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ABSTRACT 

 

 Underground coal fires commonly metamorphose or melt surrounding rocks at 

temperatures exceeding 1000°C. Numerous “baked” sandstone clinker deposits occur in the 

Cretaceous sedimentary rocks exposed in the San Rafael Swell, UT. This study examines clinker 

in three main localities: 1) East Carbon, UT, 2) Helper, UT, and 3) Emery, UT. The extent of 

pyrometamorphism in these areas is variably developed, but reached high enough temperature in 

Helper, UT to initiate melting and the production of paralavas. These paralavas were examined 

compositionally and mineralogically to determine melting conditions, peak temperatures, and 

mobility of different metals as a result of pyrometamorphism. X-ray diffraction and petrographic 

analysis showed that paralavas in the Helper locality contain the high temperature SiO2 

polymorphs tridymite and cristobalite which alone indicate temperatures exceeding 875°C in 

several samples. Paralavas containing diopside+tridymite and cordierite+mullite+cristobalite 

provide more restrictive estimates of temperature as they form cotectic and eutectic assemblages 

in the SiO2-Mgo-CaO and SiO2-MgO-Al2O3, respectively. The assemblages indicate minimum 

temperatures of melting and metamorphism of 1330–1465ºC. The high temperatures of the 

paralavas generate increased metal mobility, potentially signifying a hazard if leached out into the 

environment.  
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INTRODUCTION 

 

Coal seams ignite through a variety of reasons; Fire may start by spontaneous combustion, 

lightning strikes, or human error (Masalehdani et al., 2007). Spontaneous combustion occurs 

because of the buildup of heat that is generated from the interaction of coal and oxygen. The 

oxidation of coal causes the formation of gases, predominately CO and CO2. Combustion occurs 

when the ignition temperature of coal is reached (Gaweda et al., 2013). Mining or erosion often 

exposes coal seams, leaving them open to the elements. In addition, development of coal bed 

methane requires water to be drawn out of the coal to mobilize the methane, thus leaving the coal 

dry and prone to combustion. These coal fires produce intense heat and large-scale fires that can 

burn for decades, or even centuries (e.g. China) unregulated (Stracher and Taylor, 2004). Coal fires 

in northern China consume up to 200 millions tons of coal per year, and account for 2–3% of the 

yearly world emission of atmospheric CO2 from burning fossil fuels (Stracher and Taylor, 2004). 

These fires can reach temperatures higher than 1000ºC, and this extreme heat over long periods of 

time will metamorphose the host rock.  

Metals such as lead, mercury, and copper pose health risks when they are mobilized and 

could leach into the groundwater. These metals can cause severe kidney damage and circulatory 

problems if ingested. The EPA lists the maximum contamination limit (MCL) of lead in water at 

15 ppb, and copper 1.3 ppm (U.S.EPA, 2012). Coal mining releases metals into the environment 

when coals are combusted in power plants through fly ash (Meji and te Winkel, 2007). These heavy 

metals will leach to the location where coal is being mined, but can be minimized through 

abatement procedures.  

When sedimentary deposits are burned from coal fires, the material surrrounding the coal 

seam is pyrometamorphosed, sometimes resulting in a paralava (Masalehdani et al., 2007). Paralava 

is defined as a low-grade metamorphic rock that is formed adjacent to coal seams. This type of rock 

is highly vesicular and often mistaken for basalt (Grapes, 2006). Pyrometamorphism occurs at high 

temperatures (>1000ºC) and low pressure (≤1 kbar) (Cosca et al., 1989). However, there has not 

been extensive quantitative (i.e. temperature, rate of burning) research done on such deposits 

(Cosca et al., 1989).  

This study of the pyrometamorphosed sandstones in southeast Utah explores changes in 

mineralogical and chemical composition that result from natural coal fires. The intersection of 

research between coal fire and metal mobility has the potential to discover ways of mitigating metal 

mobility through looking at pyrometamorphosed deposits. Once released, these metals such as Pb, 

Co, Cu persist in the environment (Smith, 2007). Fires will make metals more mobile, and the 

analyses of unaltered vs. pyrometamorphosed material are used to test this hypothesis.  
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Background 

For coal fires to continue burning, the coal needs both oxygen and an escape vent for the 

release of smoke, vapor, and gas. Chimneys form as fissures because of subsidence as the coal is 

burned away and the underlying layer decreases in volume (Heffern and Coates, 2004). These 

chimneys act as this two-way exchange between the underground coal seam and the surface. Figure 

1 depicts a typical “clinker geomorphology”. Clinker deposits are defined as a low-grade 

metamorphic rock that has been baked or partially melted because of pyrometamorphism (Grapes, 

2006).  Cosca et al. (1989), explained in detail typical minerals found in paralava and clinker 

deposits through the study of the Powder River Basin, Wyoming. Rapid cooling of the melt may 

be caused by abrupt fractures to the surface as chimneys form, allowing for the permeation of cooler 

air into the system, and thus allowing minerals to be quenched directly from the liquid. Cosca et al. 

(1989) highlighted characteristic minerals found in clinker and paralava deposits: (1) 

Clinopyroxene, a common mineral in paralavas, which ranges in composition from diopside 

(CaMgSi2O6) to esseneite (CaFe3+[AlSiO6]); (2) Orthopyroxene occurs as fine needles, though is 

rare; 3) Fayalite olivine (Fe2SiO4) occurs as subhedral skeletal grains; (4) Quartz, tridymite, and 

cristobalite (all SiO2) can be found in paralava, but usually only one polymorph is seen; (5) 

Anorthite (CaAl2Si2O8) is the most profuse feldspar, though (6) spinel (MgAl2O4)  is also common 

in paralava. Cosca et al. (1989), also notes that the most striking composition difference between 

clinker and paralava is the concentration of Fe, as Fe is enriched in the paralava. This enrichment 

could possibly be caused by increased heat allowing for metal mobility. Clinker deposits have thus 

been located by their magnetic anomalies (Lindqvist et al., 1983). 

Lewis and Clark noted the distinct red color of the natural clinker deposits in Wyoming 

during their journey west (Bluemle, 2005). One of the first scientific explorations of clinker 

deposits came from Cecil Tilley’s 1924 paper that examined contact metamorphism in England. At 

this time, clinker deposits were known as buchite, and this terminology continued into the late 

1980’s (Foit, et al, 1987). The parochial term of the pyrometamorphic deposits in the U.S. is 

“clinker”, an allusion to the sound these fine-grained rocks make when broken or struck.  

Combustion metamorphism has occurred in a variety of regions, including Australia, Israel, 

and the Western United States from Montana to Texas (Clark, 1992). Other examples include Italy 

(Melluso et al., 2003; Capitiano et al., 2004), China (Stracher and Taylor, 2004; Grapes et al., 

2009), and New Zealand (Masalehdani et al., 2007). Most of these areas are mining regions, and 

such activities expose fresh coal to oxygen in the air through mine shafts, therefore intensifying the 

fires when they do occur. Many parts of China are experiencing coal fires in mine areas, and are  
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Figure 1:  Cross section of typical coal fire geomorphology where transition from unburned coal 

to burn zone results in downward collapse of overlying strata and listric normal faulting 

(fissures). Fissures act as chimney structures allowing for two-way gas exchange from coal seam 

to surface and promote continued burning (from right to left) of the coal until the water table is 

encountered or oxygen levels become too low. From Heffern and Coates (2004). 

 

 

thus experiencing significant health risks. China’s coal fires are considered the most severe in the 

world (Stracher and Taylor, 2004). Active coal fires burn in the United States as well, including 

the study area (Stracher et al, 2005), but it was the 1962 Centralia, Pennsylvania fire that brought 

national public awareness to this potential hazard. The Centralia fire is considered the worst coal 

fire disaster in U. S. history. Burning trash ignited anthracite in a coal seam and spread to the mine 

beneath the town (Geissinger, 1990). The town was abandoned because of the release of toxic 

gases, subsidence, and polluted streams (Stracher and Taylor, 2004). The Centralia fire may burn 

for 100 or more years (Memmi, 2000). Pennsylvania and the Powder River Basin in Wyoming have 

the highest concentration of coal in the U.S., and thus the most coal fires 

The geologic setting is in east central Utah, near the San Rafael Swell and the Book Cliffs 

in Emery and Carbon Counties (Fig. 2), and comprises of a series of Cretaceous sedimentary rocks 

deposited along the western margin of the Cretaceous Western Interior Seaway (Stracher et al., 

2005). This seaway stretched from the Gulf of Mexico to the Arctic and covered eastern and central 

Utah (Stracher et al., 2005). The San Rafael Swell, an anticline formed during the Laramide 

orogeny, consists of deposits from the Interior Seaway and associated non-marine environments. 

The San Rafael Swell is part of the Colorado Plateau, an area of uplift roughly centering on the  

3



 

 

 
Figure 2: (A) Map of Utah, labeled with sample sites of Price, East Carbon, and Emery. The San 

Rafael Swell is labeled with I-70 bisecting it. Geological map from Utah Geological Society, 

http://geology.utah.gov/maps/geomap/statemap/index.htm). (B) Location of coal mines and 

associated industries in Utah. Samples for this study were collected from the Emery and Book 

Cliff Coalfields. Crandall Canyon Mine (marked with red “C”) was closed in 2007 after a fatal 

mine roof collapse (MSHA, 2013). From Boden, et al., (2011). 

 

B 

A 

4



 

 

four corners region (i.e. the boundary between Colorado, Utah, New Mexico, and Arizona), and 

covers about half of Utah (Davis and Bump, 2009). The units of relevance to this study include the 

Mancos Shale, the Ferron Sandstone and the younger Blackhawk Sandstone. The Ferron package 

contains sandstone, siltstone, 12 coal zones, and is exposed for ~56 km along the strike of the 

shallow-dipping western edge of the San Rafael Swell. To the north, the Ferron plunges below the 

Book Cliffs, and dips below the surface to the west (Stracher et al., 2005).  

There are eight active coal mines in the study area, (nine in Utah) with four coal burning 

power plants. Utah produced 18.2 million tons of coal in 2011, valued at $660 million. However, 

only 17.0 million tons were distributed to market, with the rest stockpiled because of a decrease in 

demand caused by the recession (Boden et al., 2011). This high production highlights the amount 

of coal in the area, and thus the heightened susceptibility for coal fires, either through natural causes 

or human error in mining activity. Figure 2 also includes the location and status of the Utah coal 

mines, along with the associated facilities. It is also important to note the higher levels of mercury 

in the Emery coals, compared to the surrounding Wasatch Plateau and Book Cliffs coals (Fig. 3).  
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Figure 3: Mercury content of in-ground coal in Utah. Emery contains high mercury content, and 

thus perhaps has higher potential for leaching. Generally, the greater the sulfur content in the 

coal, the greater the mercury content in the coal, because pyrite is the main carrier of mercury 

(Yudovich and Ketris, 2005). From Quick (2005).  
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METHODS 

 

Field and petrographic work was completed from the 9th–12th of July, 2013. Fifty-five 

samples were collected, including coal, unaltered sandstone, and paralava from the towns of East 

Carbon, Price, and Emery (Fig. 2). During field work, outcrops were examined and sampled in 

order to reflect the range of the clinker morphologies, colors, and textures. Samples depicting a 

rough stratigraphic column were collected at the Emery and Helper clinker outcrops to observe 

how distance above the burn zone varied. The samples are predominately fine-grained sandstone. 

Some of the paralava has brecciated pieces of altered slate or sandstone in it. Contacts were 

examined, along with possible chimneys above the coal seam that allow for the release of heat, 

pressure, and gas. The 20 m wide Helper roadcut showed intense pyrometamorphism and evidence 

of melted rock that was not seen as extensively elsewhere, and thus proposed to have experienced 

the highest grade of heat.  

Thirteen thin sections were made for mineral identification and petrographic analysis. 

Billets were cut at Pomona College and sent to Spectrum Petrographics to be made into thin 

sections. Thin sections were examined at Pomona College using a Leica Model DME Petrographic 

Microscope. Thin section photomicrographs were taken using a Leica ICC50HD microscope in 

conjunction with LeicaAquire software.  

Scanning electron microscope (SEM) analysis was used to examine minerals and mineral 

intergrowths at high magnification to determine elemental distribution within individual grains, 

mineral assemblages, and crystal formation history. Samples were carbon coated and examined 

using Pomona College’s Hitachi SU-70 SEM. SEM measurements were taken at 15–20 kV of 

accelerating voltage, 33–40 mA, with working distances of 10-–13 mm. In addition, elemental 

composition data was gathered using energy dispersive spectroscopy (EDS).  

 X-ray diffraction (XRD) was used to identify minerals in original and metamorphosed 

samples. XRD measurements were taken at 10–65º, 60 minute counting time, on 40 kV and mA 

current of 44, on Bragg Brentano configuration. X-ray fluorescence (XRF) analysis identified 

major and minor elements.  XRF bead preparation and analytical conditions follow those reported 

by Johnson et al. (1999; Lackey et al., 2012). Beads were analyzed on Pomona College’s 

PANalytical Axios XRF.  
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RESULTS 

 

Field Relations  

 The East Carbon, UT study area contains three main sites: 1) Sunnyside, 2) Horse Canyon, 

and 3) Soldier Creek mine. The Sunnyside field area (39º33’35.568”N, 110º22’20.238”W) is ~5 

km NE along Hwy 123 to the northeast of the town of East Carbon. The coal seam that would have 

directly pyrometamorphosed this deposit is not visible, but may be underground. In this area, as 

well as other field locations to the south and west, the Blackhawk sandstone dips away from the 

center of the San Rafael Swell (Fig. 2). Coal seams are visible across the valley in this area, and 

other unreachable clinker locations about 60 m up are also visible in the prominent cliff exposures. 

Figure 4 is a view of clinker deposits within the cliffs, and shows burned and original sandstones. 

The burning of coal decreased the volume, thus causing some collapse of the outcrop, however the 

thick sequence of sandstones appears relatively intact. This lack of collapse may be a consequence 

of the coal seam being relatively thin, or the mechanical strength of the formation above that 

prevented the sequence from causing widespread collapse. The overall stratigraphy of this area is 

intact, with Mesa Verde sandstone visible. Though the steep nature of the cliffs makes potential 

sites difficult to sample, there is an accessible sandstone clinker deposit across Hwy 123 and the 

cliffs of Figure 4, with samples taken from different areas in the burned stratigraphy (Fig. 5). The 

outcrop showed variable color and allowed for sampling relatively close to the bottom of the 

Blackhawk formation, in an area close to a presumed coal seam. The exposed outcrop area is ~6 m 

high and 12 m wide.  The samples from this area are altered sandstones, ranging in color from dark 

grey, to red, to yellowish. Samples 13UT-5 through -10 were collected in situ vertically up the 

outcrop (Fig. 6), with 13UT-5 being closest to the assumed underground coal seam. 13UT-12 is a 

yellow loose medium grained sandstone sample found below the sample column. The samples 

range from grey medium-grained siltstone (13UT-5, -8), red medium-grained siltstone (13UT-7, -

10), to a pink, subrounded fine-grained sandstone (13UT-9). 

 Horse Canyon is located south of East Carbon and off of U.S. 124 (39º27’39.668”N, 

110º21’12.966”W). There are a series of abandoned buildings in this area. Horse Canyon shows a 

similar style to Sunnyside of steep cliffs. There was accessible clinker deposit up on a hill that was 

not covered by vegetation (Fig. 7). This exposed burn area is ~12 m high and ~40 m across. There 

is no visible coal seam for source of burn. Again, there are areas of altered and unaltered sandstone 

visible across the road on cliff faces (Fig. 8). 
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Figure 4: View from East Carbon outcrop in Figure 5. Typical red clinker, which decreases 

upwards in color intensity. However, no visible coal seams are present. Note house for scale.  

 

 
Figure 5: Annotated outcrop from East Carbon showing variation in color, possibly due to 

differences in heat. Relict bedding is notated by yellow lines.  
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Figure 6: East Carbon samples 13UT-5 through -7 collected in situ. Hammer for scale (20 cm).  

 

 
Figure 7: Horse Canyon sample 13UT-15 collected in situ. Sledge hammer for scale (25 cm). 
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Figure 8: View across Horse Canyon Road from outcrop in Figure 7. Clinker deposit with 

characteristic red coloring, but no visible coal seam.  

 

 

The third outcrop in the East Carbon area is the defunct coal mine Soldier Canyon Mine 

(39º42’01.563”N, 110º36’40.425W). This burn area is ~8 m high and ~35 m wide. There are three 

condemned mine shafts visible, with the burned sandstone sample (13UT-16) collected near mine 

shaft 1 (Fig. 9) 

 The Helper field area is located on Hwy 191, past an active coal power plant. The clinker 

roadcut is ~18 m tall and ~50 m wide, with varying shades of yellows, reds, whites, black, greys, 

blue-greens, and greens (Fig. 10). Some of the yellow colored samples has preserved bedding 

present. Vesicular paralava is present in black and green shades. Some samples have large vesicles, 

up to 3 cm. There are four possible natural chimneys in this outcrop, as annotated in Figure 10. 

These chimneys have cool air coming out of them, possibly indicating a connection to a mine shaft 

or evacuated space underground. The chimneys appear filled with brecciated rocks and melt, and 

may be collapsed into themselves. Some of the green paralava is smooth, with no vesicles flow and 

drip structures. Figure 11 shows the diverse paralava appearance, including samples with brecciated 

burned sandstone contained within them. Samples were taken from the chimney areas, in addition 

to a series of altered sandstone samples (UT13-17- through -20) taken from a variety 
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Figure 9: Defunct Soldier Canyon Coal Mine. Red clinker visible above entrances to mine shafts. 

Sample 13UT-16 collected by Mine Shaft 1.  
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Figure 11: Sample of paralava textures from Helper roadcut. (A) depicts a green, vesicle-rich 

melt; (B) shows a contact between the orange baked sandstone and the melt below; (C) is a 

possible chimney vent (seen in the shadows) and conceivably had the highest temperatures for 

this unit; (D) depicts brecciated, baked sandstone within the paralava. Lens cap is 4.0 cm for 

scale.  
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of colors in a vertical column of the outcrop (Fig. 12). Sample 13UT-17 is a medium-grained yellow 

sandstone, as is 13UT-18A, but has layers of yellow and white material. 13UT-19 is a creamy-

white, coarse-grained siltstone. 13UT-20 appears to have a small amount of black colored 

vesiculated melt attached to the red, coarse-grained siltstone. 13UT-23B and -23C are grey, 

medium-grained sandstones found near the same area as samples 13UT-17 through -20. The 

paralava and melt samples are glassy to crystalline rock, and are dominated by new crystals. Some 

of these paralava samples are vesiculated, with size of vesicles ranging from 1-5 mm. 

 The field site is located south of the town of Emery (38º49’32.768”N, 111º12’19.245”W). 

This area has laterally extensive and thick (up to 220 m) deposits of Mancos shale underlain by the 

Ferron sandstone (Fig. 13A). This field area is in the lower Mancos shale, deposited by the 

Cretaceous Western Interior Seaway. There is a visible change from original to metamorphosed 

sandstones. The samples were not collected in situ, as the burned area is too high and inaccessible. 

Loose samples were collected from talus at the base of the cliffs. Mostly red boulders have fallen, 

however Figure 13B illustrates the variety of color in the detritus. Sample 13UT-24A is a red, 

medium-grained sandstone. 

 Other samples were collected south of Emery out on a plateau (38º52’07.572”N, 

111º13’47.391”W). Most of the visible sandstones in this area are red, though there is still some 

variation in color. Following Coal Seam Road, there are visible coal seams, ranging from 1-5 m 

thick, and overlain with sandstone. There is also a grey fine-grained siltstone that has been baked. 

Across the canyon from Coal Seam Road, there are three visible coal seams (Fig. 14) that become 

thinner up section. Samples of altered and unaltered sandstones were collected on plateau. Sample 

13UT-28A has distinct color differentiation, with layers (2 mm–15 mm thickness) of alternating 

white and brick red. Samples 13UT-25 through -30B were collected on top of the plateau. Sample 

13UT-27 is a creamy colored, fine-grained sandstone. Unaltered, medium-grained sandstone 

samples include 13UT-29 and -30B. 13UT-30A is a red, baked, medium-grained sandstone with 

visible layering of color differentiation. 

 

Whole Rock Geochemistry 

 XRF analysis for samples from Sunnyside (Samples 13UT-5 through -12 in Table 1) reveal 

low concentrations of alkalis, with only 0.03 wt.% Na2O recorded for sample 13UT-9, a reddish 

colored baked sandstone. The highest concentration for CaO 6.83 wt.% for sample 13UT-9, a grey 

sandstone. Sample 13UT-10, a bright red sandstone, has the highest concentration of Fe2O3, at 

19.19 wt. % (Fig. 15A).  Throughout the sample column, Al2O3 decreases higher above the inferred 

coal seam, until 13UT-10 when concentrations spike (Fig. 15B). Sample 13UT-15 was collected in  
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Figure 13: (A) Field photo from Emery showing the burned Ferron sandstone clinker acting as a 

weathering-resistant cap rock overlying the Mancos Shale. (B) Detrital material from Ferron 

sandstone. Lens cap for scale, 4.0 cm.  
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TABLE 1: XRF DATA FOR EAST CARBON, UT 

SAMPLE SiO2 TiO2 Al2O3 Fe2O3 MgO MnO CaO K2O Na2O P2O5 Zr Cu 

13UT-5 74.13 0.61 11.51 1.32 0.84 0.01 1.20 2.20 0.11 0.32 295.40 15.30 

13UT-6 72.13 0.64 12.79 0.87 0.72 0.00 0.45 2.20 0.09 0.11 283.30 17.30 

13UT-7 79.68 0.55 9.14 1.11 0.65 0.02 0.94 1.87 0.05 0.22 402.80 5.80 

13UT-8 81.34 0.33 4.97 1.03 0.63 0.02 1.72 0.99 0.11 0.20 330.30 2.90 

13UT-9 76.24 0.16 2.60 1.05 0.78 0.03 6.83 0.60 0.03 0.12 194.90 bdl 

13UT-10 58.69 0.48 8.61 19.19 1.57 0.38 1.43 1.47 0.02 0.30 230.50 14.50 

13UT-12 79.19 0.49 7.85 0.98 0.60 0.02 1.00 1.63 0.05 0.20 421.00 4.30 

13UT-15 68.26 0.10 1.15 1.34 1.72 0.05 11.40 0.30 0.00 0.09 191.40 bdl 

13UT-16 38.12 0.03 0.41 1.87 7.91 0.03 21.31 0.13 0.00 0.04 39.40 bdl 

All oxides in weight percent; All other elements in parts per million (ppm). Below detection 

limit abbreviated to “bdl”. 
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Figure 15: (A) Plot of Fe2O3 vs SiO2. Sample 13UT-10 has anomalously high iron content 

compared to rest of samples from transect. (B) Plot of Al2O3 vs SiO2. Not very much variation 

in Al, but highlights depletion of SiO2 for 13UT-10. 
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Horse Canyon, and its XRF analysis is also found in Table 1. This sample contains even lower 

alkali content than the previous sample area. XRF analysis for sample 13UT-16 from Soldier 

Canyon Mine reveals the lowest SiO2, Al2O3, and Zr content within the East Carbon suite of 

samples, but the highest CaO concentration. 

 Table 2 contains representation of elemental concentrations for Helper. The XRF analysis 

for the vertical sampling of the sandstones at Helper shows 13UT-20 being the most anomalous. A 

section of the sample appears to be a black, vesicular melt, and a piece of this melt (13UT-20V) 

was analyzed in addition Figure 16A depicts CaO concentrations, with 13UT-20 being much lower. 

Figure 16B is a graph of Al2O3 concentration vs. SiO2, again showing 13UT-20 being off trend. 

However, the other three samples show a liner trend of decreasing SiO as Al2O3 increases moving 

up the outcrop. All of the Helper samples were plotted together to look for geochemical connections 

between paralava and clinker. Figure 17B depicts SiO2 vs. MgO and shows enrichment of MgO as 

SiO2 depletes, despite the clinker (filled red circle) following similar trends to green melts (open 

red circle).  Sample 13UT-21F has the lowest CaO, MgO, and Al2O3 concentrations, but the highest 

SiO2. Figure 17A again shows depletion of SiO2, but enrichment of CaO trend. For Fe2O3 (Fig. 

17C), there is a less defined trend, and no correlation between clinker and melt. XRF analysis for 

Emery samples 13UT-24A and -24C show few trends in concentrations of major elements and 

traces (Table 3). 13UT-24C has the lowest SiO2 content and highest Al2O3 and TiO2 for any Emery 

sample. Samples 13UT-27 to -30B show similar values for SiO2. However, 13UT-25 contains the 

lowest SiO2 concentration for any Emery sample, and the highest MgO concentration. Complete 

XRF data for all samples can be found in Appendix A.  

 

Mineralogy, Microtextures, and Phase Relations 

XRD analysis of the Sunnyside samples showed similar results, with abundant quartz. As 

shown in Figure 18A–D, samples 13UT-5 through -8 depict typical quartz spectra. However, 

sample 13UT-9 shows calcite as well as quartz (Fig. 18E), and 13UT-10 depicts hematite in 

addition to quartz (Fig. 18F). These minerals reflect the relatively high values of CaO and Fe2O3 

for these two samples. The XRD spectrum for 13UT-15 from Horse Canyon (Fig. 19A) show 

quartz, dolomite (CaMg(CO3)2), and calcite (CaCO3), which would explain the elevated CaO 

concentrations. The XRD spectra for Soldier Canyon Mine indicates the same minerals as 13UT-

15 (Fig. 19B). XRD analysis of the paralavas at Helper show distinct spectra from the quartz 

dominated sandstones (Fig. 20). However, because of the high glass content, these spectra have 

higher background noise than other samples. These sandstones contain diopsidic pyroxene, giving 

the samples their distinct green color. 
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TABLE 2: XRF DATA FOR HELPER, UT 

SAMPLE SiO2 
TiO

2 

Al2O

3 
Fe2O3 

Mg

O 
MnO CaO K2O Na2O P2O5 Zr Cu 

13UT-17 56.04 0.11 1.94 3.42 8.38 0.07 19.72 0.59 0.00 0.10 127.30 10.30 

13UT-18A 41.71 0.15 2.69 2.93 6.82 0.06 16.35 0.71 0.00 0.10 114.20 bdl 

13UT-19 51.04 0.46 8.86 1.80 6.26 0.06 19.16 2.00 0.06 0.24 176.50 21.60 

13UT-20 66.89 0.78 18.56 2.16 1.56 0.00 1.46 3.20 0.11 0.39 174.10 39.90 

13UT-20V 64.94 0.69 15.50 1.51 1.87 0.01 4.26 3.09 0.12 0.35 147.30 22.80 

13-UT-21A 60.53 0.60 11.55 2.98 4.35 0.08 13.65 2.32 0.12 0.33 220.30 48.30 

13UT-21A.2 60.32 0.59 11.44 2.96 4.03 0.07 12.70 2.33 0.06 0.32 221.90 19.10 

13-UT-21B 51.85 0.48 8.74 4.14 7.59 0.09 21.87 1.82 0.07 0.27 195.70 13.40 

13-UT-21C 60.25 0.59 11.20 3.55 4.35 0.08 13.85 2.22 0.08 0.32 223.30 27.00 

13-UT-21E 59.71 0.58 11.47 2.50 4.44 0.06 13.44 2.58 0.13 0.29 183.20 16.20 

13UT-21F 82.61 0.44 6.86 0.35 0.39 0.00 0.01 0.88 0.03 0.02 283.90 bdl 

13-UT-21G 47.60 0.44 8.65 2.81 8.82 0.09 25.98 1.87 0.05 0.25 154.00 16.20 

13-UT-21I 59.68 0.59 11.52 3.17 4.24 0.08 13.34 2.26 0.12 0.32 217.10 32.10 

13-UT-22B 56.75 0.48 8.84 2.22 7.21 0.06 18.67 1.90 0.05 0.25 216.50 23.70 

13-UT-22D 50.34 0.43 8.28 2.07 9.54 0.06 25.04 1.62 0.06 0.23 198.90 12.90 

13-UT-22E 56.70 0.47 8.57 2.12 7.72 0.06 19.53 1.82 0.04 0.25 220.30 22.20 

13UT-23B 74.59 0.07 1.62 2.25 1.32 0.07 7.62 0.28 0.02 0.19 66.20 bdl 

13UT-23C 71.34 0.06 1.51 2.30 1.61 0.08 8.28 0.34 0.06 0.19 60.60 bdl 

All oxides in weight percent; All other elements in parts per million (ppm). Blow detection limit 

abbreviated to “bdl”. 
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Figure 16: (A) Plot of clinker samples from transect. 13UT-20V is a melt sample from 13UT-

20, which is depleted in CaO compared to the other samples. (B) Plot of Al2O3 showing 

enrichment in Al for 13UT-20. 
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Figure 17: XRF analysis for Helper samples, 

given in weight percents. Baked rocks are 

notes by filled in circles, and open circles 

indicate melt. (A) As SiO2 depletes, MgO  

becomes enriched. (B) Similarily, as SiO2 

depletes, CaO becomes enriched. (C) Fe2O3 

does not show as stongly the trend of 

enrichment, but there is still a correlation. 

There does not appear to be a separation 

between melts and baked rock. 

 

 

TABLE 3: XRF DATA FOR EMERY, UT 

SAMPLE SiO2 TiO2 Al2O3 Fe2O3 MgO MnO CaO K2O Na2O P2O5 Zr Cu 

13UT-1 83.68 0.27 5.56 2.48 0.05 0.00 0.21 1.47 0.54 0.06 315.70 bdl 

13UT-4 82.51 0.09 5.44 2.28 0.04 0.00 0.60 1.10 0.52 0.05 63.70 12.50 

13UT-24A 80.57 0.26 4.96 1.69 1.15 0.02 1.81 1.24 0.46 0.08 350.60 bdl 

13UT-24C 58.94 0.99 23.86 5.64 1.01 0.06 1.37 0.82 0.14 0.04 190.10 30.20 

13UT-25 47.57 0.50 9.65 6.70 7.68 0.14 19.55 2.37 0.08 0.27 161.10 16.00 

13UT-27 71.12 0.21 7.66 10.21 0.10 0.00 0.19 2.06 0.60 0.13 119.20 bdl 

13UT-28A 82.97 0.16 6.76 1.00 0.06 0.00 0.07 2.27 0.60 0.03 206.40 bdl 

13UT-28B 81.13 0.39 5.65 2.93 0.27 0.06 0.19 0.94 0.03 0.09 430.50 13.00 

13UT-28C 82.16 0.22 7.01 1.02 0.16 0.04 0.39 1.76 0.59 0.05 218.70 8.30 

13UT-28E 86.15 0.21 4.32 0.22 0.08 0.00 0.38 1.08 0.32 0.02 324.60 bdl 

13UT-29 85.91 0.23 4.00 0.89 0.28 0.00 0.49 1.17 0.45 0.02 212.60 bdl 

13UT-30A 79.91 0.18 6.74 0.81 0.92 0.01 0.49 1.09 0.72 0.04 82.70 bdl 

13UT-30B 80.68 0.14 3.55 1.40 0.96 0.01 2.73 0.44 0.17 0.04 110.10 1.30 

All oxides in weight percent; All other elements in parts per million (ppm). Blow detection limit 

abbreviated “bdl”. 
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Figure 18: XRD spectra of samples from East Carbon, all depicting typical quartz peaks. (A) 

Sample 13UT-5; (B) Sample 13UT-6.  
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Figure 18 (Continued): Quartz dominated XRD spectra from East Carbon. (C) Sample 13UT-7; 

(D) Sample 13UT-8. 
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Figure 18 (Continued): Quartz dominated XRD spectra from East Carbon. (E) Sample 13UT-9 

with calcite in addition to quartz; (F) Sample 13UT-10 also contains hematite. 

E 

F 

27



 

             

             
Figure 19: XRD spectra of samples of (A) 13UT-15 from Horse Canyon, and (B) 13UT-16 from 

Soldier Canyon Mine. Both show quartz, calcite, and dolomite.  
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Figure 20: XRD spectra of Helper paralavas. (A) Sample 13UT-21A contains cristobalite, 

diopside, and albite. (B) Sample 13UT-21F contains diopside and albite.  
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Figure 20 (Continued): XRD spectra of Helper paralavas. (C) Sample 13UT-22D is 

predominately diopside. (D) Sample 13UT-22E contains diopside as well. 
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The XRD spectra for the vertical transect (Fig. 21) show a variety of high temperature minerals, 

including cristobalite (SiO2), tridymite (SiO2), mullite (Al6Si2O13), and diopside. Cristobalite 

appears in the spectra for 13UT-20 and 13UT-21A a green vesiculated paralava.  XRD analysis of 

the Emery samples show that these rocks are typically quartz-rich (Fig. 22). 

Petrographic analysis of the Helper samples reveal extraordinary quenched melt textures. 

Sample 13UT-17 (Fig. 23) appears to have zoned quartz grains bathed in a melt. The high 

interference colors indicate the presence of calcite. 13UT-22E contains acicular textures within a 

glassy matrix (Fig. 24). In thin section, the pyroxene bearing melt shows exquisite quench textures 

in vesicles between melt droplets, showing crystallites oriented at various directions. The long habit 

and hollowed out cores (hoppered texture) of the pyroxenes demonstrates that this mineral 

quenched directly from a liquid (Cosca et al., 1989). Most glasses are isotropic in thin section, but 

show hints of hydration.  

SEM and EDS analysis of 13UT-12, a yellow baked sandstone from East Carbon, revealed 

diopside and hematite rims surrounding quartz grains (Fig. 25). EDS analysis of 13UT-17 (Fig. 

26A) displays concentrations of Mg, Ca, and Si. Figure 26B is another SEM image of 13UT-17, 

with concentrations of Ca, Mg, Fe, and Si. Sample 13UT-20 displayed bright white patches of 

ilmenite, along with anorthite and cordierite (Fig. 27) In the paralavas, the SEM images of 13UT-

22D show diopside grains (confirmed by EDS analysis; Fig. 28), cut in various orientations, thus 

appearing as rectangles or long spindles. These are again hoppered morphologies with some crystal 

interiors being melt-filled (Fig. 28B). The random orientation of these crystals again shows no 

evidence of flow alignment, and thus further evidence of growth in a quenched state from a melt.  

Crystal rims contain elevated concentrations of Al, whereas the melt cores contain elevated 

concentrations of K-Ca. There also appear to be dendritic growth of cristobalite, indicated in Figure 

28A. 
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Figure 21: XRD spectra for Helper transect of baked rocks. (A) Sample 13UT-17 at the bottom 

of the transect, contains high temperature minerals tridymite and diopside. B) Sample UT13-

18A contains same minerals 13UT-17. 
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Figure 21 (Continued): (C) Sample 13UT-19 contains diopside, which is intriguing since this 

sample is not a paralava. (D) Sample 13UT-20 has high temperature minerals cordierite, 

cristobalite, and mullite.  
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Figure 22: XRD spectra of Emery clinker sandstone samples 13UT-24A (A) and 13UT-28C (B). 

Quartz dominates the overall spectrum for both.  
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Figure 23: Petrography from 13UT-17. PPL: A.1, B.1; XPL: A.2, B.2. The high inference colors 

seen in A.2 and B.2 designate calcite, and these grains appear to be surrounded by a diopside 

melt. Red scale bar is 1 mm in length.  
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Figure 24: Petrography from 13UT-22E. PPL: A.1, B.1; XPL: A.2, B.2. Vesicles are noted by 

“V”. Acicular textures dominate. Red scale bar is 1 mm in length.  
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Figure 25: SEM image of East Carbon sample 13UT-12. Diopside and hematite rims surround 

quartz grains. Fe concentrations revealed by the bright white nodules.   
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Figure 26: SEM images of 13UT-17. (A) BSE image shows variable greyscales corresponding 

to different phases in a crystalline melt. Diopside grains surround calcite, with pockets of melt, 

labeled “M”. (B) “The Brain” EDS analysis revealed concentrations of Ca, Mg, Fe, and Si. 1) 

Diopside rim; 2) Tridymite; 3) Calcite. 
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Figure 27: BSE image of Helper sample 13UT-20. Nodules of ilmenite are noted for their bright 

white color under the SEM. Anorthite grains are present as a light shade of grey, and cordierite is 

seen as darker grey, rectangular grains.  
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Figure 28: (A) BSE image of paralava sample 12UT-22D from Helper. Diopside grains are 

shown as rectangles or long spindles, depending on the orientation of the grain when cut. 

Cristobalite appears in dendritic needles. (B) Closer view of the diopside grains hopper texture.  
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DISCUSSION  

 

Comparison Between Field Areas 

 The five field sites are located within two coalfields—Helper and East Carbon are 

contained within the Book Cliffs coalfields, and the Emery site is within the South Emery coalfield. 

The Book Cliffs coalfield is contained within the Upper Cretaceous Blackhawk Formation. This 

coalfield is high-volatile bituminous, with low sulphur, ash, and moisture, and high in heating value 

(Gloyn et al., 2003). The Emery coalfield is contained within the Upper Cretaceous Ferron 

Sandstone of the Mancos Shale. Coal quality is high-volatile bituminous. Generally, the Emery 

coalfield has higher sulfur and ash contents than the Book Cliffs and Wasatch Plateau coalfields 

(Gloyn et al., 2003). Noted that in the Wasatch Plateau coalfield, the burning of coal beds rarely 

penetrates farther than 500 ft from the outcrop, and generally no farther than 200–300 ft (Spieker, 

1931). 

 When plotting CaO against SiO2, the Helper paralavas plot higher in comparison to the 

Emery and East Carbon samples (Fig. 29). The diopside present in the Helper samples reflects the 

high CaO and MgO content of the three samples, indicating higher metamorphism temperatures. 

Phase diagrams describing these elevated temperatures are explained in the next section. Using 

elevated oxide concentrations as indicators, Helper suggests highest temperatures, with Emery as 

the lowest, and East Carbon as an intermediate.  Figure 29 also plots MgO against SiO2, with the 

Helper paralavas trending higher in MgO concentrations compared the other clinker deposits. These 

plots show the enrichment of Mg and Ca within the melted paralavas compared to other baked 

clinker deposits.  

 

Peak Temperature 

 The highest temperature reached within the study area exceeds 1475ºC in the chimney 

sequences in Helper, determined through comparisons between phase diagrams and observed 

mineralogy in XRD spectra. High temperature minerals found through XRD analysis in the samples 

include indialite (Mg2Al4Si5O18), augite ([Si, Al]2O6), tridymite, and cristobalite (Miyashiro et al., 

1955). However, indialite and augite have close to exact unit cells to their lower temperature 

polymorphs of cordierite and diopside, respectively, and therefore, these polymorphs cannot be 

distinguished from each other, precluding robust temperature estimates based upon the presence of 

these polymorphs. Thus, indialite and augite were left off of the XRD spectra. However, the 

potential presence of these minerals merits further discussion. Indialite, the high temperature 

polymorph of cordierite, forms at 830ºC (Miyashiro et al., 1955). Experiments conducted by  
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Figure 29: CaO (A) and MgO (B) wt. % for all samples against SiO2 (wt. %). As Si is depleted, 

Ca and Mg become enriched, particularly among the Helper samples where diopside is present.  
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Balassone et al., show volcanically pyrometamorphosed indialite to have a maximum temperature 

of ~1200ºC (2004). Analysis conducted by Kitamura and Hiroi show that indialite reverts back to 

cordierite at 700ºC (1982). Cordierite and indialite are contained within sample 13UT-20, which 

had a small amount of melt. The presence of indialite indicates maximum temperatures between 

830-–1200ºC. Augite is the high temperature polymorph of orthopyroxene, and is stable up until 

about ~1225ºC (Ross and Huebner, 1979). However, since many of the rocks show a good match 

of diopside and augite, this likely means that there is some solid solution of the clinopyroxene 

within the samples. Due to the green color of the paralavas, it is more likely to be all diopside with 

some Fe-substitution. Tridymite, a high temperature polymorph of quartz, appears in Helper 

samples 13UT-17 and -18.  Cristobalite, the highest temperature polymorph of quartz, appears in 

two Helper samples: 13UT-20 and -21A. Cristobalite reaches a peak temperature of 1723ºC before 

melting, however this temperature is only reached with pure SiO2, and temperatures need to be 

1723ºC for cristobalite to form (Cosca et al., 1989). Another phase diagram from Dectrov et al., 

depicts a ternary diagram of SiO2-CaO-MgO in which diopside is stable between 1331–1392ºC, 

tridymite from 1338ºC, and cristobalite above 1465ºC. Since cristobalite is present in a couple 

samples, this indicate that peak metamorphic temperature of the Helper samples exceeded 1465ºC.  

The Helper samples contains the assemblage tridymite+diopside, as well as 

cordierite+mullite+cristobalite. Phase equilibria (Fig. 30) indicate the co-existence of such minerals 

crystallized from melts at atmospheric pressure. Therefore, sample 13UT-17 and -18, which contain 

both tridymite and diopside, appear to be a cotectic assemblage that was at least 1369°C. Sample 

13UT-20 contains mullite, cordierite, and cristobalite, is an even more restrictive assemblage and 

suggests minimum temperature exceeding 1465°C, assuming end member compositions. 

However there are some limitations in using minerals to correlate peak temperature, most 

significantly including the prevention of the quartz–tridymite mineral transition. Other sample 

areas may not be displaying peak temperatures as clearly because of the possibility of local heating 

and quenching can occur fast enough to prevent the complete transformation of quartz to tridymite 

or cristobalite, thus not recording the peak temperature in the mineralogy. Additionally, even minor 

inclusions of other components to the SiO2 phase may greatly affect the phase diagram (Essene, 

1982). Thus, rapid variation in temperature combined with solid solutions may cause metastable 

development and/or endurance of one or more high temperature polymorphs (Cosca et al., 1989). 

This rapid variation may cause erroneously high estimates of temperature based solely on the solid 

phases of melts. Many of the clinker deposits mentioned in Table 4 include a variety of rock types 

included in the melts and field area overall.  
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Figure 30: Phase diagrams showing various high temperature assemblages. Red lines highlight 

assemblages of (A) tridymite+diopside+wollastonite and (B) 

cristobalite+mullite+cordierite+tridymite, with the latter indicating the highest temperature of 

1465ºC. Various eutectics indicate different temperatures. After Dectrov et al., 2009. 
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TABLE 4: PEAK TEMPERATURES FOR CLINKER LOCATIONS 

Peak 

Temperature 

(ºC) 

Location Rock Type(s) Age of Rock Coal Grade 

800–15001 

Oslavany, 

Czech 

Republic 

Coal waste 

pile/sandstones/ 

Siltstones/carbonates 

Late 

Carboniferous 

Low volatile 

bituminous to 

anthracite 

1000–16002 Rotowaro, 

New Zealand 

Claystone and 

unknowns 
Eocene 

Sub-

bituminous 

11003 Ricetto, Italy Sandstone Late Miocene N/A 

1120–12304 

Shanxi 

Province, 

China 

Siltstone, sandstone, 

mudstone 

Carboniferous–

Permian 
Bituminous 

11465 
Sosnowiec, 

Poland 
Sandstones Carboniferous N/A 

12006 

Central 

Apennines, 

Italy 

Marls, sandstones, 

siltstones, and 

claystones 

Upper Miocene–

Early 

Pleistocene 

Bituminous 

13007 

Powder 

River Basin, 

WY, USA 

Shale Eocene N/A 

>1330 

San Rafael 

Swell, UT, 

USA 

Sandstones, shale Cretaceous Bituminous 

14008 
Kuzbass, 

Russia 

Claystone, siltstone, 

sandstone 

Middle 

Carboniferous–

Lower Permian 

N/A 

1 Dokoupilová, et al., 2007; 2 Masalehdani, et al., 2007; 3 Capitanio, et al., 2004; 4 Grapes, et 

al., 2009; 5 Gaweda, et al., 2013; 6 Melluso, et al., 2003; 7 Cosca, et al., 1989; 8 Novikova, 2009 
 

 

 

 

 

45



 

 Studies from around the world have shown a variety of peak temperatures associated with 

pyrometamorphic deposits, with some possibly reaching 1600ºC (Masalehdani et al., 2007). In 

Italy, the pyrometamorphism of sandstone reached 1100ºC when melilite crystallization conditions 

were reached (Capitanio et al., 2004). Another Italian location of shale and marl recorded a 

minimum liquidus temperature at 1200ºC (Melluso et al., 2003). In Russia, baked claystone, 

siltstone and sandstone reached 1400ºC (Novikova, 2009). Moving farther east, Grapes et al. found 

peak temperatures of paralavas resulting from siltstone, mudstone, and sandstone to be 1120–

1230ºC (2009). New Zealand also has clinker deposits, with temperatures reaching 1600ºC 

(Masalehdani et al., 2007). In the United States, clinker deposits in the Powder River Basin, WY 

reached maximum temperatures of 1300ºC (Cosca et al., 1989; Clark and Peacor, 1992). Paralavas 

and clinker deposits do not only form from coal seam fires, but also from coalmine waste dumps.  

Temperatures reached up to 1146ºC for paralavas from a coalmine waste dump fire in Poland 

(Gaweda et al., 2013). In the Czech Republic, another coalmine waste pile fire recorded 

temperatures from 800–1500ºC (Dokoupilová et al., 2007). A summary of these results can be 

found in Table 4. Peak temperatures describing in this study are comparable to the work of others.  

 

Controls on Peak Temperature 

 The Helper outcrop displays maximum metamorphism and temperature within the study 

area, perhaps because of the structure of the area itself. In Figures 11 and 12, the bedding of the 

outcrop appears to be curved into an antiform. No other outcrop in the field areas displayed such 

curvature. This additional metamorphism may have affected the coal by compressing it or altering 

it further, permitting ultra-hot combustion. Tectonic and structural activity could increase the 

porosity of the coal seams and host rock, allowing for higher oxidation (Quintero et al., 2009). 

However, the area is not particularly active tectonically. The coal seam is not visible, but it may be 

a thick seam, allowing for a longer, hotter, continued burn. It is also interesting that this antiform 

has not collapsed in, as it is assumed that there is a significant amount of vacated area below the 

outcrop where the coal burned away. Intriguingly, the chimney system appears intact, as cool air 

was felt venting out of the chimney structures during field examinations.  

 The rank and composition of coal may have had the largest effect on pyrometamorphic 

temperature. Lignites and sub-bituminous coals can spontaneously combust at 300ºC, and 

bituminous coal can spontaneously combust only when it reaches 500ºC (Quintero et al., 2009). 

However, lower coal ranks may favor spontaneous combustion because of the higher porosity, 

volatile matter, and moisture content (Misra and Singh, 1994). Sub-bituminous coals have higher 

concentrations of reactive macerals (organics), which increases the propensity toward temperature 
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elevation (Quintero et al., 2009). The presence of pyrite in the coal may also act as a catalyst for 

oxidation reactions (Carras and Young, 1994). Moreover, at elevated humidity, pyrite experiences 

exothermal oxidation, in turn expediting coal self-heating (Banerjee, 1985). In addition, the 

presence of siderite (Misra and Singh, 1994) and calcite (Sujanti and Zhang, 1999) can also promote 

spontaneous combustion.  

 Although the coal in the study area is bituminous and thus needs higher temperatures to 

spontaneously combust, there is a significant amount of coal visible at the surface. This visible coal 

can degrade and oxidize, thus increasing porosity and access to meteorological moisture, which in 

turn increases susceptibility for spontaneous combustion. The active mining in the area also 

increases risk, opening vents for oxidation and drying out when exposed to the atmosphere.  

 

Bulk Metal Re-distribution 

 Overall, pyrometamorphism of the field sites does not appear to have significant effects on 

heavy metal mobility. There were no discernible trends from the XRF data when comparing 

unaltered vs. altered sandstones. However, analysis of the paralavas indicates possible metal 

mobility. Figure 31 demonstrates the separation of clinker rock from paralavas in terms of metal 

content, indicating a shift in concentration. These paralavas came directly from the clinker deposits, 

and the only cause of compositional change is heat. The clinker deposits are condensing in volume, 

and thus concentrating in the metals present, creating a type of slag. Thus, temperatures must be 

extremely high in order to mobilize the metals. Since the paralavas contain diopside, and this phase 

forms at 1361°C, metal mobility may begin around this temperature (Figure 30).  

 Further investigation of the Helper samples reveals convincing evidence for metal 

mobility. Figure 32 depicts plots of Cr, Zn, V, and CaO/MgO ratio against TiO2. Figure 32A shows 

the paralavas as an intermediate between various clinker samples, possibly signifying a bulk mixing 

line. Zn concentrations are higher in the melts, though some protoliths are also enriched (Fig. 32B). 

Despite TiO2 being greater in the melts overall, there is a strong trend with V increasing as well. 

Clusters of melts indicate different melt type compositions (Fig. 32C). For the CaO/MgO ratio, the 

values vary throughout the protoliths, but the melts are distinctly grouped. However, sample 13UT-

21F is anomalous. These enriched metal concentrations may leach out into the surrounding area. 

Additionally, the burning of coal seams could simulate fly ash. Fly ash is the particulate 

material produced from the combustion of coal in power plants (Cho et al., 2005). Fly ash can 

reemit metals back into the environment directly through contact where they are stored (Soco and 

Kalembkiewicz, 2007), or through atmospheric emission via stack (Fernandez-Turiel et al., 1994). 

Through laboratory analysis, Soco and Kalembkiewicz found that 2.6% of Cu and 3.4% of Zn of  
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Figure 31: Metal concentrations (ppm) of all samples vs. SiO2 (wt. %). (A) For Cu, there is a low 

vs. high Si break, with the Helper samples containing lower Si, and Emery and East Carbon 

having higher Si content. The hotter Helper samples also have higher Cu concentrations. (B) 

Slightly higher Zn concentrations for Helper samples.  
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Figure 31 (Continued): (C) Ni concentrations to not have a strong correlation; (D) Emery samples 

appear fairly homogenous for Cr content, concentrating around the 90% SiO2 mark.  
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Figure 32: Helper protolith and melt sample show distinctions in metal mobility. (A) Cr 

presents a possible bulk mixing line, with two melt populations between two protolith groups. 

(B) Discrete separation between melth and protolith for Zn cocentrations.  
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Figure 32 (Continued): (C) Distinct grouping of paralavas. As TiO2 increases in concentration, 

V becomes enriched as well. (D) Though the protoliths show no trends, the paralavas are again 

in two distinct groups for CaO/MgO. However, sample 13UT-21F is anomalous.  
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their original concentrations in the fly ash can be leached into the environment (2007). Fernandez-

Turiel et al., conducted experiments on the metal mobility of Cd, Co, Cu, Ni, Pb, Sb, and Zn within 

fly ash (1994). Their results showed higher percentages of extractable fractions, with percentages 

of up to 16.8 (Cd), 16.6 (Co), 10.8 (Cu), 4.2 (Ni), 0.6 (Pb), 18.9 (Zn). Cadmium is the most water-

extractable, whereas cobalt shows low solubility. These percentages are high, and thus have high 

leaching potential. Cadmium would have the highest potential if the fly ash is stored in ponds or 

landfills because of water content. 

 Baked clinker deposits themselves may not pose an increased health risk, but coal fires are 

an active, ongoing hazard as these fly ash experiments show. The gases coming out of a chimney 

sequence during active combustion may be toxic and vary in composition as temperatures elevate. 

In medium-volatile bituminous coal, temperatures for gas release include 110ºC for carbon 

monoxide (CO), 170ºC for hydrogen (H2), 240ºC for hydrocarbons ethylene (C2H4), and 300ºC for 

propylene (C2H6) (Stracher and Taylor, 2004). These gases can cause asphyxiation at high 

concentrations. Since coal fires are actively burning in the Emery coalfield, they are likely releasing 

these hazardous gases.  

 

CONCLUSION 

 

 The coalfields surrounding the San Rafael Swell are an important economic resource for 

Utah, but also pose elevated risk for coal fires because of the amount of coal exposed to atmospheric 

conditions caused by mining activity. The Helper, UT samples indicate phase equilibria of 

assemblages of diopside+tridymite and codierite+cristobalite+mullite, which show eutectic 

temperatures ranging from 1369–1465°C. Though the process of pyrometamorphism does not 

increase metal mobility in baked clinker deposits, there is evidence of mobility within the paralavas, 

posing a risk for metals leaching into the environment.  
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