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Abstract
We develop a non-dynamic panel smooth transition regression model with fixed
individual effects. The model is useful for describing heterogenous panels, with re-
gression coefficients that vary across individuals and over time. Heterogeneity is
allowed for by assuming that these coefficients are continuous functions of an ob-
servable variable through a bounded function of this variable and fluctuate between
a limited number (often two) of “extreme regimes”. The model can be viewed as
a generalization of the threshold panel model of Hansen (1999). We extend the
modelling strategy for univariate smooth transition regression models to the panel
context. This comprises of model specification based on homogeneity tests, parame-
ter estimation, and diagnostic checking, including tests for parameter constancy and
no remaining nonlinearity. The new model is applied to describe firms’ investment
decisions in the presence of capital market imperfections.
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1 Introduction

In regression models for panel data it is typically assumed that the heterogeneity in the

data can be captured completely by means of (fixed or random) individual effects and

time effects, such that the coefficients of the observed explanatory variables are identical

for all observations. In many empirical applications, however, this poolability assumption

may be violated or at least may be questionable. For example, there is a sizable literature

documenting that, due to capital market imperfections such as information asymmetry be-

tween borrowers and lenders, investment decisions of individual firms depend on financial

variables such as cash flow, see Hubbard (1998) for a review. The sensitivity of investment

to cash flow often is found to vary across firms according to the severity of the informa-

tion asymmetry problem or their investment opportunities. In particular, external finance

may be limited mainly for firms facing high agency costs due to information asymmetry

or for firms with limited profitable investment opportunities. For such constrained firms,

investment will depend on the availability of internal finance to a much larger extent than

for unconstrained firms.

Various panel data models that allow regression coefficients to vary over time and

across cross-sectional units have been developed, see Hsiao (2003, Chapter 6) for an

overview. These include random coefficients models and models with coefficients that

are functions of other exogenous variables. A specific example of the latter type of param-

eter heterogeneity is the panel threshold regression (PTR) model developed by Hansen

(1999). In this model, regression coefficients can take on a small number of different

values, depending on the value of another observable variable. Interpreted differently,

the observations in the panel are divided into a small number of homogenous groups or

‘regimes’, with different coefficients in different regimes.

A feature that makes the PTR model quite appealing is that individuals are not

restricted to remain in the same group for all time periods if the so-called threshold

variable that is used for grouping the observations is time-varying. In the empirical

example of firms’ investment decisions given above, it is likely that information costs and

investment opportunities change over time, such that firms switch between constrained

and unconstrained regimes. On the other hand, the PTR model implies that the different

groups of observations can be clearly distinguished from each other based on the value of

the threshold variable alone, with sharp ‘borders’ or thresholds separating the groups. In

practice, this may not always be feasible though. In this paper we consider a generalization

of the PTR model that relaxes this restriction in Hansen’s (1999) original proposal. In
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particular, we develop a panel smooth transition regression (PSTR) model, which has

essentially the same features as the PTR model but allows the regression coefficients to

change gradually when moving from one group to another.

The paper is organized as follows. Section 2 introduces the panel smooth transition

regression model, focusing on interpretation of the model structure and on its relation

to the PTR model of Hansen (1999). Section 3 develops a model building procedure for

PSTR models, including model specification, parameter estimation and diagnostic check-

ing. The modelling cycle is an extension of the procedure that is available for smooth

transition regression models for a single cross-section or time series, see Teräsvirta (1998)

and van Dijk, Teräsvirta, and Franses (2002), among others. As part of the specifica-

tion stage we develop a novel Lagrange Multiplier (LM) test of parameter homogeneity.

Although the test is designed specifically against the PSTR alternative, it has wider ap-

plicability as a general test of poolability of the data, see also Baltagi (2005, Section 4.1).

Similarly, we develop a test of parameter constancy in PSTR models as part of the evalu-

ation stage, which also is applicable in other panel models. Section 4 considers the small

sample properties of the different test statistics involved in the modelling cycle by means

of Monte Carlo simulation. Special attention is given here to the issue of cross-sectional

heteroskedasticity and the consequences thereof for the performance of the tests. Section

5 contains an empirical application of the proposed methodology to the problem of indi-

vidual firms’ investment decisions in the presence of credit market imperfections. Finally,

Section 6 concludes.

2 Panel smooth transition regression model

The Panel Smooth Transition Regression (PSTR) model is a fixed effects model with

exogenous regressors. The model can be interpreted in two different ways. First, it may

be thought of as a linear heterogenous panel model with coefficients that vary across

individuals and over time. Heterogeneity in the regression coefficients is allowed for by

assuming that these coefficients are continuous functions of an observable variable through

a bounded function of this variable, called the transition function, and fluctuate between a

limited number (often two) of “extreme regimes”. As the transition variable is individual-

specific and time-varying, the regression coefficients for each of the individuals in the

panel are changing over time. Second, the PSTR model can simply be considered as

a nonlinear homogenous panel model. The latter interpretation is in fact common in

the context of single-equation smooth transition regression (STR) or univariate smooth
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transition autoregressive (STAR) models, see Teräsvirta (1994, 1998). Given the current

context, we prefer the first interpretation.

The basic PSTR model with two extreme regimes is defined as

yit = µi + β′

0xit + β′

1xitg(qit; γ, c) + uit (1)

for i = 1, . . . , N , and t = 1, . . . , T , where N and T denote the cross-section and time

dimensions of the panel, respectively. The dependent variable yit is a scalar, xit is a k-

dimensional vector of time-varying exogenous variables, µi represents the fixed individual

effect, and uit are the errors. Transition function g(qit; γ, c) is a continuous function of the

observable variable qit and is normalized to be bounded between 0 and 1, and these extreme

values are associated with regression coefficients β0 and β0 + β1. More generally, the

value of qit determines the value of g(qit; γ, c) and thus the effective regression coefficients

β0 + β1g(qit; γ, c) for individual i at time t. We follow Granger and Teräsvirta (1993),

Teräsvirta (1994) and Jansen and Teräsvirta (1996) by using the logistic specification

g(qit; γ, c) =

(

1 + exp

(

−γ
m
∏

j=1

(qit − cj)

))

−1

with γ > 0 and c1 ≤ c2 ≤ . . . ≤ cm (2)

where c = (c1, . . . , cm)′ is an m-dimensional vector of location parameters and the slope

parameter γ determines the smoothness of the transitions. The restrictions γ > 0 and

c1 ≤ . . . ≤ cm are imposed for identification purposes. In practice it is usually sufficient

to consider m = 1 or m = 2, as these values allow for commonly encountered types of

variation in the parameters. For m = 1, the model implies that the two extreme regimes

are associated with low and high values of qit with a single monotonic transition of the

coefficients from β0 to β0 + β1 as qit increases, where the change is centred around c1.

When γ → ∞, g(qit; γ, c) becomes an indicator function I[qit > c1], defined as I[A] = 1

when the event A occurs and 0 otherwise. In that case the PSTR model in (1) reduces

to the two-regime panel threshold model of Hansen (1999). For m = 2, the transition

function has its minimum at (c1 + c2)/2 and attains the value 1 both at low and high

values of qit. When γ → ∞, the model becomes a three-regime threshold model whose

outer regimes are identical and different from the middle regime. In general, when m > 1

and γ → ∞, the number of distinct regimes remains two, with the transition function

switching back and forth between zero and one at c1, . . . , cm. Finally, for any value of

m the transition function (2) becomes constant when γ → 0, in which case the model

collapses into a homogenous or linear panel regression model with fixed effects.

3



A generalization of the PSTR model to allow for more than two different regimes is

the additive model

yit = µi + β′

0xit +
r
∑

j=1

β′

jxitgj(q
(j)
it ; γj, cj) + uit (3)

where the transition functions gj(q
(j)
it ; γj, cj), j = 1, . . . , r, are of the logistic type (2). If

m = 1, q
(j)
it = qit, and γj → ∞ for all j = 1, . . . , r, the model in (3) becomes a PTR model

with r + 1 regimes. Consequently, the additive PSTR model can be viewed as a gener-

alization of the multiple regime panel threshold model in Hansen (1999). Additionally,

when the largest model that one is willing to consider is a two-regime PSTR model (1)

with r = 1 and m = 1 or m = 2, model (3) plays an important role in the evaluation of the

estimated model. In particular, the multiple regime model (3) is an obvious alternative

in diagnostic tests of no remaining heterogeneity. Evaluation of PSTR models will be

discussed in Section 3.3.2.

3 Building panel smooth transition regression mod-

els

Application of nonlinear models such as the panel smooth transition regression model re-

quires a careful and systematic modelling strategy. The modelling cycle that is available

for smooth transition regression (STR) models for a single time series yt, t = 1, . . . , T ,

or potentially also for a single cross-section yi, i, . . . , N , can be readily extended to panel

STR models. The STR model building procedure consists of specification, estimation

and evaluation stages. Specification includes testing homogeneity, selecting the transition

variable qit and, if homogeneity is rejected, determining the appropriate form of the tran-

sition function, that is, choosing the proper value of m in (2). Nonlinear least squares is

used for parameter estimation. At the evaluation stage the estimated model is subjected

to misspecification tests to check whether it provides an adequate description of the data.

The null hypotheses to be tested at this stage include parameter constancy, no remaining

heterogeneity and no autocorrelation in the errors. Finally, one also has to choose the

number of regimes in the panel, which means selecting r in model (3). In the following

subsections we discuss these elements in more detail, see also Teräsvirta (1998) and van

Dijk, Teräsvirta, and Franses (2002), among others.
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3.1 Model specification: testing homogeneity

The initial specification stage of the modelling cycle essentially consists of testing homo-

geneity against the PSTR alternative. This is important for both statistical and economic

reasons. Statistically, the PSTR model is not identified if the data-generating process is

homogenous, and a homogeneity test is necessary to avoid the estimation of unidentified

models. From an economics point of view, such a test may be useful for testing a certain

proposition from economic theory, such as identical sensitivity of investment to variables

such as cash flow for all firms in a sample.

The PSTR model (1) with (2) can be reduced to a homogenous model by imposing

either H0 : γ = 0 or H
′

0 : β1 = 0. The associated tests are nonstandard because under

either null hypothesis the PSTR model contains unidentified nuisance parameters. In

particular, the location parameters c are not identified under both null hypotheses, while

this also is the case for β1 under H0 and for γ under H
′

0. The problem of hypothesis

testing in the presence of unidentified nuisance parameters was first studied by Davies

(1977, 1987). Luukkonen, Saikkonen, and Teräsvirta (1988), Andrews and Ploberger

(1994) and Hansen (1996) proposed alternative solutions in the time series context. We

follow Luukkonen, Saikkonen, and Teräsvirta (1988) and test homogeneity using the null

hypothesis H0 : γ = 0. To circumvent the identification problem we replace g(qit; γ, c) in

(1) by its first-order Taylor expansion around γ = 0. After reparameterization, this leads

to the auxiliary regression

yit = µi + β′∗

0 xit + β′∗

1 xitqit + . . . + β′∗

mxitq
m
it + u∗

it (4)

where the parameter vectors β∗

1 ,. . . ,β
∗

m are multiples of γ and u∗

it = uit + Rmβ′

1xit, where

Rm is the remainder of the Taylor expansion. Consequently, testing H0 : γ = 0 in (1) is

equivalent to testing the null hypothesis H
∗

0 : β∗

1 = . . . = β∗

m = 0 in (4). Note that under

the null hypothesis {u∗

it} = {uit}, so the Taylor series approximation does not affect the

asymptotic distribution theory. This null hypothesis may be conveniently tested by an

LM test. In order to define the LM statistic, we write (4) in matrix notation as follows:

y = Dµµ + Xβ + Wβ∗ + u∗ (5)

where y = (y′

1, . . . , y
′

N)′ with yi = (yi1, . . . , yiT )′, i = 1, . . . , N , Dµ = (IN ⊗ ιT ) where IN is

the identity matrix of dimension N and ιT a (T ×1) vector of ones, and µ = (µ1, . . . , µN)′.

Moreover, X = (X ′

1, . . . , X
′

N) where Xi = (x′

i1, . . . , x
′

iT )′, W = (W ′

1, . . . ,W
′

N)′ with Wi =

(w′

i1, . . . , w
′

iT )′ and wit = (x′

itqit, . . . , x
′

itq
m
it )

′, β = β∗

0 and β∗ = (β∗′

1 , . . . , β∗′

m)′. Finally,
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u∗ = (u′∗

1 , . . . , u′∗

N)′ is a (TN × 1) vector with u∗

i = (u∗

i1, . . . , u
∗

iT )′ . The LM test statistic

has the form

LMχ = û0′W̃ Σ̂−1W̃ ′û0 (6)

where û0 = (û0′
1 , . . . , û0′

N)′ is the vector of residuals obtained under the null hypothesis,

W̃ = MµW where Mµ = INT − Dµ(D′

µDµ)−1D′

µ is the standard within-transformation

matrix. Furthermore, Σ̂ is any consistent estimator of the appropriate covariance matrix.

When the errors are homoskedastic and identically distributed across time and individuals

Σ̂ is given by

Σ̂ST = σ̂2(W̃ ′W̃ − W̃ ′X̃(X̃ ′X̃)−1X̃ ′W̃ ) (7)

where X̃ = MµX, and σ̂2 is the estimated error variance under the null. When the errors

are heteroskedastic or autocorrelated, Σ̂ is given by

Σ̂HAC = [−W̃ ′X̃(X̃ ′X̃)−1 : Il]4̂[−W̃ ′X̃(X̃ ′X̃)−1 : Il]
′ (8)

where Il is the identity matrix of dimension l = dim(W ) − dim(X) = k(m − 1), and

4̂ =
N
∑

i=1

Z̃ ′

iû
0
i û

0′
i Z̃i

with Z̃i = MµZi, where Zi = [Xi,Wi], i = 1, . . . , N . The estimator (8) is consistent for

fixed T as N → ∞, see Arellano (1987) for details. Under the null hypothesis the LMχ

statistic (6) is asymptotically distributed as χ2(mk), while the F-version LMF = LMχ/mk

has an approximate F(mk, TN − N − m(k + 1)) distribution.

Two remarks concerning the homogeneity test are in order. First, the test can be used

for selecting the appropriate transition variable qit in the PSTR model. In this case, the

test is carried out for a set of ‘candidate’ transition variables and the variable that gives

rise to the strongest rejection of linearity (if any) is chosen as the transition variable.

Second, the homogeneity test can also be used for determining the appropriate order m

of the logistic transition function in (2). Granger and Teräsvirta (1993) and Teräsvirta

(1994) proposed a sequence of tests for choosing between m = 1 and m = 2. Applied to

the present situation this testing sequence reads as follows: Using the auxiliary regression

(4) with m = 3, test the null hypothesis H
∗

0 : β∗

3 = β∗

2 = β∗

1 = 0. If it is rejected, test

H
∗

03 : β∗

3 = 0, H
∗

02 : β∗

2 = 0|β∗

3 = 0 and H
∗

01 : β∗

1 = 0|β∗

3 = β∗

2 = 0. Select m = 2 if the

rejection of H
∗

02 is the strongest one, otherwise select m = 1. For the reasoning behind

this rule, see Teräsvirta (1994).
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3.2 Parameter estimation

Estimating the parameters θ = (β′

0, β
′

1, γ, c′)′ in the PSTR model (1) is a relatively straight-

forward application of the fixed effects estimator and nonlinear least squares (NLS). We

first eliminate the individual effects µi by removing individual-specific means and then

apply NLS to the transformed data.

While eliminating fixed effects using the within transformation is standard in linear

panel data models, the PSTR model calls for a more careful treatment. Rewrite model

(1) as follows:

yit = µi + β′xit(γ, c) + uit (9)

where xit(γ, c) = (x′

it, x
′

itg(qit; γ, c))′ and β = (β′

0, β
′

1)
′. Subtracting individual means from

(9) yields

ỹit = β′x̃it(γ, c) + ũit (10)

where ỹit = yit − ȳi, x̃it(γ, c) = (x′

it − x̄′

i, x
′

itg(qit; γ, c) − w̄′

i(γ, c))′, ũit = uit − ūi, and ȳi,

x̄i, w̄i and ūi are individual means, with w̄i(γ, c) ≡ T−1
∑T

t=1 xitg(qit; γ, c). Consequently,

the transformed vector x̃it(γ, c) in (10) depends on γ and c through both the levels and

the individual means. For this reason, x̃it(γ, c) needs to be recomputed at each iteration

in the NLS optimization.

From (10) it is seen that the PSTR model is linear in β conditional on γ and c. Thus,

we apply NLS to determine the values of these parameters that minimize the concentrated

sum of squared errors

Qc(γ, c) =
N
∑

i=1

T
∑

t=1

(

ỹit − β̂(γ, c′)x̃it (γ, c)
)2

(11)

where β̂(γ, c) is obtained from (10) by ordinary least squares at each iteration in the non-

linear optimization. In case the errors uit in (9) are normally distributed, this estimation

procedure is equivalent to maximum likelihood, where the likelihood function is first con-

centrated with respect to the fixed effects µi. An appendix that is available upon request

considers the properties of the ML estimator in full detail, including a formal proof of its

consistency and asymptotic normality.

A practical issue that deserves special attention in the estimation of the PSTR model is

the selection of starting values. For the smooth transition model, it is often suggested that

sensible starting values can be obtained by means of a grid search across the parameters in

the transition function g(qit; γ, c). This suggestion is based on the fact that (10) is linear

in β when γ and c are fixed. Hence, the concentrated sum of squared residuals (11) can be
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computed easily for an array (“grid”) of values for γ and c such that γ > 0, and cj,min >

mini,t {qit} and cj,max < maxi,t {qit}, j = 1, . . . ,m, and the values minimizing Qc(γ, c) can

be used as starting values of the nonlinear optimization algorithm. In this paper, we apply

simulated annealing instead of a grid search for this purpose. The (γ, c)−space is then

sampled more densely than in the case of a grid search, which improves the quality of the

starting values. For practical implementation of simulated annealing, see, for example,

Goffe, Ferrier, and Rogers (1994) and Brooks and Morgan (1995).

3.3 Model evaluation

Evaluation of an estimated PSTR model is an essential part of the model building proce-

dure. In this section we consider two misspecification tests for this purpose. Specifically,

we adapt the tests of parameter constancy over time and of no remaining nonlinearity de-

veloped by Eitrheim and Teräsvirta (1996) for univariate STAR models to fit the present

panel framework, where we interpret the latter as a test of no remaining heterogeneity. We

do not consider a panel version of their test of no error autocorrelation, because Baltagi

and Li (1995) have already derived such a test for panel models. We discuss an alternative

use of the test of no remaining heterogeneity as a specification test for determining the

number of regimes in the PSTR model.

3.3.1 Testing the hypothesis of parameter constancy

Testing parameter constancy in panel data models has not received as much attention as

it has in the time series literature. A possible explanation is that in many applications the

time dimension T is relatively small, which makes the assumption of parameter constancy

a less interesting hypothesis to test. However, as the number of empirical panel data sets

with relatively large T increases testing parameter constancy becomes important. Even

though we develop a test specifically for PSTR models, it can after minor modifications

be applied to other fixed effects models.

Our alternative to parameter constancy is that the parameters in (1) change smoothly

over time. The model under the alternative may be called the Time Varying Panel Smooth

Transition Regression (TV-PSTR) model and is defined as follows:

yit = µi + (β′

10xit + β′

11xitg(qit; γ1, c1)) + f(t; γ2, c2)(β
′

20xit + β′

21xitg(qit; γ1, c1)) + uit (12)

where g(qit; γ1, c1) is defined in (2) and f(t; γ2, c2) is another transition function. Model

(12) has the same structure as the time-varying smooth transition autoregressive (TV-
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STAR) model discussed in Lundbergh, Teräsvirta, and van Dijk (2003). We may also

write (12) as

yit = µi + (β10 + β20f(t; γ2, c2))
′xit + (β11 + β21f(t; γ2, c2))

′xitg(qit; γ1, c1) + uit (13)

to explicitly show the deterministic character of time-variation in the parameters of the

model.

The TV-PSTR model accommodates various alternatives to parameter constancy de-

pending on the definition of f(t; γ2, c2). This function has the form

f(t; γ2, c2) =

(

1 + exp

(

−γ2

h
∏

j=1

(t − c2j)

))−1

(14)

where c2 = (c21, . . . , c2h)
′ is an h-dimensional vector of location parameters with c21 ≤

c22 ≤ . . . ≤ c2h, and γ2 > 0 is the slope parameter. This is identical to g(qit; γ, c) as

defined in (2) with qit = t. Thus, when setting h = 1 the TV-PSTR model allows for a

single monotonic change, while the change is symmetric around (c21+c22)/2 in case h = 2.

The smoothness of the change is controlled by γ2. When γ2 → ∞, f(t; γ2, c2) becomes an

indicator function I[t > c21] in case h = 1 and 1 − I[c21 < t ≤ c22] in case h = 2. This

means that (14) also accommodates instantaneous structural breaks.

When γ2 = 0 in (14), the function f(t; γ2, c2) equals 1/2 for all t, so (12) has constant

parameters and H0 : γ2 = 0 can be chosen to be the null hypothesis of parameter constancy.

When it holds, the parameters β20, β21 and c2 in (12) are not identified. The solution

to this identification problem is the same as the one proposed in Section 3.1: to replace

f(t; γ2, c2) by its first-order Taylor expansion around γ2 = 0. After rearranging terms this

yields the following auxiliary regression:

yit = µi + β∗′

10xit + β∗′

1 xitt + β∗′

2 xitt
2 + . . . + β∗′

h xitt
h

+
(

β∗′

20xit + β∗′

h+1xitt + . . . + β∗′

2hxitt
h
)

g (qit; γ1, c1) + u∗

it (15)

where u∗

it = uit+R (t, γ2, c2) and R (t, γ2, c2) is the remainder term. In (15), the parameter

vectors β∗

j for j = 1, 2, . . . , h, h+1, . . . , 2h are multiples of γ2, such that the null hypothesis

H0 : γ2 = 0 in (12) can be reformulated as H
∗

0 : β∗

j = 0 for j = 1, 2, . . . , h, h + 1, . . . , 2h in

the auxiliary regression. Under H
∗

0 {u∗

it} = {uit}, so the Taylor series approximation does

not affect the asymptotic distribution theory. The χ2- and F-versions of the LM-type test

can be computed as in (6) defining w′

it = (x′

it, x
′

itg(qit, γ̂1, ĉ1))⊗s′t with st = (t, . . . , th)′ and

replacing X̃ in (7) and (8) by Ṽ = MµV , where V = (V ′

1 , . . . , V
′

N)′ with Vi = (v′

i1, . . . , v
′

iT )′
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and vit = (x′

it, x
′

itg(qit, γ̂1, ĉ1), (∂ĝ/∂γ1)x
′

itβ̂2, (∂ĝ/∂c′1)x
′

itβ̂2)
′. Under the null hypothesis,

LMχ is asymptotically distributed as χ2(2hk) and LMF = LMχ/2hk is approximately

distributed as F (2hk, TN−N−2k(h+1)−(m+1)). When the null model is a homogeneous

fixed effects model (β11 ≡ β21 ≡ 0 in (12)), (15) collapses into a parameter constancy test

in this model.

Eitrheim and Teräsvirta (1996) pointed out potential numerical problems in the com-

putation of the test of parameter constancy (as well as the test of no remaining hetero-

geneity to be discussed below). In particular, when the estimate of γ1 in the model under

the null hypothesis is relatively large, such that the transition between regimes occurs

rapidly, the partial derivatives of g(qit; γ1, c1) with respect to γ1 and c1 evaluated at the

estimates under the null are equal to zero for almost all observations. As a result, the

moment matrix of Ṽ becomes near-singular such that the LM test cannot be reliably

computed. However, the contribution of the terms involving these partial derivatives to

the test statistic is negligible at large values for γ1. They can simply be omitted from the

auxiliary regression without influencing the empirical size (or power) of the test statistic.

If this is done, the degrees of freedom in the F-tests have to be modified accordingly. Scale

differences between the variables xitt, xitt
2, . . ., may also cause numerical problems, but

they are overcome simply by standardization.

3.3.2 Testing the hypothesis of no remaining heterogeneity

The assumption that a two-regime PSTR model (1) with (2) adequately captures the

heterogeneity in a panel data set can be tested in various ways. In the PSTR framework

it is a natural idea to consider an additive PSTR model (3) with r = 2, or three regimes,

as an alternative. Thus,

yit = µi + β′

0xit + β′

1xitg1(q
(1)
it ; γ1, c1) + β′

2xitg2(q
(2)
it ; γ2, c2) + uit (16)

where the transition variables q
(1)
it and q

(2)
it can but need not be the same. The null hy-

pothesis of no remaining heterogeneity in an estimated two-regime PSTR model can be

formulated as H0 : γ2 = 0 in (16). This testing problem is again complicated by the

presence of unidentified nuisance parameters under the null hypothesis. As before, the

identification problem is circumvented by replacing g2(q
(2)
it ; γ2, c2) by a Taylor expansion

around γ2 = 0. Choosing a first-order Taylor approximation leads to the auxiliary regres-

sion

yit = µi + β∗′

0 xit + β′

1xitg1(q
(1)
it ; γ̂1, ĉ1) + β∗′

21xitq
(2)
it + . . . + β∗′

2mxitq
(2)m
it + u∗

it (17)
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where γ̂1 and ĉ1 are estimates under the null hypothesis. The hypothesis of no remaining

heterogeneity can then be restated as H
∗

0 : β∗

21 = . . . = β∗

2m = 0. If β1 ≡ 0 in (17), the

resulting test collapses into the homogeneity test discussed in Section 3.1.

In order to compute the LM test statistic defined in (6) and its F-version we set

wit = (x′

itq
(2)
it , . . . , x′

itq
(2)m
it )′ and again replace X̃ in (7) and (8) by Ṽ , where in this case

vit = (x′

it, x
′

itg(q
(1)
it , γ̂, ĉ1), (∂ĝ/∂γ)x′

itβ̂1, (∂ĝ/∂c′1)x
′

itβ̂1)
′. When H

∗

0 holds, the LMχ statistic

has an asymptotic χ2(mk) distribution, whereas LMF is approximately distributed as

F (mk, TN − N − 2 − k(m + 2)).

3.3.3 Determining the number of regimes

The tests of parameter constancy and of no remaining heterogeneity can be generalized

to serve as misspecification tests in an additive PSTR model of the form (3) for any value

of r. The purpose of the test of no remaining heterogeneity is actually twofold. It is a

misspecification test, but it is also a useful tool for determining the number of transitions

in the model. The following sequential procedure may be used for this purpose:

1. Estimate a linear (homogenous) model and test homogeneity at a predetermined

significance level α.

2. If homogeneity is rejected, estimate a two-regime PSTR model.

3. Test the hypothesis of no remaining heterogeneity for this model. If it is rejected at

significance level τα, 0 < τ < 1, estimate an additive PSTR model with r = 2. The

purpose of reducing the significance level by a factor τ is to avoid excessively large

models.

4. Continue until the first acceptance of the hypothesis of no remaining heterogeneity.

4 Size and power simulations

The small sample properties of the different LM tests developed in Section 3 are studied by

means of Monte Carlo experiments. In the simulations we do not only consider different

combinations of N and T but also investigate the effect of a particular form of cross-

sectional heteroskedasticity on the size and power of the tests.

The design of the Monte Carlo experiments is as follows. The number of replications

equals 10,000 throughout. Each experiment is carried out for all possible combinations of

N = 20, 40, 80, 160 and T = 5, 10, 20. The (2 + r) × 1 vector of exogenous regressors and
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transition variables
(

x′

it, q
(1)
it , . . . , q

(r)
it ,
)

′

is generated independently for each individual

from the following VAR(1) model:











xit

q
(1)
it
...

q
(r)
it











= κ + Θ











xit−1

q
(1)
it−1
...

q
(r)
it−1











+ εit (18)

where κ = (0.2, 0.2, 2.45, . . . , 2.45)′ and Θ = diag(0.5, 0.4, 0.3, . . . , 0.3). The error εit is

drawn from a N(0, Σε) distribution where Σε = DRD, D =
√

0.3I2+r and R = [rij]

with rii = 1 and rij = 1/3, i 6= j, i, j = 1, . . . , 2 + r. This generates both serial and

contemporaneous correlation between the regressors and the transition variables. The

endogenous variable yit is generated from the additive PSTR model

yit = µi + β′

i0xit +
r
∑

j=1

β′

jxitg(q
(j)
it ; γj, cj) + uit (19)

where µi = σµei with σµ = 10, and both ei and uit are i.i.d. standard normal. The values

of r, m, and (γj, c
′

j)
′ vary from one experiment to another. We consider two definitions of

βi0. In the first case, referred to as homoskedasticity, βi0 = β0 = (1, 1)′ for all individuals

i. In the second case, βi0 = β0 + νi, where νi ∼ N(0, I2). This results in heteroskedastic

errors in the auxiliary regressions, the degree of heteroskedasticity being positively related

to the regressors xit.

Homogeneity test

In order to investigate the empirical size of the homogeneity test as discussed in Section

3.1 we generate samples from a homogenous panel with fixed effects (r = 0 in (19)).

Results for both the homoskedastic and heteroskedastic cases appear in panels (a) and

(b) of Table 1. The table contains rejection frequencies of the null hypothesis for both the

standard LMF test (indicated by ST) and the robust test (HAC) based on the nominal

significance level of 5%. We compute the test statistics for m∗ = 1, 2, 3, where m∗ is the

order of the auxiliary regression (4). The reason for reporting results for the F-version

of the LM test only is that according to previous studies it has better size properties in

small samples than the asymptotic χ2-based statistic.

In the homoskedastic case the empirical size of the standard test is close to the nominal

significance level for all sample sizes and choices of m∗. The test can be considerably

oversized, however, when the DGP has heteroskedastic errors. This size distortion does

not vanish with increasing N and T . For instance, when N = 160 and T = 20 the
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empirical size of the standard test still is around 20%. Results are rather different for the

robust test statistic. Panel (b) of Table 1 shows that the test remains well-behaved in the

presence of heteroskedastic errors. For small values of N and T it can be undersized, but

when N increases the empirical size quickly approaches the nominal significance level.

In the power experiments, we generate samples from the PSTR model (19) with r = 1

and with either a monotonically increasing (m = 1) or symmetric (m = 2) transition

function (2). In both cases, we set β1 = (0.7, 0.7)′. Finally, the parameters in the transition

function are set equal to c1 = 3.5 when m = 1 and c1 = (3.0, 4.0) when m = 2, and γ1 = 4

in both cases. Table 2 displays the empirical power of the tests based on the auxiliary

regression (4) with m∗ = 1, 2, 3. The order m∗ may affect the power of the test. For

instance, if m∗ < m, the order of the exponent in (2), this is likely to cause a power loss

compared to the choice m∗ = m. As before, we show results for the homoskedastic and

heteroskedastic cases in separate panels.

Several interesting conclusions emerge. First, as a general observation, the power of

the test is highest when m∗ = m, as may be expected. Second, from the results for the

DGP with m = 2, it is seen that the decline in power compared to the test with m∗ = 2

is much larger when m∗ = 1 than it is when m∗ = 3. Similarly, the power of the test

with m∗ = 2 or 3 for the DGP with m = 1 remains reasonable. Hence, it seems advisable

not to be conservative when choosing the maximum order of the auxiliary regression (4).

Third, for the homoskedastic DGP the standard test outperforms the robust test for small

panels, although the difference in power quite rapidly becomes small as N and T increase.

The results for the heteroskedastic DGP are not comparable because of the positive size

distortion of the standard test. Fourth, the power of the robust test is lower in the presence

of heteroskedasticity than without it. Fifth, the robust test has low power in small panels

(N = 20 or T = 5), in particular when m∗ > 1. This is due to the negative size distortion

of this test that is visible in Table 1. The power improves drastically, however, when the

number of individuals or time periods in the panel increases.

Parameter constancy test

In order to gauge the size properties of the parameter constancy test we generate samples

from the PSTR model (19) with constant parameters, setting r = 1, β1 = (1, 1), m = 1,

γ1 = 3 and c1 = 3.5. Table 3 contains the results for the LMF test based on the auxiliary

regression (15), where we set the maximum power of t, denoted by h∗, equal to 1,2 or 3.

The results closely correspond with those obtained before for the homogeneity test. When

the errors are homoskedastic, the standard F-test has size close to the nominal significance
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level. The robust tests are undersized in small panels, in particular for h∗ = 2 and 3,

although this effect already becomes quite small when NT > 400. With heteroskedastic

errors, the standard test is oversized, and, as may be expected, this size distortion increases

with increasing T (and N). The robust test remains generally well-behaved, although it

is somewhat undersized even here. In fact, its empirical size as a function of N and T

closely resembles the results obtained with homoskedastic errors.

In the power simulations we consider two TV-PSTR models of the type (12). In the first

model, we allow a single permanent structural change in the coefficients centered around

the middle of the sample by setting h = 1 and c2 = 0.5T . The second model contains a

‘temporary’ structural change which is obtained by setting h = 2, c2 = (0.3T, 0.7T ). In

both cases γ2 = 4 in (14), (β′

10, β
′

11)
′ = (1, 1, 1, 1) and (β′

20, β
′

21)
′ = 0.7(β′

10, β
′

11)
′. Hence,

we assume that the transition occurs at the same time for all N individuals and that the

change in the parameters is the same for all of them. This design is consistent with the

alternative hypothesis although it excludes other interesting options such as the situation

that only a certain fraction of individuals experiences the change in parameters. If this is

the case, the power of the test may be affected and, in particular, it may have very low

power if this fraction is small.

The results in Table 4 largely correspond with those obtained for the homogeneity

test. The conclusions from Table 2 are equally valid here. In addition, the parameter

constancy test has much higher power against permanent structural change (h = 1) than

against temporary change (h = 2). This observation does not generalize, however, because

the power of the parameter constancy test crucially depends on both the timing and the

magnitude of the structural change.

Test of no remaining heterogeneity

We examine the size properties of the test of no remaining heterogeneity by generating

panels from (19) setting r = 1, m = 1, γ1 = 4, c1 = 3.5 and (β′

0, β
′

1)
′ = (1, 1, 1, 1)′. We

apply the LMF test based on (17) with m∗ = 1, 2, 3 using either the original transition

variable q
(1)
it or another variable q

(2)
it in the second transition function. The results appear

in Table 5. Even here, the robust test is somewhat undersized in small samples, indepen-

dent of the presence of heteroskedasticity. Heteroskedasticity again causes positive size

distortion in the standard test, which increases with the cross-section and time dimensions

of the panel. Note that the size distortion occurs for both choices of the second transition

variable. Thus, in large panels, the standard test may quite likely indicate the presence

of (additional) heterogeneity because of the presence of heteroskedasticity. This suggests
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caution when applying the test for determining the number of transitions in the multiple

PSTR model.

We consider the power properties of the test of no remaining heterogeneity under

different circumstances. First, we generate panels from (19) with r = 2, q
(1)
it = q

(2)
it ,

m1 = m2 = 1, γ1 = γ2 = 8, c1 = 3, and c2 = 4. The regression coefficients are set

equal to β0 = (1, 1)′, β1 = (0.7, 0.7), and β2 = β1 or β2 = −β1. In the first case, the

heterogeneity is monotonic in q
(1)
it , in the sense that the effective regression coefficients

are monotonically increasing functions of the transition variable as they change from β0

to β0 + β1 to β0 + 2β1 as qit increases. In the second case, the coefficients in the lower

regime (qit � c1) and in the upper regime (qit � c2) are the same. In both cases, we

estimate a PSTR model with r = 1 and m = 1 and then apply the test of no remaining

heterogeneity using the correct transition variable. Note that the above DGP resembles

a PSTR model with r = 1 and m = 2. This in fact is the second DGP we consider, with

all parameters defined as before. Also in this case, we estimate a PSTR model with r = 1

and m = 1, and examine whether the test of no remaining heterogeneity is able to detect

the misspecification of the form of the heterogeneity (that is, of the order of the logistic

function). Third, we employ a PSTR model (19) specified as in the first DGP above with

β2 = β1, but with q
(1)
it 6= q

(2)
it . For these panels, we estimate a PSTR model with r = 1

and m = 1 using q
(1)
it as transition variable and consider whether the test can detect the

remaining heterogeneity that is a function of q
(2)
it .

Results for the first DGP are shown in Table 6. Most results obtained for the ho-

mogeneity test continue to hold for the test of no remaining heterogeneity. In addition,

we observe that monotonic heterogeneity (β2 = β1) is more difficult to detect than non-

monotonic parameter variation (β2 = −β1). This is probably due to the fact that in the

first case a PSTR model with r = 1 and m = 1 can provide a reasonable approximation to

the true form of the heterogeneity, whereas in the second case it cannot. The results for

the second DGP, in columns 3-8 of Table 7, suggest that misspecification of the logistic

transition function is picked up quite well by the test of no remaining heterogeneity. The

remaining columns of Table 7 contain the results for the third DGP. They indicate that

the test has no problem in detecting remaining heterogeneity when it is a function of

another variable q
(2)
it .
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5 Investment and capital market imperfections

In the presence of capital market imperfections, firms’ investment decisions are not inde-

pendent of financial factors such as cash flow and leverage. First, asymmetric information

between borrowers and lenders concerning the quality of available investment opportu-

nities generates agency costs that result in outside investors demanding a premium on

newly issued debt or equity. This creates a ‘pecking order’ or ‘financing hierarchy’ with

internal funds having a cost advantage relative to external capital. Hence, investment

will be positively related to the availability of internal sources of finance, as measured

by cash flow, for example. Second, high leverage reduces firms’ ability to finance growth

through a liquidity effect, such that firms with valuable investment opportunities should

choose lower leverage. Therefore, one may expect a negative relationship between future

investment and leverage or ‘debt overhang’.

The impact of these capital market imperfections and the severity of the resulting

problems varies across firms and over time, depending on the degree of informational

asymmetry and growth opportunities, among others. For firms with low information

costs or ample growth opportunities, internal and external finance are (close to) perfect

substitutes and investment decisions are (close to) independent of their financial structure.

In contrast, firms with high information costs and limited growth opportunities face much

higher costs of external finance or may even be rationed in their access to external funds,

resulting in greater sensitivity of investment to cash flow. Similarly, capital structure

theory suggests a disciplinary role of debt, in the sense that leverage restricts managers of

firms with poor growth opportunities from investing when they should not. Thus, leverage

should mainly affect such firms and have much less effect on investment for firms with

valuable growth opportunities that are recognized by the market.

A substantial number of empirical studies examine the effects of capital market im-

perfections on investment, see Fazzari, Hubbard, and Petersen (1988), Whited (1992),

Bond and Meghir (1994), Carpenter, Fazzari, and Petersen (1994), Gilchrist and Him-

melberg (1995), Lang, Ofek, and Stulz (1996), Hsiao and Tahmiscioglu (1997), Hu and

Schiantarelli (1998), Moyen (2004), and references cited therein. Schiantarelli (1996) and

Hubbard (1998) provide surveys of this literature. Most studies are conducted in the con-

text of the Q theory of investment, adding measures of cash flow or leverage to empirical

models that relate investment to Tobin’s Q. In perfect capital and output markets, Tobin’s

Q, defined as the market valuation of capital relative to its replacement value, is a suffi-

cient statistic for investment. A significant positive coefficient on cash flow, for example,
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then can be interpreted as evidence in favour of the relevance of financing constraints.

To examine whether the effects of financing constraints or other capital market imper-

fections depend on financial factors, firms are typically divided into groups of ‘constrained’

and ‘unconstrained’ firms based on a variable that measures the degree of information

asymmetry such as the dividend pay-out ratio, size, age, the presence of a bond rating,

and the debt ratio, or based on a variable that measures growth opportunities such as To-

bin’s Q. This approach potentially suffers from several limitations. First, the distinction

between ‘constrained’ and ‘unconstrained’ firms is often based on an arbitrary threshold

level of the variable that is used to split the sample. Second, in most studies, the com-

position of these groups is fixed for the complete sample period, in the sense that firms

are not allowed to switch groups over time. In this section, we apply the PSTR model to

alleviate these shortcomings.

Following Hansen (1999), we use a balanced panel of 565 US firms observed for the

years 1973–1987, extracted from the data set used by Hall and Hall (1993). For each firm

i and year t, we obtain the ratios of investment to assets (Iit), Tobin’s Q or total market

value to assets (Qit), long-term debt to assets (Dit), cash flow to assets (CFit) and sales

to assets (Sit). We delete five firms from the original sample because they have aberrant

values for some of these variables.

We begin modelling the firms’ investment behaviour by estimating a homogenous panel

data model for Iit with lagged Q, sales, debt and cash-flow as regressors. The lagged

sales to assets ratio can be interpreted as a proxy for future demand for a firm’s output

and therefore is included as an additional control for a firm’s future profit opportunities,

following Hsiao and Tahmiscioglu (1997) and Hu and Schiantarelli (1998). In addition, we

include a set of year dummies to capture macroeconomic effects on investment. We then

apply the LM test of homogeneity developed in Section 3.1, using lagged Q and lagged

debt as transition variables, again following Hu and Schiantarelli (1998). We only test

homogeneity of the coefficients of lagged Q, sales, debt and cash-flow, assuming that the

macroeconomic effects on investment do not differ across firms. Restricting coefficients

of some variables to be constant in the PSTR model has no effect on the distribution

theory. Results for the F -version of the standard and robust tests for m=1,2, and 3 are

shown in Table 9. Homogeneity is rejected for both choices of the transition variable,

although the p-values of the tests with Tobin’s Q are considerably smaller. Next we apply

the sequence of tests discussed at the end of Section 3.1 to determine the order m of the

logistic function. The results of the specification test sequence, shown in Table 10, point
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at m = 1 as the strongest rejection does not occur for H∗

02. This is the case for both the

standard and robust tests when Tobin’s Q is used as transition variable. Thus we proceed

with estimating the following PSTR model:

Iit = µi + δ′dt + β01Qit−1 + β02Sit−1 + β03Dit−1 + β04CFit−1

+ (β11Qit−1 + β12Sit−1 + β13Dit−1 + β14CFit−1) g(Qit−1; γ, c) + uit (20)

where dt denotes the vector of year dummies, and

g(Qit−1; γ, c) = (1 + exp (−γ(Qit−1 − c)))−1 , with γ > 0. (21)

Before discussing the estimation results in detail, we examine the adequacy of the

two-regime PSTR model by applying the misspecification tests of parameter constancy

and of no remaining heterogeneity. The results in Table 11 suggest that according to

the standard tests, the model does not completely capture the heterogeneity in regression

coefficients across firms, while some indication of time-variation in the parameters is found

as well. In contrast, based on the robust test no evidence whatsoever is found for remaining

heterogeneity, while parameter constancy cannot be rejected either. Given the simulation

evidence presented in Section 4, the small p-values of the standard tests are likely caused

by neglecting cross-sectional heteroskedasticity, which renders the tests unreliable. Hence,

based on the robust test we conclude that the two-regime model is adequate.

Parameter estimates appear in Tables 12 and 13, together with conventional standard

errors and heteroskedasticity-consistent standard errors. To facilitate interpretation, in

Table 12 we report estimates of β0j and β0j + β1j, for j = 1, . . . , 4, corresponding to

regression coefficients in the regimes associated with g(Qit−1; γ, c) = 0 and 1, respectively.

The estimates of γ and c are such that the transition from the lower regime associated

with small values of Tobin’s Q to the upper regime with large values of Q is smooth

but relatively rapid. This is seen from Figure 1, in which the transition function is

plotted against Tobin’s Q with each circle representing an observation. A clear majority

of observations lie in either one of the extreme regimes, but there is also a number of them

located in-between.

Table 14 provides some rough insight into the distribution of firms across regimes: firm

i is assigned into the low (high) regime in year t when g(Qit−1; γ, c) < (>)0.5. For all

years, a large majority is classified into the low regime. Together with the point estimate

ĉ = 1.51 this shows that the model identifies firms with excellent growth opportunities,

signalled by their rather high Q values, as a separate group that is distinct from firms
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with bad or moderate growth opportunities. Also shown in Table 14 are the percentage

of firms moving from one regime to the other in each year. On average almost 10% of all

firms switches regimes in a given year, clearly illustrating the relevance of not constraining

firms to remain in the same group over time.

Turning to the estimated regression coefficients, it is seen that the estimate of the coef-

ficient on lagged debt is negative and significant for low Q firms, while it is insignificantly

different from zero for high Q firms. This is consistent with the findings of Lang, Ofek,

and Stulz (1996) that leverage matters for investment only for firms with poor growth op-

portunities or firms with growth opportunities that are not recognized by the market. The

coefficient on lagged cash flow is positive and significant for both groups of firms, although

it is considerably smaller for high Q firms. This corroborates previous findings that inter-

nal finance is relevant for investment mainly for financially constrained firms. We also find

that the coefficient on Tobin’s Q is positive and significant for low Q firms and positive

but much smaller for high Q firms. Hence, firms with poor growth prospects respond

more strongly to changes in their investment opportunities than the other companies.

This goes against the results of Hu and Schiantarelli (1998), who document the opposite

pattern, but then their regime classification is based on multiple indicators including vari-

ables that measure the degree of information asymmetry and financial constraints. Our

findings, however, are in line with the results of Barnett and Sakellaris (1998), who report

evidence for a nonlinear relationship between investment and Tobin’s Q similar to our

findings. Theoretically this can be explained by the presence of fixed costs and (partial)

irreversibility of investment, see also Nilsen and Schiantarelli (2003).

Table 13 shows the estimates of the coefficients of the year dummies in the PSTR

model. These are to be interpreted relative to a value of zero for 1974, the first year in the

effective sample period. It is seen that there remains some variation in investment over

time beyond what is explained by the included regressors. In particular, the coefficient

estimates strongly suggest the presence of macroeconomic effects, as the average level of

investment closely follows the business cycle and growth cycle, being lower in 1975-1977,

in 1982-1983, and in 1987 than during other years.

Finally, we acknowledge that our analysis is subject to caveats, including the possibility

that cash flow and leverage contain useful information about growth opportunities not

captured by Tobin’s Q and the possibility of measurement error in Q. Both of these may

lead to spurious effects of cash flow and leverage on investment, as discussed at length

in Gilchrist and Himmelberg (1995), Erickson and Whited (2000), Gomes (2001), and
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Hennessy (2004), among others. A thorough analysis of these issues, however, is beyond

the scope of this paper.

6 Conclusions

In this paper we have developed the panel smooth transition regression model, which

incorporates heterogeneity by allowing regression coefficients to vary as a function of

an exogenous variable and fluctuate between a limited number (often two) of “extreme

regimes”. As the transition variable is individual-specific and time-varying, the regression

coefficients for each of the individuals in the panel are changing over time. The model

is a generalization of the panel threshold regression model of Hansen (1999) in the sense

that our new model allows coefficients to change smoothly when moving from one regime

to another. Our approach includes a modelling cycle for the PSTR model, containing

tests of homogeneity, of parameter constancy and of no remaining nonlinearity. Monte

Carlo experiments demonstrate that these statistics behave satisfactorily even in panels

with small N and T , although the standard tests should be applied with caution given

that they are affected considerably by cross-sectional heteroskedasticity. An application

to firms’ investment behaviour aptly demonstrates the usefulness of the model.

The PSTR model as considered in this paper has fixed effects and exogenous regres-

sors. Obviously, models with random effects and with lagged dependent variables are

interesting alternatives. In addition, a model allowing for multiple variables entering the

transition function might be relevant in practice and hence worthwhile considering. In Hu

and Schiantarelli (1998), for example, several factors including Q, firm size and leverage

jointly determine the classification of firms into regimes with different characteristics of

investment behavior. Investigation of these extensions of the model are left for future

research.
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Table 1: Empirical size of homogeneity test

T = 5 T = 10 T = 20
N m∗ ST HAC ST HAC ST HAC

Panel (a): Homoskedasticity

20 1 5.3 3.2 5.2 3.5 4.7 3.6
2 5.2 1.1 5.3 1.6 4.8 1.9
3 5.4 0.3 5.1 0.6 5.3 0.8

40 1 5.4 4.8 5.0 4.1 4.8 4.5
2 5.3 2.5 4.9 2.8 4.8 3.4
3 5.2 1.7 4.9 1.7 4.9 2.8

80 1 5.4 4.6 5.1 4.7 4.7 4.7
2 5.2 3.6 5.3 4.0 5.2 4.0
3 5.4 2.7 5.0 3.2 4.9 3.4

160 1 4.6 4.5 5.2 4.9 5.1 5.0
2 5.0 3.8 4.6 4.1 5.2 4.9
3 5.0 3.3 5.0 3.6 5.7 4.5

Panel (b): Heteroskedasticity

20 1 9.7 3.1 12.1 3.3 14.8 3.7
2 10.5 1.0 12.8 1.8 16.7 1.9
3 10.3 0.3 13.5 0.5 18.3 0.9

40 1 9.8 3.9 12.3 4.0 15.2 4.4
2 10.7 2.5 13.8 2.9 18.0 3.3
3 11.0 1.6 14.9 2.1 19.8 2.3

80 1 10.2 4.7 12.9 4.6 14.8 4.4
2 11.3 3.6 15.6 3.9 19.0 3.9
3 12.4 2.3 16.9 3.0 21.0 3.3

160 1 10.4 4.9 13.2 4.7 15.7 4.9
2 11.6 3.9 15.4 3.8 19.7 4.7
3 12.8 3.2 17.1 3.4 22.4 4.1

Note: Rejection frequencies of the standard (ST) and robust
(HAC) versions of the LMF test of homogeneity based on (4)
at 5% nominal significance level. Panels are generated according
to the model (18) and (19) with r = 0 and homoskedastic (panel
(a)) or heteroskedastic errors (panel (b)). The table is based on
10,000 replications.
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Table 2: Empirical power of the homogeneity test

m = 1 m = 2
T = 5 T = 10 T = 20 T = 5 T = 10 T = 20

m∗ ST HAC ST HAC ST HAC ST HAC ST HAC ST HAC

Panel (a): Homoskedasticity

20 1 12.8 7.4 26.2 16.1 51.5 37.1 10.1 4.0 14.3 6.1 23.8 10.7
2 10.6 1.9 20.2 5.9 41.3 17.6 24.3 2.9 51.5 12.3 86.2 40.6
3 9.5 0.4 17.6 2.2 37.6 6.8 21.5 0.7 48.0 4.3 83.9 18.7

40 1 23.3 17.7 48.0 41.0 82.7 76.9 13.3 7.1 22.3 12.3 39.1 24.4
2 17.9 8.7 37.9 25.0 73.7 60.2 46.1 19.1 83.6 58.4 99.3 94.6
3 15.8 5.5 34.3 16.8 70.2 49.0 42.1 12.0 80.5 46.6 99.1 90.6

80 1 41.9 38.0 79.6 76.7 98.9 98.6 19.7 12.2 37.5 25.4 66.3 51.2
2 33.2 25.4 70.1 62.8 97.8 95.8 77.2 59.9 98.9 96.3 100.0 100.0
3 29.7 19.2 66.7 54.8 96.6 93.3 74.0 51.9 98.6 95.2 100.0 100.0

160 1 73.2 71.2 98.0 97.7 100.0 100.0 32.3 23.3 62.9 50.4 91.4 85.0
2 62.0 57.8 95.9 94.9 100.0 100.0 97.7 95.1 100.0 100.0 100.0 100.0
3 58.0 50.5 95.3 93.1 100.0 100.0 97.3 93.8 100.0 100.0 100.0 100.0

Panel (b): Heteroskedasticity

20 1 15.2 5.2 24.7 9.3 39.8 16.5 12.9 3.8 17.7 4.8 25.1 6.9
2 14.6 1.4 23.3 3.2 38.0 7.7 22.5 1.8 40.9 6.4 67.3 18.6
3 13.7 0.4 23.0 1.1 37.8 3.0 20.8 0.5 40.6 2.3 66.8 7.6

40 1 21.9 10.5 38.1 19.1 59.3 35.1 14.8 5.6 23.2 7.8 33.5 12.6
2 19.5 5.5 34.2 10.7 56.0 22.9 37.4 10.5 65.1 28.6 89.3 60.8
3 18.7 3.5 33.1 7.5 56.3 17.6 35.7 6.5 63.0 20.7 89.2 51.5

80 1 33.4 20.1 58.0 38.0 84.0 64.8 19.8 8.8 31.7 13.6 49.3 23.5
2 29.5 13.1 53.8 27.6 80.7 53.3 60.5 34.1 88.6 67.2 99.1 93.6
3 28.1 9.6 52.5 22.0 80.7 47.1 58.1 27.1 88.7 62.4 99.3 92.1

160 1 54.4 38.9 83.0 67.0 97.8 92.3 28.2 14.3 47.8 26.0 71.6 45.4
2 48.1 29.2 79.1 56.1 96.8 87.0 87.8 71.5 99.3 95.4 100.0 99.9
3 46.8 24.9 78.8 51.6 97.1 85.2 86.7 67.2 99.2 95.0 100.0 99.9

Note: Rejection frequencies of the standard (ST) and robust (HAC) versions of the LMF test of homogeneity
based on (4) at 5% nominal significance level. Panels are generated according to the model (18) and (19)
with r = 1 and homoskedastic (panel (a)) or heteroskedastic errors (panel (b)). The table is based on 10,000
replications.
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Table 3: Empirical size of test of parameter constancy

T = 5 T = 10 T = 20
N h ST HAC ST HAC ST HAC

Panel (a): Homoskedasticity

20 1 4.5 1.4 3.8 2.0 4.9 2.3
2 4.2 0.0 3.9 0.2 4.4 0.3
3 4.2 0.0 4.0 0.0 4.5 0.0

40 1 4.3 3.2 4.5 3.6 4.9 4.4
2 4.1 1.6 4.3 2.5 4.5 2.5
3 3.4 0.6 4.1 0.8 4.4 1.5

80 1 4.2 3.9 4.5 4.2 4.8 4.6
2 4.1 2.9 4.8 3.9 4.8 4.0
3 4.1 2.8 4.7 2.9 5.2 3.4

160 1 4.8 4.8 4.8 4.6 5.3 5.5
2 5.1 4.1 4.8 4.5 5.1 4.8
3 5.0 4.1 4.5 3.8 5.3 4.5

Panel (b): Heteroskedasticity

20 1 7.4 1.6 11.2 2.2 14.1 2.2
2 7.1 0.1 11.8 0.2 16.8 0.3
3 6.2 0.0 12.4 0.0 19.2 0.0

40 1 8.1 3.2 13.1 3.6 16.3 3.8
2 7.7 1.8 14.0 2.1 20.3 2.5
3 7.0 0.7 15.3 1.1 22.7 1.2

80 1 8.9 4.3 13.3 4.9 15.8 4.0
2 9.1 3.3 15.5 3.7 20.0 3.6
3 8.9 2.5 16.3 2.8 23.8 3.2

160 1 10.2 5.0 13.4 4.4 16.5 5.2
2 10.4 4.7 16.5 4.2 20.5 4.4
3 9.9 4.1 17.6 3.9 24.4 4.4

Note: Rejection frequencies of the standard (ST) and robust
(HAC) versions of the LMF test of parameter constancy based
on (15) at 5% nominal significance level. Panels are gener-
ated according to the model (18) and (19) with r = 1 and
homoskedastic (panel (a)) or heteroskedastic errors (panel (b)).
The table is based on 10,000 replications.
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Table 4: Empirical power of the test of parameter constancy

h = 1 h = 2
T = 5 T = 10 T = 20 T = 5 T = 10 T = 20

h ST HAC ST HAC ST HAC ST HAC ST HAC ST HAC

Panel (a): Homoskedasticity

20 1 59.3 24.5 87.8 63.7 98.6 93.1 16.0 6.0 19.5 10.5 24.6 13.6
2 54.4 0.6 86.2 8.9 98.4 38.8 19.3 0.3 32.7 1.8 49.0 6.8
3 49.9 0.0 84.3 0.0 98.3 0.0 20.3 0.0 33.0 0.0 51.1 0.0

40 1 83.1 75.0 95.9 93.6 99.7 99.5 27.5 23.6 32.8 28.4 36.9 31.2
2 82.9 56.8 96.3 89.0 99.8 98.9 38.6 21.8 56.1 38.8 69.9 56.3
3 82.3 31.0 96.4 75.9 99.8 97.4 40.4 11.5 59.1 28.0 74.8 48.4

80 1 92.3 91.1 98.8 98.4 100.0 99.9 43.6 42.0 48.3 46.8 50.6 48.7
2 93.7 90.8 99.0 98.4 100.0 100.0 62.2 56.0 73.9 70.6 83.5 81.2
3 94.9 89.2 99.2 98.2 100.0 99.9 67.2 53.6 79.2 72.7 88.5 84.6

160 1 96.3 96.2 99.2 99.1 100.0 100.0 58.2 58.2 62.7 62.1 63.0 62.1
2 98.1 97.8 99.6 99.6 100.0 100.0 79.4 77.4 87.5 87.3 91.8 91.6
3 98.7 98.3 99.8 99.8 100.0 100.0 85.2 82.2 92.1 91.3 95.4 95.2

Panel (b): Heteroskedasticity

20 1 49.1 14.2 78.9 40.5 94.8 74.4 14.7 3.4 19.5 4.9 23.6 5.3
2 42.0 0.2 75.6 3.2 94.8 16.2 17.4 0.1 29.1 0.5 43.9 1.5
3 36.6 0.0 72.1 0.0 94.7 0.0 15.9 0.0 29.1 0.0 46.6 0.0

40 1 75.5 60.2 92.3 83.2 98.9 96.0 24.9 14.3 29.9 15.0 33.2 14.5
2 73.3 36.8 92.6 68.9 99.0 92.6 31.5 10.5 46.3 17.8 62.1 26.8
3 70.7 16.0 92.4 47.4 98.9 82.9 31.2 4.0 49.5 9.9 67.4 16.2

80 1 90.2 85.5 97.3 94.8 99.8 99.1 36.2 27.6 40.8 27.1 45.5 27.4
2 90.2 82.2 97.9 94.7 99.9 99.2 50.9 35.8 65.6 45.0 77.3 57.6
3 90.7 77.0 98.1 93.8 99.9 98.9 53.3 31.1 71.0 42.9 83.2 56.7

160 1 95.1 92.9 98.8 98.0 99.9 99.8 50.8 43.4 55.1 43.4 57.6 42.7
2 96.6 95.0 99.3 98.4 100.0 99.9 70.8 62.2 81.5 71.3 87.8 78.1
3 96.9 95.2 99.6 99.0 100.0 99.9 75.5 64.3 86.3 75.0 91.8 81.6

Note: Rejection frequencies of the standard (ST) and robust (HAC) versions of the LMF test of param-
eter constancy based on (15) at 5% nominal significance level. Panels are generated according to the
model (18) and (12) with homoskedastic (panel (a)) or heteroskedastic errors (panel (b)). The table is
based on 10,000 replications.
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Table 5: Empirical size of the test of no remaining heterogeneity

Same transition variable Different transition variable
T = 5 T = 10 T = 20 T = 5 T = 10 T = 20

h ST HAC ST HAC ST HAC ST HAC ST HAC ST HAC

Panel (a): Homoskedasticity

40 1 3.9 3.2 4.7 3.8 4.8 4.2 5.4 4.5 4.5 4.3 5.4 4.3
2 4.1 2.0 4.3 2.4 4.7 2.7 5.3 2.8 4.8 3.3 4.9 3.2
3 4.0 1.4 4.5 1.5 4.9 1.8 5.4 1.9 5.3 2.3 4.9 2.4

80 1 4.5 3.6 5.0 4.6 4.9 4.4 5.1 4.9 4.9 4.6 4.9 4.5
2 4.3 2.8 5.2 3.8 4.7 3.3 5.3 4.0 5.4 4.2 4.8 3.8
3 4.5 2.2 5.0 3.0 4.8 2.9 5.0 3.0 5.9 3.4 4.6 3.3

160 1 4.6 4.0 5.0 4.6 5.1 5.1 4.7 4.8 5.0 5.0 4.8 4.6
2 5.0 3.8 4.5 3.7 4.8 4.0 5.0 4.2 4.7 4.4 5.1 4.7
3 5.1 3.5 4.7 3.2 5.0 3.3 4.7 3.8 4.9 3.8 5.1 4.1

Panel (b): Heteroskedasticity

40 1 4.6 2.6 8.5 3.2 11.0 3.8 10.4 4.7 14.0 4.0 16.5 4.6
2 6.5 1.7 13.1 2.3 18.1 2.2 11.7 3.1 16.3 2.9 20.6 3.9
3 7.2 1.1 14.6 2.0 19.9 2.1 11.9 1.7 17.4 1.9 22.9 2.5

80 1 7.9 3.8 11.1 4.4 12.8 4.5 10.4 4.9 14.0 4.8 17.9 5.3
2 10.4 2.9 16.9 3.1 22.7 3.5 12.5 3.3 18.4 4.1 21.2 3.7
3 11.9 2.0 18.4 2.6 23.4 2.8 13.0 2.4 20.3 2.7 25.3 3.1

160 1 9.2 4.1 11.5 5.1 13.0 4.9 11.2 4.6 14.6 4.5 17.0 4.8
2 14.2 3.0 19.3 3.6 25.1 4.4 13.6 4.1 18.9 4.7 22.3 4.2
3 14.8 2.9 20.6 3.5 26.8 4.1 15.2 3.4 21.6 4.2 25.3&3.7

hline

Note: Rejection frequencies of the standard (ST) and robust (HAC) versions of the LMF test of no
remaining heterogeneity based on (17) at 5% nominal significance level. Panels are generated according
to the model (18) and (19) with homoskedastic (panel (a)) or heteroskedastic errors (panel (b)). The
table is based on 10,000 replications.
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Table 6: Empirical power of the test of no remaining heterogeneity

β2 = β1 β2 = −β1

T = 5 T = 10 T = 20 T = 5 T = 10 T = 20
h ST HAC ST HAC ST HAC ST HAC ST HAC ST HAC

Panel (a): Homoskedasticity

20 1 4.1 2.3 6.5 4.2 12.5 7.4 12.4 6.2 29.4 16.9 67.7 49.3
2 4.5 0.9 8.7 2.8 15.9 5.2 10.5 2.3 26.4 7.4 66.4 28.6
3 4.2 0.3 8.2 0.9 16.5 2.5 8.2 0.5 22.4 2.8 60.8 11.5

40 1 6.1 4.1 11.4 8.3 20.0 15.2 26.0 19.6 63.5 53.6 95.6 92.4
2 8.0 3.7 14.0 8.4 26.9 17.1 22.8 11.5 62.4 41.1 97.3 90.1
3 7.2 2.3 14.8 6.8 29.4 15.3 19.4 6.1 56.9 27.6 96.0 79.4

80 1 11.3 8.5 18.9 16.2 36.0 33.1 57.2 49.7 95.0 92.5 100.0 100.0
2 14.0 9.4 24.7 18.7 45.6 39.8 54.5 42.2 96.8 92.5 100.0 100.0
3 14.2 8.1 27.2 19.2 55.3 46.4 48.7 30.9 95.3 86.4 100.0 100.0

160 1 17.4 14.1 33.2 32.4 61.9 61.4 91.6 88.9 99.9 99.9 100.0 100.0
2 22.5 18.4 43.4 39.9 74.2 71.8 93.6 88.7 100.0 100.0 100.0 100.0
3 25.5 19.1 52.8 47.6 87.2 85.2 91.2 83.9 100.0 100.0 100.0 100.0

Panel (b): Heteroskedasticity

20 1 5.2 2.5 7.4 3.1 11.8 3.4 10.2 4.3 19.2 7.7 32.9 12.5
2 5.7 0.9 10.1 1.8 15.9 2.2 9.1 1.4 18.5 3.3 33.0 6.3
3 5.9 0.3 9.5 0.8 17.5 1.1 8.3 0.4 17.3 1.3 31.4 2.3

40 1 6.4 3.1 11.1 4.7 18.4 6.7 16.0 8.5 32.5 16.8 57.9 32.1
2 7.8 2.1 14.5 3.7 24.3 6.5 15.3 4.7 32.8 11.1 59.8 24.6
3 8.0 1.3 15.4 2.3 27.1 4.8 13.1 2.5 31.1 7.5 57.6 16.8

80 1 9.8 4.0 16.9 7.4 25.0 11.0 30.3 19.1 58.9 39.0 87.3 69.0
2 12.3 4.1 22.5 7.6 33.8 12.4 30.2 14.2 60.3 32.6 90.1 65.6
3 12.7 3.3 24.6 6.2 40.0 12.9 27.6 9.6 57.0 25.6 88.7 57.5

160 1 16.1 8.3 23.0 12.3 34.7 19.0 55.2 40.9 88.9 76.3 99.5 96.3
2 20.4 8.5 31.6 14.0 47.9 23.2 56.5 36.9 92.0 76.1 99.7 97.6
3 23.0 8.0 37.3 15.0 57.8 26.9 52.6 29.7 90.5 69.5 99.8 96.5

Note: Rejection frequencies of the standard (ST) and robust (HAC) versions of the LMF test of no
remaining heterogeneity based on (17) at 5% nominal significance level. Panels are generated according

to the model (18) and (19) with r = 2, q
(1)
it

= q
(2)
it

, m1 = m2 = 1 and homoskedastic (panel (a)) or
heteroskedastic errors (panel (b)). The table is based on 10,000 replications.
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Table 7: Empirical power of the test of no remaining heterogeneity

Misspecified m Different transition variable
T = 5 T = 10 T = 20 T = 5 T = 10 T = 20

h ST HAC ST HAC ST HAC ST HAC ST HAC ST HAC

Panel (a): Homoskedasticity

20 1 20.6 9.4 52.7 30.4 89.8 73.3 59.2 39.2 95.0 85.5 100.0 99.7
2 17.0 2.8 49.9 13.0 91.0 48.5 49.3 13.2 91.5 56.1 100.0 95.7
3 13.8 0.6 44.9 4.1 89.5 20.4 46.3 3.7 91.4 26.4 100.0 79.1

40 1 44.7 32.0 88.2 77.9 99.8 99.1 90.7 85.2 100.0 99.9 100.0 100.0
2 41.0 18.9 89.7 67.3 100.0 99.0 85.0 68.5 99.8 99.3 100.0 100.0
3 36.3 11.0 87.4 50.8 100.0 95.7 85.3 55.5 99.9 97.8 100.0 100.0

80 1 83.6 74.8 99.8 99.4 100.0 100.0 99.9 99.7 100.0 100.0 100.0 100.0
2 84.1 67.2 100.0 99.4 100.0 100.0 99.6 99.2 100.0 100.0 100.0 100.0
3 80.4 54.3 99.9 98.2 100.0 100.0 99.8 98.6 100.0 100.0 100.0 100.0

160 1 99.3 98.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
2 99.8 99.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
3 99.7 98.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Panel (b): Heteroskedasticity

20 1 16.6 7.5 35.5 17.4 65.5 39.5 38.3 19.4 70.6 42.5 92.3 72.3
2 14.5 2.2 34.4 7.0 67.6 22.0 32.8 6.0 66.2 19.7 91.5 49.9
3 12.4 0.3 31.5 2.3 64.5 9.0 32.0 1.3 66.7 7.7 92.4 28.9

40 1 31.0 18.4 63.5 44.5 93.6 81.1 64.5 46.8 91.7 77.1 99.5 96.2
2 28.7 11.4 63.7 32.7 94.9 74.3 59.6 31.2 89.9 65.3 99.3 92.1
3 26.2 7.3 61.2 22.4 94.1 62.6 59.9 21.7 90.9 55.3 99.6 89.6

80 1 58.5 44.8 93.0 83.8 99.8 98.9 90.3 80.3 99.5 97.1 100.0 99.9
2 58.4 36.9 95.0 81.5 99.9 99.2 87.7 70.6 99.6 95.9 100.0 99.9
3 53.8 27.6 94.3 74.8 99.9 98.3 88.8 66.1 99.6 94.9 100.0 99.9

160 1 91.9 85.0 99.8 99.2 100.0 100.0 99.6 97.8 100.0 100.0 100.0 100.0
2 93.6 84.4 100.0 99.6 100.0 100.0 99.0 96.5 100.0 100.0 100.0 100.0
3 92.5 78.2 100.0 99.3 100.0 100.0 99.5 96.7 100.0 100.0 100.0 100.0

Note: Rejection frequencies of the standard (ST) and robust (HAC) versions of the LMF test of no remaining
heterogeneity based on (17) at 5% nominal significance level. Panels are generated according to the model

(18) and (19) with r = 1 and m = 2 (‘Misspecified m) or with r = 2, m1 = m2 = 1 and q
(1)
it

6= q
(2)
it

(‘Different
transition variable’) and with homoskedastic (panel (a)) or heteroskedastic errors (panel (b)). The table is
based on 10,000 replications.
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Table 8: Summary statistics

Percentile
Mean St.Dev 10 25 50 75 90

Iit 0.088 0.059 0.031 0.049 0.076 0.112 0.158
Qit−1 1.053 1.201 0.224 0.370 0.670 1.286 2.281
Sit−1 1.843 0.949 0.899 1.271 1.696 2.225 2.835
CFit−1 0.241 0.197 0.055 0.124 0.215 0.319 0.447
Dit−1 0.233 0.207 0.007 0.090 0.206 0.319 0.471

Table 9: Homogeneity tests

ST HAC
m Test p-value Test p-value

Transition variable Qit−1

1 29.5 2×10−24 7.51 5×10−6

2 25.9 9×10−40 6.88 5×10−9

3 23.3 1×10−51 6.38 2×10−11

Transition variable Dit−1

1 8.8 4×10−7 3.43 8.3×10−3

2 10.2 3×10−14 2.73 5.2×10−3

3 7.0 9×10−13 2.02 0.019

Table 10: Sequence of homogeneity tests for selecting m

ST HAC
Test p-value Test p-value

Transition variable Qit−1

H
∗

03 : β∗

3 = 0 17.62 2×10−14 6.15 6×10−5

H
∗

02 : β∗

2 = 0|β∗

3 = 0 21.93 5×10−18 5.53 2×10−4

H
∗

01 : β∗

1 = 0|β∗

3 = β∗

2 = 0 29.46 2×10−24 7.51 5×10−6

Transition variable Dit−1

H
∗

03 : β∗

3 = 0 0.66 0.618 0.33 0.859
H

∗

02 : β∗

2 = 0|β∗

3 = 0 11.48 3×10−9 2.74 0.027
H

∗

01 : β∗

1 = 0|β∗

3 = β∗

2 = 0 8.79 4×10−7 3.43 8.3×10−3
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Table 11: Misspecification tests

ST HAC
m/h Test p-value Test p-value

No remaining heterogeneity
Transition variable Qit−1

1 2.34 0.05 0.55 0.70
2 1.45 0.17 0.32 0.96
3 2.29 0.01 0.73 0.72

Transition variable Dit−1

1 2.30 0.06 1.05 0.38
2 2.29 0.02 1.15 0.32
3 1.95 0.03 0.94 0.50

Parameter Constancy
1 1.13 0.34 0.69 0.70
2 1.45 0.11 0.65 0.85
3 2.75 0.00 1.03 0.43

Table 12: Estimation results of two-regime
PSTR model

Coefficient
estimate ST HAC

β0j (×102)
Qit−1 2.82 0.16 0.17
Sit−1 0.37 0.06 0.05
Dit−1 −2.27 0.24 0.26
CFit−1 6.18 0.51 0.53

β0j + β1j (×102)
Qit−1 0.74 0.07 0.10
Sit−1 1.49 0.10 0.12
Dit−1 0.18 0.48 0.87
CFit−1 4.14 0.48 0.67

γ 118.77 190.16 247.02
c 1.51 0.01 0.02
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Table 13: Coefficient estimates of year dummies

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
Coefficient/102 −0.52 −0.80 −0.53 0.08 0.32 0.69 0.17 -0.74 -1.35 0.18 0.62 0.25 −0.44
ST 0.21 0.22 0.22 0.22 0.22 0.21 0.21 0.21 0.21 0.22 0.22 0.22 0.23
HAC 0.19 0.21 0.21 0.21 0.20 0.23 0.22 0.20 0.20 0.24 0.27 0.26 0.25

Table 14: Regime statistics

Percentage of firms Percentage of firms
Percentage of firms switching from lower switching from upper

in upper regime to upper regime to lower regime
1974 20.9 - -
1975 11.3 0.0 9.6
1976 15.0 4.5 0.7
1977 15.2 2.0 1.8
1978 13.9 3.0 4.3
1979 14.1 3.6 3.4
1980 15.2 4.6 3.6
1981 18.6 5.5 2.1
1982 16.4 3.2 5.4
1983 20.5 7.3 3.2
1984 29.5 11.1 2.1
1985 22.0 2.5 10.0
1986 28.6 9.5 2.9
1987 33.2 8.9 4.3

Avg. 19.6 5.1 4.1
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Figure 1: Estimated transition function (21) of the PSTR model (20). Each circle repre-
sents an observation.
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