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1 Introduction

Testing the unit root hypothesis in linear panels has received much attention in
recent years. One reason for this is that many of the classical unit root tests in
univariate settings su¤er from low power against near unit root alternatives, and
a remedy to this problem is to consider a panel of several univariate time series.
For instance, Quah (1994) considers a completely homogeneous linear panel with
no cross section speci�c e¤ects. This approach is, however, quite unrealistic and
is likely to yield biased estimators, see e.g. Hsiao (1986). A more general panel
is introduced in Levin, Lin, and Chu (2002) because it allows for cross section
speci�c intercepts and time trends, as well as serially correlated residuals over
time and heterogeneous variances among cross sections. Both Quah (1994) and
Levin, Lin, and Chu (2002) base their tests of a common unit root on the least
squares pooled estimator, and inference is enhanced by letting both the number
of cross sections and observations over time tend to in�nity, implying, of course, a
limited practical use. However, Harris and Tzavalis (1999) study the same issues
as in Levin, Lin, and Chu (2002) but they instead derive analytical results under
the assumption of a traditional panel set-up, i.e. the time dimension is �xed and
the number of cross sections is seen as large.
One drawback with all these tests mentioned above is that their alternative

hypotheses imply that e.g. all cross sections converge to a long-run equilibrium at
the same rate. This is too strong to be held in any interesting empirical cases, as
concluded in Maddala and Wu (1999). The problem with a too strong/unrealistic
alternative hypothesis is relaxed by Im, Pesaran, and Shin (2003). They assume
under the alternative hypothesis that a fraction of the total number of cross sec-
tions possesses a linear mean-reversion possibly with cross section speci�c conver-
gence rates, and that the remaining cross sections are non-stationary. In addition,
their testing procedure is fundamentally di¤erent because they are averaging in-
dividual unit root t-test statistics.
Much of the ongoing research focuses on generalizing the panel unit root tests

as such that the tests allow for dependence among cross sections, see for instance
Phillips and Sul (2003) and Peseran (2003), but with the linearity property kept.
We will stress another issue because evidence against the linearity of the adjust-
ment process in univariate time series has recently been found, see Leybourne,
Newbold, and Vougas (1998), Harvey and Mills (2002), and Lanne, Lütkepohl,
and Saikkonen (2003), among others. Our concern is therefore that if a cross sec-
tion is modelled as nonlinear, the conventional linear panel approach yields unit
root tests with modest power, as outlined in He and Sandberg (2005c), and study-
ing a panel is not necessarily a solution to obtaining satisfactory power. Despite
the fact that one obtains more observations, the nonlinearity may be too hard to
detect. Our aim is therefore to derive a test of a common unit root in a nonlinear
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dynamic heterogeneous panel allowing for linear, nonlinear, and non-stationary
models under the alternative hypothesis. The panel in this paper is a generaliza-
tion of the panel smooth autoregressive introduced in He and Sandberg (2005c).
We are using the testing methodology by Im, Pesaran, and Shin (2003), whereas
the testing methodology in He and Sandberg (2005c) is inspired by Harris and
Tzavalis (1999).
The unit root tests in this paper are very simple to conduct and the limiting

distributions are (mostly) the standard normal. We allow for serially correlated
errors over time and heterogeneous variances among cross sections. The following
dimensions of the panel are considered: (i) The number of cross sections and
observations over time are �xed. (ii) The observations over time are �xed and the
number of cross sections tends to in�nity. (iii) The number of observations over
time and cross sections tend to in�nity (sequential limits).
The rest of the paper is organized as follows. In Section 2 we present a nonlin-

ear heterogeneous dynamic panel. Testing procedures of a unit root in nonlinear
panels are discussed in Section 3. The unit root tests are presented in Section
4. Asymptotic and �nite-sample properties are investigated through Monte Carlo
experiments in Section 5. Section 6 concludes. Thereafter an appendix follows
with tables and further simulation results.

2 A nonlinear heterogeneous dynamic panel

Consider a sample of n cross sections observed over T time periods (not necessarily
the same for each cross section so we allow for unbalanced panels). Suppose
that the stochastic process fyitg is generated by the �rst-order panel smooth
autoregressive (PSTAR(1)) model

yit = x
0
it�i1 + x

0
it�i2Fi(t) + uit; i = 1; :::; n; t = 1; :::; T; (1)

where xit = (1; yi;t�1)0, �i1 = (�i10; �i11)0, �i2 = (�i20; �i21)0, and Fi(t) is chosen
to be the logistic smooth transition function de�ned by

Fi(t; 
i; ci) =
1

1 + exp[�
i(t� ci)]
� 1=2: (2)

In (2), 
i 2 [0;1) measures the speed of transition over time from one regime
to another, and where ci 2 (0; T ) gives the point in time where the transition
will be symmetric around. By the model speci�cation in (1) and (2), each cross
section unit is modelled as the LSTAR(1) model proposed in Lin and Teräsvirta
(1994) (however, modi�ed since we adjust the transition function by subtracting
one half). We especially note that all parameters are de�ned to be heterogeneous
for each cross section, by which it also follows that the model in (1) with (2) is
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a generalization of the panel logistic smooth autoregressive (PLSTAR) model in
He and Sandberg (2005c). Furthermore, for 
i 2 [0;1), the transition function
Fi(t; 
i; ci) is an non-decreasing function in t, and 
i = 0 implies, by construction,
that Fi(t; 0; ci) = 0 holds for all t, and the resulting model in (1) is a linear
panel autoregressive (PAR) model with parameter vector �i1. On the other hand,
letting 
i !1, Fi(t;1; ci) becomes an indicator function such that Fi(t;1; ci) =

�0:5 for 0 � t < ci and Fi(t;1; ci) = 0:5 for ci � t < T . It is seen that the
PLSTAR(1) model nests the panel threshold autoregressive (PTAR) model with
parameter vectors �i1�0:5�i2 and �i1+0:5�i2 in regime one (0 � t < ci) and two
(ci � t < T ), respectively. Finally, uit is an error term such that for all i and t,
fuitg de�nes a sequence of independently distributed random variables with zero
means and heterogeneous variances �2i .

3 Testing procedures

3.1 The test statistic

Testing the unit root hypothesis in the PLSTAR(1) model (1) is achieved by
imposing the following parameter restrictions

H0 : �i10 = 0; �i11 = 1; 
i = 0; (3)

for all i, and the maintained model for each cross section is therefore

yit = yi;t�1 + uit; (4)

i.e. a random walk without drift (this is the most relevant null hypothesis since the
PLSTAR(1) model does not contain any time trend). The alternative hypothesis
could be described as not H0, meaning that the alternative hypothesis can be
a mixture of LSTAR models (and AR models) and unit root processes. It is,
however, important that the total number of LSTAR (and AR models) models,
n�, satis�es n � n� > 0 where n� = �n and � 2 (0; 1], to guarantee consistent
tests. Furthermore, as pointed out in Luukkonen, Saikkonen, and Teräsvirta
(1988), imposing the restriction 
i = 0 leads to identi�cation problem since the
parameters �i20, �i21, and ci are not identi�ed under the null hypothesis. To
remedy this problem, we replace the transition function in (2) with its �rst-order
Taylor expansion around 
i = 0. This approximation is feasible since Fi(t) is twice
di¤erentiable in 
i and the �rst derivative evaluated at 
i = 0 is non-zero. The
approximation yields Fi(t) � 0:25
(t� ci) (ignoring the remainder). Substituting
for this approximation into (1) and collecting terms yields the linearized version
of the PLSTAR(1) model

yit = ~x
0
it�i + ~uit; (5)
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where ~xit = (1; t; yi;t�1; tyi;t�1)
0, �i = (�i1; :::; �i4)

0, and ~uit is an error term ad-
justed with respect to the Taylor approximation such that ~uit = uit holds under
the null hypothesis.1 The transformed null hypothesis of a unit root is now given
by

Haux
0 : �i1 = 0; �i2 = 0; �i3 = 1; �i4 = 0; (6)

for all i. We proceed by examining the single hypothesis �i3 = 1, by running the
regression in (5) for each cross section and calculating the ti statistic given by

ti =
�̂i3 � 1
�̂�̂i3

; i = 1; :::; n; (7)

where �̂i3 denotes the OLS estimator of �i3, �̂�̂i3 = S2i r1

�PT
t=1 ~x

0
it~xit

��1
r01,

S2i =
PT

t=1 (yit � ~x0it�̂i)
2 =(T � 4), and r1 =

�
0 0 1 0

�
. However, to sim-

plify matters in following �nite-sample analysis, we focus on a modi�ed t-statistic,
denoted tmi , which is de�ned by

tmi �
�̂i3 � 1
~��̂i3

; i = 1; :::; n; (8)

where ~�2�̂i3 is de�ned as in (7) but S
2
i is replaced with

~S2i = �y
0
iM�yi=(T � 1);

where �yi = (�yi1; :::;�yiT )
0, M = IT � �T �0T=T is the within transformation

matrix where �T is a T �1 vector of ones. It is clear that both S2i and ~S2i converge
under the null hypothesis in probability to �2i , and thus, the asymptotic distribu-
tion for ti and tmi is the same. However, the �nite-samples properties for S

2
i and

~S2i di¤er.
2 Moreover, our choice of ~S2i is arbitrary and is based on thatM is �xed

(non-stochastic) and generates consistent estimates of �2i . Other options, how-
ever not analyzed here, would be M = IT or M = IT�XT (X

0
TXT )

�1X0
T where

XT = (�T ; � T ) and � T = f1; :::; Tg. Before stating how the information from each
cross section through the tmi test statistic in (8) is used to conduct a test for a
common unit root, we establish some fundamental �nite-sample properties for tmi
under the null hypothesis (6).

3.2 Finite-sample properties of the test statistic under the
null hypothesis

Three important �nite-sample properties of the tmi test statistic under the null
hypothesis can be observed. The two �rst properties concern the invariance with

1This holds because the remainder from the approximation equates to zero under the null
hypothesis.

2Some �nite sample properties for S2i and ~S
2
i are established in Table 8 in the Appendix A.
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respect to yi0 and the heterogeneous variances �2i . The last property is that, for
all i, and T su¢ ciently large, the second moment of tmi exists. One way to readily
con�rm the �rst two properties is to vectorize the auxiliary model in (5) and
divide the regressors into stochastic and deterministic matrices according to

yi = XT�i1 + ZT�i2 + ~ui; (9)

where XT is de�ned as before, �i1 = (�i1; �i2)
0, ZT = (yi;�1, DTyi;�1), yi;�1 =

(yi0; yi1; :::; yi;T�1)
0, DT = diag f� Tg is a T � T matrix with a time trend on its

diagonal, �i2 = (�i3; �i4)
0, and ~ui = (~ui1; :::; ~ui;T )0. The partitioned regression in

(9) implies that we can rewrite (8) under the null hypothesis (6) as

tmi =
r2
�
(QTZT )

0 (QTZT )
��1 � �(QTZT )

0 (QTui)
�

~Si

q
r2
�
(QTZT )

0 (QTZT )
��1

r02

; (10)

where r2=
�
1 0

�
and QT = IT �XT (X

0
TXT )

�1X0
T . Furthermore, under (6) we

can express yi;�1 as
yi;�1 = �Tyi0 +CTui; (11)

where

CT =

2666666664

0 0 0 � � � 0 0

1 0 0 � � � 0 0

1 1 0 � � � 0 0
...
...
...
. . .

...
...

1 1 1 � � � 0 0

1 1 1 � � � 1 0

3777777775
T�T

: (12)

Using (11) we obtain that ZT = (�Tyi0 +CTui, DT �Tyi0 +DTCTui), and be-
causeQT is orthogonal to both �Tyi0 andDT �Tyi0,QTZT = (QTCTui,QTDTCTui)

holds. Furthermore, under the null hypothesis �yi = ui which yields ~S2i =
u0iMui=(T � 1). It follows, for all i and T , that the tmi test statistic is invariant
with respect to yi0
To verify the second property, write tmi as

tmi =
p
T � 1�

r2
�
(QTZT=�i)

0 (QTZT=�i)
��1p

(Mui=�i)
0 (Mui=�i)

�
�
(QTZT=�i)

0 (QTui=�i)
�q

r2
�
(QTZT=�i)

0 (QTZT=�i)
��1

r02

: (13)

Obviously the �i�s cancel out in (13), and in the matrix QTZT=�i =

(QTCTui=�i,QTDTCTui=�i) we see that the sub-vectors ui=�i are identically
distributed with mean E[ui=�i] = 0 and covariance matrix E[uiu0i=�

2
i ] = IT . We

conclude that tmi is invariant with respect to the nuisance parameter �i.
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The third property, i.e. that E (tmi )
2 exists, is con�rmed by simulations. It

appears that E (tmi )
2 exists for T 2 [4;1], also indicating that the second moment

is existing in an asymptotic sense. In a related context Im, Pesaran, and Shin
(2003) also rely upon simulations to conclude that the second moment of their test
statistic exists. The present case is somewhat more complicated and the proof
of this is left for further research. The methods in Larsson (1997) and Nabeya
(1999) might be applicable for T 2 [4;1) and T !1, respectively.
The �nite-sample properties for the tmi tests statistic summarized above com-

bined with that tmi de�nes a measurable function of the i.i.d. sequence fui=�ig,
are su¢ cient conditions for us to conduct tests of a common unit root in the
nonlinear heterogeneous panel in (1).

4 The unit root tests

By imposing certain restrictions on n and T we obtain many interesting testing
situations in the nonlinear dynamic heterogeneous panel described above.

4.1 Fixed T unit root test in a balanced panel letting n

tend to in�nity

Assumption 1 Let fuitg be a sequence of independently and normally distributed
random variables such that, for all i and t, E[uit] = 0 and E[u2it] = �2i 2 R++
hold.

Assumption 2 Let T be the same for all i (a balanced panel).

Proposition 1 Under Assumptions 1 and 2, the null hypothesis (6), and 3 <
T <1, the individual statistics, tmi , are i.i.d. with E[tmi ] = �(T ) 2 R and V [tmi ] =
�2(T ) 2 R++. Furthermore, de�ne the random variable Z0 � n�1=2

PN
i=1 (t

m
i � �(T ))

=�(T ). Then, by letting n tend to in�nity, the Lindberg-Lèvy central limit theorem
gives

Z0
d!n N(0; 1): (14)

where d!n denotes convergence in distribution by letting n!1.

In Proposition 1 it is clear that we use the information from each cross section
unit by averaging the tmi test statistics, inspired by Im, Pesaran, and Shin (2003).
This procedure is in contrast to the one in He and Sandberg (2005c) where data
is pooled and a test for a common unit root is based on the LSDV estimator. It
should be pointed out that both the mean E[tmi ] and the variance V [t

m
i ] are under

the null hypothesis functions of T and are tabulated in Table 8 in the Appendix
A for di¤erent values of T .
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4.2 Fixed T unit root test in an unbalanced panel letting
n tend to in�nity

Assumption 3 Let T be di¤erent for at least one i (an unbalanced panel).

Proposition 2 Under Assumptions 1 and 3, the null hypothesis (6), and 3 < T <

1, the individual statistics, tmi , are independently heterogeneously distributed with
E[tmi ] = �i (T ) 2 R, V [tmi ] = �2i (T ) 2 R++, and for any i, E[(tmi )

3] < 1, holds.
Furthermore, de�ne the random variable Z1 � n�1=2 (�t� �� (T )) = (�� (T )) where
�t = n�1

Pn
i=1 t

m
i , �� (T ) = n�1

Pn
i=1 �i (T ), and �� (T ) = n�1

Pn
i=1 �

2
i (T ). Then,

by letting n tend to in�nity, the Liapounov central limit theorem gives

Z1
d!n N(0; 1): (15)

In Proposition 2 we must assert that E[(tmi )
3] < 1 which holds as long as

3 < T , and is con�rmed simulations, however not reported here.

4.3 Fixed T and n unit root test in a balanced panel

This is perhaps the most relevant case from a practitioner point of view. How-
ever, viewing the number of cross sections as �nite ruins the asymptotic inference
concluded in Propositions 1 and 2. For both a �xed T and n, the analytical expres-
sion for the �nite-sample distribution of n�1

Pn
i=1 t

m
i is hardly known. However,

in Subsection 3.2 it is shown that the tmi test statistic is nuisance parameter free
under the null hypothesis. This means that the �nite-sample distribution for
n�1

Pn
i=1 t

m
i is readily obtained by Monte Carlo simulations for any combinations

of T and n. These simulations are reported in the next section, and they also
provide a measure of how well the n �nite-sample distributions approximate the
asymptotic N(0; 1) distribution.

4.4 Asymptotic T and n unit root test

We apply the method of sequential limits, see Phillips and Moon (1999).3 Specif-
ically, we consider �rst a �xed cross section unit and let T tend to in�nity which
yields intermediate asymptotic results, and thereafter we let n tend to in�nity.
The intermediate univariate asymptotic results that we need follow from Lemma
4 in He and Sandberg (2005a).

3Lemma 6 in Phillips and Moon (1999) might be applicable to �nd conditions for sequential
convergence to imply joint convergence.
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Proposition 3 If Assumption 1 and the null hypothesis in (6) hold, then for any
i and letting T tend to in�nity it follows that

tmi
d!T �i =

r1	
�1
1i �1i�

r1	
�1
1i r

0
1

�1=2 ; (16)

where d!Tdenotes convergence in distribution by letting T !1, and

	1i=

�
M11i M12i

M12i M13i

�
; �1i=

�
�11i

�12i

�
;

with sub-matrices given by

M11i =

�
1 1=2

1=2 1=3

�
;

M12i =

" R 1
0
Bi(r)dr

R 1
0
rBi(r)drR 1

0
rBi(r)dr

R 1
0
r2Bi(r)dr

#
;

M13i =

" R 1
0
B2
i (r)dr

R 1
0
rB2

i (r)R 1
0
rB2

i (r)dr
R 1
0
r2B2

i (r)dr

#
;

�11i =

"
Bi(1)

Bi(1)�
R 1
0
Bi(r)dr

#
;

�12i =

"
0:5 (Bi(1)

2 � 1)
0:5
�
Bi(1)

2 �
R 1
0
B2
i (r)dr � 1=2

� # ;
where Bi(r) denotes a standard Brownian motion with respect to ui on [0; 1]. As-
sume further that, Bi(r) and Bj(r) are independent for i 6= j. For
i = 1; :::; n, the limiting distributions �i are i.i.d. with E[�i] = �� 2 R and
V [�i] = ��2 2 R++ where limT!1 �(T ) = �� and limT!1 �

2(T ) = �2�. Fur-
thermore, de�ne the random variable Z2 � n�1=2

Pn
i=1 (�i � ��) =��. Then by

letting n tend to in�nity, the Lindberg-Lèvy central limit theorem gives,

Z2
d!n;T N(0; 1); (17)

where d!n;Tdenotes convergence in distribution by �rst letting T !1 followed by
n!1.

In Table 8 in the Appendix A it is seen that �� = �1 and �2� = 1:432.
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4.5 Asymptotic T and n unit root test in a panel with
serially correlated errors

From the results in He and Sandberg (2005b) we note that a unit root test that
accommodates serially correlated errors over time can easily be imposed by adding
the terms 4yi;t�j (j � 1) to the auxiliary regression model in (5). This principle
is the analogy to the classical ADF tests. We obtain

yit = ~x
0
it�

a
i +4y0it�i + uit; (18)

where ~xit is the same vector of explanatory variables as in (5), �ai = (�i; �i; �i;  i)
0,

4yit = (4yi;t�1; 4yi;t�2; :::;4yi;t�pi+1)
0, pi � 2 denotes the order of augmenta-

tion for cross section i, �i =
�
� i1; � i2; :::; � i;t�pi�1

�0
, and uit is an error term that

ful�lls Assumption 1.4

Assumption 4 Assume that, for all i, the roots of the characteristic polynomial
�(z) = 1� � i1z � � i2z

2 � :::� � i;pi�1z
pi�1 lie outside the unit circle.

Assumption 4 rules out the possibility of a cross section unit being integrated
of order two. The auxiliary null hypothesis of a single unit root for each cross
section, under Assumption 4, can now be formulated as

Haux
0 : �i = 0; �i = 0; �i = 1;  i = 0; �i 2 Rpi�1; (19)

for all i. The alternative hypothesis is notHaux
0 , now meaning a mixture of LSTAR

models (and AR models) and unit root processes with serially correlated errors,
though still in such proportions that the test remains consistent. Under the null
hypothesis in (19) the following data generating process (DGP) is obtained

yit = yi;t�1 + � i14yi;t�1 + � i24yi;t�2 + :::+ � i;pi�14yi;t�pi+1 + uit; (20)

and under Assumption 4 we obtain

�yt = "it; (21)

where "it = (1� � i1L� � i2L2� :::� � i;pi�1Lpi�1)�1uit = 	(L)uit, where L denotes
the lag operator and 	(L) is a one-sided moving average polynomial in the lag
operator. The process in (21) clearly de�nes a stochastic process with serially
correlated increments. Moreover, proceed by running the regression in (18) to
calculate, for each i, the augmented ti statistic, denoted tai , by

tai �
�̂i � 1
�̂�̂i

; i = 1; :::; n; (22)

4The regression in (18) corresponds to the NPADF testing equations in He and Sandberg
(2005b).
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where �̂i denotes the OLS estimator of �i, �̂�̂i = S2ia

�
r3

hPT
t=1

~X0
it
~Xit

i�1
r03

�
,

S2ia =
PT

t=1

�
yit � ~x0it�̂ai1 �4y0it�̂i

�2
=(T � 4� pi + 1), r3=

h
r01 001�(pi�1)

i
, and

~Xit =
�
~x0it 4y0it

�0
. Notice that in the case of serial correlation and for a �nite

T , one encounters the problem with nuisance parameters. For a �nite T and any
i, the tai test statistic is dependent on �

2
i , f� ijg

pi�1
j=1 , pi, and the starting values

yi0 = (yi;�pi+1; :::; yi0)
0. However, if one assume that yi0 = 0, then tai still depends

upon f� ijg
pi�1
j=1 and pi, but the invariance with respect to �

2
i is resurrected.

5 As
a result, letting yi0 = 0, implies that the expected value and the variance of tai
only will depend on pi, f� ijg

pi�1
j=1 , and T , and which is denoted E[t

a
i (T; pi; �i)] and

V [tai (T; pi; �i)] respectively. In Appendix A these expected values and variances
are tabulated for di¤erent values of T , pi, and �i. However, the factors that t

a
i is

dependent upon in �nite-samples are eliminated if one let T !1 . We conclude
the following important result.

Proposition 4 If Assumptions 1 and 4 and the null hypothesis (19) hold, then,
for any i and letting T tend to in�nity, it follows that

tai
d!T �i; (23)

where �i is the same limiting distribution as in Proposition 3. Therefore, by
de�ning the random variable Z3 � n�1=2

Pn
i=1 (�i � ��) =�� and letting n tend

to in�nity, we obtain the same result as in (17).

Proof. The proof is similar to the proof of Corollary 2.7 in He and Sandberg
(2005b), and is therefore omitted.

5 Monte Carlo experiments

In this section we examine the �nite-sample properties of the Z0 and Z3 test sta-
tistics in Proposition 1 and Proposition 4 respectively, by Monte Carlo simulations
. The two �rst Monte Carlo experiments assess the size properties of the tests.
In the remaining Monte Carlo experiments, the empirical power of the tests are
examined. All experiments are carried under the assumption of balanced panels.

5For an example, let pi = 2 in (18), and pre-multiply the matrix of stochastic re-
gressors implied by (18) [�T yi0 +CTui, DT �T yi0 +DTCTui; c0 +CTui] where c0 = (yi0 �
yi;�1)

�
1 0 � � � 0

�0
with the QT matrix. Notice that QT is orthogonal to �T yi0 and

DT �T yi0 but not to c0. This indicates that tai is dependent on the two starting values yi0
and yi;�1. Furthermore, recall that �i cancels out in (13), but in the the present case division
with �i yields expressions on the form c0=�i that will not further simplify, and �i will a¤ect the
test statistic through the starting values.
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5.1 Size properties

5.1.1 Estimated size in the case of no serial correlation

The �rst Monte Carlo experiment examines the Z0 test statistic (no serial corre-
lation) in Proposition 1 and its size properties when the DGP is given by

yit = yi;t�1 + uit; t = 1; :::; T; i = 1; :::; n: (24)

In (24), it is assumed that uit � nid(0; �2i ) and �
2
i � U [0:5; 1:5] for all i and where

U denotes the uniform distribution. The size results are shown in Table 1.

Table 1: The size of the Z0 test in Proposition 1. No serial correlation.

T 25 50 100 250

n

5 0.051 (0.101) 0.050 (0.100) 0.049 (0.101) 0.050 (0.099)

25 0.049 (0.099) 0.050 (0.101) 0.049 (0.100) 0.050 (0.100)

50 0.048 (0.098) 0.051 (0.100) 0.051 (0.100) 0.050 (0.101)

Notes: The nominal sizes of the test are 5% and 10% (in parentheses).
The results are based on 10 000 replications.

We see in Table 1 that the size distortions for all T and n of the Z0 test
are negligible at both 5% and 10% signi�cance levels. We conclude that the
convergence to the asymptotic standard normal distribution is very fast. Already
for n as small as �ve, the approximation to the standard normal distribution is
excellent.

5.1.2 Estimated size in the case of serially correlated errors

In the secondMonte Carlo experiment we examine the size properties of theZ3 test
statistic (serially correlated errors) in Proposition 4 when uit in (24) is replaced
by the AR(1) process, uit = �uit + vit, where � 2 f0:3; 0:6g and vit � nid(0; 1) for
all i and t. These results are presented in Table 2.
In Table 2 with pi = 0, the Z3 test is the same test as Z0, and is undersized for

all values of T , n, and � considered. This is to be expected since a test statistic
which does not take the serial correlation into account is used. With pi = 1, a
�rst attempt to adjust for the serial correlation, we see that the size distortions
are reduced for all T , but increase slowly with n. This supports the well-known
fact that over-�tting (the case pi � 1), is less harmful than under-�tting (the case
pi < 1). We also see that the distortions are more severe when � is increased.
Moreover, for T > 50, pi � 1, and all n, the size distortions are modest, however
always larger for a more persistent autocorrelation, and that the size distortions
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Table 2: The size of the Z3 test in Proposition 4. Serial correlation.
T = 25

n � pi 0 1 2 3

5 0.3 0.01 (0.02) 0.05 (0.09) 0.05 (0.10) 0.06 (0.12)

0.6 0.00 (0.00) 0.05 (0.09) 0.04 (0.10) 0.05 (0.11)

25 0.3 0.00 (0.00) 0.04 (0.07) 0.04 (0.08) 0.06 (0.11)

0.6 0.00 (0.00) 0.03 (0.06) 0.02 (0.05) 0.02 (0.05)

50 0.3 0.00 (0.00) 0.03 (0.06) 0.03 (0.07) 0.06 (0.11)

0.6 0.00 (0.00) 0.02 (0.03) 0.01 (0.03) 0.01 (0.03)

T = 50

n � pi 0 1 2 3

5 0.3 0.00 (0.00) 0.05 (0.10) 0.05 (0.11) 0.06 (0.12)

0.6 0.00 (0.00) 0.05 (0.10) 0.05 (0.10) 0.05 (0.10)

25 0.3 0.00 (0.00) 0.04 (0.09) 0.05 (0.09) 0.06 (0.12)

0.6 0.00 (0.00) 0.03 (0.07) 0.03 (0.07) 0.03 (0.06)

50 0.3 0.00 (0.00) 0.04 (0.08) 0.05 (0.10) 0.06 (0.13)

0.6 0.00 (0.00) 0.02 (0.05) 0.02 (0.05) 0.02 (0.05)

T = 100

n � pi 0 1 2 3

5 0.3 0.00 (0.01) 0.05 (0.10) 0.05 (0.10) 0.05 (0.10)

0.6 0.00 (0.00) 0.05 (0.10) 0.05 (0.10) 0.05 (0.10)

25 0.3 0.00 (0.00) 0.04 (0.09) 0.05 (0.10) 0.05 (0.09)

0.6 0.00 (0.00) 0.04 (0.07) 0.04 (0.08) 0.04 (0.08)

50 0.3 0.00 (0.00) 0.04 (0.08) 0.05 (0.10) 0.04 (0.08)

0.6 0.00 (0.00) 0.03 (0.06) 0.03 (0.07) 0.03 (0.07)

T = 250

n � pi 0 1 2 3

5 0.3 0.00 (0.01) 0.04 (0.09) 0.05 (0.10) 0.05 (0.10)

0.6 0.00 (0.01) 0.05 (0.10) 0.05 (0.10) 0.05 (0.10)

25 0.3 0.00 (0.00) 0.04 (0.08) 0.04 (0.09) 0.05 (0.10)

0.6 0.00 (0.00) 0.04 (0.09) 0.05 (0.09) 0.04 (0.09)

50 0.3 0.00 (0.00) 0.04 (0.08) 0.04 (0.09) 0.05 (0.10)

0.6 0.00 (0.00) 0.04 (0.08) 0.04 (0.09) 0.04 (0.09)

Notes: The nominal sizes of the test are 5% and 10% (in parenthe-
ses). The results are based on 10 000 replications.
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are more evident when n is large relatively to T . To this end it is noticed that
the remarks about the size for the Z3 test are in line with the �ndings for the the
IPS test statistic reported in Im, Pesaran, and Shin (2003).

5.2 Empirical power

5.2.1 A heterogeneous nonlinear panel

In the third Monte Carlo study we examine the empirical power of the Z0 test
statistic in Proposition 1 when the DGP accommodates smooth heterogeneous
shift in levels and dynamics and is given by

yit = �i10 + �i11yi;t�1 + (�i20 + �i21yi;t�1) ~Fi(t) + uit; (25)

and where we have replaced, without loss of generality, the transition function in
(2) with ~Fi(t) = 1=(1 + exp[�
i(t� ci)]). This yields more convenient interpreta-
tion of the parameters because ~Fi(t) has the range [0; 1]. The parameters in the
PLSTAR(1) in (25) are assigned the following values

�i10 = 0; �i11 � U [0:35; 0:45]; 
i � U [0:5; 1:5];

ci � U [0:4T; 0:6T ]; �i20 � U [0:5; 1:5]; �i21 � U [0:4; 0:5];

uit � nid(0; 1):

(26)

The choice of parameter values in (26) implies that all the cross section units
display time series that start from the same level because �i10 = 0 holds for
all i. The level of a new long-run cross section speci�c equilibrium is given by
�i20=(1� �i11 � �i21) 2 [2; 30] (assuming that a complete transition takes place).
The parameters �i20 are set to vary modestly because it is well known that a test
based on a �rst-order Taylor approximation is not designed to capture changes in
the intercept, see Luukkonen, Saikkonen, and Teräsvirta (1988) and the discussion
in He and Sandberg (2005a) about the level leverage e¤ect. The panel autoregres-
sive parameters in the linear part in the PLSTAR(1) model yield PAR(1) processes
that are modestly persistent because �i11 � U [0:35; 0:45]. The panel autoregres-
sive parameters in the nonlinear part of the PLSTAR(1) model are chosen such
that maxi �i11 + maxi �i21 = 0:95 (< 1) and the trajectories are therefore stable
around the new long-run equilibrium.6 The speed of transition between regimes
varies in the cross sections from 0:5 to 1:5, and implies that a complete transi-
tion takes place for all sample sizes that will be considered. The timing of the

6We use the word stable rather than stationary, since the transition function is a function
of time. Imposing the restriction maxi �i11 +maxi �i21 = 0:95 < 1 rules out the case of a unit
root at the end of the sample period.
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transitions varies around the mid-point of the sample, i.e. ci = 0:5T , which for in-
stance illustrates that some cross sections respond earlier to, say, a shock and the
responses for the other cross sections are somewhat delayed. Typical trajectories
generated by (25) and (26) is depicted in Figure 1.

Figure 1: Typical realizations of the LSTAR(1) models in the third (dashed line),
fourth (dot-dashed line), and �fth (solid line) Monte Carlo experiment.

The empirical power for the Z0 test statistic in Proposition 1 is presented in
Table 3. For illustration we also compare the power of our test to the power
of the corresponding t-test statistic in Im, Pesaran, and Shin (2003), henceforth
abbreviated to the IPS test. It should be noted that we compare the power to the
IPS test that is based on a linear panel without a time trend.7 This is reasoned
by the fact that our panel lacks the property of a time trend. We also note that
the same null hypothesis is tested.
In Table 3 we see that the power for the IPS test is rather poor for all T and

n. Even for as large panels as T = 100 and n = 50, the power is only 0:21. The
reason for the poor performance of the IPS test is that it is not designed to have
power against nonlinear alternatives with a shift in levels. However, as indicated
in He and Sandberg (2005a), the classical univariate Dickey-Fuller t-type of test
also has poor power results (close to zero or equal to zero) in a similar set-up to
(26). In our case this illuminates that a panel approach does not resurrect the

7The IPS test that we are using averages the classical Dickey-Fuller t-type of test based on
an AR(1) process without a time trend.
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Table 3: Empirical power of the Z0 test in Proposition
1 and the IPS test. The DGP is a PLSTAR(1) model.
No serial correlation.

T 25 50 100

n Z0 IPS Z0 IPS Z0 IPS

5 0.47 0.00 0.63 0.00 0.87 0.10

25 0.96 0.00 0.99 0.00 1.00 0.15

50 1.00 0.00 1.00 0.00 1.00 0.21

Note: The nominal size is 5%, and the results are
based on 10 000 replications.

power for the Dickey-Fuller t-type of test in the univariate context to satisfactory
levels. On the other hand, the Z0 test performs very satisfactorily and the power
is close to unity for n � 25 and all samples sizes. As a �nal remark, the power
results for the Z0 test in Table 3 is lower than for the test statistic used in He
and Sandberg (2005c) under a similar Monte Carlo experiment (cf. Table 3 in
He and Sandberg (2005c)). This might be explained by that the test statistic
used in He and Sandberg (2005c) is of deviation type (the deviation form of the
LSDV estimator) and not of t-type, and is based on pooled data. These two facts
contributes to that the power for the Z0 test is lower.

5.2.2 A nearly linear heterogeneous panel

In the fourth Monte Carlo experiment we investigate the empirical power prop-
erties for Z0 when 
i = 0:01 for all i in (26), and the resulting model in (25) is
nearly linear. The set-up for the remaining parameters are the same as in (26).
The results are presented in Table 4.

Table 4: Empirical power of the Z0 test in Proposi-
tion 1 and the IPS test. The DGP is an almost linear
PLSTAR(1) model. No serial correlation.

T 25 50 100

n Z0 IPS Z0 IPS Z0 IPS

5 0.12 0.96 0.46 1.00 1.00 1.00

25 0.46 1.00 1.00 1.00 1.00 1.00

50 0.76 1.00 1.00 1.00 1.00 1.00

Note: The nominal size is 5%, and the results are
based on 10 000 replications.
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From Table 4 we conclude that the power of the IPS test is superior, and is
expected because the DGP is almost linear. Notable is, however, that the Z0 test
statistic performs satisfactorily and for n � 25 and T � 50 the power equals unity.
A nearly linear LSTAR(1) model is depicted in Figure 1.

5.2.3 A homogeneous nonlinear panel

In the �fth Monte Carlo experiment we abandon the randomness of the parameters
in (25), and all cross sections are represented by the same LSTAR(1) model, i.e.
a nonlinear homogeneous panel, with parameters

�i10 = 0; �i11 = 0:1; 
i = 1; ci = 0:5T; �i20 = 1; �i21 = 0:8; (27)

for all i. This scenario facilitates the comparison to the power of a similar univari-
ate unit root test (parameter constancy test) in He and Sandberg (2005a) with
the same DGP as in (25) and parameter values given by (27). The outcome of
the experiment is presented in Table 5.

Table 5: Empirical power of the Z0 test in Proposition
1 and the IPS test. A nonlinear homogeneous panel.
No serial correlation.

T 25 50 100

n Z0 IPS Z0 IPS Z0 IPS

1� 0.11 0.00 0.20 0.00 0.28 0.00

5 0.67 0.00 0.76 0.00 0.90 0.00

25 1.00 0.00 1.00 0.00 1.00 0.00

50 1.00 0.00 1.00 0.00 1.00 0.01

Notes: The nominal size is 5%, and the results are
based on 10 000 replications. The asterisk indicates
that the power is calculated using the corresponding
t-type of tests in Chapter 1 and in Dickey and Fuller
(1979).

In Table 5 the bene�ts by using the panel unit root test statistic Z0 over a
univariate t-type of tests are revealed. For an example, with n = 1 and T = 100
we see that the power is 0:28, and for n = 5 and T = 100 the power has increased
to 0:90. A small increase in the number of cross sections leads to a substantial
improvement in the power. Notable is also that the power for the IPS test is zero
for all combinations of T and n. This should be compared to the results for the
IPS test in Table 3, where the IPS showed some power, e.g. 0:21 for T = 100 and
n = 50. The reason for the reduction in power for the IPS test is that the model
in (27) generates time series with a more evident change in levels than the time
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series generated under the third Monte Carlo experiment, a fact that is illustrated
in Figure 1. Even though a large amount of information is implied by a panel
with dimensions T = 100 and n = 50, the panel is not, evidently, large enough.

5.2.4 A heterogeneous nonlinear panel with serially correlated errors

The sixth Monte Carlo experiment is conducted to examine the empirical power
of the Z3 test statistic in Proposition 4. The DGP is the same as in (25) with
parameter speci�cations as in (26), but the error process allows for serial correla-
tion and is given by uit = 0:3ui;t�1+ vit, where vit � nid(0; 1). The results for the
sixth Monte Carlo experiment are presented in Table 6.

Table 6: Empirical power of the Z3 test in Proposition 4. The DGP is a
PLSTAR(1) model. Serial correlation.

T 25 50 100

Z3 Z3 Z3
n pi 1 2 3 pi 1 2 3 pi 1 2 3

5 0.11 0.10 0.09 0.25 0.21 0.19 0.75 0.73 0.71

25 0.28 0.25 0.23 0.41 0.35 0.31 0.95 0.94 0.92

50 0.42 0.38 0.35 0.58 0.51 0.49 1.00 1.00 1.00

Note: The nominal size is 5%, and the results are based on 10 000
replications.

When the errors are serially correlated, we see that the power for the Z3
test is reduced compared to the power results for Z0 with serially uncorrelated
errors in Table 3. This is partially explained by that in the present case more
parameters are estimated. The discrepancy in power between the Z0 and Z3 tests
is therefore more pronounced for small T , and when increasing T the di¤erence
in power between the two tests become modest. Furthermore, ignoring the serial
correlation (i.e. the case pi = 0) yields an alarming situation, however not reported
here, because the power is then close to zero for all combinations of T and n.
Finally note that for T = 100, all n, and pi � 1, the power is satisfactory.

5.2.5 A homogeneous panel with a mixture of nonlinear and non-
stationary models

In the seventh and the last Monte Carlo experiment we examine the power when
the DGP is a mixture of nonlinear models and unit root processes. The design
of the experiments is the following: The nonlinear model is a PLSTAR(1) model
with parameters given by (27), and the panel unit root processes are given in (21).
Furthermore, let n1 and n2 denote the number of nonlinear models and unit root
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processes, respectively, such that n1 + n2 = n holds. The simulation results are
given in Tables 7.

Table 7: Empirical power of the Z0 test in Proposition 1 and the IPS test.
The DGP is a mixture of LSTAR(1) models and unit root processes.

n = 25 (n1; n2)

(25; 0) (20; 5) (15; 10) (10; 15) (5; 20) (0; 25)

T Z0 IPS Z0 IPS Z0 IPS Z0 IPS Z0 IPS Z0 IPS

25 1.00 0.00 0.99 0.00 0.88 0.00 0.62 0.00 0.20 0.00 0.05 0.05

50 1.00 0.00 1.00 0.00 0.90 0.00 0.64 0.00 0.23 0.00 0.05 0.05

100 1.00 0.01 1.00 0.00 0.96 0.00 0.66 0.00 0.27 0.01 0.05 0.05

250 1.00 0.29 1.00 0.19 1.00 0.16 0.92 0.14 0.59 0.12 0.05 0.05

Note: The nominal size is 5%, and the results are based on 10 000 replications.

From Table 7 we conclude that the power of the Z0 test is decreasing in n2
towards the nominal size obtained with n2 = 25, cf. also Table 1. On the other
hand, the power of the Z0 test is increasing in n1 and with n1 = 25 the same
results as in Table 5 are obtained. The power for the Z0 test is also increasing in
T for all fractional combinations of nonlinear and unit root process. Furthermore,
it is seen that when a small to medium fraction of the panel is non-stationary, the
power of the Z0 test is barely a¤ected and is close to unity. The power for the IPS
test is close to zero because the panel is a mixture of nonlinear and non-stationary
processes, and one can not expect the IPS test to gain any power by varying the
fraction between these two options.
As a �nal remark, the results in Table 7 also illuminate the important aspect

of that the outcome of panel unit root tests should be conservatively dealt with,
meaning that rejecting the null hypothesis does not imply that all cross sections
are nonlinear. For instance, in the case n1 = 5, n2 = 20, and T = 250, the power of
the Z0 test equals 0:59, which means that we might erroneously model the whole
panel as nonlinear when in fact only a small fraction of the panel is nonlinear. This
also indicates that a careful joint analysis of both the individual and the panel unit
root test results is called for to fully assess the stationarity/nonlinearity properties
of the panel data, as pointed out in Karlsson and Löthgren (2000).

6 Concluding remarks

In this paper we present a new test for unit roots in a nonlinear dynamic het-
erogeneous panel. Theirs necessity can be motivated by the fact that canonical
panel unit root test, such as the tests in Im, Pesaran, and Shin (2003), do not
have satisfactory power when the DGP is an model with shifts in levels. Recent
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research indicates that many single time series exhibit a nonlinear adjustment
path (structural shifts in levels) towards a long-run equilibrium. It seems there-
fore natural that the cross sections in a panel are modelled in a nonlinear way (or
at least a fraction of them) as well.
Our nonlinear dynamic heterogeneous panel is general in the sense that it nests

the PLSTAR model in He and Sandberg (2005c), a panel threshold autoregressive
model, as well as the linear autoregressive panel in Im, Pesaran, and Shin (2003).
Our panel is characterized by the fact that each cross section is modelled as an
LSTAR model and where all parameters are assumed to be cross section speci�c.
The residuals in the PLSTAR model are speci�ed to be independent (a strong as-
sumption) with heterogeneous variance among cross sections, but possibly serially
correlated over time.
Our test for a common unit root in a nonlinear panel is based on averaging all

individual t-statistics of a unit root for a speci�c cross section unit. The test is
derived under: (i) T and n �xed. (ii) T �xed and letting n!1. (iii) First letting
T !1 and thereafter letting n!1 (sequential asymptotics). In the two latter
cases it is shown that the limiting distribution of the test is the standard normal
distribution.
Monte Carlo studies are performed and it is shown that the size distortions are

negligible when the errors are uncorrelated over time. However, when the errors
are modelled as an AR(1) process, it is crucial to include su¢ ciently many lags
of the di¤erence of the dependent variable, otherwise the test will be undersized.
The power results are very satisfactory and are close to unity for panels bothbeing
nearly linear or displaying a smooth shifts in levels and dynamics, as long as
n � 25 and T � 50. In contrast, the IPS test only has power when a linear panel
is considered, and otherwise its power is inferior. The improvement in power
compared to a univariate test in He and Sandberg (2005a), is pronounced.
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Appendix A: Simulated moments

Table 8 presents the simulated expected values, variances and third moments for
the tmi test statistics in (8). For comparison, the same moments for the ti test
statistic in (7) are calculated as well. The moments are calculated under the null
hypothesis in (6) assuming that the error term ful�lls Assumption 1 with �2i = 1
for all i. It is seen that, for all T , ~S2i is a very accurate estimate of �

2
i , whereas S

2
i

is biased downwards. In Table 8 it is also revealed that the well-known fact of the
LS bias in non-stationary regressions, see for instance Abadir (1993), is present
in our case as well. Furthermore, we conclude that limT!1 �(T ) = �� = �1
and limT!1 �

2(T ) = �2� = 1:43, where �(T ) = E[tmi ] and �
2(T ) = V [tmi ], which

con�rms that the �rst two asymptotic moments exist, justifying the use of the
Lindberg-Lèvy central limit theorem in Proposition 3.

Table 8: Simulated moments for ti and tmi .

T E[tmi ] V [tmi ] E (tmi )
3 ~S2i E[ti] V [ti] E (ti)

3 S2i
10 -0.540 0.898 -1.40 0.997 -0.716 2.086 -4.81 0.649

25 -0.786 1.160 -2.92 0.997 -0.901 1.583 -4.82 0.827

50 -0.889 1.278 -3.84 0.997 -0.950 1.502 -4.95 0.907

100 -0.940 1.361 -4.36 0.998 -0.972 1.466 -4.96 0.951

250 -0.974 1.401 -4.75 0.998 -0.992 1.444 -4.97 0.980

500 -0.985 1.427 -4.87 0.998 -0.995 1.442 -4.98 0.989

1000 -0.991 1.430 -4.97 0.999 -0.997 1.438 -5.00 0.995

1 -1.000 1.432 -5.03 1.000 -1.000 1.432 -5.03 1.000

Note: The results are based on 1 000 000 replications.

The simulation results for the expected values and variances for tai are reported
in Tables 9 and 10 respectively. It is pointed out that both the expected value
and the variance for tai depends on the factors T , yi0, pi, �i, and �

2
i . In order to

present these moments, the simulation results are given for various combination
of T and pi when they are both considered as �xed and known. We let yi0 = 0 to
capture the invariance with respect to �2i . However, the problem with the nuisance
parameters �i under the null hypothesis still remains. The option we choose is to
set �i = 0 under the null hypothesis so that data are generated from the model
yit = yi;t�1 + uit where ut � nid(0; 1). On these data we run the regression in
(18) and calculate the tai statistic in (22). This is repeated 1 000 000 times, for
each desired sample size T , to generate the expected values and variances for
tai . This means that we are approximating e.g. E[t

a
i (T; pi; �i)] with E[t

a
i (T; pi;0)]

under the null hypothesis. Without presenting the results we note that these
expected values and variances are rather robust against the values of �i, and that
the approximations for the expected values and the variance are reasonable.
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Table 9: Simulated expected values for tai .

E[tai (T; pi; �i = 0)]

pi 1 2 3

T �1i=0 �1i= �2i =0 �1i = �2i = �3i=0

25 -0.993 -0.993 -1.052

50 -0.994 -1.000 -1.049

100 -1.000 -1.000 -1.034

250 -1.000 -1.000 -1.011

500 -1.000 -1.000 -1.000

1000 -1.000 -1.000 -1.000

1 -1.000 -1.000 -1.000

Note: The results are based on 1 000 000 replications.

Table 10: Simulated variances for tai .

V [tai (T; pi; �i = 0)]

pi 1 2 3

T �1i = 0 �1i = �2i = 0 �1i = �2i = �3i = 0

25 1.661 1.713 1.762

50 1.553 1.585 1.611

100 1.495 1.513 1.535

250 1.473 1.462 1.484

500 1.451 1.444 1.452

1000 1.441 1.435 1.434

1 1.432 1.432 1.432

Note: The results are based on 1 000 000 replications.

For T ! 1 in Tables 9 and 10 we see that both the expected value and the
variance for tai equal the expected value (i.e. �

�) and the variance (i.e. �2�) for tmi
in Table 8. This is an implication of Corollary 2.7 in He and Sandberg (2005b).
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