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1. Introduction

Due to its analytical tractability, the Cobb-Douglas utility function

u : Rn
+ → R with u(x) = xa1

1 · · ·x
an
n =

n∏
i=1

xai
i (n ∈ N, a1, . . . , an > 0)

is among the most commonly used in economics. Its name credits Cobb and Douglas (1928), but

its roots can be traced back a few more decades to, among others, Mill, Pareto, and Wicksell.

See Lloyd (2001) for an historical overview.

The Cobb-Douglas utility function is so commonplace that its use is hardly ever motivated or

just accompanied by a statement that it concerns a “standard” utility function. If it is motivated

at all, it often uses functional equations: it presumes the existence of a function, imposes some

properties the function must satisfy, and derives that it must be of Cobb-Douglas form. Lloyd

(2001) gives an informal discussion, Eichhorn (1978) the mathematical details.

Rather than simply assuming that a utility function with desirable properties exists, this

note takes things one step back and derives Cobb-Douglas utility functions from first principles:

what properties of an economic agent’s preferences guarantee that they can be represented by

a utility function of Cobb-Douglas type?

This makes the functional equation approach difficult to apply. Ordinal properties of prefer-

ence relations need not translate to well-defined functional equations on a corresponding utility

function: the latter are determined only up to a monotonic transformation.

Section 2 fixes our notation. Section 3 contains our characterizations of preference relations

representable by Cobb-Douglas utility functions and a discussion of related literature.

2. Preliminaries

Define preferences on a set X in terms of a binary relation % (“weakly preferred to”) which is:

complete: for all x, y ∈ X : x % y, y % x, or both;

transitive: for all x, y, z ∈ X, if x % y and y % z, then x % z.

We call a complete, transitive relation % a weak order . As usual, x � y means x % y, but not

y % x, whereas x ∼ y means that both x % y and y % x. Preferences % are represented by

utility function u : X → R if

∀x, y ∈ X : x % y ⇔ u(x) ≥ u(y).
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Let n ∈ N. For vectors x, y ∈ Rn, write x ≤ y if xi ≤ yi for all i ∈ {1, . . . , n} and x < y if

xi < yi for all i ∈ {1, . . . , n}. Let Rn
+ = {x ∈ Rn : x ≥ 0} and Rn

++ = {x ∈ Rn : x > 0}. For

i ∈ {1, . . . , n}, let ei ∈ Rn be the i-th standard basis vector with i-th coordinate one and all

other coordinates zero; e =
∑n

i=1 ei is the vector of ones. Endow Rn with its standard topology

and subsets with the relative topology.

Let % be a binary relation on X, where X equals Rn, Rn
+, or Rn

++, and define:

continuity: for each x ∈ X, {y ∈ X : y ≺ x} and {y ∈ X : y � x} are open.

upper semicontinuity: for each x ∈ X, {y ∈ X : y ≺ x} is open.

additivity: for all x, y, z ∈ X, if x % y, then x+ z % y + z.

homotheticity: for all x, y ∈ X and all scalars t > 0, if x % y, then tx % ty.

homotheticity in coordinate i ∈ {1, . . . , n}: for all x, y ∈ X and all scalars t > 0,

if x % y, then (x1, . . . , xi−1, txi, xi+1, . . . , xn) % (y1, . . . , yi−1, tyi, yi+1, . . . , yn).

monotonicity: for all x, y ∈ X, if x ≤ y, then x - y.

strict monotonicity: for all x, y ∈ X, if x < y, then x ≺ y.

sensitivity: for each i ∈ {1, . . . , n}, there exist x, y ∈ X with xj = yj whenever

j 6= i and x 6∼ y.

substitutability: for each x ∈ X, there is a scalar α such that αe ∈ X satisfies

x ∼ αe.

Most properties are standard. Sensitivity avoids trivialities: each coordinate matters in pref-

erence relation %. Substitutability is a weak compensation principle: for each alternative,

improvements due to changes in one set of variables can compensate for deteriorations in others

— say, a little more of coordinate i might compensate for a little less of coordinate j — to

“smoothen out” any differences in the coordinates. In decision theory under uncertainty, where

coordinates correspond with payoffs in different states of nature, this property is known as the

“fair price” principle (Diecidue and Wakker, 2002): each alternative has an equivalent, constant

price α. The proof of Theorem 3.1 uses:

Lemma 2.1 [Diecidue and Wakker, 2002, Thm. 2] Consider a binary relation % on Rn.

The following statements are equivalent:

(a) There are nonnegative numbers a1, . . . , an adding up to one such that % is represented by

the utility function u : Rn → R with u(x) =
∑n

i=1 aixi.
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(b) % is a weak order satisfying strict monotonicity, additivity, and substitutability.

Lemma 2.2 [Dow and Werlang, 1992, Thm. 2.1] If a weak order % on Rn
+ is upper

semicontinuous, monotonic, and homothetic, then it is continuous.

3. Representation theorem

Theorem 3.1 provides two characterizations of preferences that can be represented by Cobb-

Douglas utility functions. Normalizing its coefficients a1, . . . , an to add up to one entails no loss

of generality: utilities are determined only up to a monotonic transformation.

Theorem 3.1 Consider a binary relation % on Rn
+. The following statements are equivalent:

(a) There are nonnegative numbers a1, . . . , an adding up to one such that % is represented by

the Cobb-Douglas utility function u : Rn → R with u(x) =
∏n

i=1 x
ai
i .

(b) % is a weak order satisfying strict monotonicity, homotheticity in each coordinate, and

substitutability.

(c) % is a weak order satisfying strict monotonicity, homotheticity in each coordinate, and

upper semicontinuity.

The numbers in (a) are positive if and only if % satisfies sensitivity.

Proof. (a)⇒ (b) and (a)⇒ (c): The function u is strictly monotonic (x < y ⇒ u(x) < u(y)),

homogeneous in each coordinate, continuous, and {u(αe) : α ∈ R+} = {u(x) : x ∈ Rn
+} = R+.

(b) ⇒ (a): Assume (b) holds. We use Lemma 2.1 to show that % can be represented by a

Cobb-Douglas utility function on Rn
++. The domain is then extended to Rn

+.

Step 1, domain Rn
++: Define f : Rn → Rn

++ for each x ∈ Rn by f(x) = (expx1, . . . , expxn).

As f and its inverse f−1 : Rn
++ → Rn with f−1(y) = (ln y1, . . . , ln yn) are continuous, f is a

homeomorphism. Given the weak order % on Rn
++, define a weak order %f on Rn as follows:

∀x, y ∈ Rn : x %f y ⇔ f(x) % f(y). (1)

The exponential function is strictly increasing, so by substitution in (1), properties imposed on

% carry over in a straightforward way to properties of %f : it is a weak order satisfying strict

monotonicity, and substitutability. Applying coordinatewise homotheticity n times, it follows

that

∀x, y, t ∈ Rn
++ : x % y ⇒ (t1x1, . . . , tnxn) % (t1y1, . . . , tnyn).

4



Hence, by definition (1), (lnx1, . . . , lnxn) %f (ln y1, . . . , ln yn) implies that

(lnx1, . . . , lnxn) + (ln t1, . . . , ln tn) %f (ln y1, . . . , ln yn) + (ln t1, . . . , ln tn).

As f is bijective, it follows that %f is additive.

By Lemma 2.1, there are a1, . . . , an ≥ 0 with
∑n

i=1 ai = 1 such that %f is represented by

the utility function x 7→
∑n

i=1 aixi. By (1), for all x, y ∈ Rn
++:

x % y ⇔ (lnx1, . . . , lnxn) %f (ln y1, . . . , ln yn) ⇔
n∑

i=1

ai lnxi ≥
n∑

i=1

ai ln yi.

Taking exponentials, % is represented by utility function u with u(x) =
∏n

i=1 x
ai
i on Rn

++.

Step 2, domain Rn
+: To see that u represents % on the entire domain Rn

+, we must establish

that x ∼ 0 for each x ∈ Rn
+ with some, but not all, coordinates equal to zero. Pick such an x. As

x+(1/n)e ∈ Rn
++ for each n ∈ N, strict monotonicity implies 0 ≺ x+(1/n)e. By substitutability,

there is an εn > 0 with x+ (1/n)e ∼ εne. As at least one coordinate of x+ (1/n)e goes to zero:

0 = lim
n→∞

u(x+ (1/n)e) = lim
n→∞

u(εne) = lim
n→∞

εa1+···+an
n = lim

n→∞
εn.

By substitutability, x ∼ αe for some α ≥ 0. Positive α are ruled out: x ≺ x+ (1/n)e ∼ εne for

all n ∈ N and limn→∞ εn = 0. So α must be zero.

(c) ⇒ (b): Assume (c) holds. We show that % satisfies substitutability. Applying coordinate-

wise homotheticity n times, it follows that % is homothetic. Moreover, % is monotonic: let

x, y ∈ Rn
+ have x ≤ y. Then x < y + (1/n)e for all n ∈ N, so x - y + (1/n)e (even strictly) by

strict monotonicity. Letting n→∞ and using that the set of alternatives weakly better than x

is closed by upper semicontinuity, it follows that x - y. So % is continuous by Lemma 2.2.

Substitutability now follows from a standard separation argument: for each x ∈ Rn
+, 0e -

x - max{x1, . . . , xn}e by monotonicity. As the diagonal D = {αe : α ≥ 0} is a connected set

and % is continuous, there is an α ≥ 0 with x ∼ αe: otherwise, the sets {y ∈ Rn
+ : y ≺ x} and

{y ∈ Rn
+ : y � x}, open in the relative topology on Rn

+ by continuity, separate D.

Sensitivity: Let i ∈ {1, . . . , n}. Sensitivity in the i-th coordinate excludes ai = 0. Conversely,

if ai 6= 0, then u(εei +
∑

j 6=i ej) = εai establishes sensitivity in the i-th coordinate. �

To my knowledge, the results above are new. Bossert and Weymark (2004, Theorem 11.1), in a

social choice setting, give a special case of the characterization in (c): they assume continuity,

rather than upper semicontinuity. They also refer to related results under additional assumptions
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and on the easier domain Rn
++; cf. Moulin (1988, Theorem 2.3) and Trockel (1989). The domain

Rn
++ avoids the complication that the indifference curve through the origin has a decidedly

different shape than indifference curves through points in Rn
++ and essentially allows one to skip

part (in particular, Step 2) of our proof above.
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