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Abstract

In this paper we derive conditions for the conditional covariance matrix

to be positive definite in a general vector ARCH model. The conditions can

be easily extended to the diagonal vector GARCH model. For the general

vector GARCH model, analytical expressions for the conditions in terms of

the parameters become complicated, but their validity can in principle be

checked numerically once the values of the parameters are given.
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1. Introduction

During the last fifteen years or so, the focus in modelling volatility has partly
shifted from univariate to multivariate relationships. A number of vector mod-
els has been introduced for the purpose. Among others, generalizations of the
univariate GARCH model to the multivariate (vector) case have appeared in the
literature. For brief surveys, see Bollerslev, Engle & Nelson (1994) and Gouriéroux
(1996), Chapter 6.
The properties of the vector ARCH and GARCH models are not well-known.

In order to shed light on certain aspects of them we shall consider vector random
coefficient autoregressive models. It is well-known that univariate vector ARCH
and GARCH models may be viewed as autoregressive models with random coef-
ficients such that each random coefficient has mean zero, see Bera, Higgins & Lee
(1992). In this work we make use of the corresponding analogy in the multivariate
case; see Wong & Li (1997). This is done for the following reasons. First, we want
to find conditions for the conditional variance of a general vector ARCH model to
be positive definite almost surely for all t. Second, vector random coefficient mod-
els are useful in characterizing parameter restrictions that certain vector ARCH
models impose on the general vector ARCH model. The ARCH version of the
BEKK-GARCH model of Engle & Kroner (1995) constitutes an example. Finally,
viewing a general ARCH models that way helps one to interpret parameters in
vector ARCH models and to define new, potentially useful parsimonious vector
ARCH models.
The plan of the paper is as follows. In Section 2 we introduce the Vector

Random Coefficient Autoregressive model and describe its connection with the
general vector ARCH model. This connection is used in Section 3 to derive a
condition for the conditional covariance matrix of the general vector ARCH model
of Bollerslev, Engle & Wooldridge (1988) to be positive definite. In Section 4 the
BEKK-ARCH model is interpreted as the vector random autoregressive model.
Sections 5 and 6 contain a discussion of generalizing the condition to the vector
GARCH model. In Section 7 the usefulness of the theory is demonstrated by a
small empirical example. Finally, the conclusions can be found in Section 8.



2. Vector random coefficient autoregressive and vector ARCH

models

Consider the following vector autoregressive model

yt= µ+

q∑
j=1

Bjyt−j + εt

where {εt} is a martingale difference sequence ofm×1 random vectors with respect
to the increasing set of sigma fields Ft−1 = σ(εt−1, εt−2, ...).Assume, furthermore,
that the error process

εt =

q∑
j=1

Φjtεt−j + ηt (1)

where {Φjt} = {
[
φjikt

]
} is a sequence of m × m independent random matrices

such that EΦjt = 0,j = 1, ..., q. Setting φjt =vec(Φ
′

jt) it is assumed that {φjt}
is a sequence of independent identically distributed random vectors such that
Eφjtφ

′

jt = Σj = [σj,ik,ln] , j = 1, ..., q. In particular, we denote σj,ik,ik = σ2
j,ik. It is

assumed that these covariance matrices are positive definite. Random vectors φit

and φjt, i �= j, are assumed independent for every t. The ith equation of (1) is

εit =

q∑
j=1

m∑
k=1

φjiktεk,t−j + ηit, i = 1, ..., m. (2)

Model (1) is a special case of a more general random coefficient model in Wong &
Li (1997). It is a multivariate counterpart of the model considered in Bera et al.
(1992). In the model of Wong and Li, among other things, φit and φjt, i �= j, are
not independent. The conditional heteroskedasticity counterparts of that model
are more general than vector ARCH ones considered here.
The conditional variances of the elements of εt with respect to Ft−1 can now

be defined as follows. Let Ht = [hijt] be the m×m conditional covariance matrix
of εt. Then, from (1) it follows that

Ht = Eηtη
′

t +

q∑
j=1

E{Φjtεt−jε
′

t−jΦ
′

jt|Ft−1}

= Eηtη
′

t +

q∑
j=1

(Im ⊗ ε′t−j)Σj(Im ⊗ εt−j) (3)



where Eηtη
′

t = [ωij].Assumption Eφitφ
′

jt = 0,i �= j, implies E{Φitεt−iε
′

t−jΦ
′

jt|Ft−1}
= 0, i �= j, in (3) . For example, when m = 2 in (1) , the elements of Ht have the
following form:

h1t = E(ε21t|Ft−1) = ω11 +

q∑
j=1

(σ2
j,11ε

2
1,t−j + σ2

j,12ε
2
2,t−j + 2σj,11,12ε1,t−jε2,t−j)

h12t = E(ε1tε2t|Ft−1) = ω12 +

q∑
j=1

{σj,11,21ε
2
1,t−j + σj,12,22ε

2
2,t−j

+(σj,11,22 + σj,12,21)ε1,t−jε2,t−j}.

h2t = E(ε21t|Ft−1) = ω22 +

q∑
j=1

(σ2
j,21ε

2
1,t−j + σ2

j,22ε
2
2,t−j + 2σj,21,22ε1,t−jε2,t−j)

(4)

where ωij =cov(ηit, ηjt), i, j = 1, 2. Assuming the elements of φjt independent
for all j leads to h12t = ω12, and the corresponding model could be called the
"constant conditional covariance" model. Assuming, furthermore, that ω12 = 0
gives the result that ε1t and ε2t are conditionally independent given Ft−1.
Writing (3) in vec form one obtains

vec(Ht) = vec(Eηtη
′

t) +

q∑
j=1

E(Φjt ⊗Φjt)vec(εt−jε
′

t−j). (5)

On the other hand, Bollerslev et al. (1988) defined a multivariate GARCH model
in which all conditional variances and covariances have their own equations. The
ARCH version of their model, which we shall call BEW-ARCH for brevity, can
be written in the vector form as follows:

vech(Ht) = ω +

q∑
j=1

Ajvech(εt−jε
′

t−j). (6)

where Aj = [ajik] , j = 1, ..., q, and ω = (ω1, ..., ωm(m+1)/2)
′. As an example, let



m = 2. Then the equations in (6) are

h1t = ω1 +

q∑
j=1

(aj11ε
2
1,t−j + aj12ε1,t−jε2,t−j + aj13ε

2
2,t−j)

h12t = ω2 +

q∑
j=1

(aj21ε
2
1,t−j + aj22ε1,t−jε2,t−j + aj23ε

2
2,t−j)

h2t = ω3 +

q∑
j=1

(aj31ε
2
1,t−j + aj32ε1,t−jε2,t−j + aj33ε

2
2,t−j). (7)

A comparison of (5) and (6) suggests that their is an analogy between the
VRCAR model and the BEW-ARCH model: the latter is a special case of the
former, obtained by imposing parameter restrictions on the covariances of the
random coefficients in the VRCARmodel. A comparison of (4) and (7) constitutes
an illuminating example.

3. Condition for the conditional covariance matrix of the

BEW-ARCH model to be positive definite

3.1. General case

In practice, it has turned out to be difficult to find conditions for the conditional
covariance matrix Ht of the BEW-GARCH model to be positive definite almost
surely. The special case in which the BEW-GARCH model is diagonal is easier
to handle and has been discussed in Bollerslev et al. (1994). The usefulness of
the analogy between the VCRAR model and the BEW-ARCH one lies in the fact
that it can be used for finding such conditions for the latter model. Corresponding
conditions for the BEW-GARCH model can then in principle be obtained through
an infinite-order BEW-ARCH model. This will be discussed in Section 5.
In what follows we shall call "positive definiteness" of a square matrix "posi-

tivity" for short and shall also use the term "positivity conditions" for conditions
of a square matrix to be positive definite. We begin by formulating the following
proposition:

Proposition 1. Consider model (1) with conditional covariance matrix (3) . The
conditional covariance matrix is positive definite if Eηtη

′

t is a positive definite ma-

trix and the covariance matrices Σj, j = 1, ..., q, are at least positive semidefinite.



Alternatively, (1) is positive definite if Eηtη
′

t is positive semidefinite and at least

one of matrices Σj, j = 1, ..., q, is positive definite, whereas the remaining ones

are at least positive semidefinite.

In order to apply the proposition, it is necessary to find the connection between
the covariance matrixΣj and the coefficient matrixAj in (6) . For this purpose we
express (6) in vec form. This is done by defining the m2×m(m+1)/2 duplication
matrix Gm of rank m(m + 1)/2 such that vec(C) = Gmvech(C). Furthermore,
let Lm be an m(m + 1)/2 × m2 left-inverse of Gm, that is, LmGm = Im(m+1)/2.
We choose Lm = (G′

mGm)
−1G′

m (see, for example, Harville (1997), pp. 352-354).
Then (6) can be written in vec form as

vec(Ht) = Gmω +

q∑
j=1

GmAjLmGmvech(εt−jε
′

t−j)

= Gmω +

q∑
j=1

GmAj(G
′

mGm)
−1G′

mvec(εt−jε
′

t−j). (8)

By comparing (5) and (8) it follows that

E(Φjt ⊗Φjt) = GmAj(G
′

mGm)
−1G′

m. (9)

We have now established a link between the variances and covariances in E(Φjt ⊗
Φjt) and the elements of Aj. It is seen from (9) that the BEW-GARCH model
imposes parameter restrictions on E(Φjt ⊗Φjt). The difference in the number of
parameters in E(Φjt ⊗Φjt) and Aj equals {m(m− 1)}2/4.
Next, we observe that Σj and E(Φjt⊗Φjt) contain exactly the same elements.

Omitting subscript j, write the m2 ×m2 matrix

E(Φt ⊗Φt) =




F11 F12 ... Fmm

F21 F22 ... F2m

...
Fm1 Fm2 ... Fmm




where all submatrices are m×m. Let T be the operator that permutes rows of
Fii with rows of Fki, i �= k, in such a way that the kth row of Fii is permuted
with the ith row of Fki, k = 1, ..., i− 1, i+1, ..., m. Using this notation, we obtain

Σj = T (GmAj(G
′

mGm)
−1G′

m).



As an example, for m = 2, we have

Σj =




αj11 αj12/2 αj21 αj22/2
αj12/2 αj13 αj22/2 αj23

αj21 αj22/2 αj31 αj32/2
αj22/2 αj23 αj32/2 αj33


 , j = 1, ..., q. (10)

It is seen from (10) that the restrictions imposed on the non-diagonal elements
of Σj for (4) to be a genuine VGARCH model of order two equals σj,11,22 =
σj,12,21. The requirement thatΣj ≥ 0 further restricts the values of the parameters.
Explicit expressions for the positivity conditions as functions of the elements of
Aj are obtained by applying the result that the principal minors of a positive
semidefinite matrix have to be at least positive semidefinite, but they are hardly
particularly intuitive. Nevertheless, (10) can be used for checking numerically
whether or not an estimated BEW-ARCH model satisfies these conditions.
Furthermore, as already discussed, the intercepts in also have to satisfy certain

conditions such that Eηtη
′

t ≥ 0. For m = 2, this condition is ω1ω3 ≥ ω2
2, ω1, ω3 >

0, in (7) .

3.2. Diagonal model

Bollerslev et al. (1988) also suggested a parsimonious version of their model by
assuming that Aj, j = 1, ..., q, be diagonal matrices. The counterpart of this
assumption in the VRCAR framework is that Φjt =diag(φj,11,t, ..., φj,mm,t)

′, j =
1, ..., q, in (1) . Then, dropping the subscript j, it follows from (1) that

E(Φt ⊗Φt) = diag(σ
2
11, σ11,22, ..., σ11,mm, σ22,11, σ

2
22, ..., σ22,mm, ..., σ

2
mm). (11)

There now exists a one-to-one correspondence between the diagonal elements of
(11) and the ones of Aj: σ2

11 = α11, σ11,22 = α22, ..., σ
2
mm = αm(m+1)/2,m(m+1)/2.

Using the permutation operator T allows one to find the relevant positivity con-
ditions. As an example, let m = 2. Then, E(Φt ⊗Φt) =diag(σ

2
11, σ1122, σ2211, σ

2
22),

so that

T (E(Φt ⊗Φt)) = Σ =




σ2
11 0 0 σ11,22

0 0 0 0
0 0 0 0

σ11,22 0 0 σ2
22


 =




αj11 0 0 αj22

0 0 0 0
0 0 0 0

αj22 0 0 αj33


 . (12)



Removing the zero rows and columns corresponding to the nondiagonal random
variables φ12t and φ21t that are identically zero leads to

Σj = Eφjtφ
′

jt =

[
αj11 αj22

αj22 αj33

]
, j = 1, ..., q. (13)

Matrices (12) and (13) have the same nonzero eigenvalues. It follows from (13)
that the positivity condition for the conditional variances requires aj11aj33 ≥ a2j22;
aj11, aj33 > 0, j = 1, ...q. The condition involving the intercepts is not affected by
the diagonality assumption.
A triangular model forms an intermediate case between the "full" and the

diagonal model. In an upper triangular vector ARCH model, there is no volatility
feedback from εi,t−j to εkt for k > i. As an example, let m = 2, so that φj21t ≡ 0,
j = 1, ..., q. Then the relevant covariance matrices

..

Σj =


 αj11 αj12/2 αj22

αj12/2 αj13 αj23

αj22 αj23 αj33


 , j = 1, ..., q.

4. BEKK-ARCH model as a random coefficient autoregres-

sive model

As the BEW-ARCH model contains a large number of parameters, more parsimo-
nious specifications have been considered in the literature. The BEKK-GARCH
model is probably the best known example of such a specification. The corre-
sponding BEKK-ARCH(q) model has the conditional variance

Ht = (C∗

0)
′C∗

0+
K∑
k=1

q∑
j=1

(A∗

kj)
′εt−jε

′

t−jA
∗

kj (14)

or

vec(Ht) = vec(C
∗

0)
′C∗

0 +
K∑
k=1

q∑
j=1

(A∗

kj⊗A∗

kj)
′vec(εt−jε

′

t−j) (15)

where C∗

0 is a nonsingular matrix. As an example consider the case m = 2 and
K = 1 and write C∗

0 = [c01 c02]. Then the conditional variances and covariances



in (14) are

h1t = c′01c01 +

q∑
j=1

(aj11ε1,t−j + aj21ε2,t−j)
2

h12t = c′01c02 +

q∑
j=1

(aj11ε1,t−j + aj21ε2,t−j)(aj12ε1,t−j + aj22ε2,t−j)

h2t = c′02c02 +

q∑
j=1

(aj12ε1,t−j + aj22ε2,t−j)
2. (16)

The analogy between the VRCAR model and the BEKK-ARCH model when
K > 1 can now be worked out as follows. First note that (15) is already
in vec form so that Gm= I. Furthermore, T (A∗

kj⊗A∗

kj) = a∗a∗
′

where a∗ =

(a∗11, ...a
∗

1m, a
∗

21, ..., a
∗

2m, ..., a
∗

mm)
′. The covariance matrix Σj = a∗a∗

′

is thus of
rank one, so that the random coefficients are linearly dependent. In fact, we
have Φjt = φjtÃ

′

j, j = 1, ..., q, where {φjt} is a sequence of independent random
variables with mean zero and unit variance.
Variable εt is thus driven by fixed linear combinations of ε1,t−j, ..., εm,t−j, j =

1, ..., q, that move in unison in the sense that both the sign and the size of their
impact on εt are determined by a single random variable, and a disturbance vector
εt. We consequently have the following VRCAR model for the BEKK-ARCH(q)
model:

εt=

q∑
j=1

φjtÃ
′

1jεt−j + ηt. (17)

The assumptions satisfied by φjt are the same as the ones forΦjt in (1) , completed
by the extra (identifying) restriction on the variances of φjt. We may assume
var(φjt) = 1, j = 1, ..., q.
When K > 1, (17) becomes

εt=
K∑
k=1

q∑
j=1

φjktÃ
′

kjεt−j + ηt. (18)

It is seen from (18) that there now exist K fixed linear combinations of ε1,t−j, ...,
εm,t−j for each lag, and their weights are drawn randomly from the distributions

of φjkt, k = 1, ..., K. The combinations φjktÃ
′

kj, k = 1, ...,K, are exchangeable,

and restrictions on the elements of Ã′

kj are required for identification. They are



discussed in Engle & Kroner (1995). In general, setting K > 1 increases the
flexibility of the BEKK-ARCH model and brings it closer to the BEW-ARCH
model of Bollerslev et al. (1988). For more discussion of this in the context of the
BEW-GARCH model, see Engle & Kroner (1995).

5. Infinite-order vector RCAR and vector ARCH models

Model (1) becomes an infinite order vector ARCH model as the number of lags
q → ∞. These models nest vector GARCH models, but as in the univariate case,
finding the appropriate parameter restrictions may be very difficult. Kokoszka &
Leipus (2000) derived a stationary solution for a univariate infinite-order ARCH
model under the condition that Ez4t < ∞. The corresponding result for the mul-
tivariate model does not seem to be available. It is seen from (1) , however, that
existence conditions for the unconditional variance of εt depend on the covari-
ance structure of φjt ={vech(Φjt)}. Let Eφjtφ

′

jt = Σj= [σj,il,kn] . A necessary
condition for weak stationarity is that the sequences {σj,ii,ii}

∞

j=1 are summable
for i = 1, ...,m. This means that the variances of the variables in the sequence
{φjt}

M
j=1 have to converge to zero sufficiently fast as M → ∞. For example, for

m = 2 this implies limM→∞

∑M
j=1 αjik < ∞, i, k = 1, 3.

6. The generalized ARCH model

The conditions we have derived can in principle be generalized to the GARCH
model by applying an infinite-order ARCH model. However, we shall only dis-
cuss the first-order case in detail because the first-order GARCH model is the
one normally used in applications. Furthermore, the algebra needed for treat-
ing higher-order cases would be quite tedious. Nelson & Cao (1992) solved the
univariate higher-order case. Consider the infinite-order ARCH model

vech(Ht) = ω +C(L)vech(εtε
′

t) (19)

where Γ(L) =
∑

∞

j=1ΓjL
j and L is the lag operator. Assume that

Γ(L) =
∞∑
j=1

ΓjL
j = B(L)−1A(L) (20)



whereA(L) =
∑q

j=1AjL
j, andB(L) = I−

∑p
j=1 BjL

j such that |I−
∑p

j=1Bjz
j| �=

0 for |z| ≤ 1. Then (19) and (20) define a general GARCH(p, q) model. In prin-
ciple, the positivity conditions of the conditional variances for this model can be
derived by converting the model into an infinite-order ARCH model and using the
theory presented in Section 2.
In the GARCH(1,1) case, a necessary condition for the existence of the con-

ditional variance is that the eigenvalues of B1 have modulus less than one and,
furthermore, that the coefficients of the variances hii,t−1 are positive. Then the
infinite ARCH representation for this model exists and has the form

vech(Ht) = (I−B1)
−1ω +

∞∑
j=1

B
j−1
1 A1vech(εt−jε

′

t−j). (21)

The condition for positive definiteness of the conditional covariance matrix in-
volves A1 and the matrix products B

j
1A1, j = 1, 2, ..., such that

Σj = T (GmB
j−1
1 Aj(G

′

mGm)
−1G′

m), j = 1, 2, ... . (22)

These conditions become quite complicated already in the simplest bivariate case
but for an estimated model their validity can be verified numerically using (22),
at least up to some finite j. The diagonal GARCH(1,1) model, however, is an
exception to this rule. As an example, let m = 2. Then

Σj =

[
α11β

j−1
11 α22β

j−1
22

α22β
j−1
22 α33β

j−1
33

]
= B

(j−1)
�A, j ≥ 1 (23)

where A =

[
α11 α22

α22 α33

]
, B

(j−1)
=

[
βj−1
11 βj−1

22

βj−1
22 βj−1

33

]
and � denotes the Hadamard

product (element-by-element multiplication). According to the Schur product
theorem, see, for example, Horn & Johnson (1985), p. 458, if two matrices A and
B are positive semidefinite then A � B is positive semidefinite. Setting j = 1
in (23) yields condition α11α33 − α2

22 ≥ 0, whereas applying the Schur product
theorem to j = 2 while assuming α11α33−α2

22 ≥ 0 leads to β11β33−β2
22 ≥ 0.As the

existence of the infinite-order ARCH representation requires 0 < βii < 1, i = 1, 3,
it follows that βj

11β
j
33−β2j

22 > 0, j ≥ 1. Thus the necessary and sufficient conditions
are α11α33 ≥ α2

22 and β11β33 > β2
22. This argument generalizes to the VGARCH

model with m variables, m > 2.



Likewise, as (I−B1)
−1ω =

∑
∞

j=1B
j−1ω it follows from (21) that

Eηtη
′

t =
∞∑
j=1

B(j−1) �Ω (24)

where Ω =

[
ω11 ω22

ω22 ω33

]
. Thus, the additional condition for positivity, following

from (24) , is that ω11ω33 ≥ ω2
22. Even this result generalizes to the case m > 2.

The higher-order diagonal models are also relatively simple to handle because
the inverse B(L)−1 is a diagonal matrix polynomial. Bollerslev et al. (1994) de-
rived, also using Hadamard products but in a different way, conditions for the
conditional covariance matrix in the diagonal VGARCH model to be positive def-
inite. Their considerations did not extend to the nondiagonal model.

7. Example

As an example, consider the application in Bollerslev et al. (1988). The authors fit
a three-variable diagonal GARCH(1,1) model to a trivariate CAPM. We focus on
the conditional variance process. Using the parameter estimates for the intercept
vector one obtains

̂Eηtη
′

t =


 .026 .438 .013

23.8 3.82
3.92




As det ̂Eηtη
′

t = 1.33, the intercept condition is satisfied. On the other hand,

Σ̂1 =


 .445 .233 .197

.188 .165
.078




and det(Σ̂1) = −0.002 (or, the smallest eigenvalue of Σ̂1 equals −0.043). The
estimated model thus has a positive probability of generating indefinite conditional
covariance matrices. This does not necessarily mean abandoning the assumption
that a trivariate diagonal GARCH model has generated the observations, because
due to short series the parameter estimates are rather uncertain. However, if the
estimated model is used for forecasting volatility, it may generate invalid forecasts
for conditional variances and covariances.



8. Conclusions

While several multivariate GARCH models have been designed to have a positive
definite conditional covariance matrix, the general multivariate GARCH model
is not one of them. The necessary and sufficient conditions for the conditional
covariance matrix of this model to be positive definite almost surely, derived in
this paper, fill a void in the literature. The results are useful in checking whether
or not an estimated multivariate ARCH or GARCHmodel possesses this property.
This information is important when the model is used for forecasting volatility.
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