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Abstract

We investigate the term structure of forward and futures prices for
models where the price processes are allowed to be driven by a general
marked point process as well as by a multidimensional Wiener process.
Within an infinite dimensional HJM-type model for futures and forwards
we study the properties of futures and forward convenience yield rates.
For finite dimensional factor models, we develop a theory of affine term
structures, which is shown to include almost all previously known models.
We also derive two general pricing formulas for futures options. Finally we
present an easily applicable sufficient condition for the possibility of fitting
a finite dimensional futures price model to an arbitrary initial futures price
curve, by introducing a time dependent function in the drift term.
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1 Introduction

The object of this paper is to study the properties of forward and futures prices
(as well as their derivatives) within a reasonably general framework, and in par-
ticular we are interested in the case when the underlying asset is non-financial,
i.e. when we have a non zero convenience yield.

The literature on forward and futures contracts is a rich one. In [1], [5],
[10], [17], and [18] the models have purely Wiener driven price dynamics, while
[11] also allows for a point process. In this paper we are in particular inspired
by the exposition in [17].

The main contributions of the present paper are as follows.
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• In Section 2 we present a general framework for the term structure dy-
namics of forward and futures prices, allowing for a general marked point
process as well as for a multidimensional Wiener process in the price dy-
namics. The approach is to model the entire term structure a la Heath-
Jarrow-Morton, and the main novelty is the introduction of the point
process.

• In Section 3 we study how it is possible to model the forward and futures
term structure by modeling the term structure of forward and futures
convenience yield rates. This approach has earlier been taken in [1] and
[17]. We extend the earlier results to the point process case, and we also
give new (even for the pure Wiener case) results about the forward conve-
nience yield rates drift condition. Furthermore we provide new results on
the relations between forward and futures convenience yield rates and the
conditional expectation of the future value of the spot convenience yield.

• In Section 4 we consider finite dimensional factor models and develop a
theory of affine term structures for forward and futures prices. This is done
very much as in the interest rate case (see [7]) and we show that almost
all previously known factor models for forwards and futures belong to the
affine class. In particular we show that the natural (from an affine point of
view) spot price models are the ones where the local rate of return and the
squared volatility are affine in the log of the spot price. We also provide
new affine factor models.

• Section 5 is devoted to the pricing of futures options within the general
framework of Section 2. Since the futures price process is not the spot
price process of a traded asset, the general Geman-El Karoui-Rochet op-
tion pricing formula (see [9]) is not applicable. Instead, by introducing
two hitherto new types of martingale measures, we mange to provide two
different general option pricing formulas and we also discuss the economic
interpretation of these formulas.

• Finally, in Section 6 we discuss the problem of fitting a given finite dimen-
sional factor model to a given initial futures term structure. We present
a reasonably large class of models for which the fitting can be done by
means of a deterministic perturbation of the drift term of the spot price,
and it is seen that most existing models in the literature belong to this
class.

2 Basics

We consider a financial market living on a stochastic basis (filtered probability
space) (Ω,F ,F, Q) where F = {Ft}t≥0. The basis is assumed to carry a multi-
dimensional Wiener process W as well as a marked point process µ(dt, dx) on
a measurable Lusin mark space (E, E) with predictable compensator ν(dt, dx).
The predictable σ-algebra is denoted by Q, and we make the definition Q̃ =
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Q ⊗ E . We assume that ν([0, t] × E) < ∞ Q-a.s. for all finite t, i.e. µ is a
multivariate point process in the terminology of [13]. For simplicity we also
assume that µ has an intensity λ, i.e. the compensator has the form

ν(dt, dy) = λ(t, dy)dt.

The compensated point process µ̃ is defined by µ(dt, dx) = µ(dt, dy)− ν(dt, dy).
The primitive assets to be considered on the market are forward and futures

contracts, written on a given underlying asset, with different delivery dates. We
denote the forward price at time t of a forward contract with delivery date T by
G(t, T ). The futures price at time t with delivery date T is denoted by F (t, T ).
The induced spot price process St is given by a standard arbitrage argument as

St = F (t, t) = G(t, t). (1)

We assume that there is an idealized market (liquid, frictionless, unlimited short
selling allowed etc.) for forward and futures contracts for every delivery date T .
We do, however, not assume that the asset underlying the futures and forward
market is traded on an idealized market. The market for the underlying could for
example be very thin, there could be transactions costs, prohibitive storage costs
or shortselling constraints. Typical examples would be a commodity market or
a market for electric energy. We will also have to consider the bond market,
and we let p(t, T ) denote the price, at time t, of a zero coupon bond maturing
at T . The corresponding forward rates are denoted by f(t, T ), where as usual

f(t, T ) = − ∂

∂T
ln p(t, T ). (2)

The short rate is denoted by r(t), and defined by r(t) = f(t, t). The money
account is defined as usual by B(t) = exp

∫ t

0 r(s)ds. We assume that the market
for bonds, futures and forwards is arbitrage free in the sense that the probability
measure Q is a martingale measure (for the numeraire B) for the economy. For
the rest of the paper we will, either by implication or by assumption, consider
dynamics of the following type.

Forward price dynamics

dG(t, T ) = G(t, T )αG(t, T )dt + G(t, T )σG(t, T )dWt

+ G(t−, T )
∫

E

δG(t, y, T )µ(dt, dy), (3)

Futures price dynamics

dF (t, T ) = F (t, T )αF (t, T )dt + F (t, T )σF (t, T )dWt

+ F (t−, T )
∫

E

δF (t, y, T )µ(dt, dy), (4)
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Spot price dynamics

dS(t) = S(t)αS(t)dt + S(t)σS(t)dWt

+ S(t−)
∫

E

δS(t, y)µ(dt, dy), (5)

Short rate dynamics

dr(t) = αr(t)dt + σr(t)dWt +
∫

E

δr(t, y)µ(dt, dy), (6)

Bond price dynamics

dp(t, T ) = p(t, T )αp(t, T )dt + p(t, T )σp(t, T )dWt

+ p(t−, T )
∫

E

δp(t, y, T )µ(dt, dy), (7)

Forward rate dynamics

df(t, T ) = αf (t, T )dt + σf (t, T )dWt +
∫

E

δf (t, y, T )µ(dt, dy). (8)

In the above formulas the coefficient processes are assumed to meet stan-
dard conditions required to guarantee that the various processes are well defined.

We recall the following basic results (see e.g. [2]).

Proposition 2.1 Let QT denote the T -forward martingale measure. Then the
following hold.

• For a fixed T , the futures price process F (t, T ) is a Q-martingale, and in
particular we have

F (t, T ) = EQ [S(T )| Ft] (9)

• The forward price process G(t, T ) is a martingale under QT , and in par-
ticular we have

G(t, T ) = EQT

[S(T )| Ft] . (10)

For future use, we recall the following relation between the volatilities of
the forward rates and the bond prices.

Proposition 2.2 With notation as in (7)-(8) we have

σp(t, T ) = −
∫ T

t

σf (t, s)ds, (11)

δp(t, y, T ) = e−Df (t,y,s) − 1, (12)

where

Df (t, T, y) =
∫ T

t

δf (t, y, s)ds (13)
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Proof. See [4].

Since the modeling above is done directly under a martingale measure,
there will be “drift conditions”, relating the drift terms to the volatilities of the
various processes above.

Proposition 2.3 Under the martingale measure Q, the following relations hold.

αG(t, T ) = σG(t, T )
∫ T

t

σ?
f (t, s)ds −

∫
E

δG(t, y, T )e−Df(t,y,T )λ(t, dy),(14)

αF (t, T ) = −
∫

E

δF (t, y, T )λ(t, dy), (15)

αp(t, T ) = rt −
∫

E

{
e−Df (t,y,T ) − 1

}
λ(t, dy), (16)

αf (t, T ) = σf (t, T )
∫ T

t

σ?
f (t, s)ds −

∫
E

δf (t, y, T )e−Df(t,y,T )λ(t, dy). (17)

Proof. For (16)-(17) we refer to [4]. In order to derive (15), we rewrite the
F -dynamics on semimartingale form by compensating the point process. We
thus obtain

dF (t, T ) = F (t, T )
{

αF (t, T ) +
∫

E

δF (t, y, T )λ(t, dy)
}

dt

+ F (t, T )σF (t, T )dWt

+ F (t−, T )
∫

E

δF (t, y, T )µ̃(dt, dy)

This formula gives the futures price process as a sum of a predictable finite
variation process and two martingales. Since the futures price process is a Q-
martingale, the dt-term must vanish, and we are finished.

To derive the drift condition for the forward price process, we now change
measure from Q to the T -forward measure QT . From general theory (see [9])
we know that the likelihood process for this measure transformation is given by

LT
t =

p(t, T )
B(t)p(0, T )

,

where

LT
t =

dQT

dQ
, on Ft.

Using (12), (16) and the Itô formula, we have the LT -dynamics

dLT
t = LT

t σp(t, T )dWt + LT
t−

∫
E

δp(t, y, T )µ(dt, dy).
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From the Girsanov Theorem (see [13]) it now follows that we can write

dWt = σ?
p(t, T )dt + dWT

t , (18)

where WT is a QT -Wiener process. It also follows from the Girsanov Theorem
that, under QT , the point process µ has an intensity λT given by

λT (t, dy) = (δp(t, y, T ) + 1)λ(t, dy). (19)

We can thus write the QT -semimartingale dynamics for G(t, T ) as

dG(t, T ) = G(t, T )
{
αG(t, T ) + σG(t, T )σ?

p(t, T )

+
∫

E

δG(t, y, T ) (δp(t, y, T ) + 1)λ(t, dy)
}

dt

+ G(t, T )σG(t, T )dWT
t

+ G(t−, T )
∫

E

δG(t, y, T )
{
µ(dt, dy) − λT (t, dy)dt

}
.

Since G(t, T ) is a QT -martingale the dt-term thus has to vanish and, using
Proposition 2.2, we obtain (14).

3 Modeling the forward and futures convenience

yield

In this section we will study how it is possible to model the term structure of
forwards and futures by modeling the spot price and the term structure of the
forward and futures convenience yields. This approach goes back to [1], [5] and
[17].

3.1 Basic definitions

Definition 3.1 With notations as above we define the following objects.

• The term structure of futures convenience yields ϕ(t, T ), for 0 ≤ t ≤ T , is
defined by the relation

F (t, T ) = S(t)e
∫

T

t
[f(t,s)−ϕ(t,s)]ds

. (20)

• The term structure of forward convenience yields γ(t, T ), for 0 ≤ t ≤ T ,
is defined by the relation

G(t, T ) = S(t)e
∫

T

t
[f(t,s)−γ(t,s)]ds

. (21)
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• The spot convenience yield c(t) is defined by the relation

αS(t) = r(t) − c(t) −
∫

E

δS(t, x)λ(t, dx) (22)

In order to connect with elementary theory we note that, for the case when S(t)
is the price of an underlying asset traded on an idealized market, we have the
relation

G(t, T ) = S(t)p(t, T )−1 = G(t, T ) = S(t)e
∫ T

t
f(t,s)ds

.

The forward convenience yields thus measures the deviation from this idealized
situation. We also note that, by the definition above, the spot price has the
Q-dynamics

dSt = S(t)(rt − ct)dt + S(t)σS(t)dW +
∫

E

δS(t, x, T )µ̃(dt, dx). (23)

Thus, as usual, under the martingale measure, the local mean rate of return of
the spot price equals the short rate minus the spot convenience yield.

We will start by investigating some elementary properties of the various
yields, and then we go on to discuss how to model the yield dynamics.

3.2 Elementary properties

It is easy to see that if the spot convenience yield ct is deterministic, then we
have, for all 0 ≤ t ≤ T ,

cT = γ(t, T ).

In the general situation with stochastic ct, this result raises the question if,
γ(t, T ) and/or ϕ(t, T ) can be viewed as predictors (at time t) of the spot yield
at time T . The following result provides an answer to this question. In order to
shorten notation, we use CovQ

t to denote the Q-covariance, conditioned on Ft.

Proposition 3.1

• The forward convenience yield satisfies

γ(t, T ) = EQ [cT | Ft] +
CovQ

t

[
e
−
∫ T

t
r(s)ds

ST , cT

]

EQ

[
e
−
∫

T

t
r(s)ds

ST

∣∣∣∣Ft

] (24)

• The futures convenience yield satisfies

ϕ(t, T ) = EQ [cT | Ft] +
CovQ

t [ST , cT ]
EQ [ST | Ft]

+ f(t, T ) − EQ [rT | Ft] − CovQ
t [ST , rT ]

EQ [ST | Ft]
(25)
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• In particular we have
ct = ϕ(t, t) = γ(t, t). (26)

Proof. We start by noting that (26) follows immediately from (24) and (25).
From the definition of γ we have

− ∂

∂T
lnG(t, T ) = γ(t, T ) − f(t, T ). (27)

From general theory we also know that

G(t, T ) =
1

p(t, T )
EQ

[
e
−
∫

T

t
r(s)ds

S(T )
∣∣∣∣Ft

]

= e

∫ T

t
f(t,s)ds

EQ

[
e
−
∫ T

t
r(s)ds

S(T )
∣∣∣∣Ft

]

Using subscript to denote partial derivatives, we obtain

GT (t, T ) = f(t, T )G(t, T )− e

∫
T

t
f(t,s)ds ∂

∂T
EQ

[
e
−
∫

T

t
r(s)ds

S(T )
∣∣∣∣Ft

]

In order to compute the last term, let us (for a fixed t) define the process ZT by

ZT = e
−
∫

T

t
r(s)ds

S(T ). An application of the Itô formula, together with (23),
gives us

dZT = −rT ZT dT + e
−
∫

T

t
r(s)ds

dST

= −rT ZT dT + e
−
∫

T

t
r(s)ds

ST (rT − cT )dT + dM

= −e
−
∫

T

t
r(s)ds

ST cT dT + dM,

where dM denotes a generic Q-martingale increment. From this we obtain

∂

∂T
EQ

[
e
−
∫ T

t
r(s)ds

S(T )
∣∣∣∣Ft

]
= lim

h→0

1
h

EQ [ZT+h − ZT | Ft]

= − lim
h→0

1
h

EQ

[∫ T+h

T

e
−
∫

u

t
r(s)ds

Sucudu

∣∣∣∣∣Ft

]

= −EQ

[
e
−
∫ T

t
r(s)ds

ST cT

∣∣∣∣Ft

]
.

We thus obtain

− ∂

∂T
lnG(t, T ) =

GT (t, T )
G(t, T )

= −f(t, T ) +
EQ

[
e

∫
T

t
r(s)ds

cT ST

∣∣∣∣Ft

]

EQ

[
e

∫ T

t
r(s)ds

ST

∣∣∣∣Ft

] .
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Comparing this expression with (27) gives us

γ(t, T ) =
EQ

[
e

∫
T

t
r(s)ds

cT ST

∣∣∣∣Ft

]

EQ

[
e

∫ T

t
r(s)ds

ST

∣∣∣∣Ft

] .

Using the formula E [XY ] = E [X ] · E [Y ] + Cov(X, Y ), this proves (24).

For the futures convenience yield we have, from (20),

− ∂

∂T
lnF (t, T ) = ϕ(t, T ) − f(t, T ).

From general theory we also have

F (t, T ) = EQ [ST | Ft] .

From this we obtain (arguing as above)

FT (t, T ) = EQ [ST (cT − rT )| Ft] .

Thus we have

− ∂

∂T
lnF (t, T ) =

EQ [ST (cT − rT )| Ft]
EQ [ST | Ft]

,

so

ϕ(t, T ) − f(t, T ) =
EQ [ST (cT − rT )| Ft]

EQ [ST | Ft]
,

which proves (25).

We also have some easy consequences from this result.

Corollary 3.1

• If the spot convenience yield c is deterministic, then

γ(t, T ) = cT , ∀0 ≤ t ≤ T. (28)

• If the short rate r is deterministic, then

ϕ(t, T ) = γ(t, T ) = EQ [cT | Ft] +
CovQ

t [ST , cT ]
EQ [ST | Ft]

. (29)

Proof. The relation (28) follows immediately from (24). The formula (29)
follows also from (28) together with the fact that F = G (and thus ϕ = γ) when
interest rates are deterministic.
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3.3 Drift conditions for the yields

By specifying the dynamics of the spot price and the futures (forward) conve-
nience yield, the dynamics of futures (forward) prices are completely specified.
Since we are modeling under a martingale measure we will have the drift condi-
tions for futures and forward price dynamics given by Proposition 2.3, and these
conditions will obviously imply drift conditions on the yield dynamics. Before
starting on this investigation we need a small technical lemma.

Lemma 3.1 Assume that, for each T the process X(t, T ) has dynamics, for
t ≤ T , given by

dX(t, T ) = αX(t, T )dt + σX(t, T )dWt

+
∫

E

δX(t, y, T )µ(dt, dy), (30)

where the coefficient processes are assumed to meet standard conditions required
to guarantee that the X process is well defined. Assume furthermore that the
coefficients are regular enough to allow for an application of the stochastic Fubini
Theorem. If, for every T , the process Z(t, T ) is defined by

Z(t, T ) =
∫ T

t

X(t, s)ds,

then the stochastic differential of Z is given by

dZ(t, T ) = {AX(t, T ) − X(t, t)} dt + SX(t, T )dWt +
∫

E

D(t, y, T )µ(dt, dy),

where

AX(t, T ) =
∫ T

t

αX(t, s)ds, (31)

SX(t, T ) =
∫ T

t

σX(t, s)ds, (32)

DX(t, T ) =
∫ T

t

δX(t, s)ds. (33)

Proof. Fubini.

We may now state and prove the martingale measure drift conditions for
the futures and forward convenience yield dynamics.

Proposition 3.2 Assume that the dynamics of the futures and forward conve-
nience yields, under the martingale measure Q, are given by

dϕ(t, T ) = αϕ(t, T )dt + σϕ(t, T )dWt

11



+
∫

E

δϕ(t, y, T )µ(dt, dy),

dγ(t, T ) = αγ(t, T )dt + σγ(t, T )dWt

+
∫

E

δγ(t, y, T )µ(dt, dy).

Then the futures and forward yield drift terms are given by

αϕ(t, T ) = σf (t, T )
∫ T

t

σ?
f (t, s)ds −

∫
E

δf (t, x, T )e−Df (t,x,T )λ(t, dx)

+ {σf (t, T ) − σϕ(t, T )}
{

σ?
S(t) +

∫ T

t

[
σ?

f (t, T )− σ?
ϕ(t, T )

]
ds

}
(34)

+
∫

E

{δf (t, y, T ) − δϕ(t, y, T )}
{
eDf (t,y,T )−Dϕ(t,y,T )

}
(δS(t, y) + 1) λ(t, dy).

αγ(t, T ) = σγ(t, T )
∫ T

t

σ?
γ(t, s)ds − σγ(t, T )σ?

S(t)

−
∫

E

δγ(t, y, T )e−Dγ(t,y,T ) (δS(t, y) + 1)λ(t, dy). (35)

Proof. We have by definition

F (t, T ) = Ste
Z(t,T ),

with Z defined as

Z(t, T ) =
∫ T

t

[f(t, s) − ϕ(t, s)] ds.

From Lemma 3.1, together with the facts that f(t, t) = rt and ϕ(t, t) = ct we
obtain (suppressing (t, T ))

dZ = {ct − rt + Af − Aϕ} dt + {Sf − Sϕ} dWt

+
∫

E

(Df − Dϕ) (t, y, T )µ(dt, dy).

Defining, for each T , the process X(t, T ) by X(t, T ) = eZ(t,T ), Itô’s formula
now gives us (suppressing T )

dXt = Xt

{
ct − rt + Af − Aϕ +

1
2
‖Sf − Sϕ‖2

}
dt + Xt {Sf − Sϕ} dWt

+ Xt−
∫

E

{
eDf−Dϕ − 1

}
µ(dt, dy).
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From this expression, the spot price dynamics (5) and the relation (22), an
application of the Itô formula to the expression F (t, T ) = StX(t, T ) gives us

dFt = Ft

{
ct − rt + Af − Aϕ +

1
2
‖Sf − Sϕ‖2

}
dt

+ Ft

{
rt − ct −

∫
E

δS(t, y)λ(t, dy)
}

dt

+ Ft (Sf − Sϕ) dWt

+ FtσSdWt

+ Ft (Sf − Sϕ) σ?
Sdt

+ Ft−
∫

E

{
eDf−Dϕ (1 + δS) − 1

}
µ(dt, dy).

Compensating the point process part and collecting terms give us the semi-
martingale dynamics

dFt = Ft

{
Af − Aϕ +

1
2
‖Sf − Sϕ‖2 + (Sf − Sϕ)σ?

S

+
∫

E

(
eDf−Dϕ − 1

)
(1 + δS)λ(t, dy)

}
dt

+ Ft {Sf − Sϕ + σS} dWt

+ Ft−
∫

E

{
eDf−Dϕ (1 + δS) − 1

}
µ̃(dt, dy),

Since F (t, T ) is a Q-martingale for each fixed T , the dt-term must vanish, so
the following identity must hold for all t and T with 0 ≤ t ≤ T .

0 = Af (t, T ) − Aϕ(t, T ) +
1
2
‖Sf(t, T ) − Sϕ(t, T )‖2 + (Sf (t, T ) − Sϕ(t, T ))σ?

S(t)

+
∫

E

(
eDf (t,y,T )−Dϕ(t,y,T ) − 1

)
(1 + δS(t, y))λ(t, dy).

Differentiating this identity w.r.t. T , using (17) and rearranging, we obtain the
drift condition for αϕ.

In order to derive the forward yield drift condition we obtain, in the same way
as for dF ,

dGt = Gt

{
Af − Aγ +

1
2
‖Sf − Sγ‖2 + (Sf − Sγ)σ?

S −
∫

E

δSλ(t, dy)
}

dt

+ Gt {Sf − Sγ + σS} dWt

+ Gt−
∫

E

{
eDf−Dγ (1 + δS) − 1

}
µ(dt, dy),

Applying Proposition 2.3 to the G-dynamics thus derived and taking the T -
derivative, gives us the result for αγ .
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4 Affine term structures for forwards and fu-
tures

Modeling the entire term structure of forward or futures prices results in an
infinite dimensional state variable. Therefore it is sometimes more convenient
to model a finite dimensional state process Z, and to assume that forward and
futures prices are given as functions of this state process. Just as in interest
rate theory (see [7], [8]), the term structures defined by functions which are
exponentially affine in the state variables are computationally very tractable,
and below we give necessary and sufficient conditions in terms of the dynamics
of the state process Z for the forward and futures term structures to be affine.

Assumption 4.1 The m-dimensional Markov process Z is assumed to have a
stochastic differential given by

dZt = αZ(t, Zt)dt + σZ(t, Zt)dWt +
∫

E

δZ(t, Zt−, y)µ(dt, dy)

under the martingale measure Q. Furthermore we assume that the compensator
ν of µ can be written as ν(ω; dt, dy) = λ(t, Zt−(ω), dy)dt.

4.1 Futures

Assumption 4.2 We assume that the futures prices can be written on the fol-
lowing form

F (t, T ) = HF (t, Zt, T ), (36)

where HF : R3 → R is a smooth function. In particular we assume that the spot
price S is given by

S(t) = HF (t, Zt, t) = h(t, Zt).

Lemma 4.1 If futures prices are given by (36), then HF satisfies the following
partial differential equation


∂HF

∂t
(t, z, T ) + AHF (t, z, T ) = 0,

HF (T, z, T ) = h(T, z),
(37)

where A is given by

AH(t, z, T ) =
m∑

i=1

αi
Z(t, z)

∂H

∂zi
+

1
2

m∑
i,j=1

Cij(t, z)
∂2H

∂zi∂zj

+
∫

E

[H(t, z + δZ(t, z, y), T )− H(t, z, T )]λ(t, z, dy).
(38)

In the expression (38) the matrix C is defined by

C = σZσ∗
Z , (39)

where * denotes transpose and all the partial derivatives of H should be evaluated
at (t, z, T ).
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Proof. Dynkin’s formula on

HF (t, Zt, T ) = EQ[h(T, ZT )|Ft].

Definition 4.1 The term structure of futures prices is said to be affine if the
function HF from (36) is of the following form

lnHF (t, z, T ) = AF (t, T ) + B∗
F (t, T )z, (40)

where AF and BF are deterministic functions.

Proposition 4.1 Suppose that Assumption 4.2 is in force and that the func-
tions αZ , σZ , δZ , λ and h are of the following form

αZ(t, z) = a1(t) + a2(t)z,

σZσ∗
Z(t, z) = k0(t) +

m∑
i=1

ki(t)zi,

δZ(t, z, y) = δZ(t, y),

λ(t, z, y) = l1(t, y) + l∗2(t, y)z,

lnh(t, z) = c(t) + d∗(t)z.

(41)

Then the term structure of futures prices is affine, that is HF from (36) can
be written on the form (40) where AF and BF solve the following system of
ordinary differential equations.


∂AF (t, T )
∂t

+ a∗
1(t)BF (t, T ) +

1
2
B∗

F (t, T )k0(t)BF (t, T )

+
∫

E

(
eB∗

F (t,T )δZ(t,y) − 1
)

l1(t, dy) = 0

AF (T, T ) = c(T ),

(42)

and


∂BF (t, T )
∂t

+ a∗
2(t)BF (t, T ) +

1
2
β∗

F (t, T )K(t)BF (t, T )

+
∫

E

(
eB∗

F (t,T )δZ(t,y) − 1
)

l2(t, dy) = 0

BF (T, T ) = d(T ),

(43)

where

K(t) =




k1(t)
k2(t)

...
km(t)


 , (44)

15



and βF (t, T ) is the m2 × m-matrix

βF (t, T ) =




BF (t, T ) 0 . . . 0
0 BF (t, T )
...

. . .
0 BF (t, T )


 .

Proof. This follows from the fact that exp{AF (t, T ) + BF (t, T )}, where AF

and BF solve (42) and (43), respectively, solves the PDE (37), which uniquely
characterizes the futures prices in this setting.

Remark 4.1 As in [7] it can be shown that under non degeneracy conditions
and a possible reordering of indices a σZ of the form in (41) can be written as

σZ(t, Zt) = Σ(t)



√

u1(t, Zt) 0 . . . 0
0

√
u2(t, Zt) . . . 0

. . .
0 . . . 0

√
um(t, Zt)




where the matrix Σ(t) depends only on t and

ui(t, z) = ki
0(t) +

m∑
j=1

ki
j(t)zj .

In most models which have appeared in the literature, the spot price is
one factor. Note that if we want an affine term structure we can not use the
spot price itself as a factor, but we must use the logarithm of the spot price.
Also note that if the logarithm of the spot price is a factor, then the boundary
conditions of AF and BF will be uniquely determined. We summarize these
observations in the following corollary of Proposition 4.1.

Corollary 4.1 Assume that Z0(t) = lnS(t) and that αZ , σZσ∗
Z , δZ and λ are

of the form stated in Proposition 4.1. Then

h(t, z) = ez0
,

and the term structure of futures prices is affine. That is, HF from (36) can
be written on the form (40) where AF and BF solve the system (42)-(43) of
ordinary differential equations with the boundary conditions replaced by

AF (T, T ) = 0,

and
BF (T, T ) = e0,
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where e0 = (1, 0, . . . , 0)∗.
The stochastic differential of Z0 has the required form if and only if the

stochastic differential of the spot price S can be written as

dSt =

[
β1(t) + β2(t) lnSt +

m∑
i=1

βi
3(t)Z

i
t

]
Stdt

+σS(t, Zt)StdWt

+St−
∫

E

δS(t, y)µ(dt, dy),

where

σS(t, Zt)σ∗
S(t, Zt) = Γ1(t) + Γ2(t) ln St +

m∑
i=1

Γ3(t)Zi
t .

4.2 Examples

A number of factor models have been proposed in the literature, and the cor-
responding futures prices have been computed on a case by case basis. We
now give a list of the most well known factor models and it follows immedi-
ately from Corollary 4.1 that all these models will give rise to an affine term
structure of futures prices, which thus easily can be computed. We also provide
some new examples of affine factor models. All the models are given directly
under an equivalent martingale measure Q, and unless indicated otherwise, the
coefficients of the models are assumed to be constant.

4.2.1 The Schwartz spot price model.

The following spot price model was studied in [18].

dSt = κ(αS − lnSt)Stdt + σSStdWt., (45)

Here W is a one-dimensional Wiener process. Since this model is a special case
of the model below we defer computing the futures prices for this model to the
next section.

4.2.2 The general affine Wiener driven spot price model.

Without loosing the affine term structure, we can extend the one-factor model
by Schwartz to include a volatility of Cox-Ingersoll-Ross type. The model then
looks as follows

dSt = [a1(t) + a2(t) lnSt]Stdt + St

√
k0(t) + k1(t) lnStdWt. (46)

The functions AF and BF for this model satisfy the following ordinary differ-
ential equations (Zt = lnSt is used)

∂AF (t, T )
∂t

+
(

a1(t) − 1
2
k0(t)

)
BF (t, T ) +

1
2
k0(t)B2

F (t, T ) = 0,

AF (T, T ) = 0,
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and

∂BF (t, T )
∂t

+
(

a2(t) − 1
2
k1(t)

)
BF (t, T ) +

1
2
k1(t)B2

F (t, T ) = 0,

BF (T, T ) = 1.

The solutions are given by

BF (t, T ) =
1

X(t, T )
,

where

X(t, T ) = e
−
∫

T

t
[a2(s)− 1

2k1(s)]ds − 1
2

∫ T

t

e
−
∫

u

t
[a2(s)− 1

2 k1(s)]ds
k1(u)du,

and

AF (t, T ) =
∫ T

t

[(
a1(s) − 1

2
k0(s)

)
BF (s, T ) +

1
2
k0(s)B2

F (s, T )
]

ds.

As a special case, inserting

a1(t) = καS ,

a2(t) = −κ,

k0(t) = σ2,

k1(t) = 0,

we find the futures prices for the Schwartz one-factor model (see [18]).

4.2.3 The Gibson–Schwartz two-factor model.

The following two-factor model uses the spot price and the spot convenience
yield as factors. It is based on the model in [10] and appears in [18].

dSt = (r − ct)Stdt + StσSdWt,

dct = κ(αc − ct)dt + σcdWt.
(47)

Here W is a two-dimensional Wiener process and

σSσ∗
c = ρ‖σS‖ · ‖σc‖.

Again, this model is a special case of the next and therefore we defer computing
the futures prices for this model to the next paragraph.

Note that for the one and two-factor models presented so far, forward and
futures prices agree, since interest rates are assumed to be deterministic.
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4.2.4 The Schwartz three-factor model.

Including the short rate r as a third factor makes forward and futures prices
different. The following model can be found in [18].

dSt = (rt − ct)Stdt + StσSdWt,

dct = κc(αc − ct)dt + σcdWt,

drt = κr(αr − rt)dt + σrdWt,

(48)

where W is a three-dimensional Wiener process, and

σSσ∗
c = ρSc‖σS‖ · ‖σc‖,

σcσ
∗
r = ρcr‖σc‖ · ‖σr‖,

σSσ∗
r = ρSr‖σS‖ · ‖σr‖,

Let Zt = [lnSt, ct, rt]∗. The functions AF and BF = [BS , Bc, Br]∗ for this model
satisfy the following ordinary differential equations

∂AF (t, T )
∂t

− 1
2
‖σS‖2BS(t, T ) + κcαcBc(t, T ) + κrαrBr(t, T )

+
1
2
BF (t, T )∗k0BF (t, T ) = 0,

AF (T, T ) = 0,

where k0 is the covariance matrix

k0 =


 ‖σS‖2 ρSc‖σS‖ · ‖σc‖ ρSr‖σS‖ · ‖σr‖

ρSc‖σS‖ · ‖σc‖ ‖σc‖2 ρcr‖σc‖ · ‖σr‖
ρSr‖σS‖ · ‖σr‖ ρcr‖σc‖ · ‖σr‖ ‖σr‖2


 ,

and
∂BF (t, T )

∂t
+ a∗

2BF (t, T ) = 0,

BF (T, T ) = [1, 0, 0]∗,

where the matrix a2 is given by

a2 =


 0 −1 1

0 −κc 0
0 0 −κr


 .

The solutions are given by

BS(t, T ) ≡ 1,

Bc(t, T ) =
1
κc

(
e−κc(T−t) − 1

)
,

Br(t, T ) =
1
κr

(
1 − e−κr(T−t)

)
,
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and

AF (t, T ) =
κcαc + ρSc‖σS‖ · ‖σc‖

κ2
c

(1 − e−κc(T−t) − κc(T − t))

− κrαr + ρSr‖σS‖ · ‖σr‖
κ2

r

(1 − e−κr(T−t) − κr(T − t))

+
‖σc‖2

4κ3
c

(2κc(T − t) − 3 + 4e−κc(T−t) − e−2κc(T−t))

+
‖σr‖2

4κ3
r

(2κr(T − t) − 3 + 4e−κr(T−t) − e−2κr(T−t))

+
ρcr‖σc‖ · ‖σr‖

κc + κr

{
1 − e−κc(T−t) − e−κr(T−t) + e−(κc+κr)(T−t)

κcκr

+
1
κ2

c

(1 − e−κc(T−t) − κc(T − t)) +
1
κ2

r

(1 − e−κr(T−t) − κr(T − t))
}

.

Remark 4.2 Using the explicit expression for bond prices for this model (see
[19]) we see that the futures prices can be written in the following manner

F (t, T ) =
St

p(t, T )
eBc(t,T )cteĀ(t,T ),

where

Ā(t, T ) = AF (t, T ) +
‖σr‖2

4κ3
r

(2κr(T − t) − 3 + 4e−κr(T−t) − e−2κr(T−t))

This result will hold even if αr is allowed to be time-dependent.

4.2.5 The Hilliard–Reis three-factor model.

This model was suggested in [11], and coincides with the Schwartz three-factor
model except for the facts that the spot price process includes jumps and that
the drift of the short rate is time dependent. The function αr(t) below is chosen
so that the initial bond prices produced by the model agree with the observed
bond prices. The model is defined by

dSt = (rt − ct)Stdt + StσSdWt + St−
∫

R
yµ̃(dt, dy),

dct = κc(αc − ct)dt + σcdWt,

drt = κr(αr(t) − r)dt + σrdWt,

(49)

where W and σS , σc and σr are as in Section 4.2.4, and as before µ̃ is given
by µ̃(dt, dy) = µ(dt, dy)− ν(dt, dy). Here the marked point process µ has mark
space (R,B), where B is the Borel algebra, and the compensator ν is given by

ν(dt, dy) = λdt
1√
2πη2

· 1
y + 1

exp
{
− [ln(y + 1) − ξ]2

2η2

}
dy,
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for −1 < y < ∞. This means that the spot price process will jump according to
a Poisson process with intensity λ and that if δ denotes the relative jump size,
then 1 + δ has a log-normal distribution: ln(1 + δ) ∼ N(ξ, η2).

Since the spot price for this model equals the spot price for the Schwartz
three-factor model (with a time dependent αr, see Remark 4.2) plus a Q-
martingale, the futures prices will be the same for these models (as was pointed
out in [11]).

4.2.6 A three-factor model with positive short rate

If we want to be sure that the short rate is positive, we could replace the short
rate process assumed in the models above by a Cox-Ingersoll-Ross type process.
With a wise choice of the parameters κr, αr and σr the following model will
have a positive short rate (see [6]). This model has (to our knowledge) not been
studied previously.

dSt = (rt − ct)Stdt + StσSdWt,

dct = κc(αc − ct)dt + σcdWt,

drt = κr(αr − rt)dt +
√

rtσrdWt.

(50)

Again W is assumed to be a three-dimensional Wiener process, and

σSσ∗
c = ρSc‖σS‖ · ‖σc‖,

σcσ
∗
r = 0,

σSσ∗
r = 0,

Let Zt = [lnSt, ct, rt]∗. The functions AF and BF = [BS , Bc, Br]∗ for this model
satisfy the following ordinary differential equations

∂AF (t, T )
∂t

− 1
2
‖σS‖2BS(t, T ) + κcαcBc(t, T ) + κrαrBr(t, T )

+
1
2
BF (t, T )∗k0BF (t, T ) = 0,

AF (T, T ) = 0,

where k0 is the matrix

k0 =


 ‖σS‖2 ρSc‖σS‖ · ‖σc‖ 0

ρSc‖σS‖ · ‖σc‖ ‖σc‖2 0
0 0 0


 ,

and

∂BF (t, T )
∂t

+ a∗
2BF (t, T ) +

1
2
B∗

F (t, T )krBF (t, T ) = 0,

BF (T, T ) = [1, 0, 0]∗,
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where the matrix a2 is given by

a2 =


 0 −1 1

0 −κc 0
0 0 −κr


 ,

and the matrix kr by

kr =


 0 0 0

0 0 0
0 0 ‖σr‖2


 .

The solutions are given by

BS(t, T ) ≡ 1,

Bc(t, T ) =
1
κc

(
e−κc(T−t) − 1

)
,

Br(t, T ) = − 2
‖σr‖2

· (2r2 + ‖σr‖2)r1e
−r1(T−t) − (2r1 + ‖σr‖2)r2e

−r2(T−t)

(2r2 + ‖σr‖2)e−r1(T−t) − (2r1 + ‖σr‖2)e−r2(T−t)
,

where

r1 =
κr

2
+

√
κ2

r

4
+

‖σr‖2

2

r2 =
κr

2
−
√

κ2
r

4
+

‖σr‖2

2
Once BF has been determined AF can obtained via numerical integration.

4.3 Forwards

Assumption 4.3 We assume that the zero-coupon bond prices are of the form

p(t, T ) = HP (t, Zt, T ), (51)

where HP : R3 → R is a smooth function. Furthermore, we assume that the
forward prices can be written on the following form

G(t, T ) = HG(t, Zt, T ), (52)

where HG : R3 → R is a smooth function. In particular we assume that the spot
price S is given by

S(t) = HG(t, Zt, t) = h(t, Zt).

Lemma 4.2 If zero-coupon bond prices are given by (51) and forward prices
are given by (52), then HG satisfies the following partial differential equation

{
∂HG

∂t
(t, z, T ) + AT HG(t, z, T ) = 0,

HG(T, z, T ) = h(T, z),
(53)
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where AT is given by

AT H(t, z, T ) =
m∑

i=1

(αT
Z)i(t, z)

∂H

∂zi
+

1
2

m∑
i,j=1

Cij(t, z)
∂2H

∂zi∂zj

+
∫

E

[H(t, z + δZ(t, z, y), T )− H(t, z, T )]λT (t, z, dy).

(54)

Here
αT

Z(t, z) = αZ(t, z) + σZ(t, z)σ∗
P (t, z, T ),

λT (t, z, dy) = [δP (t, z, y, T ) + 1]λ(t, z, dy),

σP (t, z, T ) =
∇zHP (t, z, T )
HP (t, z, T )

σZ(t, z),

δP (t, z, y, T ) =
HP (t, z + δZ(t, z, y), T )− HP (t, z, T )

HP (t, z, T )
.

(55)

The matrix C was defined in (39). In the expression (54) all the partial deriv-
atives of H should be evaluated at (t, z, T ).

Proof. Itô’s formula applied to p(t, T ) = HP (t, Zt, T ) gives the expressions for
σP and δP . The dynamics of Z under the T -forward measure QT can be found
using (18) and (19) and they are given by

dZt = αT
Z(t, Zt)dt + σZ(t, Zt)dWT

t +
∫

E

δZ(t, Zt−, y)µ(dt, dy)

where the intensity of µ is λT (t, Zt−(ω), dy). The result now follows from an
application of Dynkin’s formula to

HG(t, Zt, T ) = ET [h(T, ZT )|Ft].

Definition 4.2 The term structure of interest rates is said to be affine if the
function HP from (51) is of the following form

lnHP (t, z, T ) = AP (t, T ) + B∗
P (t, T )z, (56)

where AP and BP are deterministic functions. Analogously, the term structure
of forward prices is said to be affine if the function HG from (52) is of the form

lnHG(t, z, T ) = AG(t, T ) + B∗
G(t, T )z, (57)

where AG and BG are deterministic functions.
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Proposition 4.2 Suppose that Assumption 4.3 is in force. Furthermore, sup-
pose that the term structure of interest rates is affine, that is the function HP

from (51) can be written on the form (56) and that the functions αZ , σZ , δZ , λ
and h are of the form given in (41). Then the term structure of forward prices
is affine, that is HF from (52) can be written on the form (57) where AG and
BG solve the following system of ordinary differential equations.


∂AG(t, T )
∂t

+ B∗
G(t, T )[a1(t) + k0(t)BP (t, T )]

+
1
2
B∗

G(t, T )s0(t)BG(t, T )

+
∫

E

(
eB∗

G(t,T )δZ(t,y) − 1
)

eB∗
P (t,T )δZ (t,y)l1(t, dy) = 0,

AG(T, T ) = c(T ),

(58)

and


∂BG(t, T )
∂t

+ a∗
2(t)BG(t, T ) + β∗

G(t, T )K(t)BP (t, T )

+
1
2
β∗

G(t, T )K(t)BG(t, T )

+
∫

E

(
eB∗

G(t,T )δZ(t,y) − 1
)

eB∗
P (t,T )δZ(t,y)l2(t, dy) = 0

BG(T, T ) = d(T ),

(59)

where K is given by (44) and

βG(t, T ) =




BG(t, T ) 0 . . . 0
0 BG(t, T )
...

. . .
0 BG(t, T )


 .

Proof. This follows from the fact that exp{AG(t, T ) + BG(t, T )}, where AG

and BG solve (58) and (59), respectively, solves the PDE (53), which uniquely
characterizes the forward prices in this setting.

5 Options on futures prices

5.1 General formula

In this section we will consider pricing options on futures. To obtain pricing
formulas we will use the change of numeraire technique developed in [9]. As
before we let Q denote the martingale measure. Apart from Q the measures
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QT ,QFT , QF and QTF will appear. They are defined as follows, starting with
the measure QF

dQF = LF
t dQ, on Ft

where

LF
t =

F (t, T1)
F (0, T1)

.

Using Itô’s formula the dynamics of LF are obtained as

dLF
t = LF

t σF (t, T1)dWt + LF
t−

∫
E

δF (t, y, T1)µ̃(dt, dy). (60)

Now, the measure QTF is defined by

dQTF = RTF dQF , on FT

where

RTF =
exp

{
− ∫ T

0 rsds
}

EF
[
exp

{
− ∫ T

0
rsds

}] .
Here the super index F indicates that the expectation should be taken under
QF .

As we have seen before the T -forward measure QT is defined by

dQT = LT
t dQ, on Ft,

where

LT
t =

p(t, T )
B(t)p(0, T )

.

Using Itô’s formula the dynamics of LT are obtained as

dLT
t = LT

t σp(t, T )dWt + LT
t−

∫
E

δp(t, y, T )µ̃(dt, dy). (61)

Finally, the measure QFT is defined by

dQFT = LFT
t dQT , on Ft,

where

LFT
t = exp

{
−
∫ t

0

[
σF (u, T1)σ∗

p(u, T )

+
∫

E

δF (u, y, T1)δp(u, y, T )λ(u, dy)
]

du

}
F (t, T1)
F (0, T1)

.

The QT -dynamics of F (t, T1) can be found using the Girsanov Theorem. Itô’s
formula then gives us the dynamics of LFT under QT

dLFT
t = LFT

t σF (t, T1)dWT
t + LFT

t−

∫
E

δF (t, y, T1)µ̃(dt, dy). (62)
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The point process µ has the intensity λT under QT , where λT (t, dy) is given by
λT (t, dy) = (1 + δp(t, y, T ))λ(t, dy).

We may now state the main result of this section

Theorem 5.1 The price, at date zero, of a European call option with exercise
date T and exercise price K written on the futures price with delivery date T1

can be computed from either one of the following two formulas

CF = F (0, T1)EF

[
e
−
∫

T

0
r(s)ds

]
QTF (F (T, T1) ≥ K)

− Kp(0, T )QT (F (T, T1) ≥ K),
(63)

where the super index F indicates that the expectation should be taken under
QF , or

CF = p(0, T )F (0, T1)EFT

[
exp

{∫ T

0

κsds

}
I{F (T, T1) ≥ K}

]

− Kp(0, T )QT (F (T, T1) ≥ K),
(64)

where the super index FT indicates that the expectation should be taken under
QFT , and κ is given by

κ(t) = σF (t, T1)σ∗
p(t, T ) +

∫
E

δF (t, y, T1)δp(t, y, T )λ(t, dy). (65)

Proof. Write the option as

X = max{F (T, T1) − K, 0} = [F (T, T1) − K] · I{F (T, T1) ≥ K},
where I is the indicator function, i.e.

I{F (T, T1) ≥ K} =
{

1 if F (T, T1) ≥ K,
0 if F (T, T1) < K.

We then have that the price of the option, at date zero, is given by

CF = EQ[B(T )−1[F (T, T1) − K] · I{F (T, T1) ≥ K}]

= EQ

[
exp

{
−
∫ T

0

rsds

}
F (T, T1) · I{F (T, T1) ≥ K}

]

−KEQ

[
exp

{
−
∫ T

0

rsds

}
· I{F (T, T1) ≥ K}

]

To prove the first formula we change to the measure QF in first term to
obtain

EQ

[
exp

{
−
∫ T

0

rsds

}
F (T, T1) · I{F (T, T1) ≥ K}

]

= F (0, T1)EF

[
exp

{
−
∫ T

0

rsds

}
· I{F (T, T1) ≥ K}

]
,
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and then we change to the measure QTF . Note that it is the T -forward measure
as seen from QF .

For the second term we use the T -forward measure directly.

To prove the second formula we use the T -forward measure QT in first term to
obtain

EQ

[
exp

{
−
∫ T

0

rsds

}
F (T, T1) · I{F (T, T1) ≥ K}

]

= p(0, T )ET [F (T, T1)I{F (T, T1) ≥ K}]

= p(0, T )F (0, T1)ET

[
e
−
∫ T

0
κsds F (T, T1)

F (0, T1)
· e
∫ T

0
κsds

I{F (T, T1) ≥ K}
]

and then we change to the measure QFT .
For the second term, again, we use the T -forward measure directly.

We may now ask ourselves whether it is possible to interpret the above
measures as martingale measures for some numeraire asset. This question is
answered by the following lemma, the proof of which is easy and therefore
omitted.

Lemma 5.1
I: Under QF the process V F (t) defined by V F (t) = B(t)F (t, T1) acts as a nu-
meraire asset. Its Q-dynamics are given by

dV F (t) = r(t)V F (t)dt + V F (t)σF (t, T1)dW (t)

+ V F (t−)
∫

E

δF (t, y, T1)µ̃(dt, dy)

The process is the value process of a self-financing portfolio consisting of B(t)
T1-futures options and F (t, T1) units of the money account (i.e. F (t, T1)/B(t)
dollars invested in the money account).

II: Under QFT the process V FT (t) = e
−
∫

t

0
κsds

p(t, T )F (t, T1) acts as a nu-
meraire asset. Here κ is the process given by

κ(t) = σF (t, T1)σ∗
p(t, T ) +

∫
E

δF (t, y, T1)δp(t, y, T )λ(t, dy).

The Q-dynamics of V FT are given by

dV FT (t)
V FT (t−)

= r(t)dt + [σp(t, T ) + σF (t, T1)] dW (t)

+
∫

E

{δF (t, y, T1) [1 + δp(t, y, T )] + δp(t, y, T )} µ̃(dt, dy).
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The process V FT is the value process of a self-financing portfolio consisting
of exp

{
− ∫ t

0 κsds
}
· F (t−, T1) bonds with maturity T , exp{− ∫ t

0 κsds}p(t−, T )
units of T1-futures options, and V (t−) units of an asset with price process Π(t) ≡
0 and cumulative dividend process D defined by

dD(t) =
∫

E

δp(t, y, T )δF (t, y, T1)][µ(dt, dy) − λ(t, dy)dt].

5.2 Special cases

5.2.1 Deterministic volatilities

Consider the following model under the martingale measure Q.

df(t, T ) = αf (t, T )dt + σf (t, T )dWt +
∫

E

δf (t, y, T )µ(dt, dy),

dF (t, T ) = F (t, T )αF (t, T )dt + F (t, T )σF (t, T )dWt

+ F (t−, T )
∫
E δF (t, y, T )µ(dt, dy).

Here σf and σF are assumed to be deterministic functions of the time parame-
ters. Also δf and δF are assumed to be deterministic functions, now of the time
parameters and the mark space variable y. Finally, αf and αF are given by the
drift conditions (17) and (15), respectively.

Remark 5.1 Instead of modeling the futures prices directly we could model the
futures convenience yield and the spot price dynamics. Suppose we do this as

dϕ(t, T ) = αϕ(t, T )dt + σϕ(t, T )dWt +
∫

E

δϕ(t, y, T )µ(dt, dy),

dSt = αS(t)Stdt + S(t)σS(t)dWt + St−
∫

E

δS(t, y)µ(dt, dy),

where σϕ and σS are assumed to be deterministic functions of the time para-
meters, and δϕ and δS are assumed to be deterministic functions of the time
parameters and the mark space variable y, and, finally, αϕ is given by the drift
condition (34), whereas αS is given by (22). Then it is easily seen from (20)
that the futures prices resulting from these specifications will have deterministic
volatilities, i.e. they will be of the form considered above.

Using the second pricing formula, (64), we see that the price, at date zero,
of a European call option with exercise date T and exercise price K written on
the futures price with delivery date T1 is given by

CF = p(0, T )F (0, T1)e
∫

T

0
κsds

QFT (F (T, T1) ≥ K)

− Kp(0, T )QT (F (T, T1) ≥ K),
(66)
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since the process κ defined in (65) is deterministic for this model (recall formula
(11)). The dynamics of F (t, T1) under QT and QFT are easily found using the
dynamics of LT and LFT given in (61) and (62), respectively, together with the
Girsanov Theorem. Under QT they are given by

dF (t, T1) =
[
σF (t, T1)σ∗

p(t, T ) −
∫

E

δF (t, y, T1)λ(t, dy)
]

F (t, T1)dt

+ F (t, T1)σF (t, T1)dWT
t + F (t−, T1)

∫
E

δF (t, y, T1)µ(dt, dy).

The point process µ has intensity λT under QT , where

λT (t, dy) = (1 + δp(t, y, T ))λ(t, dy).

Under QFT the dynamics of F (t, T1) are

dF (t, T1)
F (t−, T1)

=
[
σF (t, T1)σ∗

F (t, T1) + σF (t, T1)σ∗
p(t, T ) −

∫
E

δF (t, y, T1)λ(t, dy)
]

dt

+ σF (t, T1)dWFT
t +

∫
E

δF (t, y, T1)µ(dt, dy)

Under QFT the point process µ has intensity λFT , where

λFT (t, dy) = (1 + δF (t, y, T1))(1 + δp(t, y, T ))λ(t, dy).

5.2.2 The Hilliard–Reis three-factor model.

Consider again the Hilliard–Reis model defined in (49). The bond price volatil-
ities for this model are given by (see [12])

σp(t, T ) =
σr

κr
(e−κr(T−t) − 1).

Using the explicit expression for the futures prices, the futures price dynamics
can be shown to be (see [11])

dF (t, T ) = −F (t, T )δ̄λdt + F (t, T )σF (t, T )dWt + F (t−, T )
∫

R

yµ(dt, dy). (67)

Here, as before, the marked point process µ has mark space (R,B), where B is
the Borel alebra, and a compensator

ν(dt, dy) = λdt
1√
2πη2

· 1
y + 1

exp
{
− [ln(y + 1) − ξ]2

2η2

}
dy

for −1 < y < ∞. Recall that this means that the spot price process will
jump according to a Poisson process with intensity λ and that if δ denotes the
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relative jump size, then 1+δ has a log-normal distribution: ln(1+δ) ∼ N(ξ, η2).
Furthermore, δ̄ = EQ[δ] in (67) denotes the expected relative jump size under
Q, and we have that

σF (t, T )σ∗
F (t, T ) = σ2

S + σ2
cB2

c (t, T ) + σ2
rB2

r (t, T ) + 2‖σS‖ · ‖σc‖ρScBc(t, T )

+ 2‖σS‖ · ‖σr‖ρSrBr(t, T ) + 2‖σc‖ · ‖σr‖ρcrBc(t, T )Br(t, T ),

σ∗
F (t, T1)σp(t, T ) = −‖σS‖ · ‖σr‖ρSrBr(t, T ) − ‖σc‖ · ‖σr‖ρcrBr(t, T )Bc(t, T1)

− ‖σr‖2Br(t, T )Br(t, T1).

Specializing the formulas for the dynamics of F (t, T1) under QT and QFT to
this case, we see that conditional on that there has been n jumps F (T, T1) can
be written as

F (T, T1) = F (0, T1)
n∏

i=1

(1 + δTi) ×

× exp

{∫ T

0

(
σF (t, T1)σ∗

p(t, T ) − δ̄λ − 1
2
σF (t, T1)σ∗

F (t, T1)
)

dt

+
∫ T

0

σF (t, T1)dWT
t

}
,

where δTi , i = 1, . . . , n are i.i.d. random variables and ln(1 + δTi) ∈ N(ξ, η2)
under QT . The variables δTi are also independent of WT . Alternatively we can
write F (T, T1) as

F (T, T1) = F (0, T1)
n∏

i=1

(1 + ∆Ti) ×

× exp

{∫ T

0

(
σF (t, T1)σ∗

p(t, T ) − δ̄λ +
1
2
σF (t, T1)σ∗

F (t, T1)
)

dt

+
∫ T

0

σF (t, T1)dWFT
t

}
,

where ∆Ti , i = 1, . . . , n are i.i.d. with ln(1 + ∆Ti) ∈ N(ξ + η2, η2) under QFT .
The variables ∆Ti are also independent of WFT . Given this we can express the
two probabilities in (66) as follows

QFT (F (T, T1) ≥ K) =
∞∑

n=0

[
e−λ′T (λ′T )n

n!

]
N(d1n),

QT (F (T, T1) ≥ K) =
∞∑

n=0

[
e−λT (λT )n

n!

]
N(d2n),
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where

d1n =
1√

ζ2 + nη2

(
ln
(

F (0, T1)Y (0, T, T1)
K

)
+ nξ − δ̄λT +

1
2
ζ2 + nη2

)
,

d2n = d1 −
√

ζ2 + nη2,

Y (t, T, T1) = e

∫
T

t
σF (s,T1)σ∗

p(s,T )ds
,

ζ2 =
∫ T

0
σF (t, T1)σF (t, T1)∗dt,

λ′ = λeξ+η2/2.

The price, at date zero, of a European call option with exercise date T and
exercise price K written on the futures price with delivery date T1 is therefore
given by the following formula after some rewriting where we use the fact that
exp{ξ + η2/2} = δ̄ + 1

CF = p(0, T )
∞∑

n=0

[
e−λT (λT )n

n!

] [
F (0, T1)Y (0, T, T1)e−λδ̄T+n ln(1+δ̄)N [d1n]

− KN [d2n]
]
.

Here N denotes the cumulative distribution function of a normally distributed
random variable with expectation zero and variance one, and d1n, d2n and
Y (t, T, T1) have been defined above. This reproduces the results in [11].

5.2.3 The Gaussian case

Consider the following model, which is a special case of the model of the previous
section, under the martingale measure Q.

df(t, T ) = αf (t, T )dt + σf (t, T )dWt,

dF (t, T ) = F (t, T )αF (t, T )dt + F (t, T )σF (t, T )dWt.

Here σf and σF are assumed to be deterministic functions of the time para-
meters, whereas αf and αF are given by the drift conditions (17) and (15),
respectively.

Specializing the formulas for the dynamics of F (t, T1) to this case, we see
that F (t, T1) follows a geometric Brownian motion both under QT and under
QFT . The probabilities can therefore be computed and we find that the price,
at date zero, of a European call option with exercise date T and exercise price
K written on the futures price with delivery date T1 is given by

CF = p(0, T )F (0, T1) exp

{∫ T

0

κudu

}
N [d1]

− Kp(0, T )N [d2] ,

31



where N denotes the cumulative distribution function of a normally distributed
random variable with expectation zero and variance one. Furthermore, d1 and
d2 are given by

d1 =
1√∫ T

0 ‖σF (u, T1)‖2du

(
ln
(

F (0, T1)
K

)
+
∫ T

0

{
κsds +

1
2
‖σF (s, T1)‖2

}
ds

)
,

d2 = d1 −
√∫ T

0

‖σF (u, T1)‖2du.

The process κ was defined in (65). This reproduces the result in [17] (in the
referenced work the futures convenience yield and the spot price dynamics are
modeled instead of the futures price dynamics, but as was pointed out in Remark
5.1, deterministic volatilities for the convenience yield and the spot price imply
deterministic futures price volatilities, and thus the above pricing formula is
applicable).

5.2.4 Quadratic interest rates

Consider a model specified by the following equations

dZ1(t) = [α1 − β1Z1(t)]dt + ρ1dW1(t),

dZ2(t) = [α2 − β2Z2(t)]dt + ρ2dW2(t),

dF (t, T ) = σ1F (t, T )dW1(t) + σ2F (t, T )dW2(t),

and
r(t) =

1
2
(Z2

1 (t) + Z2
2 (t)).

The specifications are all made under a martingale measure Q, and W1 and W2

are two independent standard Wiener processes. We assume that αi, βi, ρi and
σi, i = 1, 2 are all constants.

For this model the T -maturity zero-coupon bond price can be shown to be
of the form

p(t, T ) = exp

{
−

2∑
i=1

[
1
2
Bi(t, T )Z2

i (t) + bi(t, T )Zi(t)
]
− c(t, T )

}
,

where Bi, bi, i = 1, 2 and c solve the following ordinary differential equations

∂Bi

∂t
= 2βiBi + ρ2

i B
2
i − 1, Bi(T, T ) = 0, (68)

∂bi

∂t
− (βi + ρ2

i Bi)bi + αiBi = 0, bi(T, T ) = 0, (69)
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∂c

∂t
+

2∑
i=1

(
αibi +

1
2
ρ2

i [Bi − b2
i ]
)

= 0, c(T, T ) = 0. (70)

(see [14] for details).
We will now attempt to compute the price, at date zero, of a European call

option with exercise date T and exercise price K written on the futures price
with delivery date T1, using the first pricing formula (63). The dynamics of Z1,
Z2 and F (t, T1) under QF are easily found using the dynamics of LF given in
(60) together with the Girsanov Theorem. They are

dZ1(t) = [α1 + ρ1σ1 − β1Z1(t)]dt + ρ1dWF
1 (t),

dZ2(t) = [α2 + ρ2σ2 − β2Z2(t)]dt + ρ2dWF
2 (t),

dF (t, T ) = (σ2
1 + σ2

2)F (t, T1)dt + σ1F (t, T )dWF
1 (t) + σ2F (t, T )dWF

2 (t),

where WF
1 and WF

2 are two independent QF -Wiener processes. From this we see
that the state variables Z1 and Z2 are still Gaussian. Using QF as a martingale
measure we can therefore compute bond prices in exactly the same way as before,
except for that αi is replaced by α̃i = αi + σiρi, i = 1, 2. These modified bond
prices, which we will denote by p̃(t, T ), give us the first expectation in (63).
From the above dynamics we see that the futures price F (T, T1) is log-normally
distributed, and hence the second probability in (63) is given by

QT (F (T, T1) ≥ K) = N

[
1

‖σF ‖
√

T

[
ln
(

F (0, T1)
K

)
+

1
2
‖σF ‖2T

]]
,

where σF = (σ1, σ2) and N denotes the cumulative distribution function of a
normally distributed random variable with mean zero and variance one.

The Radon-Nikodym derivative of QTF with respect to QF can now be
written as

RTF =
exp

{
− ∫ T

0 rsds
}

p̃(0, T )
.

This means that the likelihood process is given by

LTF
t =

p̃(t, T )
B(t)p̃(0, T )

(thus, QTF is the T -forward measure ”as seen from QF ”). Let B̃i, b̃i, i = 1, 2
and c̃ denote the functions you obtain solving the equations (68), (69) and (70),
respectively, with αi replaced by α̃i = αi + σiρi, i = 1, 2. Then we have that

p̃(t, T ) = exp

{
−

2∑
i=1

[
1
2
B̃i(t, T )Z2

i (t) + b̃i(t, T )Zi(t)
]
− c̃(t, T )

}
.

33



Using Itô’s formula we then see that the dynamics of LTF are

dLT
t = −LT

t (B̃1(t, T )Z1(t) + b̃1(t, T ))ρ1dWF
1 (t)

− LT
t (B̃2(t, T )Z2(t) + b̃2(t, T ))ρ2dWF

2 (t).

The Girsanov Theorem then gives us the following dynamics under QTF .

dZ1(t) = [α1 + ρ1σ1 − ρ2
1b̃1(t, T ) − (β1 + ρ2

1B̃1(t, T ))Z1(t)]dt

+ ρ1dWTF
1 (t),

dZ2(t) = [α2 + ρ2σ2 − ρ2
2b̃2(t, T ) − (β2 + ρ2

2B̃2(t, T ))Z2(t)]dt

+ ρ2dWTF
2 (t),

dF (t, T ) = [σ2
1 + σ2

2 − (B̃1(t, T )Z1(t) + b̃1(t, T ))ρ1σ1

− (B̃2(t, T )Z2(t) + b̃2(t, T ))ρ2σ2]F (t, T )dt

+ σ1F (t, T )dWTF

1 (t) + σ2F (t, T )dWTF

2 (t),

where WTF
1 and WTF

2 are two independent QTF -Wiener processes. Now let
Y (t) = (Z1(t), Z2(t), ln F (t, T1))∗. If we apply Itô’s formula to the third com-
ponent of this process we see that the process satisfies the following stochastic
differential equation

dYt = [αY (t) − βY (t)Yt]dt + σY (t)dWt,

where

αY (t) =




α1 + ρ1σ1 − ρ2
1b̃1(t, T )

α2 + ρ2σ2 − ρ2
2b̃2(t, T )

1
2
‖σF ‖2 − ρ1σ1b̃1(t, T ) − ρ2σ2b̃2(t, T )


 ,

βY (t) =




β1 + ρ2
1B̃1(t, T ) 0 0

0 β2 + ρ2
2B̃2(t, T ) 0

ρ1σ1B̃1(t, T ) ρ2σ2B̃2(t, T ) 0


 ,

and

σY (t) =


 ρ1 0

0 ρ2

σ1 σ2




Suppose that Y0 is deterministic. We then see that Y has a three dimensional
normal distribution, where the mean m(t) = ETF [Yt] and the covariance matrix
V = E[‖(Yt − m(t))‖2] are obtained as the solutions to the following linear

34



equations (see for instance [15]).

ṁ(t) = −βY (t)m(t) + αY (t),

V̇ (t) = −βY (t)V (t) − V (t)β∗
Y (t) + σY (t)σ∗

Y (t).

The probability in the pricing formula (63) is therefore given by

QTF (F (T, T1) ≥ K) = N

[
1√

V33(T )

[
ln
(

F (0, T1)
K

)
+ m3(T )

]]
.

6 Inverting the term structure

Consider a given finite dimensional factor model for the futures term structure,
say of the form

F (t, T ) = HF (t, Zt, T )

dZt = αZ(t, Zt)dt + σZ(t, Zt)dWt +
∫

E

δZ(t, Zt−, y)µ(dt, dy),

under the martingale measure Q. For a given initial value z0 of Z0 the model will
produce the theoretical initial term structure F (0, T ) = HF (0, z0, T ). Assuming
that we have a liquid futures market for all delivery dates, the market will
provide us with an observed initial futures term structure F †(0, T ), and we
would of course like our theoretical initial term structure to coincide with the
observed one. We would thus like to choose the parameters in the Z-dynamics
such that

F (0, T ) = F †(0, T ), ∀T ≥ 0,

and since this is an infinite dimensional system of equations, we will need an
infinite dimensional parameter vector. The entire project is thus completely
parallel to that of inverting the yield curve in interest rate theory.

6.1 Conditionally affine models

The general problem of when and how it is possible to fit an arbitrarily given
initial term structure, for a parameterized family of futures price models, is a
very hard one and there seems to be no strong general results (see however [16]).
Here we will instead present a nontrivial particular class of models for which
the initial term structure in fact can be inverted, and it turns out that most
existing factor models belong to this class. The class is characterized by the
facts that the spot price S is one of the factors, and we furthermore impose a
particular structure on the factor dynamics. See also [3], where basically the
same approach was applied to interest rate theory.

Definition 6.1 We say that a factor model for futures prices is a condition-
ally affine model if the following conditions hold.
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• The factor vector can be decomposed as (St, Zt) where Z ∈ Rd.

• The factor dynamics are of the form

dSt = St {f(Zt) − κ lnSt} dt + Stg(Zt)dWt

+ St−
∫

E

δS(t, Zt−, y)µ(dt, dy), (71)

dZt = a(Zt)dt + b(Zt)dWt +
∫

E

δz(t, Zt−, y)µ(dt, dy). (72)

Here µ is a point process, W is an m-dimensional Wiener process and
κ is a (typically positive) real number. The functions a,b, f and g are
nonlinear functions of appropriate dimensions (Z is viewed as a column
vector process). The jump volatility functions δS(t, z, y) and δz(t, z, y) are
assumed to be deterministic functions of the variables t, z and y with
δS > −1.

Given a conditionally affine model (S, Z) as above, as well as a deterministic
R-valued function ϕ(t), the corresponding perturbed model (Sϕ, Z) is defined
by the relations

dSϕ
t = St {ϕ(t) + f(Zt) − κ lnSϕ

t } dt + Stg(Zt)dWt

+ St−
∫

E

δS(t, Zt−, y)µ(dt, dy),

dZt = a(Zt)dt + b(Zt)dWt +
∫

E

δz(t, Zt−, y)µ(dt, dy).

The perturbed model is assumed to have the same initial data as the original
model. The futures prices generated by the original model and the perturbed
model are denoted by F (t, T ) and Fϕ(t, T ) respectively.

Note that the dynamics of the Z process does not involve S at all. The deeper
significance of the S-dynamics is that with this particular form, and for a given
Z-trajectory, we can write St = eξt where ξ satisfies a linear SDE. The above
dynamics are thus (conditional on the Z-trajectory) the natural extension of the
standard Black-Scholes stock price dynamics (including jumps). We also note
that Z is not affected by the choice of ϕ and that the original model corresponds
to ϕ = 0.

Given an initial (observed) term structure,
{
F †(0, T ); T ≥ 0

}
the problem

is to see if it is possible to choose ϕ in such a way that Fϕ(0, T ) = F †(0, T )
for all T ≥ 0. The reader will note the similarity between this perturbation
approach and the way in which Hull-White extend the Vasicek short rate model
in order to invert the yield curve. We have the following strong result.
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Proposition 6.1 Let F †(0, T ) be any smooth (i.e. C1) initial term structure
such that F †(0, 0) = F 0(0, 0). Define the function H by

H(T ) = ln
(

F †(0, T )
F 0(0, T )

)
(73)

Then the following hold:

• The perturbed model can be fitted to F †. In fact, by choosing ϕ as

ϕ(t) = H ′(t) + κH(t), (74)

we have
Fϕ(0, T ) = F †(0, T ), ∀T ≥ 0.

• With S0
0 = Sϕ

0 and with the above choice of ϕ we have, for all 0 ≤ t ≤ T ,

Fϕ(t, T ) =
F †(0, T )
F 0(0, T )

F 0(t, T ). (75)

• Assume that the short rate r is deterministic. For any contingent T -
claim of the form Φ(ST , ZT ) we denote the corresponding arbitrage free
pricing functions by P 0(t, s, z) and Pϕ(t, s, z) for the original model and
the perturbed model respectively. Then the following relation hold.

Pϕ(t, s, z) = P 0

(
t, se

∫ T

t
e−κ(T−u)ϕ(u)du

, z

)
. (76)

• Assume in particular that that ϕ is chosen such that the initial term struc-
ture is completely fitted as above. Then we have

P ϕ(t, s, z) = P 0
(
t, s ·

{
H(T )− e−κ(T−t)H(t)

}
, z
)

. (77)

Remark 6.1 The point of (76)-(77) is that if we have computed derivatives
pricing formulas in the original model, then these formulas can be used in the
perturbed model, by simply modifying the value of the observed spot price.

Proof. Defining ξ by ξ = lnS it is easy to see that

dξϕ
t = {−κξϕ

t + ϕ(t) + fξ(Zt)} dt + g(Zt)dWt

+
∫

E

δξ(t, Zt−, y)µ(dt, dy),

where

fξ(z) = f(z) − 1
2
g2(z),

δξ(t, z, y) = ln {1 + δS(t, z, y)} .
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Using the Itô formula one verifies readily that

ξϕ
T = e−κT ξϕ

0 +
∫ T

0

e−κ(T−u)ϕ(u)du +
∫ T

0

e−κ(T−u)fξ(Zu)du

+
∫ T

0

e−κ(T−u)g(Zu)dWu

+
∫ T

0

∫
E

e−κ(T−u)δξ(u, Zu−, y)µ(du, dy),

and, since ξϕ
0 = ξ0

0 = lnS0, we have

ξϕ
T = ξ0

T +
∫ T

0

e−κ(T−u)ϕ(u)du,

and hence,

Sϕ
T = S0

T · e
∫ T

0
e−κ(T−u)ϕ(u)du

. (78)

From this we obtain, for all t and T with 0 ≤ t ≤ T

Fϕ(t, T ) = EQ [Sϕ
T | Ft] = e

∫ T

0
e−κ(T−u)ϕ(u)du

EQ
[
S0

T

∣∣Ft

]
= e

∫
T

0
e−κ(T−u)ϕ(u)du

F 0(t, T ). (79)

Thus, in order to fit the given initial term structure F † we have to find ϕ such
that

F †(0, T ) = e

∫
T

0
e−κ(T−u)ϕ(u)du

F 0(0, T ). (80)

This equation can, with H defined as above, be written as

∫ T

0

eκuϕ(u)du = eκT H(T ),

and, taking the T -derivative, we obtain (74). The relation (75) follows immedi-
ately from (79)-(80).

If Φ(ST , ZT ) is a contingent T -claim, then the corresponding arbitrage free
price process Πϕ (t; Φ) for the perturbed model is given by

Πϕ (t; Φ) = e
−
∫ T

t
rudu

EQ [Φ(Sϕ
T , ZT )| Ft] .

From the Markovian setup we have in fact

EQ [Φ(Sϕ
T , ZT )| Ft] = Pϕ

0 (t, Sϕ
t , Zt) ,

where the real valued function Pϕ
0 : R+ × R+ × Rd → R is defined by

Pϕ
0 (t, s, z) = EQ [Φ(Sϕ

T , ZT )|Sϕ
t = s, Zt = z] .
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The pricing function Pϕ is thus given by Pϕ(t, s, z) = exp
{∫ T

t
r(u)du

}
Pϕ

0 (t, s, z).

Now, given that Sϕ
t = s, we obtain as above,

Sϕ
T = s · e

∫
T

t
ea(T−u)ϕ(u)du · exp

{
e−κ(T−t) +

∫ T

t

e−κ(T−u) {ϕ(u) + fξ(Zu)} du

}

× exp

{∫ T

0

e−κ(T−u)g(Zu)dWu

}

× exp

{∫ T

0

∫
E

e−κ(T−u)δξ(u, Zu−, y)µ(du, dy)

}

From direct inspection of this formula we see that the distribution of (Sϕ
T , ZT )

given Sϕ
t = s and Zt = z is identical with the distribution of (S0

T , ZT ) given

Sϕ
t = s · e

∫ T

t
e−κ(T−u)ϕ(u)du and Zt = z. This proves (76)-(77).

6.2 An example

To exemplify the theory above we now give a brief sketch of how to fit the
Schwartz Three Factor Model in Section 4.2.4 to an initial future price curve
F †(0, T ). The perturbed model is given by

dSt = (rt + ϕ(t) − ct)Stdt + StσSdWt,

dct = κc(αc − ct)dt + σcdWt,

drt = κr(αr − rt)dt + σrdWt,

and ϕ is obtained from Proposition 6.1 as

ϕ(t) =
∂

∂t
lnF †(0, t) + f(0, t) − ∂

∂t
Bc(0, t)c0 − ∂

∂t
Ā(0, t)

Here f(0, t) denotes the forward rates in the Vasiček short rate model, whereas
Bc and Ā are given in Remark 4.2.

It is worth noticing that with this perturbation, the process ct no longer
has the interpretation of being the spot convenience yield. The spot convenience
yield cϕ in the perturbed model is instead given by cϕ

t = ct − ϕ(t). Using S, cϕ

and r as state variables we easily obtain the alternative dynamics

dSt = (rt − cϕ
t )Stdt + StσSdWt,

dcϕ
t = κc

[
αc − ϕ(t) − κ−1

c ϕ′(t) − cϕ
t

]
dt + σcdWt,

drt = κr(αr − rt)dt + σrdWt.
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