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1 Introduction

Ever since the seminal work of Balestra and Nerlove (1966) there has been
a large interest in and use of random effects models. An important further
development was the generalization of the one-way model with individual ef-
fects to allow for serial correlation by Lillard and Willis (1978). This model
captures correlation in the data at the individual level and has been elabo-
rated by, among others, Anderson and Hsiao (1982), MaCurdy (1982) and
Baltagi and Li (1991, 1994). This is, however, not the only conceivable
source of correlation. It is quite reasonable to expect random time effects to
be correlated as well — reflecting serial correlation in the variables driving
unobserved time specific heterogeneity. There are, consequently, a number
of variations on random effects models allowing for correlation in the time
effect. King (1986) studies a one-way model with serially correlated time
effects, Magnus and Woodland (1988) consider a one-way model with both
serially correlated time effects and idiosyncratic errors in a multivariate set-
ting and Revankar (1979) proposed a two-way model with serially correlated
time effects. Recently Karlsson and Skoglund (2000) derived a straightfor-
ward maximum likelihood estimator as well as hypothesis tests for the latter
model.

While random effects models with serial correlation in the error compo-
nents are being used extensively in empirical work the theoretical aspects
are less well developed. Anderson and Hsiao (1982) consider the consis-
tency properties of the one-way model with individual effects and serially
correlated idiosyncratic effects. Amemiya (1971) proves the consistency and
asymptotic normality of the maximum likelihood estimator of the standard
two-way model as both N and T" grows large. This paper extends the work
of Anderson and Hsiao and Amemiya by establishing the asymptotic proper-
ties of a comprehensive random effects specification which nests the one-way
models with serial correlation as well as the two-way model with serial cor-
relation. More specifically, the model of interest is

yie = a+xuB+dm+hiTre, (1)
Eit = i+ A+ vg
with A, an AR(1),
At = PaNi1 + Uy, (2)
and vy an AR(1),
Vit = PyVit—1 + €, (3)

where x;; varies over both individuals and time, d; is individual-invariant and
h; is time-invariant. If there are no time effects we obtain the one-way model



with individual effects and serially correlated idiosyncratic errors and if there
are no individual effects we obtain the one-way model with both serially
correlated time effects and serially correlated idiosyncratic errors. Setting
p, = 0 obtains the two-way model with serially correlated time effects and
setting p, = 0 obtains a model not discussed previously in the literature.
That is, the two-way model with serially correlated idiosyncratic errors and
independent time effects. The standard one-way models and the standard
two-way model are, of course, nested in this specification as well.

In contrast to the earlier literature we consider both consistency and
asymptotic normality with traditional large NV and fixed T" as well as with
large T fixed N and both N and T large. We also pay special attention to
the effects of including time or individual-invariant explanatory variables in
the model.

The organization of the paper is as follows. Section 2 presents the compre-
hensive specification and the corresponding maximum likelihood estimator.
Section 3 derives the asymptotic properties and section 4 concludes with
some final remarks. All the proofs are in appendix B.

2 The comprehensive specification

In matrix form the comprehensive model is written

y = Zd+e

e = Zyp+72Ax+v
with ZM = (IN & LT), Z)\ = (LN & IT); 7 = (LNT,X,D,H), where X
is kj-dimensional, D = (tx ® d),d =(dy,...,dy)" is ko-dimensional and
H = (h®er),h = (hy,... hy) is ks-dimensional, & = 30 k;, § =
(o, 8,7, 7, 1 = (g iy), N = (A1,....; Ap) and ey is a vector of
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ones of dimension N. Throughout we will maintain the assumption that
eir ~ N(0,02), p; ~ N(0,0%), uy ~ N(0,0%) independent of each other
and X, d and h. In addition we assume that p,,p, € (—1,1).

The covariance matrix of the combined error term is given by

Y = E(e€) = Z,E(pp)Z, + ZAE(AXN)Z) + E(vv/) (4)
= o2(Iy@J1) +oi(Iy @ ¥)) + 0X(Iy @ L)

where Jr = ¢pt)y a T x T matrix of ones and 02 W, is the covariance matrix
of A and 02W, is covariance matrix of v.

Let A be the covariance matrix of the one-way model with individual
specific effects and serially correlated v;;. We can then write

Y = A—f-O’i(LN & IT)\II)\(L/N (24 IT)
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where
A= (Iy®JIr)+ol(Iy @ ¥,) =1y & (c3Jr + 07 %)
Following Baltagi and Li (1991) let C be the Prais-Winsten transforma-
tion matrix for ¥, and write
C'C(c2dr+02%,)C'C" = C' (o), (Cur) (Cer) + 021y) C7
_ (2T 4 BN O
where 02 = d*c7, (1 — p,) 02, T = | d?, 1y = (o, 1) = (Cep) and

%] —

E; =1I; — J; with @ = 5= + (T — 1), a = /(1 + p,) /(1 — p,). We
then have

Al=Iy®C (6,°Tp+0,E;) C=Iy ® A"
As in Karlsson and Skoglund (2000) we can then write
Tl = AT - ANy @Ip)[0 28 + NAY ey @ Ip)A™}

= In®A" — (en @ AY)[0, 2T + NA* (e @ A7)

— Iy© A" —02(ey @ AY) [Ir + No2 W, A*] 1 0, (Ly © AY)
and

13| =AY [Ir + No, ¥, A¥|

Which gives the log-likelihood as

N(T —1) N

N
Ino? + 3m\cy? — —Ino? (5

TN
l((s,’}’) = —Tln2ﬂ'— 5 a

1 1
—55’ Iy ® A*)e — 3 In |Ir + No, ¥, A"
2

+%€/(LN % A%) [Ir + No2W,A"] ', (L @ A%)e

!/ . .
where § = (o, 3, 7', 7') and « is the vector of covariance parameters,

(O-fu 0-57 Pu> 0-37 p)\)'

Evaluation of the likelihood requires numerical computation of the deter-
minant and inverse of the T x T matrix I + No?W,A*. The elements of
the score for the comprehensive log likelihood (5) are given in appendix A.1
and the information matrix in appendix A.2.

3 Asymptotic properties

Establishing consistency and asymptotic normality is complicated due to the
fact that the likelihood contains terms of different orders. Furthermore the
likelihood cannot be evaluated analytically which complicates matter further.
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3.1 Assumptions

The following assumptions are sufficient for the results

(a) p; ~ N(0,02), ug ~ N(0,02), e ~ N (0,02) independent of each
other and X, d and h. In addition X, d and h have full column
ranks ki, ks and ks respectively where (X;1,..., X, h;) is iid across
i,i=1,...,N and (Xy,...,Xnt,ds) is strictly stationary and ergodic
across t,t = 1,...,T with E|X;4|* < 0o, j =1,... ki, E|dy|* < oo,
I=1,....ky and E |hy|> < o0, s=1,... ks

(b)) ® = {0 :8d0 < ¢ < o00,0< 0?7“) < (7? < J?M,—l < piw < pi <
Piub < 1}, where ub,lb denote upper and lower bound respectively and
] = p,u,e, v =\, v with 6y the true parameter vector belonging to the
interior of ©

(¢) The normalized moment matriz, ﬁZ' Z, converge in probability to a
finite positive-definite matriz as N — oo, T — oo or N,T — oo. In
addition there exists a diagonal matriz, say X, such that the normalized
quadratic form

Y 'zZx 'zy!
converge in probability uniformly on © to a finite positive-definite ma-
trix as N — co,T"— oo or N, T — oo

The normality assumption on p,,u; and e; in (a) is certainly not neces-
sary for consistency arguments. It is well-known that maximizing a normal
log-likelihood even though the errors are non-normal will in general give con-
sistent estimates given some moment conditions on pu;,uy,e;. Inference is
however more complicated so it is convenient to stay in the Gaussian frame-
work.

Assumptions (b) is standard whereas assumption (c) may require some
clarification. The first part of assumption (c) is the usual moment condi-
tion on the explanatory variables encountered in the asymptotic analysis
of least squares models. The second part is concerned with the quadratic
form, Z’'¥"'7Z. It amounts to assuming that the normalized quadratic form,
Y 1Z'S1ZY !, have the required limit properties. Lemma 6 in appendix B
derives the scalings necessary for the block diagonal elements to converge to
positive definite matrices. It follows from this that the scaling matrix must
be given by

diag T = (min (\/N ﬁ) JFs,F., F) (6)



where Fj3 is a vector containing k; V/NT, and F,, F, are vectors containing
ky VT and ks /N respectively. Contrary to Amemiya (1971) we do not
assume that plimy ;. 77 (tnr, X)' E7! (enr, X) is non-singular. This is
not true as can be seen from the form of the scaling matrix in (6). The
constant needs different normalization and to complicate matters further the
appropriate normalization depends on the relative rate of increase of N and
T. This indicates a general problem with time-invariant and/or individual-
invariant explanatory variables and in this sense we can interpret assumption
(c) as that the H and D matrices contain variables with ”sufficient varia-
tion” in the N and T dimension respectively. In fact, plim;,_, %H’ > 'H
and plimy_, +D’'E7'D are null matrices whereas plim;._, ., H'X"'H and
plim,_,.  D’Y7'D are random matrices. The appropriate normalizations of
these information elements as both N and T grows large are % and % re-
spectively and in contrast to the constant term these normalizations do not
depend on the relative rate of increase of N and 7. This illustrates that the
behavior of the quadratic form, Z’'¥!Z, may differ sharply from that of the
"ordinary form”, Z'Z.

We might remark here that the normalization matrix given in (6) and
of course assumption (b) as well is only appropriate for the two-way model.
For the one-way model with individual effects D’ ~!D =Nd’A*d and hence
plimy_, %D’ > !D is a random matrix. Similarly in the one-way model
with time effects plim,_, %H’ ¥~'H is a random matrix. The appropriate
normalizations of the information elements D’Y~'D, H'X'H are ﬁ and
% respectively in the one-way model with individual effects and % and ﬁ
respectively in the one-way model with time effects. The unique scaling
matrix for the one-way model with individual effects is obtained by letting
the first element of diag X be replaced with v/N and F a vector containing
ky v/ NT. For the time effects case this matrix is obtained by replacing the
first element of diag ¥ with v/7T and letting F. be a vector containing ks
VNT.

For the purpose of giving results for the one-way models we define @
as the compact parameter space for the parameters of the individual effects
model, ) = (8,7) 4D = (02,02, p,). Correspondingly we define 0W as
the compact parameter space for the parameters of the time effects model,
on) = (6,7, 4% = (02, p,, 02, p,) and make the following additional as-
sumptions

(bsy) O = {09 : §'5 < ¢ < 00,0 < o2y <ot <ot =1 <pp<p, <

Poub < 1}, where ub,lb denote upper and lower bound respectively and
)

] = p, e with 0((; the true parameter vector belonging to the interior of
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(b)) ©W ={0:8d < c < 00,0 <0}y <0} <0fy,—1<py<p <
Piwp < 1}, where ub,lb denote upper and lower bound respectively and

] =u,e, 1 = A\, v with 4985) the true parameter vector belonging to the
interior of O

Unless otherwise indicated in the following results for the comprehensive
model use assumptions (a)-(c) and results for the one-way model with in-
dividual effects use assumptions (a), (bg), (c). Accordingly, results for the
one-way model with time effects use assumptions (a), (by)) and (c).

3.2 Consistency

Our first result is for the comprehensive model specified by the log-likelihood
(5). Define 6 = (8,~) and let § = (Sﬁ), 0o = (00,7, denote the estimator
and true parameters respectively

Theorem 1 (Comprehensive model)

(i) 0260, 0n® as N,T — oo (it does not matter how)

(i) B — Bo, T L1 on © as N — oo and if in addition T > 2,
(A2 Ai/ﬁy) (0307Uzo,pvo> on©® as N — oo

(iii) E LBy, ® L myoon © as T — oo and if in addition N > 2,

(325 P Aiapx) - (020: Puns Tings Pro) @0 an open neighborhood of
(O-e Puos O anp)\O)

The proof proceeds by examining the probability limit of the log-likelihood
standardized by ﬁ This method is not useful for dealing with the constant
term but it allows us to prove some global consistency results for the variance
parameters which are not easily obtained otherwise. The asymptotic proper-
ties of the constant term are essentially established in two lemmas, lemma 6

and lemma 7 given in appendix B. Lemma 6 shows that @ = min (\/N , \/T )

consistent and hence the constant is not consistently estimated if only N or
T — oo. Note that the inconsistency of the constant does not affect con-
sistency of the v/N consistent parameters as N — oco. Nor does it affect
consistency of the v/T consistent parameters as T — oo. The intuition for
this is that these estimators do not (at least not asymptotically) use informa-
tion about the constant. Analogously, inconsistency of for example 7 (the



parameters of individual-invariant explanatory variables) as N — oo does
not affect consistency of the VN consistent parameters’.

Note that we assumed T > 2 as N — oo to achieve identification of
the variance parameters (02,02,p,) and N > 2 as T'— oo to achieve iden-
tification of the variance parameters (02, p,, 02, p,). A similar requirement
appears in assumption (a) and these conditions are frequently redundant
when there are time or individual-invariant variables in the model.

A number of special cases emerges from the above theorem. For example,
consistency results for the two-way model with serially correlated time effects
and the two-way model with serially correlated idiosyncratic errors follow
as direct corollaries from theorem 1. In addition if p, = p, = 0 and we
have no time or individual-invariant explanatory variables theorem 1 (i) gives
the consistency result of Amemiya (1971) for the standard two-way model.
Theorem 1 (ii) and (iii) then gives consistency results as N — oo and T' — o0
respectively not covered in Amemiya (1971)2.

Theorem 1 does not apply to the one-way model with both serially cor-
related time effects and serially correlated idiosyncratic errors since we have
not allowed for o*i = 0. Consistency results for this model are however
straightforward to obtain

Corollary 1 (One-way model with time effects)

(1)

(i) 0

(i) BL By, # 5 mo and (72,5,) 2 (0%, pyo) 0n O as N — oo

2 Qét) on O as N, T — oo (it does not matter how)

...y~ D - P ~ D ~ P
(i) @ = apB = By, ® = m and T > 1o on OV as T — oo and
. . oy A2~ A2 A~ P 2 2 .
iof in addition N > 2, (ae,pmo'u,pA) — (er,pvo7au0,pA0) in an open
: 2 2
nezghborhood Of (UeOJ Pv0,%u0> p/\O)

In contrast to the comprehensive model considered in theorem 1 it is in
this case possible to estimate all the parameters consistently as only 7" — oo.
This follows since there is no individual effect which confounds with the
constant term or the time-invariant explanatory variables. The constant is
accordingly v/T consistent no matter what the relative rate of increase of N
and T and 7 is accordingly v/ NT consistent. The non-presence of individual

IThe phrase ”inconsistent parameters” is used here to refer to parameters whose esti-
mator converge to non-degenerate random variables.
2For the standard two-way model it is straightforward to prove global consistency of

~2 ~2 .
Oy 05 as T — oo (assuming N > 2).



Table 1 Consistency properties of random effects models

Model Case Case
2-way (;, Aty Vit) N — o0 T— o0
C NC C NC
At, Vit tid B,7,02, 02 o, T, 02 B, =, 0' 02 a,T,UZL
At AR(1), vy iid B,T.0% 0' a, T, 02, py B,m, 02, 05,0 04,7',05
At tid, v AR(1) B, T, 02 Ue,pv a, T, 0% B,ﬂ',a%,ag,pv 04,7',05
>\t AR(I),'U“ AR(I) /877—7UH70-67PU 0‘77"7012“9) B77r7o-%7p)70%7pv CK7T7O'H
L-way (At, vit)
C NC C NC
At, Vit tid B, 1,02 o, w02 o, 8,7, 7,02, 02
At AR(I),'U“ iid /877— 0-2 Q, T, 00, P CM,,@,T{' T,0,P)\: 0
)\t iid,?}it AR(l) 677-70%7:01; a77r7012L Oé,ﬁ,ﬂ',T,U%,Ug,pv
>\t AR(I),'U“ AR(I) /877-70%7p'u 0‘77"7012“9) CM,B,T{',T,O’,‘ZHP)\,U?HP,U
L-way (p;,vit)
C NC C NC
;¢ tid a, 3,7, ﬂ,awaz B,mos o, T,02
Vit AR(I) CK,B,T 7r7o-/,uo-evp'u 677‘-70-?27pv CK?T?U‘LL

Abbreviations: C=Consistent; NC=Not Consistent

effects also implies that there is a somewhat weaker identification condition
on the variance parameters (02, p,) as N — oco.

Finally we give consistency results for the one-way model with individual
effects and serially correlated idiosyncratic errors

Corollary 2 (One-way model with individual effects)

(i) (. 9((;') on ©® as N, T — oo (it does not matter how)

(1) &Lozoﬁiﬁo,?iﬂ) andﬁ'&ﬂ'o on O as N — oo and if in
addition T > 2, (55,52,5,) = (020,02, pyo) on O as N — oo

i1 75w an = (o on O qs T — 0o

( )/6 /60a d( eapv) £ ( zmﬂvo) @(Z) T

Since no time effect confounds with the constant or the individual-invariant
explanatory variables o and 7 are /N and v/ NT consistent respectively im-
plying that all parameters are consistently estimated as only N — oco. We
also note that we do not need N > 2 as T" — oo to identify the variance
parameters (02, p, ).

The results in theorem 1 and corollaries 1 and 2 covers a number of
interesting models commonly used in practice and it is useful to summarize
the consistency properties obtained. This is done in Table 1.



3.3 Asymptotic normality
3.3.1 Comprehensive model

In this section our interest centers on the asymptotic distribution of the
appropriately scaled maximum likelihood estimator 6 = (5,’?). Before the

statement of the main theorem it is useful to collect some preliminary results
which appear in lemma 6 and 7 in appendix B.

Recall that assumption (c) ensures that the part of the limiting informa-
tion matrix which belongs to the explanatory variables is a positive-definite
matrix as either or both of the indices grow large. In case both N and
T — oo this limiting matrix, denoted R, is obviously non-stochastic. A mo-
ments consideration also reveals that this matrix depends on the behavior of
the ratio %

Lemma 1 If & — oo

(1;/?)2 0 (1;/9)2 Ed:‘/ 0
Rx 0 0

R =
»Ed}dy 0

Uiz (Eh;h,—FEh;Fhl)

where Rx = plimy 7, 77X’ 2 X and d}} = (d; — pydi_1).
If % — 00

0_—1% 0 0 éEh;

Rx 0 0

R= LEdMY — S0  Ed, Ed 0
' ' & Ehih

Finally, if N, T — oo simultaneously

w 0 wkd; wEh,
Rx 0 0
R= LEdMY + v, Ed,Ed, wEd, B,
U%Ehzh; + UgEhlEh;
m
2
wherew:m, Ulzw—% andvgzw—aﬁz.

The lemma shows that when both N and T" — oo the variance formula,
and hence the amount of information in the sample, depends on the be-
havior of the ratio % It is important to notice that this result does not
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relate to assumptions about the sampling behavior of the time-invariant and
the individual-invariant explanatory variables. In fact it holds regardless of
wether the time-invariant and the individual-invariant explanatory variables
are regarded as fixed or stochastic. Note however that if these variables are
centered then R reduces to a block-diagonal matrix that only depends on
the behavior of the ratio % through the constant term.

If only N or T — oo as in theorem 1 (ii) and (iii) part of the parame-
ter vector is not consistently estimated. In fact, only the subvectors #° =

(5,7,7@) AY = (07,02, p,) and 6 = (5,77,7“)) , YD = (02, p,,0%,p))
are consistently estimated as N and T — oo respectively. The limiting dis-
tributions of the subsets of consistently estimated parameters are of course
only interesting if they are information block-diagonal to the inconsistent
parameters. The following lemma, which is a direct consequence of lemma 7
in appendix B, is useful in this respect

Lemma 2 As N — oo the information matriz is block-diagonal between 6
and (o, 7' 02, p,) and as T — oo the information matriz is block-diagonal

¢ 2
between 6" and (OZ,T,,(TM)

Motivated by this lemma the theorem below applies a mean-value expan-
sion to the part of the score vector which belongs to the consistent subvectors.
In addition the elements of the limiting information matrix relating to the
consistently estimated subvectors does not depend on the nuisance parame-
ters (a, 7,02, py) as N — oo nor on the nuisance parameters (a,7’,02) as
T — oo. This fact is important since it implies that we can obtain use-
ful approximate variance formulas for the subsets of consistently estimated
parameters.

We now obtain the main result of this section. For this purpose define
Fyr, Fy and Fr as diagonal matrices with

diag Fyp = {min (\/N,\/T),Fﬁ,FW,FT,\/N,\/NT,\/NT,\/T,\/T}
diagFy — {Fg,FT,\/N,\/NT,\/NT}
diag Fp — {Fﬁ, F,,VNT,VNT VT, \/T}

We shall also need notation for limits of submatrices of the quadratic form
in assumption (c). Let Zy= (X, H), Zr= (X,D), T and Y1 diagonal such
that

diag YTy = (Fﬁ> FT)

diagYr = (Fg,F;)

11



with
ElimT;,lZ?VE*lZNT]Vl = Ry
plim Y,'Z.% 'Z:Y,' = Ry

T—00

and we further let @ denote a sequence such that plim 6 = 6,
Theorem 2 (Comprehensive model)
(i) Fnr (5— (90) 4, N (0,V (0y)) as N,T — oo, where

921(8,~) R 0
. _ . 1 1 —
V' (0) = NI?}ZHOO |:FNT ( 9000’ ‘9> NT:| - |: 0 V! (90)7 :|

a finite non-singular matriz, with R = R.(6) a Y25, ki+1 dimensional
matriz given in lemma 1 and V1 ((90)7 15 a diagonal matrix with

1 1 1 1 1
dla‘g v (60 = { s s ) ) }
)7 Q‘Tﬁo 2‘730 (1 _Pgo) 20%0 (1 —Pio)
(ii) Fu (/9\2 - 06) 4N (0, Vi (6)) as N — oo (assuming T > 2), where

V' () = — plim {F (%’9) } B { PBN Vy (09 0) }

a finite non-singular matriz, with Ry = Ry ((9 ) a ki + ks dimensional
matriz and V' (06)7(1) given by

\% (96)7@)
o2 2 o * 02,(1— vO 2 a * o
= 3 %(;§+(T—1)%4) Otr(A*\IIAL)
eO tr (A*L,)*

where 02 = (0%, — 0%)
(iii) Fp <§t - 08) AN (0, V7 (6)) as T — oo (assuming N > 2), where

_ . _ 82l(5,7) _ RT 0
Vi (f) = —plim {F (W') F}—{ 0 Vil (6h) .

T—o0
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a finite non-singular matriz, with Ry = Ry (96) a ki + ky dimensional
matriz and V! (96)7@) given by

\ (96)7(0

i ,
Vi, Vi, }/gv%,\h ng\h,m
0.2
= lim 1 VE”’L” QVL”’T* ZOT\({NVL”’L*
- BYal ke o2 N2
T—o0 2T %V‘I’A’q’)\ 7;04](:[ VL/\7‘II/\
€ o4 N2
L UO'%](:[ VL/\vL/\ ]
where
Vep = tr((¥,'FO'P) Iy — 2M)) + tr (¥, 'FM¥,'PM)
e — 2 1 - _
Vip = tr ((‘I'vlF\I'le) (IT - NM)) + 7 b (¥, FM¥'PM)
-1
and M = (IT + ]\;’Eg \IIA\IIv\IIKQ)

Corresponding asymptotic normality results for the standard two-way
model and the two-way model with serially correlated time effects or serially
correlated idiosyncratic errors follow directly from theorem 2.

3.3.2 One-way models

Asymptotic normality results for the one-way models considered in corollary 1
and 2 can be derived quite easily given theorem 2. We concentrate on the one-
way model with individual effects in this section, corresponding qualitative
results for the one-way model with time effects follow similarly.

The limiting information matrix is, as in the two-way model, block-
diagonal between consistent and inconsistent parameters. This allows us to
obtain the marginal limiting distribution of the consistently estimated para-
meters when 7" — oo in the same manner as for the two-way model. Also, the
limiting information matrix for the consistently estimated parameters does
not depend on the inconsistent nuisance parameters, ensuring that we can
estimate the limiting variance consistently in the 7" — oo case. In contrast
to the two-way model all parameters are consistent as N — oo and we obtain
joint asymptotic normality for the full parameter vector under N — oo as
well as N, T — oo.

Make the following definitions

diagF®, = {\/N,FB,FW,FT,\/N,\/NT,\/NT}
diag FY) = {FH,FF,\/NT, \/NT}

13



where FE\Z})T, Fg,f) are diagonal matrices and F is as in assumption (c(;)). We

also define V! = (8,7, 7D, 4Dt = (62, p,) and with some further obvious
notation we have

Corollary 3 (One-way model with individual effects)

(i) FS\Z',)T (5(i) - 98’)) N (0,V(i) (Qéi))) as N,T — oo, where

Vo @] = i [0 (o) () |
R® 0

-1

o e,
’y(l)

a finite non-singular matriz, with R®W = R® (Qéi)) a2 k41 di-
mensional matriz given by

L 0 0 L Fh,
G (i) g
R(z) _ RX RX,D ) 0
LEdyd) — S5l Ed;Ed, 0
L Eh/h,
L 122 .
here RY = pli LSV XIA*X;, RY, = pli -+
where Ry Py 700 NT Zi:l i i, Nx p Py 1o NT

)
SN X!A*d and d? = (d; — p,d;_y) and [V@ (") (i)} is a di-
v

agonal matrixz with

—1
, 4 1 1 1
diag [V (9@) } = { S }
& { 0 /40 20;‘10 208 (1= p2o)

(1) F%)T (g(i) - Qéi)) 4N (0, V%) (0((;))) as N — oo (assuming T > 2),

where
v )] = () (20 (v) ]

R 0
“ | o {VE@ (%) m]
Y
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a finite non-singular matriz, with R = Rg\i,) (0((;)) a Z?Zl ki + 1 di-

—1
mensional matriz and {V%) ((9(()2)) (_)} given by
,7 K2

[VE\Z}) (%) (i)}
s

2
2 2 2
0w (1 va) ol A * UeO(l_p'uO) al A * «
YA AL A*L,¢
1 (Uiogio) \/_ T T 20\/_ T T

o2

- 9 % (0;51 +(T-1) 06_04) 60 tr (A*¥,A*L,)
eO tr (A*L,)’

-1

where 02, = (02, — 0%)

(iii) FY) (EW - eg“t) N (0, N2 (08’”)) as T — oo, where

. a1 WL (0% (i)t) W -1
(@) (gt — : (4) i (4)
|:VT (90 )} = - glig |:(FT ) (ag(i)tae(i)t/ |5<m) (FT ) }
R 0

= 0 {Vm (H(Z)t),mt}

a finite non-singular matriz, with RT = R(l) (9( )t) a ki + ko dimen-

—1
stonal matrix and [V J (Q(Z)t) o } 1 a diagonal matriz with
¥ 1)t

7 )t - 1 1
diag V() (9() ) =
@yt 208" (1 — pZ)

Comparing the results in the corollary above to the results in theorem 2
we note that

Property 1 In contrast to the comprehensive model the information ele-
ments of a, ™ and T does not depend on the behavior of the ratio % as both
N and T grows large

Property 2 As N — oo (or N, T — 00) the variance matriz of the variance
parameters ¥\ is the same in both models
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That is we have the same large N asymptotics for the variance parameters,
7@ in the one-way model with individual effects and the two-way model.
Noting that the one-way model with individual specific random effects is
typically used in situations where large N asymptotics are appropriate this
indicates that it is asymptotically costless to variance robustify by including
time specific random effects as well. If in addition h is centered and X is
centered in the N dimension we have the same large /N limiting variance in
these models for the parameter vectors 3 and 7 as well.

3.4 Misspecification

It is well-known that in the framework of the classical linear model misspeci-
fication of the variance does in general not affect consistency of the regression
parameters, only efficiency. Unfortunately, in the present situation this need
not be true. As indicated by the results in theorem 1 and corollaries 1 and
2 problems arise since the true and the perceived error component structure
need not agree on the appropriate probabilistic orders®. The theorem below
illustrates what can happen

Theorem 3 (Misspecification of error components) Suppose assump-
tions (a), (b) and (c) holds and the true model is the comprehensive model
considered in theorem 1 but the estimated model is the one-way model with
indiwvidual effects considered in corollary 2. Then, for k; =1,1=1,2,3

o~ .. . PO
(i) ’y(z) is inconsistent as N — 00, T — oo or N,T — oo and G, is
mconsistent as N — 00

(ii) As both N,T — oo (it does not matter how) 5 2 8y on © and as

>S5 o~ P ~ ~ . .
T — oo (ﬁ, 7r) = (Bg,m0) on O whereas & and T are inconsistent. In

case of N — oo both (a,T) are inconsistent, the situation for (E,?)
requires us to distinguish between if plimy_, % > Xith; is zero or not.
If non-zero, 3 > By or T L 1 (or both) on © iff h is centered and X
1s centered in the N dimension. If zero, B 2 By on O iff X is centered
in the N dimension and T 2 7o on © iff h is centered

Part two of the theorem might seem counterintuitive in the light of stan-
dard theory for linear regression. The key to understanding the result is to

3Misspecification of the error components imply that the variance of the score and the
negative expected hessian need not be equal. In addition they need not have the same
probabilistic orders.
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note that it is the case N,T" — oo, where all regression parameters are esti-
mated consistently, that corresponds to the standard theory. In the N — oo
case we may think of the time effects as dummy variables erroneously ex-
cluded from the model. Consistent estimation of the remaining regression
parameters then requires that the corresponding explanatory variables are
orthogonal to the excluded variables, hence the need for centering. Although
centering of the data recovers some of the consistency properties for the mean
parameters of a correctly specified one-way model it does not, and in contrast
to the robustification result in property 2, lead to the same asymptotic distri-
bution*. There is a loss of efficiency and a sandwich-type variance-covariance
estimator should be used since the information matrix equality fails to hold.
Also note that the driving force for the result is the presence of the time
specific effects per se. Theorem 3 holds wether ); is serially correlated or
not.

4 Final remarks

Panel data models which allow for serial correlation are extensively used
in applied econometrics. This paper has explored the large sample theory
for a comprehensive specification which nests most of the models used in
practice’. In contrast to the previous literature we have treated the constant
term appropriately as well as allowed for both time or individual-invariant
random variables.

In terms of the consistency properties obtained our results reveal an in-
teresting and, perhaps, unexpected difference between ordinary explanatory
variables and explanatory variables that are time or individual-invariant.
Whereas the parameters of ordinary explanatory variables are always esti-
mated consistently whenever N or T' — oo the consistency properties of
the parameters of time or individual-invariant explanatory variables depend
crucially on the model. The source of this difference was attributed to con-
founding with time effects and/or individual effects and, of course, if there
are neither individual nor time effects these parameters have the desirable
properties of the parameters of ordinary explanatory variables.

4The reader may notice that although we are only able to recover some of the consis-
tency properties of the mean parameters in a correctly specified one-way model we obtain
exactly the same consistency properties of the mean parameters as for the two-way model.

Of course, none of the results in this paper are special to models with serial correlation.
In addition the results for the variance components and the ordinary explanatory variables
do not depend on the presence or non-presence of individual or time-invariant explanatory
variables.
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Our results on asymptotic normality revealed a useful characterization
of the limiting information matrix. The set of consistent parameters (as
N or T — o0) are information block-diagonal to the set of inconsistent
parameters and the set of consistent mean parameters are always information
block-diagonal to the set of consistent variance parameters. In addition the
elements of information of the consistent parameters do not depend on the
inconsistent parameters, ensuring that the variance matrix of consistently
estimated parameters can be consistently estimated.

As an application of the results obtained we considered the consequences
of error component misspecification. In this situation it is useful to work with
deviations from means to guard (incompletely) against possible inconsistency
of the mean parameters and indeed the idea of centering is also useful in the
context of robustification.

Possible extensions of our results include introducing dynamics in form
of a lagged dependent variable as well as allowing for time trends commonly
employed in practice. Given the present results one would suspect that a
linear time trend is 7%/? consistent in the two-way model and the one-way
model with time effects but v/ NT3/? consistent in the one-way model with
individual effects. However these and other issues are left for future work.
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A Score and Information

A.1 The score vector

This appendix derives the elements of the score vector. For the regression
parameters we have the standard result

ol
- _ ZIE—I
06 ©
and for the variance parameters the score is given by
ol 1 00X 1 0x
= __t 271_ - /271_271
;i 2 rt a%’) i 28 ;i ©

([ ~2 2 2
where Y _(O-;u Oy Pus Oy P)\)

For O'i we have

tr (2—18—2> = tr (27 (Iy @ J7))

(9(73
= ftr (IN & A*JT) — tr [(LN (24 A*) B_1 (L;V & A*JT)]
. 2 9 . 2
— N(]' p'u) d o N(]' pv) L%’A*Bilb%

2 2
O O

where B! = 02 (I; + No2W,A*) ' W,

1)y
2*18—22*1 = X' (IyeIpz
T
= Iyn®@A*J7AY) — Iy @ A*JpA*BT1AY)
—(Jv ® A*B'A*JpAY)
+N(Jy @ A*'BTTA* I A*B7TAY)
Hence
ol N(l - pv)2 d2 N(]' B pv)2 a’ A xPp—1,a
3_0'2 - 202 + 202 P ATB g

1 . N
+§a’ (Iy ® A*JpA¥) e—e’JT§+55’JT§

where € = (¢)y ® A*) e and € = (¢)y ® A*B7'A*)e. For 02 we have
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tr (2—12532) = (27 (Iy® )

= tr(Iy @ A*®,) —tr [(exy ® A*) B! Uy @ AT,
= Ntr(A*¥®,) - Ntr (A*¥,A*B™)

and
X
-1 -1 -1 -1
Blgast = F (Iy ® ¥,)X
= Iy A'W,A* — (Jy @ A"U,A*B A
—(Jy ® A'B 1A*T,AY)
+N(Iy ® A'B'AT,A"B!AY)
with
ol N * N * *p—1
80'2 = —Etr(A ‘I’v)—i—gtr (A \I’UA B )

€

1 . N
+§s' (Iy ® A*W,A*) s—s’\yvé+5§’wvg

For o2 we have

>
tr (21 0 ) = tr(Z Iy ® W) = Ntr(A*T,) — N2 tr(A* P, A*B 1),

o2
b
2—1%2—1 = T Iy¥,)=!
= (Jy ® A*U, A%
~NIy @ A*BTA* U, A*) — N(Jy ® A", A*B71AY)

+N?*(Iy @ A*'BTA* T, A*B1AY)
and

al N % N2 * *—1
G = g AT+ T tr(ATE,ABTY

u

1, ., _ N?°_,_ _
+§€ W,e—Ne ‘I’As+7€ W,e

Finally for the parameters in ¥, and ¥, let L, = % = 13’; sW, + #D

where D is a band matrix with zeros on the main diagonal and z'pf\_l on the
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i™ subdiagonal and define L, similarly, we then have

ol N 2 N2
= T (ALY + 22t (ALLAYBTY)
ap, 2
2~ N N2 2
—f-%E,L)\é‘—O’iNE/L)\E—F 2(7“5/11)\5
and
ol o’ N o’ N
— = ——= {7(A*L,) + = tr(A*L,A*B"
. 5 tr(A"Ly) + —o—tx( )
2 NO'2

+%5' (Iy © A'L,A") e~08L,g+ —“E'L,e

A.2 The information matrix

This appendix derives the elements of the information matrix. For the first
element we have the result

Tss =2Z'S7'Z
and the elements Z; . are simply computed as

0%
Is,, = Z'S 16_7-2 ‘e

(2

Next the elements of the information matrix for the < parameters are

obtained as
ox > o0x

1 —1
a_%.) (a_»yj)]

I’Yi%‘ = 5 tr[zil(

For the elements involving ai

. 1[ Notd* (1 —p)* —2No Ad? (1 — p,)* LY A*B 144
2 2 = —
I +N20,4 (1= p,) e A B gy A" B

where B! is defined in appendix A.1.

No 2 (1= p,)* ey A" g
—2No2(1—p,) LY A*B A" 12
| +N%02(1— p,) YA BTIAY W, AFB g

IO-Q 0.2 = 1
prre 2

NoZ?(1—p,)" e A" ®pug
Tp202 = —2N20.2 (1 — p,)* LY A*B 1A*W .4
| N30, 2(1— p,) YA B TA* W, A B LG |
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I,

Hno)\ -

o2 No 2 (1—p,)" ef A" Lyeg ]
3 —2N25,2(1 — p,) " t¥A*BLA* L4
| +N302 (1 — p,) LY A*BTTA*LAA* BT |

o2 | Nog2 (1= p,)* e A"Lyu 1
Topp, = |  —2Noz’(1-p,)" ¥ A" BT AL g
| +N%0% (1 - p,)* 1Y A'BTIA'LAB7g |
with L and L, defined in appendix A.1. Next for the relevant Iggﬂj elements

[\

7, L[Nt (A*®,)? — 2N tr (A*®,A*B 1A* )
LG +N2tr (B-1A W, A%)’

7, _ L[ Nu(A®,A"T,) —2N?ir (A*T,A'B'A*D)) ]
7eou T 9 +N? tr (B~'A*®,A*B 1A, AY)

7. _ %[ Ntr(A"®,A'L) —2N?tr (AW, A*B 1AL, |
T2 +N3tr (B 1AW, A*B 1AL, A")

7. o; [ Ntr(A*¥,A*L,) — 2N tr (A*®,A*B 'A*L,)
ey +N?tr (B7'A*¥,A*B~1A*L,A")
Finally for the elements involving o2, p, and p, we have

. 1 [ N2tr (A*®,)° —2N3tr (A* W, A*B1A*W,) }
030l =5

2 +N4tr (BTLA* W, A%

7 on [ N?tr (A*W,ALy) — 2N tr (A*®,A*B 'A’L))
7o T2 +N1tr (B 'A*®,A*B AL A”)

7 o2 [ Ntr(A*®,A*L,) — 2N*tr (A*®,A*B~'A"L,)
O +N*tr (BT A* W, A*BAL,AY)

- os [ N*tr(A*Ly)” — 2N° tr (A*LyA*B 1AL,
PxPA T g +N*tr (B_IA*L/\A*)Q

7 _C Ntr (A*LyA*L,) — 2N?tr (A*Ly\A*B~'A*L,)
pabe = g N3 tr (BT A*LyA*B AL, A%)
4

7 _ 0[Nt (A*L,)* — 2N tr (A*L,A*B~'A*L,)
Pobo 9 +N2tr (BT'AL,A*)
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B Proofs

A number of expressions involving the components of the variance matrix X
appear frequently in the proofs. A series of lemmas below summarizes some
basic results for these expressions. Unless otherwise indicated in case of joint
convergence (N, T — 00) no restriction on the indices are needed and joint
limits can also be computed as sequential limits by letting 7" — oo followed
by N — oo, see Phillips and Moon (1999, corollary 1).

Lemma 3 Let C be the Prais-Winsten transformation matrixz for an AR(1)
process with parameter p, ¥ the variance covariance matriz of an AR(1)
process with parameter r and unit variance and let L5 be a vector with first
element \/(1+ p) / (1 — p) and remaining T — 1 elements unity.

2 2(T-1) (T-2)

2
tr(CeC) = —— -5tz (P +1)
1 241)—2
lm Lt (cwc) = LD =2r
T—c0 1—1r?

tr (CPC'L5ey) = J/CUCL
1 /1+p 9
= (£ (1-
c (1 - p) (1=¢)

T—2
1 1 .
+-2(r =) (1-p%)" <ﬂ> !

—_
|
S

7=0
1
+- (T = 1) (1 —2rp +p%)
L (plrp—17) | = -
+02< (- p) ;(T )7
lim lLO"C\IIC’LO‘ _ 1 (1—2rp +p2) — ;2 (p(rp— r2) +(r—p))
Tooo T T c c(r—1)

where ¢ = (1 — r?). Note that theses matrices are independent of N and that
the limits hold when N, T — oo as well.

Lemma 4 Let A* = C' (a;Qj; + O'E_QE;) C and consider vech A* we then
have elementwise convergence of vech A* to the infinite sequence vech (# Pl )

0,00

at the rate T~ as T — oo.
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Let B=W¥,' + No2A* we then have

lim vech B™! = vech (¥, + No2o 2@ 1)

o)
T—o0 ’

lim vechB™' = 0

N—>oo
. al A s -1, __
NhinooLTAB v = 0
: 1 o *—1,«
Th_r&ﬁLTIAB LWy = 0,vp>1
lim tr(A*BflA*\Il) =0
N—co
-1
dm oy BT =0
NN ST
fim 7 BT =0
. 1 1
and
.1 1
]\}LI};ONIH‘B } =0
1
lim —In|B™'| = 0.
NT—oo NT

Proof. To obtain the elementwise convergence of vech A* we write

1 Laba/ LaLaI
A*: C/ 7T —2 I — 7T C
(dQO_Z (1 . pv)Q + O_g dQ + O'e T dQ

and note that ¢3'C = ( Atp)U-py) Pos L= pyye s 1 —py, 1) . The elements

1—p,
of 5Cy'C — 0 as T — oo since d? = o 4+ (I'—1). Next the es-
tablished limit for vechB~! as T — oo follows from the elementwise con-
vergence of vech A* as T — oo and limy_. vechB™' = 0 follows since
limy_o xB = 0ZA* clementwise. Then limy_ ¢FA*B 1§ = 0 and
limy_q tr (A*B 1A*W) = 0 follows immediately from limy_,., vechB™! =
0. To establish the T — oo limit of ;¢ A*B 1% = 0, p > 1 we note
that for N fix and T' — oo vech B~! converges elementwise to the infinite

sequence vech (UL + No2o-2W-1 )~ which has the form of the inverse of
A, 00 u’e 0,00
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a MA(1) covariance matrix, that is the off-diagonal elements decay exponen-
tially. Since A* converges elementwise to a band-diagonal matrix it follows
that A*B~! converges elementwise to a matrix with exponentially decaying
off-diagonals. Hence %L%/ A*B 1% converges to a constant since this is the
sum of the exponentially decaying elements in A*B~! and

Tlgrolo %L%’A*B_ll,% =0,p>1
follows.

To establish the limits for [B~!| we note that B — ¥;' = No2A* is
positive definite which implies that |B| > |®;'| = 1 — p3 and [B7!| <
W, = 1_1p§ . In addition |[B7!| > 0 since B is positive definite and the
results follow.

For In |B™!| we have In|B™!| < —In (1 — p3), a lower bound is obtained
from the Hadamard determinant theorem,

T

T
Bl < [[ b5 =[] [v" + Noaj)]
=1

=1

implying In |[B™!| > — Z]TZI In [ + NoZal,] > — Zle In(1+ p3 + Nk) =
—T'In(1+ p5 + Nk) where k& = maxa};. Note that k depends on T" and
approaches o2 (14 p3) /o2asT —co m

Lemma 5 Let Xy be the variance matriz X evaluated at 0g. Then

1 1\ 0% [(p2+1)—2
hm —tI'E_lEO = (1—_)@{(pv+ ) p’UOp'u

T oo NT N) o2 1— p2,
1 . 1
7 A, b (PoP ™)

where PO = (NO'%LO‘I’/\O + O-zO\I’UO) s P = (NO'?L‘I’)\ + O'z‘];’v).

. 1 -1 _ UAQLO 2 2 Uzo /
]\}I_I’)I(I)O ﬁtrz 20 = T—()'?Xd (1 — p'u) + T(J'g tr (ClI’U()C)
0 (76” = 0c%) o :
— S LY CW,C/is

with tr (C¥,0C') and HCW¥,,C'tS evaluated in lemma 3, and

1 2 24+1)-2
lim —— tr 27120 — @ (pv + ) > PPy
N,T—oo NT op: 1—p
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Proof. Standard matrix algebra yields

1 1
ﬁ tr 2_120 = ?O'ZOO';QCZQ (]_ - pv)Q
0o (72" — 0.7)
Td?

2 9

o e )L%IC\II)\OC/L%

1 1

+?agoa;2 tr (C¥,,C') + ?O'iOO';Q tr (C®,,C')
1 — 2 alAxp—1

_?0;2100-1210-042 (1 - pv) I’T,A B 1I’T

1
—?agoci tr(A*B 1A W)

1
—TNUZO(L% tr(A*BTTA W)

+ LY CW,,C's

Uzo (U

+

To establish the limit as T — oo note that for the first term

1
Jim —ojo d (1= p,)" =0

since 020, 2d* (1 — p,)* = O (1). For the next two terms

1
lim ?J;Qd’Qb%’ClIleC’L% = 0,j=\v

T—o00

1
lim ?d*QL%’C\I:jOC’L% = 0,j=A\v

T—o00

follows from lemma 3 since 02 = O (T) and d*> = O (T'). The limits as T — oo
of the fourth and fifth term follow from lemma 3 and lemma 4 established
that the sixth term converges to zero. For the last two terms we have by the

elementwise convergence of vech A* and vech B~! established in lemma 4
: 1 *s—1 A *
Tlglgoftr (A B A \Ifjo)

= lim % tr (0;2\1151 (O, + NoZo 2w, )7 0;2\1151\11]-0)
which is well defined (and non-zero) since the diagonal elements of the ma-
trix are O (1). Repeatedly applying elementary results on inverses of sums
(Dhrymes (1984, p. 39)) to these last two terms and then collecting terms
obtains the expression given in the theorem. This completes the proof of the
T — oo case.
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Now consider the case when N — oo. Since all but the three last terms
are independent of N we need only consider these. Then

. 1 — 2 arAxp—1, 0
J&%—JiogicaQ(l—pv) GA'B W = 0

N—o

1
lim Taioaitr(A*B_lA*\Ion) =0

follows from lemma 3, and

N—oo

1 1
lim ?Naioai tr(A*BTTA* W) = ?030 tr(PyA™)

follows since limy_,.c NB™ = (62A*) " elementwise. Collecting terms as in
the T' — oo case then gives the result.

Finally the result for N,T" — oo follows by taking sequential limits and
using lemma 3 m

The following lemma gives some basic limit results for the expressions
Z'Y e, Uy X leyy, D’E7ID and H'S 'H. In the proof of the results in
this lemma we make extensive use of elementary results on inverses involving
sums (Dhrymes (1984, p. 39)), applying them repeatedly to obtain manage-
able expressions.

Lemma 6 As N — oo, T — o0 or N,T — o0

1
phm WXIE_IE: =0

If both N, T — oo andif%—>oo

1
Npi%im Uy le = 0
_ 1 2
Nl%fgoofblzwz LNT = 0—3(1—/&)

If both N, T — oo andif%—>oo

1

Np}im — U Ee = 0

. 1, _ 1
e e =

If N,T — oo simultaneously
1 1
Np}im —y 2l = Np}im —typ X e =0
1 1 1
li — 2 = 1 — S N =
N,Tl_'riloo N NT NT N,II‘IEOO T NT NT ()‘Z + ()‘3 (1 — p/\)72
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AsT — oo or N,T — o0
plimlD’E_l:-: =0
T

As N — oo

1
plim ﬁD’zz—ls: 0

As N — oo or N, T — o0
phmiH'zflszo
N
AsT — oo

1
plim WH’Z’ls: 0

If both N, T — oo andif%—>oo

T
1 1
lim =D'S"'D = li d; — pade 1) (dy — pydy 1)
NI,)TlinooT To'io girgtzg( t — Pt 1)( t — Padt 1)
: | E—— 1 ; l =
pim —HXYX'H = — plim—h'Eyh
N, T—o0 O-i NHOON

where Exy = Iy — Iy, Iy = %LNLGV. If both N, T — oo and zf% — 00

plim lD'Z]_lD = plim !

S
N, T— T T—oo TU% A
: 1 /51—1 1 : 1 !
pim —HYX "H = — plim—hh
N, T—o0 O-l% N—oo IV

— 2 p— —
where Sy = (Zthz (dy — padi—1) (dy — pydy—y) — Ll SYTTESAT dtd;) :
Finally, of N, T — oo simultaneously

1 1 1 T-17-1
plim =D'S7'D = plim——S, + plim d.d’.
N0 T T—oo 103 * T—o0 T2 ((72 + e 2) ; ; t
Bo(1-pn)) T
) 1, . | E— ) 1 —
pim —H'YX "H = plim sh'Exh + plim . h'Jyh
N,T—o0 N—oo No-,u N—oo N (0-121 + a Tu )2)
—Px

28



Proof. To obtain the limit results for ﬁX’ Y le we write

WXE = NTaa ;;mez g
(1—p,) T N N T N N
N2T(,-v2 ZZZX””“J N2TZZZX”C“MJ
® =1 j=1 i=1 t=1 j=1 i=1
1 T N
Z ZX”AMUM

T

rltlz
T T
T t
T

—NiTzz

=1

1
N N
%
E E Xi,tAt7rvj,7‘
7j=1 i=1

=1 5=

1 T N N .
+N2T z_; tz_; Z; Z Xi,tL ’ Vjp

Crooa
+— X@ Lt’r)\r
RN

where 7, denotes the ¢ : th element of C'¢ and ¢; denotes an element of
the 7' x 1 vector (No2®, + (A*)_l)i1 tp. Further LY" denotes the ¢r : th

element of the T x T matrix L™! = (No2®, + (A*)fl)_1 and Af, denotes
the tr : th element of the T" x T" matrix A*.
First we consider the probability limits of the terms involving u;

plim NT 2 ZZX”T,:MZ =0

t=1 i=1

li ) Shuly Xi =0
plim LSS X,

t=1 j=1 i=1

as N — 00,T — oo or N, T — oo are straightforward to show since C'¢§ is
a constant vector. To establish corresponding results for

2.2 D Kuen ®)

t=1 j=1 4=1

plim e

we need to consider the properties of ¢;. First, since ¢, is the t : th element of
Ler = 0,2 (1 — p,) B"1C't% and B! converges elementwise to a matrix with
exponentially decaying off-diagonals, every element of Ler is an exponentially
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decaying sum. Secondly, by the properties of B~! every element of Ley is
O ((NT)_I). This shows that (8) is zero as either or both of the indices
grows large.

For the elements involving the idiosyncratic errors, vy

T T N

phm—ZZZXMA Wip = 0

r=1 t=1 =1

T T N N
NQTZZZZthAtTU]T - 0

r=1 t=1 j=1 =1

plim

as N — 00,7 — oo or N,T — oo holds since A* = C’ (ngj;i + UE’QE;) C,
C'C is band-diagonal and C’c% is a constant vector. To be able to write

T T N N
plim N2T Z Z Z X L v, =0 9)

r=1 t=1 j=1 =1

as N — o0o,T — oo or N, T — oo we need to establish some properties
of L™1. For this purpose we let C¥,C’ = I, Q be the eigenvectors of ¥
in the metric of ¥,. That is, C¥,C'= QA where A is diagonal and Q is
orthogonal. Further let W = C'Q we can then write

U — W71IW71 — CleQlcfll

¥, = C'QAQC V=W VAW!

and

L = WU'W (Noi @, +0.Jr +0.%,) WW !
= WVD+(o2-0)Tp) W
where J;. = Q'J;.Q is idempotent, D =No2A + ¢2I; is diagonal. Since A

is diagonal with bounded constant elements setting A =@l will not change
the order properties of L', Hence, defining E;. = Iy — J; we obtain

1 —w 1 w
L!laW ——E+———J | W
((N(72<,0+02) + (No2p +02) T)

which shows that L~! is similar to A* except that the elements of L' are
O (N~1). This shows that (9) holds.
Finally for the term involving A,

T T N

EETOWZZZX LY, =0

r=1 t=1 i=1
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follows since the elements of L™ are O (N~!). Next

T T N
gﬂgﬁzzz)@y“ =0

r=1 t=1 i=1

since )\; have zero mean and by the properties of L=!. It follows that the
probability limit is zero as both N and T' — oo as well. This completes the
proof of the first result in the lemma. We consider next the limits of the
terms involving the constant.

To obtain results for ¢y X7 e we let X;; = 1 Vi, ¢ in (7). This gives

T N
thrX e = (1-p,) chtﬂz+zzctvzt+NZCt)\t

t=1 =1 t=1 i=1

If % — 00 we normalize by % to obtain

T N
plim Zth,ui = 0

N—oo =1 i=1
AN
i -

T—o0o N—oo

NI
plim plim T ; g = 0

as a consequence of the properties of ¢;. To obtain corresponding results for
U2 Loy write

1
—X'2IX
NT
1 N 1 N N 1 N N
= — Y XAX;,— —— X.A*X; X.L7'X;

and note that if X; = ¢7 Vi we arrive at

L/]VTE_ILNT = NL{FL_ILT = NI’{T (N()'z\]:l)\ + (A*)il)_l Lr

= 02(1-p,) Nty (NUQ\IIAA* +1) 7 O
0202 (1—p,) Uy (LA CLE + 0 (N7
= 00,7 (1—p,) tp (AT) 1 ETICG + O (N7

31



since 1, = Ot = S S o+ 1 (T = ) )y = O/(T)

1—-p2
L/NTE_ILNT
2 2 ! =1 ‘73_‘72 ol 2 —U =1, -1
= o,%0,°(1—p,) t;C yp Wi + o2y | CTVEIICLG + O (N7
= 0,%0,°(1=p,) (0 (1= p,) nef + 02;,C 1) C V8 ICLg + O (N )

hence if both N,T — oo and % — 00

1 0,0 3
lim lim =ty X ey = lim E_(1-— Pl okl Nl O
o N T iNT o TU(Ql 03 ( Pv) T A T

o /
— lim 0k (1-p,)t,C'C VO ICS

. n ! a
1 2
= = (1—=py)

where L:ﬁpl = L’TC 5 and C, is the Prais-Winsten transformation matrix for
W,. Alternatively this can be derived by noting that limy_,. vech (%L) =

. - 1— 2 ! 1— 2
vech (02®,) and hence limy_o Fe/L ey = %Li B— ((T# as T —
u u

00. If% — 00 we have

T N
plim plim N g E ap, = 0

N—oooT—oxo —1 =1

1 T N
pin L3-S =

t=1 i=1

T
plicht)\t =0

T—o0 =1

For ¢y, X" eyt we arrive at

. / -1 . / 2 2 2 -1
lim ¢ypX ey = lim Nep (NO'u‘IlA + UMJT + JE\II,J) Ly
T—o0 T—o0

and hence proceeding by induction

1
lim lim —L, E_ILNT = —
N—oooT—oo N NT ()‘i
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Finally if N,T" — oo simultaneously we obtain

1 1
plim —dy, X 'e = plim —ty, e =0
N, T—x N,T—x
1 1 1
lim —dy .21 = lim =ty 2 ey =
N,T—o N NT NT N,T—x T NT NT O-IQL + O‘% (]_ — p/\)72

This completes the proof for the terms involving the constant and we proceed
to consider the limit results for the terms involving time-invariant explana-
tory variables or individual-invariant explanatory variables.

To prove that

N N
: 1 -1 . 1 T —1 : 1 T —1 : N T —1
plim TD 3 e =plim T ;1 d'L™ “¢rp;+plim T ;1 d'L "v;+plim , dL "\

is a null vector as either T' — oo or N,T" — oo it suffices to note the properties
of L=!. By the properties of L=! we similarly have pth_)OO +d L=\ 7& 0
and plimy_, %d,L_lA = 0. Results for plim +H'Y"'e and plim 1TH’2 €
can be shown analogously. Remaining results can be derived by noting that
LD'S 1D =Xd'L'd, and LH'S ' H =202 WE h+ 4t “ThT h =

The next and final lemma gives some 1mportant results about the limit
behavior of the information cross-elements for the mean parameters, § and
the elements Zs .. Limit results for the elements Z, , appear in theorem 2.
To summarize some of the content in this lemma we can say that the set
of consistent parameters (as N — oo or T — o0) are information block-
diagonal to the set of inconsistent parameters and that the set of consistent
mean parameters and the set of consistent variance parameters are always
information block-diagonal.

Lemma 7 As either or both of N and T — oo the cross-elements (properly
normalized of course) 15 (v,a)s Lr,(vi19)s Lr(vgiys) ANd Loy, , converge elemen-
twise to zero in probability (or in expectation), where vy, = O'Z, 7o = (02, p,)
and v; = (02,p,). As N — oo (no matter what T is) this holds for
Ty (o) Lygrsr Lox and as T — oo (no matter what N is) for L, axr.),

2, and Lg . We now concentrate on mainly the non-zero cross elements

of interest. If only N — oo

1 (1 p/\) /
—Zor=—=-d
VT o2\/T

where C4LCy = W3 (1—py) i) = Caup, hence if NJT — oo such that
N

T—>OO

plim

1 1-—
plim TICM = A=) phm Z d;

T—>oo
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and if T" — oo 07"NT—>oosuchthat——>oo

1
——Tpr =0
vT

plim

If N,T — oo simultaneously

T-1
1 1 1
plim =7, . = plim— ) d,
T o2 (1—py) 2+ 02 1o T 4
If only T'— oo
li ! Z L EN:h'
pim ——=Ly + = i
Ve o2
hence if N, T — oo such that = — 00
plim iI = plim — Z h;
N 7 Z N—>oo
and if N — oo or N, T — oo such that— — 00
li ! Z 0
M ——=Lar =
p \/N E
If N,T — oo simultaneously
lim ~ 7. ! li Zh’
im—7Z,, = im —
P 2 o2(1—py) " + 02 N N

T— N
1 1
lim —7,, = hm h’
PRVNTTT T o) et Z 2
and otherwise for the last term

plim Z,7=0

1

VNT

Proof. These results can be proved with exactly the same methods as in
lemma 6. In fact the same matrices are involved in the expressions and the
proof is therefore omitted m

Next we give the proofs of the theorems in the text.

Proof theorem 1. The method of proof is to examine the proba-
bility limit of the standardized log-likelihood. It is however not useful for
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dealing with the constant. In fact, the constant drops out of the analysis.
The reason for adopting this method is that we can (in most cases) prove
global consistency results for the other parameters which are not easily ob-
tained otherwise. Asymptotic properties of the constant term are established
separately at the end of the proof.

The negative of the log likelihood is up to an irrelevant term given by

N 1
#(8,y) = 2 In |A*| + 5 Iy + Noo W A (10)

+5 (v~ 268) 57 (v - 26)

1
= —In|A*|+ 5 Iy + Noo W, A*

2
% (80—08) Z'S'Z (8,—0)

—|—%€’E_ls—|— (60—6) Z'S7'e
By theorem 4.1.1 of Amemiya (1985) we need to verify that (i) the para-
meter space O is a compact subset of the Euclidean K-space, (ii) ¢(d,7y) is
continuous in § € O for all (y, X) and is a measurable function of (y,X) for
all 0 € O, (iii) W 1¢(d,~) converges to a nonstochastic function, say ¢, in
probability uniformly in § € © as W — oo and ¢, is uniquely minimized at
0o. Since (i) follows from assumption (b) and (ii) is trivial it remains to show
(iii). This involves finding the limit of W™'¢(d,v) as W — oo with W = N,
W =T and W = NT respectively.

First we consider the uniform probability limit of (10) as N,T — ooc.
Note that

Ee'S e =tr X713,

where ¥, denotes 3 evaluated at 6y. Hence using lemma 5, lemma 6 and 7
and assumption (c)

: 1 .1 o .1 2
m Npe0 ) = i gp Ol i gpn (o (1= pu) o)

o VT

In Iy + Nob W, A¥|

2
Ino?

y
T SNT

2 2 _
+% (,60—,6)/ Rx (ﬁo_ﬁ) + Oco (pv + 1) 2pv0pv

207 1= pi
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with Ry = plimy 7., 77X’ 27X, since |C| = O (1),
1

: 2 *
Jim s Iy + Noo W, A" =0
and using lemma 4 we arrive at
1 1 o2 [(p2+ 1) —2p,p
- 1 2 - _ / RX . e0 v v0Mv 11

and it is straightforward to verify that (11) is uniquely minimized at 8= 3,
02 = 0%, and C = C,y. Having established the consistency of maximum like-
lihood estimators 3,52,5, as N,T — oo we obtain the uniform probability

limit of (10) as N — oo with 7" > 2 a fix constant. For this purpose let
¢=(8,7)

plim %gb(é,’y) = jvliinoo%ln|A*| + lim 2;T In|Iy + NoZ®,A*
4 plim 5 (6-0) 23S 2 (6-C)
+ Jim ﬁEs’E_ls
+plim o (Co—C) 2y B e
— —% In(1-p2)+ % In (d*o2 (1 — po)’ + o?)

1
+ ﬁago tr (A" W)

2T (d202 (1 — p,)* + 02)

where we have used lemma 5 to evaluate limpy_ . ﬁEs’ Y~ le, lemma 4, 6
and lemma 7 and that ¢ is uniquely identified with ¢ = ¢,. We then have

. 1 1 2 1 2
JI\)[1—1>§ ﬁgb(éu 7) = _ﬁ In (]- - pv) + 5 In O, (12>

1 1 1

+50300;2T tr (C¥,,C') — o In o2

_1 2 —QE alC\IJ C/ «
5707 “ptr w0 by
1 2 2 2 2

+or In (d*0% (1 —p,)" +07)
iaiodz (1—p,)* + 0%d 2 C,,C'Ls
2T (202 (1 — p,)? + 02)
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Evaluating tr (C¥,,C’') and ¢/CW¥,,C't$ as in lemma 3 we can show that
(12) is uniquely minimized at p, = p,q,02 = 02, and O'Z = O'ZO. This estab-
lishes the consistency of B,ﬁg,ﬁv as N — oo as well as the consistency of
Ei,? as N — ooor N,T — oo.

Consider next the uniform probability limit of (10) as N > 2 is fix and
T — oo. Noting that lemma 6 and 7 and assumption (c) ensures that
W = (@, 7') is uniquely identified we have

. 1 . 1 * . 1 2 *
Phm (8.7 = i gp A+ i gl + NowEaA
: 1 -
+'11£Iolo TtrZ Iy,

using lemma 5 and after some matrix manipulation we arrive at

1 11
lim —— (& = |z —==]|Ind? 13

Lo L o2 [(PE +1) = 2pyop,
2 2N ) o2 1—p%,
1 1

+557 Jim = n No2W, + o2, |
11 L

oy A, 7t (PP ™)

where Py and P are given in lemma 5. The first and second row of (13) are
uniquely minimized at 02 = 02}, p, = p,o- However we cannot evaluate the
last two rows analytically which complicates showing uniqueness globally®.
We can prove the existence of a consistent root though (cf. Amemiya (1985,
theorem 4.1.2)). Applying matrix differentiation to (13) using standard re-
sults for interchanging the limit and the derivative e.g. Rudin (1976, p 152)
it is straightforward to show that the true parameters are a solution to the
first order condition. Of course then we also need to verify that the second
derivative matrix is positive-definite when evaluated at the true parameters.
But this is straightforward to do as well. This proves the global consistency

%In case of p, = p, = 0 (13) reduces to

O PO S B Y
2 an) 7T\ \2 72N ) 02

1 1 NU%0+050
2N 2N No2 + 02

+ In (N(ri +0§) +

which is globally minimized at the true parameters if N > 2.
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of B, 7 as T — oo (and also the global consistency of 7 as N,T — c0) and
the existence of a local consistent root for Eg, Do ﬁi,@ as T — oo. Since the
information matrix is positive definite over the full parameter space when
N,T — oo (as shown in theorem 2) this also proves the global consistency
of 32,5, as N, T — oo.

Finally we obtain results for the constant term. To obtain a local consis-
tency result for @ as N,T — oo it suffices to consider lemma 6. In fact &
can be shown to be globally consistent as N,T" — oo by the results in lemma
6 and lemma 7 and the fact that the information matrix is positive definite
over the full parameter space for the remaining parameters. As a special case
of lemma 6 we obtain the inconsistency of @ asonly N - coorT — oo m

Proof theorem 2. We first derive the results when N, T — oo and
hence the full parameter vector is consistently estimated. For the purpose
of establishing asymptotic normality of 6 it is useful to structure § as § =
(o, 7', 7',3) and we will do so below. By the mean value theorem for
random functions Gourieroux and Monfort (1995, p 400)

0l,v), _0Ud,v), | UsY), (5
5 0= g5+ ggor 8 (=) (1)

where 0 belongs to the segment (5, 00) with probability 1. Define Fyr as a
diagonal matrix with

diag Fnr = {min(\/ﬁ,ﬁ) ,FW7FT,F57\/N7\/W7\/W7\/T,\/T}

where Fj3 is a vector containing k; v NT and F,F, are vectors containing
ki VT and ky V/'N respectively. We can then write

- (U8 Nt ] [t (9U8,7)
Fyr (9 - 90) == {FN%F (W'E) FNlT:| {FN%F ( 50 |00>] (15)
From theorem 4.1.3 of Amemiya (1985) we need to show that (in addition
to local consistency Amemiya (1985, theorem 4.1.2)) (i) I(d,v) € C? in a

convex neighborhood of 6y, (ii) [F]_VIT (8259(35,’) |§) Fy'r| converges to a finite

non-singular matrix

. . 1 (0°U(8,) .
V(00) = = lim B [FNlT (Wbo) Fle}

in probability for any sequence @ such that plim# = 6y and (iii)

r (2520) N 0.V 00)

38



where

_ , _, [Ol(8, ol(8, "
Vit = 8 [Fa (F52 ) (52 ) FR]

N,T—x

a finite non-singular matrix. Note that (i) is trivially satisfied and by as-
sumption (a) (ii) follows if the convergence is uniform. Further note that

7| ()] =0

is straightforward to verify from appendix A.1, and

Vi (o) =V (6o)

follows from the information matrix equality. To show (ii) we take uniform
limits of the appropriately scaled elements of the information matrix obtained
from appendix A.2. The limits for the variance parameters are straightfor-
ward to derive using lemma 4 and repeatedly using elementary results on
inverses involving sums. For the elements Z,2 , ~ we have

4
T = g 0]
1 (@ (T
M=o (a2 4 (T = 1) 02 (1 = p,)* + 02)
_ 1
n ZUﬁ

. 1
N,lil_'riloo NTIUM Px T 0
1
N ke, =0
and for the elements Loz,
. 1 . 1 oy \2
lim —Z32, = lim —tr(A*"P,)
NT—oco NT “¢7¢ NT—oo 2T
1
20t

€
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Finally, for the elements involving o2, p,, p,

1
lim =Z,2 ;o = —
N,THOO T qugu 20.§

: 1 . 1 1
Nljl“riloo TIgg“pA = lim Ttr (\IJ)\ LA)

P . 1 -1
= —2 1 — tr (V7D
03(1_p§)+N,¥E®ozagT(1—p§) r(¥y'D)

Px . Px
- M g P q-T)=0
+N%r£oo 02T (1 — p3) ( )

lim =0

N oo \/_T Zs2 p,

1 1
lim —7, , = lim ﬁtr(\llglLA)Q

N,T—o0 T N, T—o0

1 2p 1 2
= lm —tr (o7 (=2 ¥, +—D
N1 oo 2T r( g ((1—p§) A=A ))

2p3 ) 1 2
- 2 1 2
—% —|—N1Tm ——tr (\IlA D)
(1—p3) T—00 2T (1 — p3)
1

(1-=p3)

lim

N, T 00 \/7 p/\ pv

4

1 B . L 1 , )
N%rEmNTIpvpv a NIYI“Iilooﬁtr(AL) _NIYI“IE}OOQTtr(C CLU)

1 1
= lim — tr (¥;'L
wim o ( )’ = 1-p2)
or, __

where we have used that L, = = (1 )\IIA + = )D with D a band

i—1

matrix with zeros on the main diagonal and ip} " on the 1:th subdiagonal
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and tr (¥'D) =2p, (1 -1, tr (\Ifng)2 =202 (T —1)+2(T —1). Hence

we arrive at (using assumption (c), lemma 6 and lemma 7)

¢ 0 0
V() =] 0 Rx 0
0 0 V(6

v

where Rx = plimy 7., 77X'2 X, and with

(1-pr0)® (A=py)* T-1 q/
o ToZ, =2 dt 0

o 1 T g g~
¢ = plim To2, Zt:Q d;d; 0

T—o0 =
1 : 11,/

= plimy_, ., wh'Exh

i

if % — oo where d} = (d; — pydi 1), Ey =In — Iy, Iy = %LNLGV

1 1 N /
gio O ) Ngio Zi:l hi
¢ = phm phmTHoo WS,\ 0
N—oo u0 1 h'h
NO'%LO

if § — oo where S, = (X1, d)dy — Spel ST ST 4 d; ), and

. w% Z%Ezdg T-1 w? 122]\Ll hzgv
. 1 1 ~ - —
¢ = plim To2, Sx + Wz 2 =2 ZTIQ dtdlr % Zt:2 d; Zi:l hé
Wh,ENh + wﬁh’JNh
if N, T — oo simultaneously, where w = L —, 2= N or T and

O‘i0+(1_pAO)720’uO
V~1(6y), is a diagonal matrix with

1 1 1 1 1
dla‘g Vil (60 = { 5 5 ) ) }
)7 20;‘20 2030 (1—- Pgo) 20%0 (1— ﬂio)

To show (iii) note that the elements of the score for § is a linear combina-
tion of the normal € and the score for the variance parameters, v are linear
combinations of quadratic forms in normal variates i.e. they can be written
as

b+ e'Pe

for suitable choice of b and symmetric matrix P. We then apply the following
lemma adapted from Amemiya (1971) to the quadratic forms in appendix A.1
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Lemma. Let an n-component vector random variable uw ~ N (0,A), G
be a mon-negative definite symmetric matrixz with rank r < n. Then u'Gu
is distributed as Y, ;X7 (1), where the ¢'s are r non-zero characteristic
roots of AG and each x? (1) is an independent chi-square. If H is another
non-negative definite symmetric matriz, cov (0'Gu,u'Hu) = 2 tr (GAHA).

Asymptotic normality of the appropriately normalized score vector can
then be shown by establishing sequential weak convergence results in case
& — oo or + — oo (see Phillips and Moon (1999, section 3.3)) and in case
N, T — oo simultaneously a multivariate CLT for triangular arrays may be
applied.

To establish the results as only N or T' — oo we apply the expansion
(15) to the consistent subvectors 8" = (8,7,v%),v® = (02,02,p,) and

= (B, m,4Y) v = (02, p,,02,p,) as N and T' — oo respectively. This
gives

SO L (0%(8,7) 1 [ (018, 7)
— 0 = — 1 —’—i 1 1 7. i
Fv (9 00) {FN ( 06°96" |9>FN} {FN ( o' |90>}
and
~ (P8 \ pr] [ (01(5,7)
Fr (9 - 98) - = |:FT1 ( 8(9t80_t' |§t> FT1:| [FTI ( YL |93>}
where F y, Fr are diagonal matrices with
diagFy = {Fﬁ,FT,\/N,\/NT,\/NT}
diag Fp = {Fﬁ, F,,VNT,VNT, VT, ﬁ}

To show (ii) for these cases we need to examine the convergence of the
information matrices as N and T" — oo respectively. As N — oo we find
(using assumption (c), lemma 6, lemma 7 and straightforward computations)

0%1(9,) 1 Ry 0
lim E |Fy | ——~ Fy | = 1 i
R { ( 90°96" ’%) N} { 0 V,/ (9 >W }

where
vy (96)7@)
2
1 (O’g%ﬁ) (12f/"’l L%’A*W LT 0’3(;77_,0)2 a/A*L L%
) %(0*4+(T—1) o) %tr(A*\PA*L)

7? tr (A*L,)”
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where 02, = (02 — 02) and V' (6, ) @ 1s positive-definite by theorem 1 and

standard results of multlvarlate calculus
As T' — oo we have (using assumption (c), lemma 6, lemma 7 and
straightforward computations again)

P°(8,7) ) 1} [RT 0
lim £ |F! F =
\/— -

T 1 /N 1 /N VN

0’4TV‘I"U v, O'QTVL'U v, (7'3’11\/‘;[”07‘;[’A 0’4T V‘I’U L
17N VN a2V/N
TVLv,Lv UgTVva‘I’A Vi, L,

with

_ 1 a7
A (Ht) = lim — %TQ
r R e 2V Ny
TO'g \I’/\7‘I’/\ 0-4T L)\ AN
O'fNQ
T0'4 VL)\ L/\ i

where

Vep = tr((¥,'FT,'P) Iy —2M)) + tr (¥, 'FM¥,'PM)
_ _ 2 1 _ ,
Vi = tr ((\I'vlF\I'le) (IT — NM)) + ot (T'FM¥, 'PM)

and M = (IT + ]\}'—;L\Il A\IIU\IIXQ) 1. The positive-definiteness of V;l (06)7(”
then follows from the results in theorem 1.

These results show that the information elements of the subsets of consis-
tent variance parameters do not depend on the inconsistent nuisance para-
meters as N — oo and 7" — oo respectively. To show this for the information
elements of the subsets of consistent regression parameters as well we write,
as in lemma 6,

1
—X'2IX
NT
1 N 1 N N 1 N N
= — ) XAX,— —— X' A*X; X' L7'X;

where L = (No2W®, + (A*)fl)f1 = O (N71). Hence

1
plim —X'21X
T

N—o0
N N
= plim W Z X/A*X ~ plim NiT > ) XjATX; =R (0))
o0 =1 i=1
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and as T' — oo we find

1 _
pin XX = R )

since A* = C (0;23?1 + 0,?Ef) C where 62 = O(T). Similarly one can
show that cross-elements as well as information elements of time-invariant
explanatory variables and individual-invariant random variables do not de-
pend on nuisance parameters as N and 1" — oo respectively. Finally, asymp-
totic normality of the limiting score vectors (suitably normalized of course)
follows from applying a suitable multivariate CLT m

Proof theorem 3. The negative of the log-likelihood is (apart from a

constant term) given by

N 1 ! rpt *
68,7) = S n|A+5 (80-6) Z (Ly = A”)Z (8,-9)

1 Iy *
+§€/ (IN®A*) e+ (60—5) Z (IN ®A )E

Since the parameters p,, p, play no role in what follows we assume p, = p, =
0. To prove (i) note that

N (Tojy + 0%) N(T_1)020+ Nog N(T—1)o3
(To? + o2) o? (To2 + o2) o2

tr (27'%) =
which contradicts a consistent root of ai,ag as N — oo and a consistent
root of 62 as T'— oo or N,T — oo (and hence also of p, as N — oo, T —
oo or N,T — o0). To show (ii) we need to investigate the behavior of
Z Iy ® A*)Z, Z' (Iy ® A*) e which are explicitly written as

Z (Iy 2 A*)Z
N / N
]X—%T UL% Zizl ¢ %LTd Ulg Zi:l h;

Zij\il XIA™X; 2511 XiA*d 0_1% Zf\; Xierh;
Nd'A*d L3N durh
1
Ulg Sy hih
and
Z (Iy® A% e
%Zf\]1 My + U_]\% ZtT:I A+ Ulg ZtT:I Zf\il Vit
JL% Zt:l Zi\;l Xitpt; + Zf\;l XA Zf\;l XiA*v;
Ulg ZtT:I Zf\il dipr; + Nd'A* A+ sz\il d'A*v;
g% Zz]\il hip; + JL% 2511 h; ZtT=1 A+ gig ZtT=1 Zz]\il vith;
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with 0f = To? 4 0. Proceeding as in the proof of theorem 1 then obtains
the results in (ii) m
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