coordinate process on
Ω.
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The Wiener model: For this model the a priori family Π = ΠW is defined
by ΠW = {Pα; α ∈ R}, where X under Pα has the dynamics

dX(t) = αdt + dW (t), X(0) = 0,

and where W is a standard Wiener process.

The L2-model: Here we let X have the representation

dX(t) = Z∗dt + dW (t), X(0) = 0, (1)

where W is a Wiener process. The a priori family, denoted by ΠL, is now defined
as the class of probability measures such that

• Z∗ and W are independent.

• Z∗ has finite second moment.

We may thus identify ΠL by the following family of distributions F (of Z∗)
on the real line

ΠL =
{

F ;
∫

R

z2dF (z) < ∞
}

.

Observe that (1) is the semimartingale representation for X with respect to the
filtration G, defined by

Gt = Ft ∨ σ{Z∗}; t ≥ 0. (2)

It is perhaps not clear from (1) that X is a Markov process relative to the FX -
filtration, but it is fairly easy to show that the semimartingale representation
of X with respect to the FX -filtration is given by:

dX(t) = µ(t, X(t))dt + dW (t)

where µ is given by

µ(t, X(t)) =

∫
R

z · exp(zx − 1
2z2t)dF (z)∫

R exp(zx − 1
2z2t)dF (z)

, (3)

and F as above is the distribution function of Z∗.

The Gaussian mixture model: Here we consider a parameterized a priori
family ΠG given by

ΠG = {Pα,β ; α ∈ RI , β ≥ 0} ,

where X under Pα,β has the dynamics

dX(t) =
α + βX(t)

1 + βt
dt + dW (t).
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Typical examples of parameters Φ one may want to estimate in the models
above are the following.

The Wiener model:

Φ(Pα) = α

Φ(Pα) = g(α),

where g is some given function.

The L2-model:

Φ(P ) = EP [Z∗],
Φ(P ) = V arP [Z∗],

Φ(P ) = EP

[
(Z∗)2

]
,

The Gaussian mixture model:

Φ(Pα,β) = α,

Φ(Pα,β) = β,

Φ(Pα,β) = g(α, β),

where g is some given function.

2 Unbiased Estimators and Reverse Martingales

The central theme of this paper is the connection between reverse martingale
theory and unbiased parameter estimation. We now present a series of results
which highlights this theme, and the results may be summarized by saying that
in a transitive sufficient and complete model, unbiased estimators are character-
ized by being reverse martingales. The results are all extremely easy to prove,
and they immediately give us very powerful tools for studying the asymptotic
behaviour of unbiased estimators.

Proposition 2.1 Consider a fixed parameter Φ in the model (Ω,F , Π,F). As-
sume that there exists an unbiased estimator process Y of Φ having the form

Y (t) = f(t, X(t)),

for some F-optional process X which is sufficient, transitive and complete. Then
Y is an T X - reverse martingale for all P ∈ Π, where the filtration T X is defined
by

T X
t = FX

[t,∞), t ≥ 0.
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Proof. Let 0 ≤ s ≤ t. Since Y is an unbiased estimator process we have, for
all P ∈ Π,

EP [Y (t)] = EP [Y (s)] = EP [EP [Y (s) |X(t) ]].

Since X is sufficient, EP [Y (s) |X(t) ] does not depend on the choice of P , and
so, by the completeness of X ,

Y (t) = EP [Y (s) |X(t) ]. (4)

Using the transitivity of X we have

EP [Y (s) |X(t) ] = EP

[
Y (s)

∣∣T X
t

]
,

which, together with (4) gives us the martingale property

Y (t) = EP

[
Y (s)

∣∣T X
t

]
.

To assume that Y (t) = f(t, X(t)) is, by the Rao-Blackwell Theorem, not a
severe restriction. In the sequel we will thus always assume that all unbiased
estimators are of the form 2.1.

Proposition 2.2 Fix a measure P0 ∈ Π and assume that X and Y are two
F-optional processes such that

1. X is sufficient for Π.

2. X is a (P0,F)-Markov process.

3. Y is a
(
P0, T X

)
-reverse martingale on [T,∞) for some T ≥ 0.

4. Y (t) ∈ L1(Ω,Ft, P ) for all t ≥ T , P ∈ Π.

Now define the mapping Φ : Π → R by

Φ(P ) = EP [Y (T )]

Then Y is an unbiased estimator of Φ on [T,∞).

Proof. By the sufficiency and transitivity of X we have, for t ∈ [T,∞),

Φ(P ) = EP [Y (T )] = EP [EP [Y (T ) |X(t) ]] = (5)
= EP [EP0 [Y (T ) |X(t) ]] = EP

[
EP0

[
Y (T )

∣∣T X
t

]]
= (6)

= EP [Y (t)] (7)

Proposition 2.1 permits us to draw very strong conclusions concerning the
consistency of unbiased estimators.
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Proposition 2.3 Assume that the process X is sufficient, transitive and com-
plete. Then the following hold.

1. Every unbiased estimator process Y of the form Y (t) = f(t, X(t)) con-
verges Π-a.s. to some limiting stochastic variable Y (∞) as t → ∞.

2. If the tail-σ-field T X∞ =
⋂

t≥0 FX
[t,∞) is P -trivial for every P ∈ Π then

every unbiased estimator is consistent, i.e.

lim
t→∞Y (t) = Φ(P ), P − a.s for all P ∈ Π.

Proof. Fix any P ∈ Π. By Proposition 2.1 every unbiased estimator process
is a reverse martingale, so the first part of the proposition follows immediately
from the reverse martingale convergence theorem. Thus the limiting variable
Y (∞) always exists, and we have Y (∞) ∈ T X∞ . If the tail σ-algebra is trivial
then Y (∞) must be a deterministic constant, and thus Y (∞) has to equal its
expected value Φ(P ) P -a.s.

The main point of the results above can thus be paraphrazed as follows: In a
complete transitive sufficient model unbiasedness implies the reverse martingale
property, thus guaranteeing consistency for the case when the tail field T X

∞ is
trivial.

The triviality of the tail-σ-field of a sufficient transitive process has been
studied in general by Lauritzen [Laur 88]. To prove triviality in a concrete
case is typically a very hard problem, but once such a result is established, the
question of consistency of any unbiased estimator is thereby completely resolved.

To take a simple example consider the Wiener model of section 1. It is
easily seen that X is transitive and sufficient, and it is well known that the
model is complete. For a proof of the triviality of the tail σ-algebra see e.g.
[Bjö & Joh, 93]. Now consider the parameter Φ(Pα) = α. Then it is of course
trivial to check that

Yt =
Xt

t
(8)

is an unbiased estimator of Φ, and we see from Proposition 2.3 above that Y
converges Pα-a.s. to α. The reverse martingale property of Y in equation (8) is
of course well-known but our point here is that Y is a reverse martingale because
it is unbiased.

Proposition 2.2 suggests that you may find unbiased estimators by looking
for reverse martingales. This may not seem to be a very promising approach,
but later we will give an important example.
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3 The Mixing Theorem and Sufficient Generat-

ing Martingales

Throughout this section we assume that X is transitive and sufficient.
The main technical tool in the sequel is the so called Mixing Theorem, which

we now proceed to describe. We will then need to consider the various proba-
bility measures which are generated by ”pinning” X(t) at a fixed point x.

Definition 3.1 For any probability measure P , not necessarily in Π, on (Ω,F∞)
we define P t,x on (Ω,Ft) by

P t,x(A) = P (A |X(t) = x).

By transitive sufficiency we note that there exists a fixed family of probability
measures Qt,x on (Ω,Ft) such that, for every P ∈ Π and every (t, x) ∈ R+×Rk,
we have Qt,x = P t,x.

Definition 3.2 The maximal family, M, generated by Π is the class of all
probability measures P on (Ω,F∞) with the following properties.

1. For every (t, x) ∈ R+ × Rk we have P t,x = Qt,x,

2. For each t the σ-algebras σ{X(s); s ≤ t} and σ{X(s); s ≥ t} are condi-
tionally P -independent given X(t).

The maximal family M is easily seen to be a convex set, and we denote the
set of its extremal points by E . It can be shown ( [Laur 88] p.196, Proposition
IV.I.I) that M is in fact an infinite dimensional simplex in the sense that any
point in M can be written as a unique convex combination of points in E . This
fact, henceforth called the mixing theorem, is one of the cornerstones in the
sequel.

Theorem 3.1 For each P ∈ Π there exists a unique probability measure νP on
E such that

P =
∫
E

QνP (dQ),

in the sense that, for each A ∈ F∞ we have

P (A) =
∫
E

Q(A)νP (dQ),

The measure νP is called the mixing measure corresponding to P .

Many of the results below will be connected to the tail-σ-algebra T X∞ , and T X∞
is connected to E by the following result (see [Laur 88]).

Proposition 3.1 For any P ∈ M the following are equivalent
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1. P ∈ E

2. T X
∞ is P -trivial.

In order to obtain concrete formulas below we will sometimes need more
than the rather abstract mixing theorem above. The situation turns out to
be particularly nice when there exists a finite dimensional stochastic vector Z
which acts as a sufficient statistic at t = ∞. This is in fact often the case, and
by studying concrete examples we have been led to the following definition.

Definition 3.3 A k-dimensional optional process Z is said to be a sufficient
generating martingale (SGM) if the following conditions hold.

1. σ{Xt} = σ{Zt}, for all t ≥ 0.

2. Z is a reverse martingale for all P ∈ E .

3. σ{Z∞} = T X∞ , P -a.s. for all P ∈ M

We note that since Z is a reverse martingale for the extremal family it will
converge E-almost surely to a limiting variable Z∞. By the mixing theorem
this convergence will also take place M-almost surely, so Z∞ in (3) above is
indeed well defined. An SGM can be viewed as a ”normalized” version of the
observation process X , and the main advantage of working with an SGM is seen
by the following result.

Proposition 3.2 Suppose that the model admits a sufficient generating mar-
tingale Z. For each z ∈ Rk and any P ∈ M, let the measure Pz be defined
by

Pz (A) = P (A |Z∞ = z ). (9)

Then, by sufficiency, Pz is independent of the particular choice of P and we
have

E = {Pz; z ∈ Rk} (10)

Proof. We obviously have, for each A ∈ F∞ and each P ∈ M,

P (A) =
∫

Rk

Pz(A)dFP (z),

where FP is the P -distribution of Z∞. Thus the convex hull of the Pz-measures
equals M, and it is easy to see that all the Pz-measures are extremal.

It is now natural to ask if an SGM always exists. Generally speaking this is still
an open question, but our conjecture is that every transitive sufficient complete
model where X has continuous trajectories possesses an SGM. We now give
some partial results. First we see that to check the reverse martingale property
it is (almost) enough to check it for one single P .
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Proposition 3.3 Suppose that a process Z has the properties that

1. σ{Xt} = σ{Zt}, for all t ≥ 0.

2. There exists some P0 ∈ M such that

EP0 [Zs |Zt = z ] = z, for all z and for all s, t with s < t. (11)

Then Z is a P -reverse martingale for all P ∈ M such that Z ∈ L1(Ω, P ).

Proof. If (11) is satisfied for some P0 ∈ M it will be satisfied for all P ∈ M
since, by (1), Z is sufficient. Suppose furthermore that P is such that Z ∈
L1(Ω, P ). Then (11) implies that

EP [Zs |Zt ] = Zt, P − a.s.

Using the Markov property (in backward time) of Z this gives us

EP

[
Zs

∣∣T X∞
]

= EP [Zs |Zt ] = Zt, P − a.s.

which shows that Z is a reverse P -martingale.

It is an annoying fact that the condition (11) alone does not even guarantee
that Z is a reverse P0-martingale. The problem is that (11) does not imply that
Zs is P0-integrable, it only tells us that Zs belongs to L1(Ω, P t,z

Z ), where the
tied-down measure P t,z

Z is defined by

P t,z
Z (A) = P (A |Zt = z ), A ∈ Ft.

We now turn to the existence of an SGM. For models where there exists a
transition density for the prediction sufficient process X we have a promising
candidate.

Proposition 3.4 Suppose that, for some P ∈ M, X has a transition density
p(s, y; t, x), i.e. P (Xt ∈ dx |Xs = y ) = p(s, y; t, x)dx, and suppose furthermore
that p is continuously differentiable in the y-variable. Let Ps,y denote the mea-
sure generated by starting X in the state y at time s and define, for fixed (s, y)
the process Zt; t ≥ s by

Zt = ∇y log p (s, y; t, Xt) . (12)

Suppose that Z defined by (12) is an integrable process with respect to Ps,y. Then
Z is a reverse martingale on [s,∞) with respect to Ps,y.
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Proof.

E [Zt |XT = x ] = E

[
py(s, y; t, Xt)
p(s, y; t, Xt)

|XT = x

]
=

∫ py(s, y; t, ξ)
p(s, y; t, ξ) p(T, x; t, ξ)dξ =

∫ py(s, y; t, Xt)
p(s, y; t, Xt)

p(t, ξ; T, x)p(s, y; t, ξ)
p(s, y; T, x) dξ =

∫ py(s, y; t, ξ)p(t, ξ; T, x)
p(s, y; T, x) dξ = 1

p(s, y; T, x)
∫

py(s, y; t, ξ)p(t, ξ; T, x)dξ =

1

p(s, y; T, x)∇y

∫
py(s, y; t, ξ)p(t, ξ; T, x)dξ = 1

p(s, y; T, x)∇yp(s, y; T, x) =

= ∇y log p(s, y; T, x),

which, again using the Markov property of X in backward time, gives us

Es,y

[
Zt

∣∣F[T,∞)

]
= Es,y [Zt |XT ] = ZT .

A natural candidate as SGM is thus given by

Zt = ∇y log p (0, X0; t, Xt) (13)

where we can choose any P in M to compute the transition density. We have
so far been unable to give a really nice set of a priori conditions which will
guarantee that Z above in fact is an SGM. In a concrete case we thus have to
check the defining properties of the SGM, and then the following remarks can
be helpful.

1. It follows from (3.4) that Z will be a reverse martingale with respect to
any P ∈ M for which Z is an integrable process.

2. To qualify as an SGM the process Z also has to generate the same filtration
as X , which is equivalent to the statement that, for each t, the mapping

Ht : Rk → Rk

x 7→ ∇y log p (0, x0; t, x) ,

is a global bijection. A necessary condition for this property is of course
that Ht is locally invertible i.e. that the Jacobian G(t, x) of Ht, is an
invertible matrix for each (t, x), where

Gi,j(t, x) =
∂2

∂xi∂xj
log p (0, x0; t, x) , i, j = 1, ..., k

and if the mapping Ht also is proper then Ht will in fact be a global
bijection.
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3. Finally Z∞ has to generate the tail sigma field T X
∞ . In practice this seems

to be the hardest condition to check, and one result in this direction is the
following proposition. The process Z below need not be the one defined
by equation 13.

Proposition 3.5 Suppose that Z is a scalar reverse martingale with continuous
trajectories, such that σ{Xt} = σ{Zt} for all t ≥ 0. Suppose furthermore that
its quadratic variation satisfies

d〈Z〉t = h(t)dt.

Then σ{Z∞} = T X
∞ .

Proof. By introducing the deterministic time-transformation T (t) = 1/t, defin-
ing Y by Y (t) = Z(T (t)) and defining the filtration G by

Gt = σ{Xs; s≥ 1/t}, for t > 0,
G0 = σ{Z∞},

the proof boils down to that of showing that G0 = G0+. By a stochastic time
transformation we may turn the Y -process, into standard Brownian Motion,
and the result now follows from the right continuity of the Brownian filtration.

We now consider our three test models in the light of the theory above.

The Wiener model: The natural base measure is the Wiener measure P0,
and from Girsanov’s Theorem we have

Lα
t = exp

{
αXt −

α2t

2

}
.

It now follows from the factorization theorem that X itself is sufficient, and
since X is Markovian it is indeed a transitive sufficient process. The model is
easily seen to be complete. It can be shown (see e.g. [Bjö & Joh, 93]) that this
model is in fact extremal, i.e.

ΠW = EW

This means that for a measure P in the maximal family the process X has the
representation

dX(t) = Z∗dt + dW (t) (14)

where Z∗ is a stochastic variable which is independent of W . For a given P the
distribution Fp of Z∗ can be identified with the mixing measure corresponding
to P . Thus EW can be identified with the real line, and MW can be identified
with the set of all probability distributions on R.
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In order to find an SGM we use the measure P0 to compute the transition
densities, which are given by

p(s, y; t, x) =
1√
2πt

exp
{
− (x − y)2

2t

}
.

Using formula 13 we obtain the following well known process

Zt =
Xt

t
, (15)

and it is easy to see that Z is in fact an SGM.

The L2-model: By the results above we see that this model is a submodel of
the maximal family for the Wiener model. Thus X itself is again a prediction
sufficient process and the extremal and maximal families, denoted by EL and
ML respectively, are given by EL = EW , ML = MW . An SGM is again given
by equation (15).

The Gaussian mixture model: This model is in fact a submodel of the
L2-model. Using formula (3) it is easy to see that the measure Pα,β corresponds
to a Gaussian mixing measure (= distribution of Z∗) with mean α and variance
β. From the results above we see that the extremal and maximal families EG

and MG are given by

EG = {Pα,0; α ∈ R} = EW ,

MG = MW ,

and again an SGM is given by formula (15).

An example in discrete time: Although the theory above has been pre-
sented only in continuous time the basic ideas work as well in discrete time. We
illustrate with the following example, where Ω = R∞.
Let X be the coordinate process on Ω and let Pµ,σ denote the measure under
which X1, X2, . . . are i.i.d. and N(µ, σ). A sufficient statistic for the family
{Pµ,σ; µ ∈ R, σ ∈ (0,∞)} at time n is (Yn, Vn) where

Yn =
n∑

k=1

Xk, Vn =
n∑

k=1

X2
k .

The natural base measure is P0,1, under which (Y, V ) is a Markov process with
transition densities p∗(m, x, u; n, y, v) = p(n − m, y − x, v − u), where

p(n, y, v) =

(
v − y2/n

)(n−3)/2

T
√

nπ(n−1
2 )2n

2

.

14



Following the construction in equation 13 we define the functions f1 and f2 by

f1(n, y, v) = ∇x log p∗(0, 0, 0; n, y, v) =

=
n − 3

n

y

v − y2/n

f2(n, y, v) = ∇u log p∗(0, 0, 0; n, y, v) =

=
1
2

(
1 − 1

v−y2/n

)
.

Now we define the process Z = (Z1, Z2), which is our candidate as an SGM, by

Z1
n = f1(n, Yn, Vn) =

n − 3
n − 1

Xn

S2
n

(16)

Z2
n = f2(n, Yn, Vn) =

1
2

(
1 − n−3

n−1
1

S2
n

)
(17)

and we know from Proposition 3.4 that Z in fact is a reverse martingale. Fur-
thermore the mapping (y, v) 7→ (f1(n, y, v), f2(n, y, v)) is obviously one to one,
and it only remains to show that Z∞ generates the tail sigma algebra J . This
however follows immediately from the fact that J is trivial (see [Mar 70]), and
thus Z is an SGM.

To connect these result with our results in Section 2 and to classical theory
we recall the well known fact that the process

ξ =
{(

Xn, S2
n

)
, n ≥ 2

}
is an unbiased estimator of the parameter (µ, σ2). Since this model is complete,
it follows from Proposition 2.1 the process ξ must be a reverse martingale (a
fact which does not seem to be known), and since in this case the tail sigma
field is known to be trivial, we immediately obtain the consistency result

lim
n→∞ ξn = (µ, σ2), Pµ,σ − a.s.

For this model we have already constructed another SGM, namely the process
Z defined by equations (16) - (17). Since Z is a reverse martingale it is thus
the unbiased estimator of something and a fairly easy calculation shows that in
fact

Eµ,σ

[
Z1

n

]
=

µ

σ2
,

Eµ,σ

[
Z2

n

]
=

1
2
(
1 − 1

σ2

)
.

Here we recognize the ”canonical parameters” of the model in the sense of the
theory of exponential families. This fact, together with other concrete examples
as the Wiener model above, strongly indicates that the gradlog construction in
formula 12 is not of an ad hoc nature but rather that this construction in some
sense is canonical.
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4 Asymptotic normality of unbiased estimators

The fact that unbiased estimators are reverse martingales suggests the possibil-
ity of deriving asymptotic normality from the central limit theorem for reverse
martingales. We shall not attempt a general discussion at this point, but instead
illustrate the idea for a familiar example.
The sample space is R∞, X = X1, X2, ... is the coordinate process on this space
and F = σ(X1, X2, ...). Let Pµ,ν denote the probability measure for which
X = X1, X2, ... are independent and normally distributed with mean µ and
variance ν. It is well known that the pair

Sn =
1
n

n∑
k=1

Xk, Wn =
1

n − 1

n∑
k=1

X2
k

is a minimal sufficient statistic for the model {Pµ,ν ; µ ∈ R, ν > 0}. It is also well
known that

Tn =
1
n

n∑
k=1

Xk, Un =
1

n − 1

n∑
k=1

(Xk − Tk)2

are unbiased estimators of µ and ν and that the model is complete. Thus
{Tn; n ≥ 2} and {Un; n ≥ 2} are reverse martingales with respect to any measure
Pµ,ν and the filtration

Jn = σ{(Sn, Wn), (Sn+1, Wn+1), ...}, n ≥ 2.

Let us now define the probability measure Pθ on (Ω,F) by

Pθ(A) =
∫

Pµ,ν(A)Fθ(dµ, dν), A ∈ F , (18)

where
Fθ(dµ, dν) = εθ(dµ)ν−2e−1/ν

(This is Example 1, p.2 in Basawa and Scott [Bas & Sco, 83]). It now follows
that {Tn} and {Un} are reverse martingales with respect to Pθ as well. Fur-
thermore the joint density of X = X1, ..., Xn under Pθ is given by

f(x1, ..., xn) = (2π)−n/2Γ(n/2 + 1)
(
1 + 1

2

∑n
k=1 (xk − θ)2

)−n/2−1

.

The estimator Tn is an unbiased estimator of θ and it is also the maximum
likelihood estimator. An argument for constructing confidence intervals for θ
goes as follows. Let Zn = (Tn − θ)/

√
Un/n. Then one can show that

Pθ(Zn ≤ z, Un ≤ u) → Φ(z)Pθ(U∞ ≤ u), (19)

where Φ is the standard normal distribution and U∞ = limn→∞ Un has the
density ν−2e−1/ν . Since U∞ has the same distribution for all θ, the statistic Un
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is approximately ancillary, and the (asymptotic) conditionality principle yields
that confidence intervals for θ should be based on the asymptotic normality of
Zn. The purpose of this section is to show how the basic convergence result (19)
follows from the central limit theorem for reverse martingales and the mixing
formula (18).
We will use the following central limit theorem for reverse martingales (c.f.
[Hall & Hey, 80], [Eag & Web, 78]).
Let {Jn, n ≥ 1} be a decreasing sequence of σ-fields and let {Tn, n ≥ 1} be a
reverse martingale with respect to {Jn, n ≥ 1}, such that E

[
T 2

n

]
< ∞, n ≥ 1.

Set

Yn = Tn − Tn−1, V 2
n =

∞∑
k=n

E
[
Y 2

k |Jk+1

]
, n ≥ 1.

Proposition 4.1 Assume that there exists a random variable η such that

V 2
n

E
[
V 2

n

] P→ η2, as n → ∞ (20)

and, for all ε ≥ 0:

1
E

[
V 2

n

] ∞∑
k=n

E

[
Y 2

k I{
Y 2

k > εE
[
V 2

n

]} |Jk+1

]
P→ 0, as n → ∞ (21)

Then
Tn − T∞

Vn

d→ N(0, 1)

Note that the Lindeberg condition (21) is implied by the Lyapunov condition

1
E

[
V 2

n

] ∞∑
k=n

E [|Yk|r |Jk+1 ] P→ 0, for some r > 2 (22)

We shall now use this result to show that for any P in the maximal family,

Tn − T∞√
Un/n

d→ N(0, 1). (23)

To begin with, let P = Pµ,ν for some µ ∈ R, ν > 0. Then one can show that

E
[
(Tn − Tn+1)2 |Jk+1

]
=

1
n(n + 1)

Un+1, (24)

E
[
(Tn − Tn+1)4 |Jk+1

]
=

1
n(n + 1)2(n + 2)

U2
n+1, (25)
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The calculations are elementary but somewhat lengthy, and we omit them. From
(23) we get

V 2
n :=

∞∑
k=n

E
[
(Tn − Tn+1)2 |Jk+1

]
=

∞∑
k=n

1
k(k + 1)

Uk+1. (26)

Using the relation
∞∑

k=n

1
k(k + 1)

=
1
n

we get

E
[
V 2

n

]
=

∞∑
k=n

ν

k(k + 1)
=

ν

n
.

Furthermore
1
n

inf
k≥n+1

Uk ≤ V 2
n ≤ sup

k≥n+1
Uk,

and since Un → ν, Pµ,ν − a.s., we have

V 2
n

E
[
V 2

n

] → 1; Pµ,ν − a.s.

Thus the condition (20) is satisfied. Next we check that condition (22) is satisfied
with r = 4. From (24) we get

(
E

[
V 2

n

])−2
∞∑

k=n

E
[
(Tn − Tn+1)4 |Jk+1

]
= (ν/n)−2

∞∑
k=n

1
k(k + 1)(k + 2)

U2
k+1.

Arguing as above, it suffices to show that

n2
∞∑

k=n

1
k(k + 1)2(k + 2)

→ 0.

But

n2
∞∑

k=n

1
k(k + 1)2(k + 2)

≤
∞∑

k=n

1
k(k + 1)

=
1
n

,

and so (22) holds.
Since nV 2

n /Un → 1, Pµ,ν − a.s. we conclude that (23) holds under Pµ,ν . But
then it follows that for any P in the maximal family we have

P
(
n(Tn − T∞/

√
Un ≤ z

)
=

∫
Pµ,ν

(
n(Tn − T∞/

√
Un ≤ z

)
FP (dµ, dν)

→
∫

Φ(z)FP (dµ, dν) = Φ(z).

18



To conclude the proof of (19), note that

|Pθ(Zn ≤ z, Un ≤ u) − Pθ(Zn ≤ z, U∞ ≤ u)|
≤ Eθ

[
|I{Un ≤ u} − I{U∞ ≤ u}|

]
→ 0,

and so it is enough to prove that

Pθ(Zn ≤ z, U∞ ≤ u) → Φ(z)Pθ(U∞ ≤ u).

But the mixing formula (18) gives us

Pθ(Zn ≤ z, U∞ ≤ u) =

=
∫ ∞

0

Pθ,ν(Zn ≤ z, U∞ ≤ u)ν−2e−1/νdν

=
∫ u

0

Pθ,ν(Zn ≤ z)ν−2e−1/νdν

→
∫ u

0

Φ(z)ν−2e−1/νdν

= Φ(z)Pθ(U∞ ≤ u).

5 The structure of unbiased estimators

In this section we look for conditions on a parameter Φ which are necessary for
the existence of an unbiased estimator process. Let us therefore consider a fixed
parameter Φ for the model (Ω,F , Π, X,F).

Definition 5.1 For any stochastic variable V we define a family M[V ] , by

M[V ] =
{
P ∈ M; V ∈ L1(Ω, P )

}

If V is an unbiased estimator of Φ relative to Π , then we extend the domain of
Φ from Π to M[V ] , by

Φ(P ) = EP [V ], P ∈ M[V ]. (27)

Lemma 5.1 Suppose that, for some t, there exists an unbiased t-estimator V
of Φ, and suppose that E ⊂ M[V ]. Then, extending Φ as above it must hold
that

Φ(P ) =
∫
E

Φ(Pε)νp(dPε), (28)

where νp is the mixing measure for P .
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Proof. We have, using the unbiasedness of V ,

Φ(P ) = EP [V ] =
∫

Ω

V (ω)P (dω) =
∫

Ω

∫
E

V (ω)Pε(dω)νp(dPε) =

=
∫
E

∫
Ω

V (ω)Pε(dω)νp(dPε) =
∫
E

Φ(Pε)νp(dPε).

In the case when we have access to an SGM the structure can be simplified
even further.

Definition 5.2 Consider a model possessing a sufficient generating martingale
Z, and let Φ be a parameter defined on the whole of E. Then the structure
function, ϕ : Rk → R, is defined by

ϕ(z) = Φ(Pz),

where Pz is defined by equation (9).

Proposition 5.1 Suppose that the model possesses an SGM denoted by Z.
Consider a fixed parameter Φ, and suppose that there exists some unbiased es-
timator of Φ. Then it must hold that

Φ(P ) =
∫

Rk

ϕ(z)FP (dz), for all P ∈ M[V ], (29)

where FP as usual is the P -distribution of Z∞.

Proof. Follows immediately from the lemma above.

The point of the results above is of course that the structure of a parameter
having an unbiased estimator is uniquely determined by its structure function.
We may now restate Proposition 5.1 in order to give preliminary necessary and
sufficient conditions for the existence of unbiased estimators.

Proposition 5.2 Consider a model (Ω,F , Π, X,F), and a fixed parameter Φ,
where we assume that E ⊂ Π. Then there exists an unbiased estimator of Φ if
and only if the following conditions hold.

1. Φ has an unbiased estimator on E.

2. For all P ∈ Π it holds that

Φ(P ) =
∫

Rk

ϕ(z)FP (dz). (30)
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Proof. Obvious.

Thus the problem of estimating Φ on Π is replaced by the much easier problem
of estimating Φ on E . The latter problem is however by no means trivial and
we shall return to it below.

Even as it stands, Proposition 5.2 has a number of nontrivial consequences,
so let us look at some of our examples.

The Wiener model: Since, in this model, we have Π = E , we do not
get anything interesting from Proposition 5.2. We recall, however, that for the
simple parameter Φ(Pα) = α we have the trivial unbiased estimator Y (t) = X(t)

t .
This process is also an SGM, and the structure function of the parameter is of
course given by ϕ(z) = z.

The L2-model: We consider the parameters

Φ(P ) = EP [Z∗], (31)
Φ(P ) = V arP [Z∗], (32)

Φ(P ) = EP

[
(Z∗)2

]
, (33)

The corresponding structure functions are (recall that Pz is a point mass at z).

ϕ(z) = Φ(Pz) = EPz [Z∗] = z,

ϕ(z) = Φ(Pz) = V arPz [Z∗] = 0,

ϕ(z) = Φ(Pz) = EPz

[
(Z∗)2

]
= z2.

We now check if the parameters satisfy the integral condition of Proposition 5.1.
For the parameter Φ(P ) = EP [Z∗] we have

∫
Rk

ϕ(z)FP (dz) =
∫

Rk

zFP (dz) = EP [Z∗] = Φ(P ),

so this parameter satisfies equation (29). Furthermore we know that the ex-
tremal points of this model equals the a priori family for the Wiener model, so
Φ possesses an unbiased estimator process on E , namely Y (t) = X(t)/t. Thus it
follows from Proposition 5.2 that Φ indeed has an unbiased estimator on Π. (In
this simple example one could of course prove this directly by simply checking
the obvious candidate X(t)/t.)

For the parameter Φ(P ) = V arP [Z∗] we have
∫

Rk

ϕ(z)FP (dz) =
∫

Rk

0FP (dz) = 0,
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which is not equal to Φ(P ) for any measure outside the extremal family. It
follows that for this parameter no unbiased estimator exists (relative to Π).

For the case Φ(P ) = EP

[
(Z∗)2

]
we have

∫
Rk

ϕ(z)FP (dz) =
∫

Rk

z2FP (dz) = EP

[
(Z∗)2

]
= Φ(P ).

Proposition 5.2 now tells us that it is possible that the parameter can be
estimated unbiasedly. Whether this really is the case depends on if one can
estimate Φ on the extremal points. This is a harder problem and we will come
back to it below.

The Gaussian mixture model: We consider the parameters

Φ(Pα,β) = α, (34)
Φ(Pα,β) = β, (35)
Φ(Pα,β) = g(α, β). (36)

We recall that this is a submodel of the L2-model, and that Z∗ under Pα,β is
normally distributed with mean α and variance β. Thus we already know from
the L2-model that α can be estimated unbiasedly, whereas β can not.
The case Φ(Pα,β) = g(α, β) is more interesting. Since the extremal family is
{Pα,0; α ∈ R} we see that the structure function is given by

ϕ(z) = Φ(Pα,β) = g(z, 0).

The integral condition of Proposition 5.2 becomes

Φ(Pα,β) = g(α, β) =
∫

Rk

ϕ(z)FPα,β
(dz) =

∫
Rk

g(z, 0)Ψ(z; α, β)dz, (37)

where Ψ(z; α, β) is the Gaussian density with mean α and variance β. Thus we
see that a necessary condition for g is that it satisfies the integral equation

g(α, β) =
∫

Rk

g(z, 0)Ψ(z; α, β)dz. (38)

Furthermore, since Ψ as a function of α and β satisfies the Fokker-Planck equa-
tion, the above equation implies that this must also be the case with the function
g. Summing up we have the following result.

Proposition 5.3 The function g has an unbiased estimator if and only if the
following conditions hold.

1.
∂g

∂β
=

1
2

∂2g

∂α2
, (α, β) ∈ R × R+. (39)
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2. The parameter Φ(Pα,β) = g(α, 0) has an unbiased estimator on E .

Using Proposition 5.3 it is easy to check necessary conditions. We see at
once that for g(α, β) = β, corresponding to the parameter in (32), equation
(39) is not satisfied, so this parameter has no unbiased estimator. On the other
hand the function g(α, β) = β + α2 corresponding to the parameter in (33),
works nicely.

6 Boundary value problems

In Section 5 we saw that the task of finding an unbiased estimator splits into
two separate problems:

1. The easy task of checking if the parameter satisfies one of the ”structural
equations” (28) ,(29) or (30).

2. The hard task of constructing an estimator for the restriction of the pa-
rameter to extremal family.

In this section we will derive equations for the actual construction of unbiased
estimators (on the extremal family). We start with a lemma and we use the
standing assumption that a sufficient martingale exists for the model.

Lemma 6.1 Suppose that Z is an SGM. A given optional process Y is an
unbiased estimator of Φ relative to the extremal family E on the interval [T,∞)
if and only if the following equation is satisfied for all P ∈ E.

EP [Y (t) |Z∞ = z ] = ϕ(z), t ∈ [T,∞), PZ−1
∞ − a.s. (40)

Proof. Another way of writing equation 40 is

EPz [Y (t)] = Φ(Pz),

and since the Pz-measures constitute the extremal family we are finished.

Still another way of writing equation (40) is as

EP [Y (t) |Z∞ ] = ϕ(Z∞),

which shows that unbiased parameter estimation can be viewed as a limiting
case of unbiased adaptive prediction in the sense of Johansson-Björk (1992)
[Bjö & Joh, 92].
It is not at all clear from Lemma 6.1 how one is to find a process Y satisfying
eqauation (40). If we want to minimize expected square error then, because of
predictive sufficiency, we only have to consider estimators of the form

Y (t) = f(t, X(t)). (41)

23



If, as we have assumed, we have an SGM, then it turns out to be much more
convenient to consider estimators of the form

Y (t) = f(t, Z(t)), (42)

and, since by definition X and Z generate the same filtration, the forms (41)
and (42) are logically equivalent. Thus we may as well look for estimators of
the form (42), and we can now use the reverse martingale characterization of
unbiased estimators (Theorem 2.1) to obtain a more familiar problem.

Definition 6.1 Let R(s) denote the infinitesimal operator for the process Z in
reverse time, at (ordinary) time s, and let D(S) denote its domain. In other
words

{R(s)g}(z) = lim
t↑s

EP [g(Zt) |Zs = z ]
s − t

.

Proposition 6.1 Suppose that for some T > 0 there exists a function

f : (T,∞] × Rk → R

with
f(s, ·) ∈ D(s), for all s ≥ T ,

such that f solves the boundary value problem

∂f

∂t
(t, z) = [R(t)f(t, ·)](z), (t, z) ∈ (T,∞) × Rk, (43)

f(∞, z) = ϕ(z), z ∈ Rk (44)

Then the process Y defined by Y (t) = f(t, Z(t)) is an unbiased estimator of Φ
on E . If the model is complete then Y is also the unique mean square optimal
unbiased estimator.

Proof. By Dynkin’s formula, equation (43) simply says that Y is a reverse
martingale. Thus it is an unbiased estimator of something, and the boundary
value shows that it is actually an estimator of Φ.

We may of course instead look for estimators of the form f(t, Xt) , and this will
also lead to an equation of the form (43). The drawback of this approach is that
no nice boundary values are at hand.
It is important to notice that equation (43) is the inverse problem of an ordinary
Kolmogorov-type backward equation (where the natural boundary conditions
would be given at t = 0).In other words we are tying to invert the semigroup
generated by Z. The inverse nature of the problem also explains why unbiased
estimators are so rare. If for example Z is a diffusion process, then (43) will be
(a version of) the heat equation solved backwards in time. In forward time the
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heat equation has a very regularizing effect on boundary data, so solving equa-
tion (43) will have an extremely irregularizing effect on the boundary function
ϕ. Thus the structure function ϕ has to be very smooth for a solution to exist.
Suppose now that Z is a diffusion in forward time. Then under fairly mild techni-
cal conditions it will also be a diffusion in backward time (see [Haus & Pard 86]).
Since Z by definition is a reverse martingale it will thus have the reverse time
representation

dZt = σ(t, Zt)dW t,

where W is a Wiener process in reverse time, and σ is the diffusion term (which
is the same in forward and in reverse time). We may now obtain a stochastic
representation formula for the solution of equation (43), a fact which in view of
the inverse nature of the problem is somewhat surprising.

Proposition 6.2 Suppose that f is a solution to equation (43) and suppose
also that there exists a time T > 0 such that the following hold.

1. As a function of z σ can be extended to an analytic function in the whole
complex plane.

2. For every (t, z) with t ≥ T there exists a solution to the complex-valued
SDE {

dZc
s = iσ(s, Zc

s),
Zc

t = z.
(45)

on the closed interval [T,∞].

3. For all (t, z) ∈ (T,∞)×Rk the process Zc in equation 45 and the function
f satisfies the condition∫ ∞

t

Et,z

[
‖(∇xf)(s, Zc

s)σ(s, Zc
s)‖

2 ds
]

< ∞ (46)

Then we have the representation formula

f(t, z) = Et,z [ϕ(Zc
∞)] (47)

where the indices in the expectation operator denotes integration with respect to
the measure induced by equation (45).

Proof. Itô’s formula.

Note that the representation result above provides us with a surprising dual-
ity relation between the estimator and the parameter (structure function). We
have

ϕ(z) = EPz [f(t, Zt)], for allz ∈ Rk, (48)
f(t, z) = Et,z [ϕ(Zc

∞)]. (49)
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Thus we see that while (by definition) the parameter is the expected value of
the estimator (eq. 48), we also have the fact that the estimator itself is the
expected value of the parameter (eq. 49).

We now apply the representation formulas above to our standing examples.

The Wiener model: We seek estimators for parameters of the form Φ(Pα) =
h(α), where h is some given real valued function, and since this model is extremal
we see that the structure function ϕ coincides with h. We already know that
Zt = Xt/t is an SGM, and we see that under P0, Z has the forward time
dynamics

dZt = −1
t
Ztdt +

1
t
dWt.

The backward dynamics, which because of sufficiency do not depend on the
choice of P , are given by

dZt =
1
t
dW t,

so the boundary value problem of Proposition 6.1 becomes

∂f

∂t
(t, z) =

1
2t2

∂2f

∂z2
(t, z) (50)

f(∞, z) = h(z), (51)

We see indeed that this is an ill posed problem and to solve it we apply the
representation formula (47). Equation (45) now reads

{
dZc

s = i
tdWs,

Zc
t = z,

(52)

and this SDE can in fact be integrated directly. We have

Zc
∞ = z = i

∫ ∞

t

1
s
dWs,

so we see that
Zc
∞ = z + iU,

where U is Gaussian with zero mean and variance t−2. Thus we have the
following representation formula for f .

f(t, z) =
t√
2π

∫ ∞

−∞
h(x + iy) exp

{
− 1

2x2t2
}
dx. (53)

As was expected we see from equation (53) that we must demand a high degree
of regularity from the function h; to start with it must be analytic. Note also
that all these calculations have been made under the assumption that a solution
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to the boundary value problem (50)-(51) actually exists. We can however turn
the whole argument around and define the function f by (53). Taking care of
integrability conditions this procedure will give us the following result.

Proposition 6.3 Consider the Wiener model and suppose that

1. The function h above is an entire analytical function

2. There exists positive constants A and T such that

|h(x + iy)| ≤ A exp
{

T x2+y2

2

}
, (x, y) ∈ R2. (54)

Then there exists a unique mean square optimal unbiased predictor process for
the parameter Φ(Pα) = h(α) on the interval [T,∞). The estimator process Y is
given by Yt = f(t, Zt) where Zt = Xt/t and f is defined by (53).

Proof. The growth condition on y in (54) allows us to differentiate under the
integral sign in equation (53) thus showing that f defined by (53) solves the
boundary value problem (50) - (51). This implies that Y is a reverse martingale
provided that Yt is integrable for all t ≥ T , and the growth condition on x
ensures that this is indeed the case.

As a concrete example let us consider the parameter Φ(Pα) = h(α) = α2.
The function h satisfies the conditions of Proposition 6.3, so Φ can in fact be
estimated unbiasedly. The optimal estimator process is given by equation (53)
as

Yt = Z2
t − 1

t2
=

X2
t − 1
t2

. (55)

The Gaussian mixture model We now return to the problem of estimating
a parameter of the form Φ(Pα,β) = g(α, β). One half of this problem was solved
in Section 5 where we saw that g must satisfy the heat equation (39), and we
are left with the problem of deciding when the parameter Φ can be estimated on
the extremal family EG. As we already know EG = ΠW , so we are in fact faced
with the problem of estimating a parameter of the form Ψ(Pα) = h(α) = g(α, 0)
in the Wiener model. The solution to this latter problem is on the other hand
given by Proposition 6.3 above, so we have the following result.

Proposition 6.4 Consider the Gaussian mixture model and a parameter Φ of
the form Φ(Pα,β) = g(α, β). Then Φ possesses an unbiased estimator on the
interval (T,∞) if and only if the following conditions hold.
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1. The function g satisfies the heat equation

∂g

∂β
(α, β) =

1
2

∂2g

∂α2
, (α, β) ∈ R × R+. (56)

2. The function h defined by h(α) = g(α, 0) is an entire analytic function.

3. There is a constant A such that

|h(x + iy)| ≤ A exp
{

T · x2+y2

2

}
, (x, y) ∈ R2. (57)

If the conditions are satisfied the estimator process Y is given by Yt =
f(t, Zt), where Zt = Xt/t and f is defined by equation (53).

Proof. Use Propositions 5.3 and 6.3.

As a concrete example we take the parameter

Φ(Pα,β) = α2 + β = Eα,β

[
(Z∗)2

]
.

In this case g(α, β) = α2+β and this function clearly saisfies equation (39). The
function h of proposition 6.4 is given by h(α) = α2, and it satisfies conditions 2
- 3 of proposition 6.4. Again by the same proposition we thus have an optimal
estimator, given by the formula (55).
Notice the role played by equation (39). The parameter

Φ(Pα,β) = α2 = {Eα,β [(Z∗)]}2
.

has the same structure function as Φ(Pα,β) = α2 + β and thus the same h-
function. It does not, however, possess an unbiased estimator relative to the
family ΠG, since it does not satisfy equation (39).

7 Identification

In this section we will try to understand what a parameter Φ must look like in
order to be identifialble in the sense of Definition 1.2. First of all we note the
obvious fact that if Φ has a consistent estimator process Y then Φ is identifiable
by the stochastic variable V = limt→∞ Y (t).
It is natural to ask if there is a converse to this result, i.e. if every identifiable
parameter has a consistent estimator process. Generally speaking the answer
seems to be no, but there is a trivial partial converse. Suppose that there ex-
ists an SGM Z, and suppose that Φ can be identified by the T X

∞ - measurable
stochastic variable V . Since Z(∞) by definition generates T X∞ we then must
have V = g(Z(∞)) for some Borel measurable function g, and if furthermore g
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is continuous we see that we can construct a consistent process Y by the defin-
ition Y (t) = g(Z(t)). On the other hand let us consider the Wiener model and
fix a bounded discontinuous function g, e.g. the indicator of the rationals. Now
define the parameter Φ by Φ(Pα) = g(α). Then this parameter is obviously
identifiable by the variable V = g(Z(∞)) (where as usual Z(t) = X(t)/t), but
we believe that it has no consistent estimator process. This we have not proved
however.
We now turn to the problem of characterizing the class of identifiable para-
meters. Let us therefore consider a fixed model (Ω,F , Π, X,F) and a fixed
parameter Φ.

Definition 7.1 For each r ∈ R let Lr be the class of measures defined by

Lr = {p ∈ Π|Φ(P ) = r}.

The family L(Φ) = {Lr|r ∈ R} is said to be uniformly orthogonal if there
exists a family {Sr|r ∈ R}, consisting of F- measurable subsets of Ω such that

r 6= q ⇒ Sr

⋂
Sq = Ø (58)

P (Sr) = 1, for all P ∈ Lr (59)

We now have the following simple but useful result.

Proposition 7.1 A necessary condition for the parameter Φ to be identifiable
is that the family L(Φ) is uniformly orthogonal.

Proof. Suppose that the stochastic variable V identifies Φ. Now define Sr for
each r ∈ R by

Sr = {ω ∈ Ω|V (ω)} = r.

Since V (ω) = Φ(P ), P − a.s. it follows that V (ω) = r, P − a.s. for all P ∈ Lr.
Thus P (Sr) = 1 for all P ∈ Lr, and the Sr-sets are disjoint by definition.

The uniform orthogonality in Proposition 7.1 is also “almost” sufficient. Sup-
pose indeed that the family L(Φ) is uniformly orthogonal. Then it is tempting
to define an identifier V by

V =
∑
r∈R

r · I{ω ∈ Sr}

The problem is that we have no guarantee that the V we have just defined is
measurable.
It is worth noticing that we really need the concept of uniform orthogonality
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as opposed to ordinary orthogonality. Consider for example the following small
submodel of the L2-model. We define the family Π by

Π = {N}
⋃

{Fα α ∈ R},

where N is the standard normal distribution (or any diffuse distribution) and
Fα is a unit mass at α. Furthermore we define the parameter by{

Φ(Fα) = α, α ∈ R,
Φ(N) = 0.

Then the family L(Φ) is given by
{

Lr = {Fr}
L0 = {F0, N}.

Since N has support on the real line this family is not uniformly orthogonal de-
spite the fact that all measures at hand are pairwise orthogonal. Thus, because
of Proposition 7.1, the parameter cannot be identified. Intuitively this is also
quite clear since if you observe the value Z∞ = α, then you still do not know
whether you have an observation from the distribution Fα or from N . In other
words the parameter value that you would like to identify can be either α or 0.
It is worth stressing that all this depend on the fact that we assume that we
only observe a single trajectory of the X-process.
We now have some easy consequences of Proposition 7.1. The first shows that
no nontrivial parameter can be identified if the model is so big that the the a
priori family Π equals the maximal family M.

Proposition 7.2 Suppose that Φ is identifiable and suppose that Π = M. Then
Φ must be a constant.

Proof. Suppose indeed that V identifies Φ for M. Suppose furthermore that
Φ takes more than one value, say Φ(P0) = r0 and Φ(P1) = r1, with r0 6= r1 for
some P0, P1 ∈ M. Then we have

V = r0, P0 − a.s. (60)
V = r1, P1 − a.s. (61)

and now we define the sets S0 and S1 by

S0 = {ω ∈ Ω|V (ω) = r0},
S1 = {ω ∈ Ω|V (ω) = r1}.

Let us now define a measure P by

P =
1
2
· (P1 + P2).
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It follows from the Mixing Theorem 3.1 that P belongs to M and from equations
(60) and (61) we obviously have

P (V = r0) = P (V = r1) =
1
2
.

This means however that we cannot possibly have V = Φ(P ), P -a.s. so V does
not in fact identify Φ, which contradicts our assumption.

Thus the maximal family contains too many measures to allow us to do any
identification at all. The extremal family, on the other hand, is so small that
it allows us to identify any parameter, at least in the presence of an SGM. The
assumption about the existence of an SGM is rather annoying, and one has a
distinct feeling that it should be unnecessary.

Proposition 7.3 Suppose that Π = E and suppose that the model possesses an
SGM. Then every parameter Φ can be identified.

Proof. Denote the SGM by Z and define the identifier V by

V (ω) = ϕ(Z∞), (62)

where ϕ is the structure function for Φ. Then, since every extremal measure is
of the form Pz, where

Pz(·) = P (·|Z∞ = z)

we have, for every fixed z, Pz-almost surely the equality

V = ϕ(Z∞) = ϕ(z) = Φ(Pz).

At last we will look at some of the consequences for our earlier models. We
recall that in all three cases the SGM is given by Zt = Xt/t.

The Wiener model Since this is an extremal model, Proposition 7.3 tells us
that all parameters can be identified by equation (62).

The L2 model A slight variation of the proof of Proposition 7.2 shows that
no nontrivial parameter can be identified in this model.

The Gaussian mixture model This model is again to big to allow us to
identify any nontrivial parameters. As examples the parameters Φ(Pα,β) = α
and Φ(Pα,β) = α2 = β can both be estimated unbiasedly, but neither can be
identified.
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8 Information inequalities

We will now derive a Cramér - Rao inequality for the estimation error of an
unbiased parameter estimator. Let us therefore assume the existence of an
SGM denoted by Z. Let us denote the restriction of the measure Pz to Ft by
Pz,t, and assume furthermore that

Pz,t � m,

where m is some base measure. Now we define a family of Radon-Nikodym
derivatives by

Lz,t =
dPz,t

dm
,

and finally we define the Fisher information matrix I(t, z) by

Ii,j(t, z) = Ez

[(
∂

∂zi
log Lz,t

)(
∂

∂zj
log Lz,t

)]
= −Ez

[
∂2

∂zi∂zj
log Lz,t

]
(63)

where the subindex z denotes integration with respect to Pz .

Proposition 8.1 Suppose that Y is a given square integrable unbiased t-estimator
of the parameter Φ for some t. Then, given the assumptions above we have the
following inequality for all P ∈ Π.

EP

[
{Y − Φ(P )}2

]
≥ EP

[
∇ϕ(Z∞)I(t, Z∞)−1∇ϕ(Z∞)∗

]
+ (64)

+ EP

[
{ϕ(Z∞) − Φ(P )}2

]
,

where the information matrix I(t, z) is given by equation (63) and the gradient
is regarded as a row vector.

Proof. Since Y is unbiased we have , for all z ∈ R,

EP [Y |Z∞ = z ] = Ez [Y ] = Φ(Pz) = ϕ(z),

i.e.
EP [Y |Z∞ ] = ϕ(Z∞), P − a.s.

Using this relation a simple calculation gives us

EP

[
{Y − Φ(P )}2

]
= EP

[
{Y − ϕ(Z∞)}2

]
+ EP

[
{ϕ(Z∞) − Φ(P )}2

]
.

Furthermore we have, by the Mixing Theorem 3.1,

EP

[
{Y − ϕ(Z∞)}2

]
=

∫
Rk

Ez

[
{Y − ϕ(z)}2

]
νP (dz),
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and since Ez [Y ] = ϕ(z) for all z the standard Cramér-Rao inequality gives us

Ez

[
{Y − Φ(z)}2

]
≥ ∇ϕ(z)I(t, z)−1∇ϕ(z)∗

The first term in the inequality (64) is due to the fact that at time t we only
have access to the information Ft, and this term gets smaller as t increases. The
second term gives us a residual eror which is present even if we are allowed to
observe X on the closed interval [0,∞]. This term vanishes for all P ∈ Π if and
only if the parameter is identifiable.
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