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Abstract

We consider an incomplete market in the form of a multidimensional
Markovian factor model, driven by a general marked point process (rep-
resenting discrete jump events) as well as by a standard multidimensional
Wiener process. Within this framework we study arbitrage free good deal
pricing bounds for derivative assets along the lines of Cochrane and Saa-
Requejo [4], extending the results from [4] to the point process case. As
a concrete application we present numerical results for the classic Mer-
ton jump-diffusion model. As a by product of the general theory we also
extend the Hansen-Jagannathan bounds [5] for the Sharpe Ratio to the
point process setting.
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1 Introduction

Most realistic models of financial markets are by nature and construction highly
incomplete. This holds for stochastic volatility models, models for energy and
weather derivatives, as well as for stock price models driven by a nontrivial
(marked) point process. Suppose now that we would like to compute an arbi-
trage free price process for a financial derivative within one of the model classes
mentioned above. Then we are faced with the following well known facts.

• Since the underlying market is incomplete, there will not exists a unique
martingale measure (or a unique stochastic discount factor). Thus there
will exist infinitely many arbitrage free price processes for a given deriva-
tive.

• In incomplete settings like this, the pricing bounds provided by merely
requiring absence of arbitrage are extremely wide, and such bounds are
thus useless from a practical point of view.
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There is thus a clear need for “reasonable” pricing bounds for derivative assets,
and to this end Cochrane and Saa-Requejo introduced, in the seminal paper [4],
the completely new idea of ruling out, not only those prices which are violating
the no arbitrage restriction, but also those prices which in some sense would
represent “deals which are too good”(henceforth referred to as “good deals”).
Cochrane and Saa-Requejo formalized in [4] the idea of a good deal essentially
as an asset price process with a high Sharpe ratio and posed the problem of
finding the upper and lower bound for all arbitrage free price processes, given a
bound on the Sharpe ratio of the derivative.

In [4] this problem was analyzed in great detail for the one-period, multi
period, and also the continuous time setting. For the continuous time models,
which we focus on in the present paper, the setting in [4] is that of a diffusion
model driven by a multidimensional Wiener process, the technical language is
that of stochastic discount factors, and the basic technique is dynamic program-
ming. Within this framework Cochrane and Saa-Requejo derive a pricing PDE,
which is then studied in detail and, in some cases, solved numerically.

For an interesting, but slightly different, view of good deal bounds, see [2]
and [3].

A related approach to obtain asset price bounds, based on gains-loss-ratios,
is presented in [1]. See [9] for an interesting connection of [1] to linear program-
ming.

The main object of the present paper is to extend the analysis of [4] to
allow also the possibility of jumps in the random processes describing the fi-
nancial market under consideration. Thus; in the setup of the present paper
all processes are allowed to be driven, not only by a multidimensional standard
Wiener process, but also by a general marked point process (henceforth referred
to as an “MPP”).

The structure of the paper is as follows.

• In Section 2 we present a very general probabilistic framework for the rest
of the paper.

• In Section 3 we derive expressions for the risk premium, the total volatil-
ity, and the Sharpe ratio for an asset price process within the general
framework of Section 2. We also provide an explicit representation of the
class of equivalent martingale measures. The main result of the section is
that we extend the Hansen-Jagannathan bounds from [5] to the general
setup of Section 2. The HJ bounds provide an inequality for the Sharpe
ratio in terms of the various market prices of risk, and this inequality is
at the heart of the good deal pricing project.

• In Section 4.1, we present our basic factor market model. The model
consists of a vector price process for traded assets as well as a random
vector process describing non traded underlying factors. The dynamics
are described in terms of a system of SDEs, driven by a vector Wiener
process and an MPP.
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• The pricing problem is formalized in Section 4.2, and in Section 4.3 we
derive the fundamental Dynamic Programming Equation for the upper
and lower good deal bounds. In Section 4.4 we discuss the special structure
of this equation in some detail and also connect the good deal pricing
bounds to the so called “minimal martingale measure”.

• Section 5 is devoted to a fairly detailed study of some concrete point pro-
ces driven models. We start by analyzing the simple case of an asset
price driven by a scalar Wiener process and a standard Poison process,
and for this case we provide formulas for the optimal market prices of
risk. We then extend the analysis to the case of a driving compound
Poisson process, and also for this case we can provide a fairly explicit
representation of the optimal market prices of risk. The classical Merton
jump-diffusion model in [8] falls within this class, and we present numer-
ical results for that particular model, where we can compare the Merton
pricing formulas, as well as the pricing formula obtained by using the
minimal martingale measure, with the good deal bounds.

• For completeness sake we finish the paper by studying, in Appendix A,
the special case of a purely driven model, and show how the Cochrane and
Saa-Requejo setup is nested within our framework.

From a more technical point of view, we note that the technique used in the
present paper, as opposed to the one used in [4], is very much focused on mar-
tingale measures, rather than on stochastic discount factors. Since martingale
measures and stochastic discount factors are mathematically equivalent, it is
largely a matter of taste which method to use for any particular problem. How-
ever, for this class of problems the use of martingale measures is, in our opinion,
to be preferred as a technical tool. Firstly, it allows us to draw upon the huge
technical machinery of general martingale theory and, secondly, it streamlines
the arguments considerably. In particular this can be seen in the fact that with
the martingale formulation, the good deal pricing problem appears directly as
a well formulated standard stochastic control problem. The relevant Bellman
equation can thus be written down immediately, without any need of a separate
argument.

2 General Setup

Our formal setup (see below for a more intuitive description) consists of a finan-
cial market on a fixed time interval [0, T ], living on a stochastic basis (filtered
probability space) (Ω,F ,F, P ) where F = {Ft}0≤t≤T , where the measure P
is interpreted as the objective (or “physical”) probability measure. The basis
is assumed to carry a d-dimensional standard Wiener process W as well as a
marked point process µ(dt, dx) on a measurable Lusin mark space (X,X ). The
predictable σ-algebra is denoted by P , and we make the definition P̃ = P ⊗X .
We assume that the predictable compensator ν(dt, dx) admits an intensity,
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i.e. that we can write ν(dt, dx) = λt(dx)dt. The compensated point process
µ(dt, dx)− λt(dx)dt is denoted by µ̃(dt, dx). We assume that ν([0, t]×X) < ∞
P -a.s. for all finite t, i.e. µ is a multivariate point process in the terminology
of [6].

Remark 2.1 The intuitive interpretation of the point process µ is that we are
modeling “events” which are occuring at discrete points in time, and a very
concrete example could be the modeling of earth quakes (or stock market crashes).
As opposed to a more standard counting process setting, these discrete events
are not all of the same type. Instead; every event is identified by it’s “mark”
x ∈ X. In the earth quake example, a natural mark would be the strength of
the earthquake on the Richter scale, and in this case the mark space X would
be the positive real line. The informal interpretation of the point process µ is
that µ is an integer valued (random) measure such that µ has a unit point mass
at the point (t, x) ⊆ R+ × X, if at time t there is an event of the type x.
The interpretation of the intensity measure λ is loosely speaking that λt(dx) is
the expected number of events with marks in a “small set” dx, per unit time,
conditional on the information in Ft−. Thus the compensated point process
µ̃(dt, dx)µ(dt, dx) − λt(dx)dt is “detrended” and possesses a natural martingale
property.

3 Extended Hansen-Jagannathan Bounds

Before moving on to the main problem of pricing derivatives subject to a bound
on the Sharpe ratio, we make a slight detour in order to derive an extension of the
Hansen-Jagannathan bounds (see [5]) to the present point process setting. The
HJ bounds, which will be needed below, provide an inequality for the Sharpe
ratio of any traded asset (underlying or derivative) in terms of the “market
prices of risk” of the driving random sources, and to make this idea precise we
consider the arbitrage free price process S of an arbitrary asset (derivative or
underlying) with P -dynamics given by

dSt = Stαtdt + StσtdWt + St−

∫

X

δt(x)µ(dt, dx). (1)

Here α and σ are optional processes, whereas δ is predictable. In order to avoid
negative asset prices we must also assume that δt(x) ≥ −1.

Remark 3.1 The informal interpretation of the point process integral in (1)
above is very simple: If there is an event at time t with mark x, then the stock
price will have a jump with relative jump size given by δt(x).

3.1 Risk Premium, Volatility, and the Sharpe Ratio

Compensating the point process µ in (1), we obtain the P -semimartingale dy-
namics of S as

dSt = St

{
αt +

∫

X

δt(x)λt(dx)
}

dt + StσtdWt + St−

∫

X

δt(x)µ̃(dt, dx). (2)

5



Since the last two terms in this equation are martingale differentials, we see that
the local mean rate of return under P is given by the expression

αt +
∫

X

δt(x)λt(dx),

so, denoting the possibly stochastic short rate process by r, the risk premium
process R is given by the formula

Rt = αt +
∫

X

δt(x)λt(dx) − rt. (3)

We now go on to define the predictable (total) volatility process v, which
intuitively should equal the conditional variance of the return of the stock price,
i.e. it should roughly be given by the expression

v2
t dt = V arP

[
dSt

St−

∣∣∣∣Ft−

]
. (4)

We need to make this notion mathematically precise and this is done by formally
defining v through the relation

d〈S, S〉t = S2
t−v2

t dt, (5)

where 〈, 〉 denotes the usual predictable bracket process (see [6]). From (2) it is
not hard to obtain

d〈S, S〉t = S2
t−

{
‖σt‖2

Rd +
∫

X

δ2
t (x)λt(dx)

}
dt (6)

so, by comparing (6) with (5), we see that the squared volatility process is given
by

v2
t = ‖σt‖2

Rd + ‖δt‖2
λt

, (7)

where ‖·‖λt denotes the norm in the Hilbert space L2 [X, λt(dx)]. We can also,
for future use, express the volatility v as

vt = ‖(σt, δt)‖H, (8)

where we view (σt, δt) as a vector in the Hilbert space H = Rd ×L2 [X, λt(dx)].
We finally define the Sharpe Ratio process SR by

SRt =
Rt

vt
, (9)

and our goal is to derive an inequality for the Sharpe Ratio in terms of the set of
market prices of risk which turn up in connection with the class of risk neutral
martingale measures Q. To this end we go on to study the class of equivalent
martingale measures, but first we summarize our findings.

Proposition 3.1 For a price process of the form (1) the following hold.
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1. The risk premium is given by

Rt = αt +
∫

X

δt(x)λt(dx) − rt. (10)

2. The (squared) total volatility is given by

v2
t = ‖σt‖2

Rd + ‖δt‖2
λt

, (11)

which also can be written

v2
t = ‖σt‖2

Rd +
∫

X

δ2
t (x)λt(dx). (12)

3.2 Equivalent Martingale Measures

Given the process S above we now search for an equivalent martingale measure
Q, and for any Q equivalent to P (martingale measure or not) we define the the
likelihood process L by

dQ

dP
= Lt, on Ft; 0 ≤ t ≤ T . (13)

Since L is always a P -martingale, and since every martingale within the present
framework admits a stochastic integral representation (see [6]) we know that L
must have dynamics of the form

{
dLt = Lth

?
t dWt + Lt−

∫
X

ϕt(x) {µ(dt, dx) − λt(dx)dt} ,

L0 = 1,
(14)

where the Girsanov kernel processes h and ϕ (where we view h as a column
vector process, hence the transpose ?) are predictable, suitably integrable (see
[6] for details), and where ϕ must satisfy the condition

ϕt(x) ≥ −1, ∀t, x P − a.s. (15)

in order to ensure the positivity of the measure Q. From the Girsanov Theorem
we also recall the following facts.

• We can write
dW = htdt + dW Q, (16)

where W Q is a Q-Wiener process.

• The point process µ will under Q have an intensity λQ, given by

λQ
t (dx) = {1 + ϕt(x)}λP

t (dx). (17)
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The immediate problem is to find out how the kernel processes h and ϕ above
must be chosen in order to guarantee that Q actually is a martingale measure
for S. To this end we apply the Girsanov Theorem to obtain the Q-dynamics
of S as

dSt = St {αt + σtht} dt + StσtdW Q
t + St−

∫

X

δt(x)µ(dt, dx).

We then compensate the point process µ under Q to obtain the Q semimartingale
representation of S as

dSt = St

{
αt + σtht +

∫

X

δt(x)λQ
t (dx)

}
dt + StσtdW Q

t

+St−

∫

X

δt(x)
{

µ(dt, dx) − λQ
t (dx)dt

}
. (18)

Recalling that the measure Q is a martingale measure if and only if the local
rate of return of S under Q equals the short rate r, we thus obtain the following
martingale condition.

Proposition 3.2 Assume that the measure Q is generated by the Girsanov ker-
nels h, ϕ. Then Q is a martingale measure if and only if the following conditions
are satisfied.

αt + σtht +
∫

X

δt(x)λQ
t (dx) = rt, (19)

ϕ(t, x) ≥ −1. (20)

Condition (19) can also be written as.

αt + σtht +
∫

X

δt(x) {1 + ϕt(x)}λt(dx) = rt. (21)

A Girsanov kernel process (h, ϕ) for which the induced measure Q, is a martin-
gale measure, i.e. a kernel process satisfying the martingale condition (19)-(20)
will be referred to as an admissible Girsanov kernel.

3.3 The Extended Hansen-Jagannathan Bounds

We now go on to derive an inequality for the Sharpe ratio SR, and we start by
noting that can rewrite the martingale condition (21) as

αt +
∫

X

δt(x)λt(dx) − rt = −σtht −
∫

X

ϕt(x)δt(x)λt(dx). (22)

From (10) we recognize the risk premium R in the left hand side of this equation
so we can write R as

Rt = −σtht −
∫

X

ϕt(x)δt(x)λt(dx). (23)
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From this expression we see that the Girsanov kernel process (h, ϕ) has a natural
economic interpretation. The component −hi can be interpreted as the market
price of risk for the i:th Wiener process, and −δ(x) is the market price of risk
for a jump event of type x. Using (23) we may also state and prove the main
result of this section.

Theorem 3.1 (Extended Hansen-Jagannathan Bounds)
For any arbitrage free price processes S and for every admissible Girsanov kernel
(market price of risk) process (h, ϕ) the following inequality holds.

|SRt| ≤ ‖(ht, ϕt)‖H. (24)

In more detail this inequality can be written as

|SRt|2 ≤ ‖ht‖2
Rd +

∫

X

ϕ2
t (x)λt(dx). (25)

Proof. A closer look at (23) reveals that the right hand side can be viewed as
an inner product in the Hilbert space H. Denoting this inner product by 〈, 〉H
we can thus write

Rt = 〈(ht, ϕt) , (σt, δSt)〉H (26)

and from the Schwartz inequality we obtain

|Rt| ≤ ‖(ht, ϕt)‖H · ‖(σt, δt)‖H. (27)

The inequality (24) now follows immediately from (8), (9), and (27).

Remark 3.2 It is important to note that the HJ inequality not only holds for
the given underlying asset prices. To be precise; suppose that we have chosen
a fixed pair of Girsanov kernels (h, ϕ), and that we use the martingale measure
induced by these to price various derivatives. Then the inequality holds for all
underlying assets, for all derivatives, and for all self financing portfolios based
on the underlying and the derivatives. In other words; for a given choice of
(h, ϕ) the HJ inequality gives us a uniform upper bound of Sharpe ratios for the
entire economy.

4 A Factor Market Model

We now specialize the general setup above to that of a Markovian factor market
model, and we also formalize our pricing problem.
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4.1 The Model

We consider a financial market built up by the following objects, where ? denotes
transpose.

• An n-dimensional price process S = (S1, . . . , Sn)?

• A k-dimensional factor process Y = (Y 1, . . . , Y k)?.

The interpretation of this is that S1, . . . , Sn are prices of underlying traded
assets without dividends, whereas the components of Y are underlying non
traded factors. The precise probabilistic specification of the market model is
given by the following standing assumption.

Assumption 4.1

1. Under the objective measure P we assume that (S, Y ) satisfies the following
stochastic differential equations (SDEs)

dSi
t = Si

tαi (St, Yt) dt + Si
tσi(St, Yt)dWt

+Si
t−

∫

X

δi(St−, Yt−, x)µ(dt, dx), i = 1, . . . , n (28)

dY j
t = aj (St, Yt) dt + bj(St, Yt)dWt

+
∫

X

cj(St−, Yt−, x)µ(dt, dx). j = 1, . . . , k (29)

2. We assume that for each i and j, αi(s, y) and aj(s, y) are deterministic
scalar functions, σi(s, y) and bj(s, y) are deterministic row vector func-
tions, and δi(s, y, x) and cj(s, y, x) are deterministic scalar functions. In
order to avoid negative asset prices we also assume that δi(s, y, x) ≥ −1
for all i and all (s, y, x).

3. All functions above are assumed to be regular enough to allow for the
existence of a unique strong solution for the system of SDEs.

4. The point process µ has a predictable P -intensity measure λ. More pre-
cisely we assume that the P -compensator ν(dt, dx) has the form

ν(dt, dx) = λ(St−, Yt−, dx)dt. (30)

For brevity of notation we will often denote λ(St−, Yt−, dx) by λt(dx). The
compensated point process µ̃ is defined by

µ̃(dt, dx) = µ(dt, dx) − λ(St−, Xt−, dx)dt (31)

5. We assume the existence of a short rate r of the form

rt = r(St, Yt).
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6. We assume that the model is free of arbitrage in the sense that there exists
a (not necessarily unique) risk neutral martingale measure Q.

The present setup extends the one in [4] in two ways.

• In [4] the continuous time model is purely Wiener driven. The main
contribution of the present paper is that we extend the framework of [4]
to also include a driving point process.

• Even in the purely Wiener driven case, our setup extends that of [4] by
not making any rank assumptions for the diffusion matrices σ and b. This,
as opposed to the item above, is a minor extension.

For future use we introduce some more compact notation.

Definition 4.1 The column vector functions, α, δ, a, and c are defined by

α =




α1

...
αn


 , δ =




δ1

...
δn


 , a =




a1

...
ak


 , c =




c1

...
ck


 . (32)

The n × d matrix σ and the k × d matrix b are defined by

σ =




−σ1−
...

−σn−


 , b =




−b1−
...

−bk−


 . (33)

4.2 The Problem

On the market specified above we consider an arbitrarily chosen contingent
T -claim Z of the form

Z = Φ(ST , YT ), (34)

and the problem is to compute a “reasonable” price process Π (t;Z) for the claim
Z . Since the market in the general case is incomplete, the martingale measure
Q will generically not be unique, so there will not be a uniquely determined
arbitrage free price for Z . It is also well known that in incomplete settings like
this, the pricing bounds provided by merely requiring absence of arbitrage are
extremely wide and thus useless from a practical point of view.

There is thus a clear need for “reasonable” pricing bounds for derivative
assets, and to this end Cochrane and Saa-Requejo introduced, in the seminal
paper [4], the completely new idea of ruling out, not only those prices which are
violating the no arbitrage restriction, but also those prices which in some sense
would represent “deals which are too good”. The problem is now to define when
a deal in this sense is a “good deal” and Cochrane and Saa-Requejo argued that
a reasonable formalization of a (too) good deal is a deal for which the Sharpe
ratio is very high.
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In a first attempt, a mathematical formalization of the pricing problem
would then be to find the maximum (minimum) arbitrage free price process for
the derivative, subject to an upper bound on the Sharpe ratio. However; this
way of formalizing the problem turns out have two major drawbacks.

1. The optimization problem turns out to be mathematically intractable.

2. A much more serious problem is the following: Suppose that we have
found upper and lower pricing bounds on a derivative, subject to a bound
on the Sharpe ratio of the derivative. Then it may in principle still be
possible to form a self financing portfolio, based on the underlying assets
and the newly introduced derivative, such that the portfolio has a very
high Sharpe ratio.

What we need is thus a formalization of the pricing problem which gives
us a mathematically tractable problem, and which at the same time allows us
to have complete control over the Sharpe ratios of all portfolios based on the
underlying assets and the derivative.

This is precisely where the Hansen-Jagannathan comes in useful (see Re-
mark 3.2), and thus Cochrane and Saa-Requejo suggested that instead of putting
a bound on the Sharpe ratio of the derivative under study, we put a bound on
the right hand side of the Hansen-Jagannathan inequality (i.e. the norm of the
market price of risk vector). In the final formulation, the pricing problem is
thus that of finding the maximum (minimum) arbitrage free price process for
a given derivative, subject to a bound on the norm of the market price of risk
vector. The procedure is formalized in the following definition, where for brevity
of notation we write σi as shorthand for σi(St, Yt) and similarly for other terms.

Definition 4.2 Given a bound A for the market prices of risk, the upper good
deal price bound process is defined as the optimal value process for the following
optimal control problem.

max
h,ϕ

EQ

[
e
−

∫ T

t
ruduΦ (ST , YT )

∣∣∣∣Ft

]
(35)

with Q dynamics

dSi
t = Si

t

{
rt −

∫

X

δi(x) {1 + ϕt(x)}λt(dx)
}

dt + Si
tσidW Q

t

+Si
t−

∫

X

δi(x)µ(dt, dx), i = 1, . . . , n (36)

dY j
t = {aj + bjht} dt + bjdW Q

t

+
∫

X

cj(x)µ(dt, dx). j = 1, . . . , k (37)

where the Q-compensator of µ is given by

νQ(dt, dx) = {1 + ϕt(x)}λt(dx). (38)
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The predictable processes h and ϕ are subject to the constraints

αi + σiht +
∫

X

δi(x) {1 + ϕt(x)}λt(dx) = rt, i = 1, . . . , n (39)

‖ht‖Rd +
∫

X

ϕ2
t (x)λt(dx) ≤ B2, (40)

ϕt(x) ≥ −1, ∀t, x. (41)

Some comments are perhaps in order.

• The expected value in (35) is the standard risk neutral valuation formula
for contingent claims.

• In (39) we have the conditions on h and ϕ, guaranteeing that the induced
measure Q is indeed a martingale measure for S1, . . . , Sn. The calculations
are identical to those in Section 3.2, and (39) is in fact identical to (19).

• The induced Q dynamics of S1, . . . , Sn are given in (36), and derived
exactly along the lines of Section 3.2.

• The induced Q dynamics of Y 1, . . . , Y k are given in (37).

• The constraint (40) is the constraint to rule out “good deals”.

• The constraint (41) is needed to ensure that Q is a positive measure.

• Formula (38) specifies the Q distribution of µ.

• In order to obtain the lower pricing bound, we solve the corresponding
minimum problem.

4.3 The Pricing Equation

In order to allow us to treat the optimal control problem above with dynamic
programming methods we have to make an extra assumption, which will ensure
that the Markovian structure is preserved also under the martingale measure
Q.

Assumption 4.2 We assume henceforth that the Girsanov kernel processes h
and ϕ are of the restricted form

ht = h(t, St, Yt), (42)
ϕt(x) = ϕ(t, St−, Yt−, x). (43)

Here, with a slight abuse of notation, the right hand side occurences of h and
ϕ denote deterministic functions of the form h : R+ × Rn × Rk → Rn and
ϕ : R+ × Rn × Rk × X → R respectively.
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We now go on to present the basic pricing equation for the upper and
lower good deal bounds, and in the present setting this is quite straightforward.
Under Assumption 4.2, the optimal expected value in (35) can in fact be written
as V (t, St, Yt), where the deterministic mapping V : R+ × Rn × Rk → R is
known as the optimal value function. Since we are in a standard setting
for dynamic programming (DynP), we know from general DynP-theory that
the optimal value function will satisfy the following Bellman-Hamilton-Jacobi
equation on the time interval [0, T ].

∂V

∂t
+ sup

h,ϕ
Ah,ϕV − rV = 0, (44)

V (T, s, y) = Φ(s, y), (45)

where the sup is subject to constraints of the form (39)-(41), and where Ah,ϕ

denotes the infinitesimal operator for the process (S, Y ), under the measure Q
defined by h and ϕ.

We recall that from an operational point of view, the infinitesimal operator
Ah,ϕ is nothing else than the the integro-differential operator which turns up in
the dt term in the stochastic differential dV (t, St, Yt) (when the point process
increment has been compensated). A standard application of the Itô formula
for semimartingales will in fact give us the following result.

Proposition 4.1 The infinitesimal operator Ah,ϕ is given by

Ah,ϕV (t, s, y) = (46)

=
n∑

i=1

∂V

∂si
(t, s, y)si

{
r −

∫

X

δi(s, y, x) {1 + ϕ(t, s, y, x)}λt(s, y, dx)
}

+
k∑

j=1

∂V

∂yj
(t, s, y) {aj(s, y) + bj(s, y)h(t, s, y)}

+
∫

X

∆V (t, s, y, x) {1 + ϕ(t, s, y, x)}λt(s, y, dx)

+
1
2

n∑

i,l=1

∂2V

∂si∂sl
(t, s, y)sislσ

?
i (s, y)σl(s, y) +

1
2

k∑

j,l=1

∂2V

∂yj∂yl
(t, s, y)b?

j (s, y)bl(s, y)

+
k∑

i,j=1

∂2V

∂si∂yj
(t, s, y)siσ

?
i (s, y)bj(s, y). (47)

Here ∆V is defined by

∆V (t, s, y, x) = V (t, s(1 + δ(s, y, x)), y + c(s, y, x)) − V (t, s, y), (48)

where addition and multiplication in s(1+ δ(s, y, x)) and y + c(s, y, x) are inter-
preted component wise.
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Proof. An easy application of the Itô formula.

Collecting the facts above, we can finally present the basic equation for
the upper good deal bound.

Theorem 4.1 The upper good deal bound function is the solution V to the
following boundary value problem.

∂V

∂t
(t, s, y) + sup

h,ϕ

{
Ah,ϕV (t, s, y)

}
− r(s, y)V (t, s, y) = 0, (49)

V (T, s, y) = Φ(s, y). (50)

Here, Ah,ϕV is given by (47), and the supremum in (49) should be taken over
all functions h(t, s, y) and ϕ(t, s, y, x) satisfying, for all (t, s, y), the constraints

αi + σih +
∫

X

δi(x) {1 + ϕ(x)}λt(dx) = r, i = 1, . . . , n (51)

‖h‖Rd +
∫

X

ϕ2(x)λt(dx) ≤ B2, (52)

ϕ(x) ≥ −1. (53)

The lower bound price functions satisfies the same equation with the supremum
operator replaced by infh,ϕ.

4.4 On the Structure of the Pricing Equation

The pricing equation (49)-(50) is a partial integro-differential equation (PIDE),
and in the general case there is of course no hope at all of finding an analytical
solution. There are however some very particular features of the equation which
we want to stress.

As in all applications of stochastic dynamic programming, we note that
the stochastic intertemporal optimal control problem (35)-(41) is reduced to
the following two purely deterministic problems:

1. The static optimization problem of finding, for each fixed (t, s, y), the
optimal h and ϕ in the constrained maximization problem

sup
h,ϕ

{
Ah,ϕV (t, s, y)

}
(54)

appearing in (49).

2. Having solved the static problem above, and denoting the optimal h, ϕ by
ĥ, ϕ̂, we have to solve the PIDE

∂V

∂t
+ Aĥ,ϕ̂V − rV = 0, (55)

V (T, s, y) = Φ(s, y), (56)

15



Obviously; if we ever want to be able to solve the PIDE in step 2 above,
then we first have to solve the static optimization problem in step 1, so it is of
great importance to understand the structure of the static problem. We then
note that this problem is in fact an infinite dimensional one. More precisely; the
problem (54) has to be solved for every fixed choice of (t, s, y), and the control
variables are h and ϕ, but whereas the diffusion kernel h(t, s, y) (for fixed t, s and
y) is merely a d-dimensional vector, the point process kernel ϕ(t, s, y, ·) has to
be determined as a function of x and hence ϕ(t, s, y, ·) is an infinite dimensional
control variable. We thus see that the static optimization problem is in fact not
a standard finite dimensional mathematical programming problem, but a full
fledged variational problem.

The infinite dimensionality of the static optimization problem is intimately
connected to the cardinality of the mark space X (or rather to the cardinality of
the support of the measure λt(dx)). If the mark space has an infinite number of
elements then the static problem is infinite dimensional. If, on the other hand,
X has a finite number of elements then the static problem is a finite dimensional
problem. From a more modeling point of view this basically means that if we
want to model a situation with an infinite number of possible jump sizes, then
the static problem is a variational problem.

Even if the static problem is an infinite dimensional one, it has a very
particular structure. Looking closer at the expression (47) for the infinitesimal
operator Ah,ϕ we see that in fact only three terms involve the control variables
h and ϕ and that in fact the control variables enter linearly. With notation as
in Definition 4.1 we formalize this observation in a lemma.

Lemma 4.1 The static optimization problem in (49) and (54) can be written
as

max
h,ϕ

〈∆V , ϕ〉λt − VsD(s)〈δ, ϕ1〉λt + Vybh (57)

subject to the constraints

α + σh + 〈δ,1〉λt + 〈δ, ϕ1〉λt = r1, (58)
‖h‖2

Rd + ‖ϕ‖2
λt

≤ B2, (59)
ϕ ≥ −1. (60)

Here Vs and Vy denote the gradients of V w.r.t. the vector variables s and y
respectively, D(s) denotes the diagonal matrix with the components of s on the
diagonal, 1 denotes the column vector with 1 in all components, and the inner
products 〈δ, ϕ1〉λt and 〈δ,1〉λt are interpreted component wise.

Writing the static problem on this form we see very clearly that we have
a linear objective function, an infinite dimensional linear equality constraint,
a scalar quadratic inequality constraint, and an infinite dimensional linear in-
equality constraint. Since the set of admissible points is convex, the linearity
of the objective function will thus imply that the optimal point is an extremal
point of the admissible set. It is also clear that at least one of the inequality
constraints has to be binding.
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4.5 Positivity and the Minimal Martingale Measure

The static problem (57) is, apart from the positivity constraint (60), a fairly
standard linear quadratic problem in the space L2 [X, λ(dx)]. The really prob-
lematic part is the generically infinite dimensional positivity constraint (60),
and the reason why this is problematic is that the positive cone in L2 does not
contain any interior points, which effectively prohibits us form using standard
infinite dimensional Kuhn-Tucker methodology. We now go on to discuss the
positivity constraint in some more detail.

As a first approach to solving Problem 57 one could of course hope that
the positivity constraint is not binding in the optimal solution. It would thus be
natural to solve a relaxed version of Problem 57, where the positivity constraint
is not present and, having found the optimal solution, we could then check
whether the positivity constraint is binding or not. If the positivity constraint
turns out not to be binding at the relaxed optimal point, then all is well and
we have found our optimal solution. If the constraint is violated at the optimal
point of the relaxed problem, then the induced measure will in fact not be a
positive measure. Using this measure for pricing will still give us pricing bounds,
but these will be wider than the optimal ones. We now formalize these ideas,
and we will also relate them to the concept of the “minimal martingale measure”
from the theory of local risk minimization.

Definition 4.3

• Denote the optimal upper and lower bound Girsanov kernels from Theorem
4.1 by (hs, ϕs) and (hi, ϕi), denote the corresponding optimal martin-
gale measures by Qs, Qi, and define the pricing functions V s and V i

correspondingly. Here “s” is standing for “sup” and “i” is standing for
“inf”.

• Denote by (h̄s, ϕ̄s) the optimal kernels for the relaxed static problem

sup
h,ϕ

Ah,ϕV (t, s, y) (61)

subject to the constraints

αi + σih +
∫

X

δi(x) {1 + ϕ(x)}λt(dx) = r, i = 1, . . . , n (62)

‖h‖Rd +
∫

X

ϕ2(x)λt(dx) ≤ B2, (63)

and denote by (h̄i, ϕ̄i) the optimal solutions to the corresponding mini-
mization problem. Denote the solution to the PIDE

∂V

∂t
+ Ah̄s,ϕ̄s

V − rV = 0, (64)

V (T, s, y) = Φ(s, y), (65)
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by V̄ s and define V̄ i in the same way. The relaxed martingale mea-
sures induced by (h̄s, ϕ̄s) and (h̄i, ϕ̄i) are denoted by Q̄s, and Q̄i respec-
tively.

• Denote by (hm, ϕm) the Girsanov kernels obtained by solving the problem

min
h,ϕ

‖h‖2
Rd + ‖ϕ‖2

λt
(66)

subject to

αi + σih +
∫

X

δi(x) {1 + ϕ(x)}λt(dx) = r, i = 1, . . . , n (67)

Denote the solution to the PIDE

∂V

∂t
+ Ahm,ϕm

V − rV = 0, (68)

V (T, s, y) = Φ(s, y), (69)

by V m. The measure Qm, henceforth referred to as the minimal mar-
tingale measure (“MMM” for short) is defined as the (possibly signed)
measure induced by (hm, ϕm).

Of the measures defined above, the first four will depend upon the choice
of derivative to be priced, whereas the minimal martingale measure Qm is in-
dependent of the choice of derivative. We see that the MMM kernels (hm, ϕm)
are obtained by minimizing the right hand side of the HJ inequality, subject to
the “martingale condition” (67), but without the positivity constraint, so the
MMM is the P -equivalent measure with pointwise minimal L2 norm satisfy-
ing the martingale constraint. It may thus happen that the MMM is a signed
measure. The minimal martingale measure was first defined in connection with
local risk minimization (see [10]) where it plays a fundamental role. The original
definition of the MMM in [10] is not the one given above, but it is fairly easy to
see that in the present context the two definitions coincide. We now have the
following easy result.

Proposition 4.2

• We always have the relations

V̄ i ≤ V i ≤ V s ≤ V̄ s, (70)

and
V̄ i ≤ V m ≤ V̄ s, (71)

• If the positivity constraint is satisfied by h̄i, h̄s and hm, then Q̄i, Q̄s and
Qm are probability measures (and not just signed measures) and we have

V̄ i ≤ V i ≤ V m ≤ V s ≤ V̄ s. (72)
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Proof. Obvious from the definitions.

The moral of this can be summarized as follows.

• The minimal martingale measure provides us with a canonical benchmark
for pricing any derivative. Furthermore, since the MMM is the solution
to a standard minimum norm problem in L2, it can easily be computed.

• The relaxed martingale measures Q̄i and Q̄s are much easier to compute
than the optimal measures Qi and Qs.

• The pricing bounds provided by the relaxed measures Q̄i and Q̄s are gener-
ically not optimal but, for reasonable values of the Sharpe ratio constraint
B, they turn out to be much tighter than the no arbitrage bounds.

• The bounds obtained by the (harder to compute) optimal measures Qi

and Qs are in their turn considerably tighter than those obtained from Q̄i

and Q̄s.

• Both the minimal martingale measure Qm and the relaxed measures Q̄i

and Q̄s can be computed explicitly in terms of input data. However; the
general formulas are rather messy so we have chosen not to include them.
See Section 5.4 for a concrete worked out example.

5 Point Process Examples

In this section we study a number of illustrative concrete examples, and since
the main focus of the present paper is on models including jumps, we restrict
ourselves to these. See Appendix A for the purely Wiener driven case.

As opposed to a purely Wiener driven model, the introduction of a driving
point process (together with a Wiener process) will produce a nontrivial incom-
plete market model even without including the factor model Y . For this reason,
but of course also for reasons of tractability, we will therefore confine ourselves
to study pure jump-diffusion stock price models without any external factors.
More precisely; all models studied in this section will be assumed to have the
following structure.

Assumption 5.1 We consider a financial market and a scalar price process S
satisfying the SDE

dSt = Stαdt + StσdWt + St−

∫

X

δ(x)µ(dt, dx). (73)

For this model we furthermore assume that

1. The Wiener process W is one-dimensional.

2. The drift α and diffusion volatility σ are deterministic constants.

19



3. The jump function δ is a time invariant deterministic function of x only,
i.e. δ is a mapping δ : X → R.

4. The point process µ has a P -compensator of the form

νP (dt, dx) = λ(dx)dt

where λ is a time invariant deterministic finite nonnegative measure on
(X,X ).

5. The short rate r is constant.

Under this assumption the model parameters α, σ, δ, and λ are thus deter-
ministic object which do not depend on the stock price S. In particular the
assumption about λ implies that the point process µ has the following proper-
ties under P .

• The jump events (disregarding the mark) will occur according to a stan-
dard Poisson process with the constant intensity λ(X).

• If Xn denotes the mark of event number n then the sequence X1, X2, . . .
is i.i.d. with the common probability distribution

1
λ(X)

λ(dx). (74)

The sequence above is also independent of the inter arrival times of the
events.

In order to get a feeling for the techniques used, we start with a very simple
example and then go on to consider more complicated cases.

5.1 The Poisson-Wiener Model

The simplest special case in the jump-diffusion setting above is when we define
the point process µ as a standard Poisson process with constant intensity. In
terms of the notation above this means that the mark space X contains a single
point denoted by x0. Hence X = {x0}, the measure λ(dx) is just a point mass
λ(x0) at x0, and the jump function δ is just a real number δ(x0). For brevity we
will denote λ(x0) by λ and δ(x0) by δ. We thus have the following P dynamics
of S.

dSt = Stαdt + StσdWt + St−δdNt (75)

where N is Poisson with constant intensity λ.
In this case the kernel function h(t, s) is scalar, and the kernel ϕ(t, s) does

not depend upon x. The upper good deal bound function V (t, s) is the solution
to the following boundary value problem.

∂V

∂t
(t, s) + sup

h,ϕ

{
Ah,ϕV (t, s)

}
− rV (t, s) = 0, (76)

V (T, s) = Φ(s), (77)
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were we for the moment suppress the constraints, and where

Ah,ϕV (t, s) =
∂V

∂s
s {r − δλ(1 + ϕ)} +

1
2
s2σ2 ∂2V

∂s2

+ {V (t, s(1 + δ)) − V (t, s)}λ(1 + ϕ). (78)

The static optimization problem in Lemma 4.1 thus becomes

Problem 5.1

max
h,ϕ

λ {V (t, s(1 + δ)) − V (t, s) − Vs(t, s)sδ}ϕ (79)

subject to the constraints

α + σh + δλ {1 + ϕ} = r, (80)
h2 + ϕ2λ ≤ B2, (81)

ϕ ≥ −1. (82)

To study the static problem in more detail we need some notation.

Definition 5.1 Define (hmax, ϕmax) as the optimal solution to the programming
problem

max
h,ϕ

ϕ (83)

subject to the constraints (80)-(82) and (hmin, ϕmin) as the optimal solution to
the problem

min
h,ϕ

ϕ (84)

subject to the same constraints.

We will need hmax, ϕmax, hmin, and ϕmin below, so we should describe these
constants in terms of the given model parameters. This is a simple exercise in
constrained optimization theory, but a bit messy, and the result is as follows.

Lemma 5.1 Denote the excess return α+δλ−r by R. Then the following hold.

• The constants hmax and ϕmax are given by

hmax = − σR

(σ2 + δ2λ)λ
−

δ
√

B2 (σ2 + δ2λ) − R2)
(σ2 + δ2λ)

√
λ

(85)

ϕmax = − δR

σ2 + δ2λ
+

σ
√

B2 (σ2 + δ2λ) − R2)
(σ2 + δ2λ)

√
λ

(86)

• The constants hmin and ϕmin are given by the following expressions.
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1. If

− δR

σ2 + δ2λ
−

σ
√

B2 (σ2 + δ2λ) − R2)
(σ2 + δ2λ)

√
λ

> −1, (87)

then

hmin = − σR

(σ2 + δ2λ)λ
+

δ
√

B2 (σ2 + δ2λ) − R2)
(σ2 + δ2λ)

√
λ

(88)

ϕmin = − δR

σ2 + δ2λ
−

σ
√

B2 (σ2 + δ2λ) − R2)
(σ2 + δ2λ)

√
λ

. (89)

2. If

− δR

σ2 + δ2λ
−

σ
√

B2 (σ2 + δ2λ) − R2)
(σ2 + δ2λ)

√
λ

≤ −1, (90)

then

hmin =
r − α

σ
, (91)

ϕmin = −1. (92)

Proof. A direct application of Kuhn-Tucker.

We can now present a preliminary description of the optimal kernels.

Proposition 5.1 The optimal kernels (ĥ, ϕ̂) for the static problem (79)-(82)
have the following structure.

1. For all (t, s) such that

V (t, s(1 + δ)) − V (t, s) − Vs(t, s)sδ ≥ 0, (93)

the optimal kernels (ĥ, ϕ̂) are given by

ĥ(t, s) = hmax, ϕ̂(t, s) = hmax. (94)

2. For all (t, s) such that

V (t, s(1 + δ)) − V (t, s) − Vs(t, s)sδ < 0, (95)

the optimal kernels (ĥ, ϕ̂) are given by

ĥ(t, s) = hmin, ϕ̂(t, s) = hmin. (96)
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Proof. Obvious from the arguments above.

We thus see that the optimal kernels have a so called bang-bang structure,
i.e. they switch between the extremal choices (hmax, ϕmax) and (hmin, ϕmin).
For an arbitrarily chosen problem, switches will indeed occur, and the number
of switches will of course depend upon the optimal value function V through
the conditions (93) and (95), but there is an interesting special case when there
are no switches and the optimal kernels thus are constant. Before proving the
main result in this direction, we need some preliminary lemmas.

Lemma 5.2

1. If the optimal value function V (t, s) is convex in the s-variable for all fixed
values of t, then

ĥ(t, s) = hmax, ϕ̂(t, s) = ϕmax, ∀t, s. (97)

2. If the optimal value function V (t, s) is concave in the s-variable for all
fixed values of t, then

ĥ(t, s) = hmin, ϕ̂(t, s) = ϕmin, ∀t, s. (98)

Proof. If V is convex in s then (as a function of s) the tangent of V lies
below the graph at each point, which implies condition (93). The concave case
is similar.

Lemma 5.3 Consider the Poisson-Wiener model in (75), a fixed martingale
measure Q generated by some choice of kernel functions (h, ϕ), and a contract
function Φ(s). Assume the following:

1. The contract function Φ is convex (concave).

2. The kernel functions h and ϕ are deterministic functions of time, i.e. they
are of the form

h(t, s) = h(t), ϕ(t, s) = ϕ(t). (99)

Then the arbitrage free pricing function F (t, s) defined by

F (t, s) = e−r(T−t)EQ
ts [Φ(ST )] (100)

is convex (concave) in the s variable.

Proof. Using the Itô formula it is easy to see that, given St = s, the SDE (75)
has the solution

ST = se(α− 1
2 σ2)(T−t)+σ(WT −Wt)+(NT −Nt) ln(1+δ), (101)
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which we will write as
ST = s · Z, (102)

with the random variable Z defined as the exponential above. We thus have

F (t, s) = e−r(T−t)EQ
ts [φ(s · Z)] , (103)

and from the assumptions on h and ϕ it follows that the Q-distribution of Z does
not depend upon the value of s. The assumed convexity of Φ now immediately
implies the convexity of F .

We can now state and prove the main theoretical result concerning the
Poisson Wiener model.

Proposition 5.2 Assume that the contract function Φ is convex. Then the
following hold:

1. The optimal upper bound value function V is convex.

2. The optimal kernels ĥ and ϕ̂ are constant and given by

ĥ = hmax, ϕ̂ = ϕmax. (104)

3. V satisfies the PIDE

∂V

∂t
(t, s) + Aĥ,ϕ̂V (t, s) − rV (t, s) = 0, (105)

V (T, s) = Φ(s), (106)

where ĥ, ϕ̂ are defined by (104) and where

Aĥ,ϕ̂V =
∂V

∂s
s {r − δλ(1 + ϕ̂)} +

1
2
s2σ2 ∂2V

∂s2

+ {V (t, s(1 + δ)) − V (t, s)}λ(1 + ϕ̂). (107)

If the contract function Φ instead is concave, then V is concave, and items 2-3
above still hold, with the only change that hmax and ϕmax are replaced by hmin

and ϕmin.

Proof. Define the function F as the solution of

∂F

∂t
(t, s) + Aĥ,ϕ̂F (t, s) − rF (t, s) = 0, (108)

F (T, s) = Φ(s), (109)

with Aĥ,ϕ̂ defined as above. We now want to show that F = V i.e. that F is
in fact equal to the optimal value function of the control problem for the upper
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bound. To do this we first apply a Feynman-Kac Representation Theorem to
deduce that we can write F as

F (t, s) = e−r(T−t)EQ̂
ts [Φ(ST )] (110)

where Q̂ is generated by ĥ and ϕ̂. From Lemma 5.3 we then deduce that F is
convex in the s-variable, and this implies, as in the Proof of Lemma 5.2, F also
satisfies the PIDE

∂F

∂t
(t, s) + sup

h,ϕ

{
Ah,ϕF (t, s)

}
− rF (t, s) = 0, (111)

F (T, s) = Φ(s), (112)

with obvious notation and standard constraints on h and ϕ. We have thus shown
that F , defined by (108)-(109), satisfies the Hamilton-Jacobi-Bellman equation
for the optimal control problem for the upper good deal bound, and we can then
apply a standard verification theorem to deduce that F = V .

The moral of this result is that for convex contract functions, like European
puts and calls, we now have derived a well behaved standard pricing equation
without any supremum operator. For non-convex contract functions, like that
of a digital option, the situation is much more complicated and we must solve
the full Hamilton-Jacobi-Bellman equation numerically.

5.2 The Compound Poisson-Wiener Model

We now turn to the general Compound Poisson-Wiener Model specified by As-
sumption A.1. For this model, the static problem of Lemma 4.1 has the following
form

Problem 5.2

max
h,ϕ

∫

X

∆V (t, s, x)ϕ(t, s, x)λ(dx) − sVs(t, s)
∫

X

δ(x)ϕ(t, s, x)λ(dx), (113)

subject to

α + σh +
∫

X

δ(x)λ(dx) +
∫

X

δ(x)ϕ(x)λ(dx) = r, (114)

h2 +
∫

X

ϕ2(x)λ(dx) ≤ B2, (115)

ϕ(x) ≥ −1, (116)

where, as before,

∆V (t, s, x) = V (t, s(1 + δ(x))) − V (t, s). (117)
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Using, as above, the notation R for the risk premium

R = α +
∫

X

δ(x)λ(dx) − r, (118)

we can express the problem in functional analytical terms as follows.

Problem 5.3
max
h,ϕ

〈H, ϕ〉λ, (119)

subject to

σh + 〈δ, ϕ〉λ + R = 0, (120)
h2 + ‖ϕ‖λ ≤ B2, (121)

ϕ ≥ −1, (122)

where
H(t, s, x) = ∆V (t, s, x) − Vs(t, s)sδ(x). (123)

We now go on to study this problem in some detail.

5.3 The Minimal Martingale Measure

We start by computing the minimal martingale measure Qm for this model.
The measure Qm is generated by the optimal kernels (hm, ϕm) for the following
programming problem.

Problem 5.4
min
h,ϕ

h2 + ‖ϕ‖2
λ, (124)

subject to
σh + 〈δ, ϕ〉λ + R = 0, (125)

This is a standard minimum norm problem in L2, so from general theory we
know that the optimal (h, ϕ) has to be of the form

(h, ϕ) = c · (σ, δ),

for some scalar c. Plugging this into the constraint (125) gives us the following
result.

Proposition 5.3 The minimal martingale measure Qm is generated by the ker-
nels (hm, ϕm) given by

hm = − R · σ
h2 + ‖ϕ‖2

λ

, (126)

ϕm = − R · δ
h2 + ‖ϕ‖2

λ

. (127)
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5.4 The Positivity Constraint

As we noted in Section 4.5, the Problem 5.3 above is, apart from the constraint
(122), a fairly standard linear quadratic problem in the space L2 [X, λ(dx)].
Following the arguments of Section 5.4 we are thus led to study Problem 5.3
without the constraint (122) in order to compute the “relaxed measures” Q̄s

and Q̄i. The problem for determining Q̄s is thus as follows.

Problem 5.5
max
h,ϕ

〈H, ϕ〉λ, (128)

subject to

σh + 〈δ, ϕ〉λ + R = 0, (129)
h2 + ‖ϕ‖2

λ ≤ B2. (130)

This is now a standard optimization problem in L2 [X, λ(dx)] and we can solve
it by finding the extremal points of the associated Lagrangian. See [7] for details
and all unexplained terminology from functional analysis below. First, however,
we can simplify the problem by using (120) to eliminate h. Since the remaining
constraint has to be binding we then have the following problem.

Problem 5.6
max

ϕ
〈H, ϕ〉, (131)

subject to
2R〈δ, ϕ〉 + 〈δ, ϕ〉2 + σ2‖ϕ‖2 + R2 − σ2B2 = 0, (132)

where we have suppressed λ in ‖·‖λ and 〈·, ·〉λ.

This is a standard programming problem in L2, and the Lagrangian function L
is given by

L(ϕ, γ) = 〈H, ϕ〉 + γ
{
2R〈δ, ϕ〉 + 〈δ, ϕ〉2 + σ2‖ϕ‖2 + R2 − σ2B2

}
. (133)

From the Kuhn-Tucker Theorem (see [7]) we know that the optimal solution ϕ̂
is an extremal point of L, i.e. a point where the Frechet derivative vanishes.
Denoting the Frechet derivative of L w.r.t. ϕ by Lϕ, we easily obtain

Lϕ(ϕ, γ) = H + 2γ
{
Rδ + 〈δ, ϕ〉δ + σ2ϕ

}
. (134)

Thus the first order conditions for Problem (5.6) are

H + 2γ
{
Rδ + 〈δ, ϕ〉δ + σ2ϕ

}
= 0. (135)

Taking the inner product with δ in (135) gives us the relation

〈H, δ〉 + 2γ
{
R‖δ‖2 + 〈δ, ϕ〉‖δ‖2 + σ2〈δ, ϕ〉

}
= 0, (136)
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and solving for 〈δ, ϕ〉 we obtain

〈δ, ϕ〉 = −〈H, δ〉 + 2γR‖δ‖2

2γ {‖δ‖2 + σ2}
. (137)

Plugging this expression into (135) gives us the optimal ϕ as

ϕ =
〈H, δ〉δ

2γσ2 {‖δ‖2 + σ2}
− Rδ

‖δ‖2 + σ2
− H

2γσ2
. (138)

In order to determine the Lagrange multiplier γ we plug (137)-(138) into the
constraint (132). After tedious calculations, we obtain the following quadratic
equation for γ

γ2 =
σ2〈H, δ〉2 + 〈H, δ〉‖δ‖2 + ‖H‖2K2 − 2〈H, δ〉2K2

4σ4K {B2K − R2}
, (139)

where
K = ‖δ‖2 + σ2. (140)

The Lagrange multiplier is the positive root of this equation. We thus have the
following pricing result.

Theorem 5.1 The upper and lower relaxed good deal bound pricing functions,
V̄ s(t, s) and V̄ i(t, s) are given as the solutions of the PIDE

∂V

∂t
+ AϕV − rV = 0, (141)

V (T, s) = Φ(s, y), (142)

where Aϕ is given by

AϕV (t, s) =
∂V

∂s
(t, s)s

{
r −

∫

X

δ(s, x) {1 + ϕ(t, s, x)}λ(dx)
}

+
∫

X

∆V (t, s, y, x) {1 + ϕ(t, s, x)}λ(dx) +
1
2
s2σ2 ∂2V

∂s2
(t, s),

with ϕ = ϕ̄s and ϕ = ϕ̄i respectively. The optimal relaxed kernels ϕ̄s and ϕ̄i are
given by (138), where γ is the positive, resepctively negative, root of (139).

The question now arises if the positivity constraint really is binding or
not at the optimal point. We have no general theoretical results concerning this
question, but our numerical experience (see Section 5.5 below) indicates strongly
that the constraint is indeed binding in the generic case. The implication of this
negative fact is that, in the generic case, the static problem has to be solved
numerically. In the next section we study a concrete numerical example where
we discuss the numerical solution of the static problem in some more detail.
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5.5 A Numerical Example

In the graphs below we provide the numerical results for a special case of the
Wiener compound Poisson model described above. The model under consider-
ation is the Merton jump diffusion stock price model of [8], where relative jump
size has a lognormal distribution. In terms of the notation above this means
that X = [−1,∞), δ(x) = x and

λ(dx) = λ0f(x)dx (143)

where λ0 is the intensity of the underlying Poisson process, and f is the density
of the lognormal distribution. In the first graph we see the upper and lower
relaxed bounds. In between these we find the optimal bounds, and in the middle
we have the price generated by the minimal martingale measure. In the second
figure we show how the MMM price curve relates to the price curve generated
by the merton optinon pricing formula (where, by assumption, the market price
of jump risk equals zero).

The minimal martingale measure price and the relaxed pricing bounds have
been obtained by plugging the relevant kernels from the previous sections into
the pricing PIDE, and then solving the PIDE numerically. In order to obtain
the optimal pricing bounds (including the positivity constraint) we have solved
the static problem numerically (for each point in the discretized state space),
using an interior point algorithm, kindly provided to us by Mathias Stolpe. The
kernels thus obtaind have then been fed into the PIDE which has been soled
numerically.

We have used the following parameter values. Maximum grid size M =
120, grid stock price step δS = 1, grid time step δt = 0, 0003125, time to
maturity TT = 0, 25, number of steps T = 800, interest rate r = 0, 05, strike
price K = 100, volatility σ = 0, 15, Poisson intensity λ0 = 0, 1, α = −0, 1,
B = 1, the parameters for the normal distribution generating the lognormal
jump distribution were: mean 0, 89, standard deviation 0, 45
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Figure 1: Good deal pricing bounds
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Figure 2: The minimal martingale measure and the Merton model

A Purely Wiener-Driven Models

Although the main object of the present paper is to study good deal bounds
in the presence of a marked point process we will, in this appendix and for
completeness sake, also study pricing in our model without a driving point
process, i.e we will study the special case of a purely Wiener-driven model. This
is an extension, although a very modest one, of the model originally considered
in Cochrane and Saa-Requejo (2000), the main difference being that we do
not need a certain rank condition assumed by Cochrane and Saa-Requejo. We
derive the general HJB equation for the upper (lower) price bounds and given the
appropriate rank condition we derive the pricing PDE presented by Cochrane
and Saa-Requejo.

A.1 The General Case

We recall our model for the purely Wiener driven situation.
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Assumption A.1

1. The price and factor dynamics under objective probability measure P are
given by

dSi
t = Si

tαi (St, Yt) dt + Si
tσi(St, Yt)dWt, i = 1, . . . , n

dY j
t = aj (St, Yt) dt + bj(St, Yt)dWt, j = 1, . . . , k

2. We assume that for each i and j, αi(s, y) and aj(s, y) are deterministic
scalar functions, σi(s, y) and bj(s, y) are deterministic row vector func-
tions.

3. All functions above are assumed to be regular enough to allow for the
existence of a unique strong solution for the system of SDEs.

4. We assume the existence of a short rate r of the form

rt = r(St, Yt).

5. We assume that the model is free of arbitrage in the sense that there exists
a (not necessarily unique) risk neutral martingale measure Q.

From Theorem 4.1 we see that the upper good deal bound function V (t, s, y)
satisfies the following boundary value problem

∂V

∂t
(t, s, y) + sup

h

{
AhV (t, s, y)

}
− rV (t, s, y) = 0, (144)

V (T, s, y) = Φ(s, y), (145)

where we for the moment suppress all the constraints, and where the infinitesi-
mal operator Ah,ϕ is given by

AhV (t, s, y) =
n∑

i=1

∂V

∂si
(t, s, y)sir

+
k∑

j=1

∂V

∂yj
(t, s, y) {aj(s, y) + bj(s, y)h(t, s, y)}

+
1
2

n∑

i,l=1

∂2V

∂si∂sl
(t, s, y)sislσ

?
i (s, y)σl(s, y)

+
1
2

k∑

j,l=1

∂2V

∂yj∂yl
(t, s, y)b?

j (s, y)bl(s, y)

+
k∑

i,j=1

∂2V

∂si∂yj
(t, s, y)siσ

?
i (s, y)bj(s, y). (146)

Thus, we have the following static optimization problem
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Problem A.1

max
h

k∑

j=1

∂V

∂yj
(t, s, y) {bj(s, y)h(t, s, y)} (147)

subject to the constraints

αi + σih = r, i = 1, . . . , n (148)

‖h‖2
Rd ≤ A2. (149)

This is a very simple finite dimensional optimization problem and, using
standard Kuhn-Tucker techniques, we have the following result.

Proposition A.1 Denote the excess return α − r by R.

• The upper (lower) good-deal bound function V (t, s, y) satisfies the following
boundary value problem

∂V

∂t
+ r

n∑

i=1

∂V

∂si
si +

k∑

j=1

∂V

∂yj

{
aj + bjĥ

}
+

1
2

k∑

j,l=1

∂2V

∂si∂sl
sislσ

?
i σl

+
1
2

k∑

j,l=1

∂2V

∂yj∂yl
b?
j bl +

k∑

i,j=1

∂2V

∂si∂yj
siσ

?
i bj − rV = 0 (150)

V (T, s, y) = Φ(s, y). (151)

• For the upper bound, the kernel ĥ = ĥmax is given by

ĥmax = b′Vy − σ′(σσ′)−1σb′Vy +
σ′(σσ′)−1R

√
V ′

yb {I − σ′(σσ′)−1σ} b′Vy

√
A2 − R′(σσ′)−1R

(152)

• For the lower bound, the kernel ĥ = ĥmin is given by

ĥmin = b′Vy − σ′(σσ′)−1σb′Vy −
σ′(σσ′)−1R

√
V ′

yb {I − σ′(σσ′)−1σ} b′Vy

√
A2 − R′(σσ′)−1R

(153)

Here we have used the notation Vy =
(

∂V
∂y1

, . . . , ∂V
∂yk

)?

A.2 The Cochrane and Saa-Requejo Model

The pricing PDE of Cochrane and Saa-Requejo (2000) can now be obtained
as a particular case of our slightly more general model above. In terms of our
notation, the Cochrane and Saa-Requejo model is specified by the following set
of assumptions.
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Assumption A.2

• The price dynamics are assumed to be of the form

dSi
t = Si

tαi(St, Yt, t)dt + Si
tσi(St, Yt, t)dZt, i = 1, . . . , n, (154)

were Z is an n-dimensional standard Wiener process.

• The factor dynamics are assumed to be of the form

dY j
t = aj(St, Yt, t)dt + bz

j (St, Yt, t)dZ + bw
j (St, Yt, t)dWt, j = 1, . . . , k,

(155)
where W is a k-dimensional standard Wiener process orthogonal to Z.

• The n × n volatility matrix σ is assumed to be invertible.

Given this assumption we have a d dimensional driving Wiener process
(Z, W ), where d = n+k, so the kernel process h is now (n+k)-dimensional and
can be decomposed as h = (hz, hw). The martingale condition (148) will take
the form

αi + σih
z = r, i = 1, . . . , n (156)

and the invertibility assumption above allows us to solve for hz to obtain

hz = σ−1(r − α). (157)

Thus, the static problem simplifies as follows.

Problem A.2

max
h

k∑

j=1

∂V

∂yj
(t, s, y) {bj(s, y)hw(t, s, y)} (158)

subject to the constraints
h′

whw ≤ A2 − R′R.

This is a trivial linear-quadratic optimization problem and the optimal hw

can be easily found as

hw =
√

A2 − R′R√
b′VyV ′

yb
· b′Vy.

We have thus determined the entire optimal vector h = (hz, hw) , and substi-
tuting this into the pricing equation of Proposition A.1 one obtains the pricing
PDE of Cochrane and Saa-Requejo (2000).

34



References

[1] Bernardo, A., and Ledoit, O. Gain. loss, and asset pricing. Journal
of Political Economy 108, 1 (2000), 144–172.

[2] Cerny, A. Generalised sharpe ratios and asset pricing in incomplete mar-
kets. European Finance Review 7 (2003), 191–233.

[3] Cerny, A., and Hodges, S. The theory of good deal pricing in financial
markets.
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