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Abstract

Recognizing that individualism, or weak family ties, may be favorable to economic

development, we ask how family ties interact with climate to determine individual be-

havior and whether there is reason to believe that the strength of family ties evolves

differently in different climates. For this purpose, we develop a simple model of the

interaction between two individuals who are more or less altruistic towards each other.

Each individual exerts effort to produce a consumption good under uncertainty. Out-

puts are observed and each individual chooses how much, if any, of his or her output

to share with the other. We analyze how the equilibrium outcome depends on altruism

and climate for ex ante identical individuals. We also consider (a) “coerced altru-

ism,” that is, situations where a social norm dictates how output be shared, (b) the

effects of insurance markets ,and (c) the role of institutional quality. The evolutionary

robustness of altruism is analyzed and we study how this depends on climate.
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“Here, then, is an admirable specimen of an English life: left early to fend for oneself;

marriage to a woman with no fortune; a large family of children; income all spent, no savings;

work very hard and place one’s children under the necessity to do likewise.” (Hippolyte Taine,

Notes on England)

1 Introduction

As is well-known the wealth and productivity in the world’s most advanced economies exceed

those of the least advanced ones by far. Disparities in physical endowments and constraints

(see, e.g., Landes, 1999, and Diamond, 1997), as well as differences in human capital (Glaeser

et al, 2004) may partly explain this persisting pattern.1 Other researchers have pointed out

that institutions, such as the protection of property rights (North, 1990), matter, and several

empirical studies provide support for this view (Mauro, 1995, Hall and Jones 1999, Acemoglu,

Johnson and Robinson, 2001). Yet others have devoted attention to the effect of culture and

beliefs, such as trust (Fukuyama, 1995, Knack and Keefer, 1997, La Porta et al., 1997),

religion (Barro and McCleary, 2003), respect for others, and confidence in self-determination

(Tabellini, 2005).2 In fact it has been argued that individualism was an important force

behind the industrial revolution in England. Thus, Max Weber (1951), as cited by Lipset

and Lenz (2000, p.119), thought that “the great achievement of [...] the ethical and ascetic

sects of Protestantism was to shatter the fetters of the sib [the extended family].” In his

view, a strong sense of solidarity among members of the extended family and their friends,

coupled with a hostile attitude towards strangers, promotes a culture where nepotism may

thrive and counter the efficient development of markets. Likewise, Banfield (1958) thought

that the “amoral familism” that he observed in certain parts of Italy was an impediment to

economic development.3

The fact that institutions and cultural values seem to matter for economic development

1Several works, including Nordhaus (1994), Theil and Chen (1995), and Ram (1997), have provided
evidence of a correlation between the distance to the equator and various measures of economic development.
More recently Masters and McMillan (2001) show that an increase in the number of frost days has a favorable
impact on economic outcomes.

2The political scientists Banfield (1958) and Putnam (1993) had previously emphasized the possible
importance of cultural values. See also Guiso, Sapienza and Zingales (2006).

3The potential effects of other cultural traits or values, such as trust and religion, on economic outcomes
have been investigated elsewhere. See, for instance, Huntington (1996), Landes (1999), Knack and Keefer
(1997), Inglehart and Baker (2000), and Barro and McCleary (2003).
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raises many important questions. First, a systematic study of how institutions and cultural

values affect economic outcomes could seek to answer questions such as: How sensitive is

economic growth to changes in institutions and values? Are some institutions and/or values

substitutes? A second line of inquiry, to which this paper belongs, would aim at enhancing

our understanding of the institutions and values themselves. For instance, are some insti-

tutions or values more stable than others? And why do cultural values and institutions

differ among countries in the first place–is this a mere accident, or can we identify some

underlying forces that enable us to gain some predictive power regarding the evolution of

values and institutions? In this paper we seek to provide some partial answers to the last

question. Our focus is on the importance of the family.

Empirical research indicates that family ties are weaker in some cultures than in others,

as suggested by Weber’s observation above. Intrafamily transfers provide a measure of the

strength of family ties. These transfers, which may be monetary or in kind, may indeed

be viewed as “the very fabric of families” (Laferrère and Wolff, 2006). Recent data reveals

significant differences between developing and developed countries. In their survey, Cox

and Jimenez (1990) conclude that in developing countries 20-90% of households receive

(private) transfers, compared to 15% in the US. Moreover, whereas intrafamily transfers

represent only 1% of household income on average in the US, it can reach 20% in parts

of the developing world. One obvious explanation is that intrafamily transfers are common

where publicly provided insurance mechanisms are absent. However, research by economists,

anthropologists, sociologists and historians suggests that there are other, more fundamental,

differences that may also explain the differences in transfer behavior.

Bentolila and Ichino (2000) analyze unemployment and consumption data from five dif-

ferent countries. They find that the drop in consumption due to a prolongation of unem-

ployment is significantly smaller in the South (Italy and Spain) than in the North (UK

and Germany), while the unemployment insurance is more generous in the North than in

the South. They argue that the smaller consumption drop in Italy and Spain is due to

intrafamily help.4

Various studies point out that Mexican immigrants and white Anglo families in the

US display significantly different behaviors and attitudes related to the family. Thus, data

collected by Keefe et al (1979) indicates that second and third generation Mexican American

4In an essay on Africa, Etounga-Manguelle (2000), a former member of the World Bank’s Council of
African Advisors, claims that people with a regular income in today’s Africa are not only expected to
provide help in emergency situations; they are also expected to finance the studies of younger members of
the extended family, and to contribute to the many lavish celebrations dictated by social rules.
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families have stronger kin ties than Anglo families, even after controlling for variables such

as education, occupation, and the number of years of residence in the same city. Moreover,

Anglos are more likely than Mexican Americans to include neighbors and friends in their

support networks, and less likely to view support from the family as being superior to other

types of support. Keefe (1984) further finds that Mexican Americans attach a larger value

than Anglos to the physical presence of family members. Using another dataset, Gonzales

(1998) finds that Mexican Americans (people of Mexican descent but born in the US) tend to

live closer to and have more contact with kin than Anglos, even after several generations in

the US. Her analysis further shows that both Mexican Americans and Mexican Immigrants

are significantly more sympathetic to the idea that parents (adult children) should let their

adult children (parents) live with them if in need.

Reher (1998) suggests that one can measure the strength of a society’s family ties by

studying the age at which a child would leave his/her parents’ home. In 1995, the average

age of children living with their parents was 15 in Spain, 18 in Italy, 9 in the UK, 11 in the

US, and 13 in Germany (Bentolila and Ichino, 2000). Of course these differences may be

due to differences in economic opportunities, availability and cost of housing, and the extent

of publicly provided insurance. However, data from pre-industrial Europe reveals a similar

pattern. Hajnal (1982) reports data on servants in northwestern Europe during the 17th-

19th centuries; approximately half of all youngsters served outside the parental home at some

point, some leaving the parental home at the age of 10. Thus, in 17th century England, “the

unit of production was the husband and the wife and hired labor, not children” (Macfarlane,

1978). By contrast, in southern and eastern Europe hired labor would be scarce, and children

would work on the parental farm; several related couples and their children would constitute

the more widespread type of household.

Differences in the legal systems provide further insights into the strength of family ties.

In England parents had the right to bequeath or sell their assets to anyone; according to

Macfarlane (1992) this right may be traced back to the thirteenth century. By contrast, in

France the heirs must be given the opportunity to purchase the assets (Macfarlane, 1992).

Taken together these pieces of evidence suggest that family ties are weaker in some parts

of the world than in others, and that such differences may predate the industrial revolution.

As noted above, and as suggested by the following excerpt from Adam Smith’s The Theory of

Moral Sentiments (1790), an explanation is that the family is more important where formal

institutions are lacking: “extensive regard to kindred is said to be taking place among the

Tartars, the Arabs, the Turkomans [...]. In commercial countries, where the authority of law

is always perfectly sufficient to protect the meanest man in the state, the descendants of the
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same family, having no such motive for keeping together, naturally separate and disperse.”

(VI.ii.1.13) Empirical evidence for this “supply-side” explanation exists (Inglehart and Baker,

2000). However, there may also exist a causal link in the other direction: the strength of

family ties may vary for exogenous reasons, and this may be expected to result in different

levels of demand for formal institutions. This is a hypothesis that we explore in this paper.

More precisely, we investigate whether exogenously given conditions, such as climate, may

provide some clues regarding possible evolutionary forces that shape the strength of family

ties.

Our idea is quite simple. Consider a pre-industrial society. In such a society a typical

household would seek to produce most of the goods needed for survival within the family

farm. The lack of formal insurance and low degree of diversification of income sources would

however expose the household to substantial risks, which may lead them to form informal

insurance arrangements with, say, a brother of the husband.5 Intuition would suggest that

intrafamily insurance or the lack thereof may in turn affect the incentives to produce. Now

imagine two unrelated (extended) families living in the same region, and suppose that one

family has a higher degree of intrafamily insurance than the other. Is one of the families

more likely to be successful? If so, which one, and how does this depend on the exogenously

given climate? Assuming that the behavior patterns in the family that is more successful

are likely to spread in the population, this type of analysis may yield predictions regarding

the strength of family ties as a function of the climate or of other aspects of the environment

that may interact with the strength of the family ties to affect the welfare of the family.

We analyze these issues as follows. We model the interaction between two individuals,

which we may think of as siblings. An individual’s total utility is taken to be a weighted

sum of both individuals’ material utility, which in turn is determined by each individual’s

work effort and consumption. The weight put on the other individual’s material utility is

assumed to be non-negative and not greater than the weight put on one’s own material

utility. This weight can be interpreted in terms of altruism, or, alternatively, in terms of the

esteem derived from others who observes and evaluates one’s behavior, such as members of

one’s extended family, village or society at large. The siblings invest effort in production,

and output may be low or high. Once the outputs have been realized, these are observed by

both individuals, and each individual may share some of his or her output with the other.

Consumption is taken to equal the final amount of the output available to the individual.

We interpret the low output as a base-line output provided by nature without human effort,

5See, e.g., Caldwell et al. (1986), Lucas and Stark (1985), and Rosenzweig (1988) for evidence regarding
the extended family as a source of insurance in developing countries.
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and the high output as being the joint result of human effort and nature (“luck”). The

two output levels, high and low, represent the exogenously given environment, or climate,

in which the individuals operate. A climate will be said to be more favorable if both output

levels are higher, and we will say that a climate is more forgiving if the ratio of the high to

the low output is lower.

We solve this two-player game by backward induction, focusing mostly on the case of

individuals with the same Cobb-Douglas preferences over own consumption and effort, po-

tentially differing in their degree of altruism towards each other. This game has a unique

subgame-perfect equilibrium. Its qualitative features are as follows. In equilibrium, transfers

are never given if both individuals’ outputs are equal (both high or both low). If they are

distinct, however, the “rich” individual transfers some of his or her output to the other,

“poor” individual, granted the potential donor is sufficiently altruistic. The anticipation of

receiving a transfer when poor has a negative effect on an individual’s incentive to exert ef-

fort. This free-rider effect is well-known from other analyses of altruism.6 However, altruism

also has a positive effect on an individual’s incentive to exert effort: an altruist may exert

more effort in order to have more to give the other individual, an effect we call the “empathy

effect” of altruism on effort.

We find that in a society with equally altruistic individuals, the free-rider effect outweighs

the empathy effect when altruism is of intermediate strength: the equilibrium effort decreases

as a result of an increase in altruism from low to intermediate. By contrast, if the common

degree of altruism is strong, the empathy effect is more pronounced, and the equilibrium

effort is then increasing in altruism. Depending on the climate, the empathy effect may or

may not outweigh the free-rider effect at high levels of altruism, that is, effort may then be

smaller or larger than if the individuals were selfish.7 Despite the non-monotonicity of effort

in the common degree of altruism, the expected material utility is always the highest for fully

altruistic individuals–in particular, higher than for fully selfish individuals. The intuition

6For models with one-sided altruism, see Becker (1974), Bruce and Waldman (1990), and Chami (1998).
Lindbeck and Weibull (1988) analyze the effect of two-sided altruism on savings.

7Despite the previous strong emphasis in the literature on the possible moral hazard effect of intrafamily
altruism, there seems to be a limited number of empirical studies on this topic. Using data on farmer output
in Mali, Azam and Gubert (2005) find that remittances from emigrated relatives have a negative impact
on agricultural output. By contrast, Kohler and Hammel (2001) show, using census data for Slavonia from
1698, that the number of different crops grown by a family tended to increase as the nearby extended family
increased. The authors were expecting the opposite effect, namely that as a result of insurance a family would
invest less in risk-reducing planting strategies. However, our results suggest that there exists an intuitive
explanation for this pattern: when a family expects to help another family out, the expected benefit of the
risk-reducing planting strategy is increased.
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is straightforward: an individual who attaches the same weight to the other’ material utility

fully internalizes the external effects of his or her effort.

Climate has an unambiguous effect on effort: for given preferences, the equilibrium effort

increases as the climate becomes less forgiving–then the marginal return to effort is higher.

This effect may be so strong that the expected output increases as the climate becomes both

less favorable and less forgiving. However, due to the higher disutility of effort, the expected

material utility will then be lower: the expected material utility always increases as the

climate becomes more favorable, irrespective of whether it becomes more or less forgiving.

In addition to studying the effects of climate upon behavior, we briefly analyze the effect of

income taxation and of the quality of the institutional framework surrounding the interacting

individuals, in particular, the effect of private property protection.

In an extension of the model we consider situations in which an individual’s degree of

altruism differs from that enforced by society. More precisely, we here suppose that the

interacting individuals live in a society with a social norm that dictates a larger transfer

than the individuals’ own altruism suggests. If the degree of such coerced altruism is strong,

individuals feel forced to help each other out.8 We focus on selfish individuals in a society

with a high degree of coerced altruism. Such coercion entails a free-rider effect but no

empathy effect. Hence, the equilibrium effort decreases as the degree of coerced altruism

increases. However, while coerced altruism induces “involuntary” transfers ex post, such

coercion may be efficient ex ante in the sense that the equilibrium expected utility is higher

than it would be in the absence of coercion. In such situations, it is as if social norms play

the role of compulsory but informal insurance.

In another extension of our basic model we introduce a perfectly competitive insurance

market in a large population of pair-wise interacting selfish individuals. By way of numerical

simulation, we show that the ranking, from the best to the worst in terms of expected material

utility, may be as follows: first, informal insurance by way of full altruism, second, actuarially

fair insurance of selfish individuals, third, informal insurance of selfish individuals by way

of coerced altruism, and finally, selfish individuals without access to formal or informal

insurance. Effort is lowest in a society with selfish individuals with access to actuarially

fair insurance, highest in a society with selfish individuals without insurance possibility.

Moreover, effort is lower among selfish individuals under coerced altruism than among fully

altruistic individuals without formal insurance possibilities.

8Many individuals are willing to pay in order to avoid situations where they feel coerced to behave
altruistically, even in the absence of potential social sanctions. For recent laboratory studies showing this,
see Dana et al. (2006) and Broberg et al. (2006).

7



We apply insights from the analysis of the basic model (that is, without coerced altruism

and without formal insurance) to ask whether evolutionary forces would tend to select for or

against altruism. Would a population consisting of fully altruistic individuals, who always

share total output equally among themselves, resist a small-scale “invasion” of selfish indi-

viduals, who never share any or their output? Would the opposite be true? When analyzing

such questions, we define a degree of altruism, α, to be evolutionarily robust against another

degree of altruism, α0, if it satisfies the following two-fold condition. First, an α-altruist

should do at least as well, in terms of material welfare, against an α-altruist as an α0-altruist

does against an α-altruist. Secondly, if an α0-altruist does equally well against α-altruists

as these do against themselves, then an α-altruist should do strictly better against an α0-

altruist than these do against themselves. We study such evolutionary robustness in three

informationally and behaviorally distinct setups.

If individuals are naïve in the sense of believing that the other individual is equally al-

truistic (or selfish), then full altruism is evolutionarily robust against selfishness in certain

environments, in particular in less forgiving climates. By contrast if individuals know each

other’s degrees of altruism, then this effect disappears and only pure selfishness is evolution-

arily robust. A third possibility is that individuals know each other’s degree of altruism and

that this is discriminatory: altruists behave altruistically only against other altruists. In this

case, full altruism is evolutionarily robust but full selfishness is not (a population of selfish

individuals can be invaded by discriminating full altruists who informally insure each other).

We finally extend the evolutionary robustness analysis to a setting where altruism is

biologically inherited in sexual reproduction.9 In such a setting, the interacting siblings’

degrees of altruism are positively correlated, by way of their common parents, and therefore

altruists are more likely to be matched with altruists, and likewise for selfish individuals.

We apply results due to Bergstrom (1995, 2003) for such settings to the special case of our

model when individuals are naïve, as described above. Then evolutionary forces tend to

select for altruism and against selfishness, thanks to the mentioned correlation. In particular

full altruism among siblings always resists a small-scale mutation to selfishness. Nonetheless,

pure selfishness is robust against full altruism when output variability is high, as it is in less

forgiving climates: then a naïve altruist stands to lose much from interacting with a naïve

selfish sibling. Even though an altruistic mutant has a high chance of interacting with an

9There is some evidence that altruistic behavior may be affected by genes. Bachner-Melman et al. (2005)
studied a group of 354 families, and found a correlation between the occurrence of two specific genes and
the degree of assessed selflessness. Warneken and Tomasello (2006) detected a strong willingness to help
strangers among very young children. However, the model may also be interpreted in terms of cultural
inheritance (Richerson and Boyd, 2005).

8



altruistic sibling (probability one half) and then enjoy the benefits of mutual insurance, when

output variability is high the cost of having a selfish sibling (also approximately probability

one half) is sufficiently large to outweigh the mutual insurance benefit.

Early proponents of evolutionary theory, including Darwin, were puzzled by the occur-

rence of altruism in nature: if behavior and traits maximize the individual’s likelihood of

survival and reproduction, how could a behavior/trait whereby the individual gives up re-

sources for the benefit of others survive? Ever since this puzzle was highlighted biologists, as

well as social scientists, have proposed evolutionary theories of altruism, and more generally

of cooperation. One now widely accepted explanation is “kinship selection,” proposed by

Hamilton (1964): an individual’s children, siblings, and cousins all share the individual’s

genes to some extent; being altruistic toward kin therefore promotes the survival of the

genes. The above-mentioned analysis falls into this category.

Starting with Becker (1976) economists have also made contributions. Bergstrom and

Stark (1993), and Bergstrom (1995, 2003) have enriched the kinship selection theory by

allowing for more complex strategic interactions between kin; in Hamilton’s original theory

the cost and benefit arising from an altruistic action by, say, a sister towards her brother, did

not depend on the brother’s action. More recently Weibull and Salomonsson (2005) use a

revealed-preference argument in a biological context to suggest an explanation of how social

preferences, with altruism as an important special case, can emerge from natural selection

even in the absence of kinship. Other theories of cooperation have often relied on the idea

that people interact repeatedly, which allows for the evolution of reciprocal altruism among

non-kin (Trivers, 1971, Axelrod and Hamilton, 1981); see Sethi and Somanathan (2003)

for a survey. This argument has then been extended to indirect reciprocity (surveyed by

Nowak and Sigmund, 2005), whereby an individual may be punished for not cooperating

even though he may never interact with the same individual more than once, because an

individual may have some information about his/her co-player’s past behavior; Bowles and

Gintis (2004) provide a recent contribution. Our theory makes a contribution to the literature

on the evolution of altruism by drawing a link between exogenously given conditions, such

as climate, and the survival value of altruism.

Our focus here on a simple two-stage game that is not repeated is not because we think

repetition–allowing for threats, punishments and reciprocity–is unimportant, but because

we think (a) that many individuals do have social preferences, in the revealed-preference

sense, (b) that such preferences may be altruistic towards others, in particular towards close

relatives and friends, and (c) that repetition, with its potential plethora of equilibria, may

blur rather than clarify the picture when trying to lay bare possible causal links from climate

9



to altruistic behaviors. Phrased differently, our aim is to clarify how altruistic preferences,

individually held and/or socially coerced, interact with the physical and institutional envi-

ronment in the formation of income, welfare and altruism in society, while admitting that

repetition may add another important layer to explanations of observed behaviors.

Our model is similar to that in Lindbeck and Nyberg (2006), who analyze altruistic

parents’ incentive to instill a work norm in their children. The incentive stems from parents’

inability to commit not to help their children if in financial need. If the children feel a strong

social norm to work (hard), then this reduces the risk that the children will be in need, which

is good for the altruistic parents. On the other hand, the parents will suffer with the children

if their work ethic is very demanding and the children fail. The parents instill just enough

of the social work norm in their children so that that these two effects are optimally traded

off. While their model is asymmetric–parents are altruistic and move first and children are

selfish–our model is symmetric–the two siblings move simultaneously and may be equally

altruistic towards each other. Nevertheless, the issues dealt with are related, the models

similar in structure and the Cobb-Douglas parametrization of preferences over consumption

and effort identical.

The remainder of the paper is organized as follows. We present the basic game in the next

section and prove, in section 3, that this game has a unique subgame-perfect equilibrium.

Section 4 is devoted to a comparative-statics analysis of the equilibrium outcome with respect

to altruism and climate, but we also briefly discuss the effects of income taxation as well as

institutional quality (represented by a crude measure of the degree of protection of private

property). Section 5 extends the basic model to allow for socially coerced altruism, that

is, interactions where individuals feel socially coerced to behave more altruistically than

they themselves feel an inner motivation for. Section 6 compares the informal insurance

that altruism, voluntary or coerced, brings with the insurance that a competitive insurance

market would deliver. Section 7 elaborates on the evolutionary robustness of altruism and

selfishness, and section 8 concludes by summarizing our main results and by pointing to

directions for future work.

2 The model

We analyze a strategic interaction between two individuals, each of whom faces an investment

decision with uncertain returns. There are two time periods. In the first period, each

individual chooses to invest some effort. This effort in turn determines the probability

distribution over the possible returns, or outputs, that accrue at the end of the first period.

10



Let yi denote the output of individual i ∈ {1, 2}: it may be either low, yL > 0 or high,

yH = βyL, where β > 1. The two outputs are statistically independent random variables.10

For many kinds of agricultural production, both yL and yH are arguably lower in harsher

climates (say, Scandinavia) than in milder climates (say, Southern Europe). Hence, in a

more favorable climate both yL and yH are higher. In parts of the comparative statics to

follow we will compare climates A and B where not only yLA < yLB and yHA ≤ yHB but also

βA > βB. In other words, as one moves from climate A to the more favorable climate B, not

only are both out levels higher but yL relatively more than yH as one moves from A to B.

This is often the case, we argue. Tomatoes grown in Scandinavia, when properly cared for,

can be just as tasty as those grown in Southern Europe, but in the absence of effort they are

much worse (if they grow at all) in Scandinavia than in Southern Europe. When discussing

such comparative statics, we will say that climate B is more favorable and forgiving than

climate A.

We assume that the probability of high output is strictly increasing in effort. Since

the effort level and this probability thus are in a one-to-one relationship, we economize on

notation by letting each individual i directly choose the probability for the high output level.

Thus, in the first period the two individuals simultaneously choose probabilities p1, p2 ∈ [0, 1]
of obtaining the high output. The output yi of each individual i is realized at the end of the

first period. Write y = (y1, y2). We assume that the vector y ∈ Y =
©
yL, yH

ª2
is public

information at the beginning of the second period and will call y the state in period two. By

contrast, we assume that an individual’s effort is not observed by the other individual. This

assumption turns out to be innocuous: given the (separable) preferences that we focus on

in the subsequent analysis, the results are identical for the case when efforts are observed.

Having observed the state, both individuals independently choose whether to make a transfer

to the other, and if so, how much to transfer. Each individual’s consumption therefore equals

his output plus any transfer received from the other individual, minus any transfer given to

the other individual.

If individual i, for i = 1, 2, chooses probability pi in the first stage and consumes ci in

the second stage, then his or her material utility is u(ci, pi), where u : [0,+∞)× [0, 1)→ R
is continuously differentiable, concave, strictly increasing in its first argument, consumption,

and strictly decreasing in its second argument, effort-cum-probability. Although some results

hold more generally, we will restrict the analysis to additively separable functions u. The

individuals are altruistic in the sense that each cares about the material utility of the other.

10This independence simplifies the analysis but is not necessary. We believe that the results for the
correlated case are similar.
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Letting αi ∈ [0, 1] represent the degree of altruism of i for j, the welfare of i is defined as

Ui(c,p) = u(ci, pi) + αiu(cj, pj) (1)

where c = (c1, c2).11 An individual i with αi = 0 will be called selfish and an individual with

αi = 1 fully altruistic.12

We analyze this interaction as a two-stage game of perfect information, denoted G, in

which a pure strategy for individual i is a pair si = (pi, τ i), where τ i : Y →
£
0, yH

¤
is a

function specifying what transfer i gives to j in each state y, where transfers are restricted

by own output: τ i(y) ≤ yi for all y ∈ Y . Together with the state y, a strategy profile

s = (s1, s2) thus determines the resulting welfare levels, or game payoffs, as follows:

πi(s,y) = u(yi − τ i(y) + τ j(y), pi) + αiu(yj − τ j(y) + τ i(y), pj).

We note that, for each state y ∈ Y , the second stage of the game forms a subgame, G(y), in

which a pure strategy of individual i is the transfer ti ∈ [0, yi] to individual j 6= i (conditional

upon the observed state y). As solution concept when analyzing the two-stage game G, we

will use subgame perfect equilibrium.

Most of the subsequent analysis is focused on the analytically tractable special case of

Cobb-Douglas material utility:13

u(ci, pi) = ln ci + γ ln(1− pi), (2)

where we interpret

xi = − ln(1− pi)

as effort and hence γ > 0 as representing the individual’s disutility from effort. Under this

interpretation, the probability for high output is an increasing, differentiable and strictly

concave function of effort, running from zero at zero effort towards unity as effort goes to

plus infinity: pi = 1− e−xi (see section 4.4 for a slight generalization).

11For α1α2 < 1, this is equivalent with Ui being proportional to ui + αiUj for i = 1, 2 and j 6= i. Hence,
for such parameter combinations, the current formulation is consistent with “pure,” or “non-paternalistic,”
altruism.

12Under separable material utility u, the analysis would be unaffected if each individual instead cared only
about the other’s subutility of consumption, and not, as here, about the other’s total material utility (also
including effort).

13This parametization of preferences was also chosen in Lindbeck and Nyberg (2006).
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3 Equilibrium

We begin the analysis by solving for the transfers in the second stage, when outputs al-

ready have been realized, whereafter we turn to the determination of efforts-cum-output

probabilities in the first stage.

3.1 Transfers

In the second stage, individual i can increase his welfare by making a transfer to j if and only

if, given efforts made and outputs obtained, his marginal material utility is smaller than that

of j, weighted by his altruism parameter αi, i.e., if and only if uc(yi, pi) < αiuc(yj, pj). If

uc(y1, p1) ≥ α1uc(y2, p2) and uc(y2, p2) ≥ α2uc(y1, p1), then neither individual 1 nor individual

2 can increase his or her own welfare by making a transfer to the other. Formally, let τ ∗i :

Y →
£
0, yH

¤
be the function that defines, for every state y ∈ Y , the transfer that individual

i would like to make to j if the latter makes no transfer to i. The above assumptions imply

that τ ∗i (y) > 0 if and only if uc(yi, pi) < αiuc(yj, pj), in which case τ ∗i (y) solves

uc(yi − τ ∗i (y), pi) = αiuc(yj + τ ∗i (y), pj). (3)

Otherwise, τ ∗i (y) = 0. It is straightforward to prove the following lemma, which says that

unless both individuals are fully altruistic (α1 = α2 = 1) there exists a unique Nash equilib-

rium for every subgame G(y), in which at most one individual makes a positive transfer to

the other. Should both individuals be fully altruistic equilibrium is not unique, although for

every state y the consumption levels are the same in every equilibrium.

Lemma 1 For every y ∈ Y , τ ∗ (y) = (τ ∗1(y), τ
∗
2(y)) is a Nash equilibrium of G(y). If

α1α2 < 1, then this equilibrium is unique. If α1 = α2 = 1 then there is a continuum of Nash

equilibria, but in each state y both individuals consume the same amount.

In the special case of Cobb-Douglas utility (2), the transfer from i to j is positive if and

only if i obtains the high output and j the low, and, moreover, i is sufficiently altruistic in

the precise sense that
1

yH
<

αi

yL
.

Hence, the lower bound on altruism for a transfer from i when “rich” to j when “poor” is

αi > α̂, where α̂ = 1/β. We note that this lower bound is independent of the identity of the

potential donor and receiver.
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Moreover, if a transfer is given by i to j, then this transfer ti satisfies the first-order

condition (3), which in the Cobb-Douglas case boils down to

1

yH − ti
=

αi

yL + ti
,

Hence:

ti = max

½
0,
αiy

H − yL

1 + αi

¾
. (4)

This defines the conditional transfer ti, conditional upon i being rich and j poor, as a function

of αi, yH and yL. As intuition suggests, the conditional transfer, when positive, is increasing

in the giver’s altruism and “wealth” and decreasing in the recipient’s “wealth.” The transfer,

when positive, is such that the recipient ends up with the share αi/ (1 + αi) of total output,

yH + yL, and the donor ends up with the remaining share, 1/ (1 + αi).

Hence, the equilibrium transfer is not a fixed share of the donor’s wealth (such as giving

a tenth), nor is it proportional to the difference in wealth, except in the case of maximal

altruism. Instead, the equilibrium transfer is such that total wealth is divided in certain

fixed proportions. For instance, the recipient’s share of total wealth is 1/3 when αi = 1/2

(the genetic kinship factor between siblings) and it is 1/2 when αi = 1 (“full” altruism).

3.2 Efforts

In the first period each individual chooses an effort-cum-probability for high output. In

subgame perfect equilibrium, each individual correctly anticipates the ensuing transfers in

the different states in the second period. Denote by Πi (p) the expected welfare of individual

i as evaluated in period 1, that is, Πi (p) ≡ Ey [πi(s,y)], where s = (p, τ ∗) and τ ∗ is the

pair of conditional equilibrium transfer functions defined in Lemma 1. We then have

Πi (p) = pipj[u(y
H , pi) + αiu(y

H , pj)] (5)

+ (1− pi)(1− pj)[u(y
L, pi) + αiu(y

L, pj)]

+ pi(1− pj)
£
u(yH − τ ∗i (y) , pi) + αiu(y

L + τ ∗i (y) , pj)
¤

+ pj(1− pi)
£
u(yL + τ ∗j (y

0) , pi) + αiu(y
H − τ ∗j (y

0) , pj)
¤
,

where y is the state in which yi > yj, while y0 is the state in which yi < yj. The pair

(Π1,Π2) of payoff functions defines a simultaneous-move game Ĝ in which a (pure) strategy

for each player i is his or her probability pi ∈ [0, 1). Moreover, each Nash equilibrium in Ĝ

corresponds to a subgame perfect equilibrium of the two-stage game G, and vice versa.
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We solve for (pure-strategy) Nash equilibrium in Ĝ in the special case of Cobb-Douglas

preferences. In this case, each player has a unique best reply to the other’s strategy. This

follows from the analysis in the preceding section. After some algebraic manipulation, one

finds that individual i’s best reply pi to any probability pj that the other individual may

choose is

p∗i = max

½
0, 1− γ

Hi (pj)

¾
(6)

(for i = 1, 2 and j 6= i), where

Hi (pj) = lnβ + (1− pj) ln

∙µ
1 +max

½
0,
αiβ − 1
1 + αi

¾¶αi µ
1−max

½
0,
αi − 1/β
1 + αi

¾¶¸
(7)

− pj ln

∙µ
1 +max

½
0,
αjβ − 1
1 + αj

¾¶µ
1−max

½
0,
αj − 1/β
1 + αj

¾¶αi¸
.

As expected, the optimal effort-cum-probability p∗i , given the other’s effort-cum-probability

pj, is increasing in the individual’s own altruism, αi: A more altruistic individual makes a

greater work effort, x∗i = − ln (1− p∗), in order to be able to have more to give to the other

if in need.14 Hence, a more altruistic individual not only gives a larger transfer, see (4), but

also makes a bigger effort to obtain the high output level. However, this is true for both

individuals. So if the other individual, j, would become more altruistic – αj would increase

– then his conditional transfer and effort-cum-probability, pj, would both increase, ceteris

paribus. So, by the same token, facing a more altruistic person reduces one’s effort to obtain

the high output (since the other individual is more likely to obtain the high output). We call

the first, positive, effect the empathy effect (from own altruism) and the second, negative,

effect the free-riding effect (from other’s altruism).

We determine the equilibrium effort-cum-probability in the special case of equally altru-

istic individuals, α1 = α2 = α. When this common degree of altruism is sufficiently small,

but still positive, no transfer takes place: αβ ≤ 1 implies ti = tj = 0, by (4). It is as if each

individual then lived in autarky. Letting p0 denote this autarky effort-cum-probability, we

have (from (6)):

p0 = max

½
0, 1− γ

lnβ

¾
(8)

Hence, p0 > 0 if and only if lnβ > γ. In other words, no effort is exerted in autarky if β is

small and/or γ is large. This fully describes the equilibrium outcome when αβ ≤ 1.

When αβ > 1, a positive transfer may be given when the two individuals’ outputs differ

14This follows from noting that ∂Hi(pj)
∂αi

> 0 whenever αi > 1/β.
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– from the “rich” individual to the “poor.” However, even in this case both individuals

may still choose to exert no effort, in which case their outputs are identical and thus no

transfer is given. The following proposition characterizes the equilibrium outcome in the

“non-autarkic” case when αβ > 1. Let

F (p) = α lnα+ (1 + α) ln
1 + β

1 + α
− (1 + α)

µ
ln
1 + β

1 + α
+ ln

α+ α/β

1 + α

¶
p− γ

1− p
. (9)

For α, β, γ > 0 this defines F as a continuous and strictly concave function on [0, 1), with

limp→1 F (p) = −∞. Hence, F (p) is negative for all p sufficiently close to 1. The following
proposition is proved in the Appendix.

Proposition 1 Suppose that the two individuals have identical Cobb-Douglas preferences
(2) and αβ > 1. Then Ĝ has a unique Nash equilibrium. This equilibrium is symmetric,

p1 = p2 = p∗, and p∗ = max{0, p̄}, where p̄ = {p ∈ [0, 1) : F (p) = 0}.

In sum: In the special case of identical individuals with Cobb-Douglas material utility

there exists a unique subgame perfect equilibrium, for all parameter combinations. In this

equilibrium, both individuals choose the same effort-cum-probability in the first period, p∗,

defined in (8) for αβ ≤ 1 and in Proposition 1 for αβ > 1. If both individuals end up with

the same (high or low) output level, no transfer is given, while if they end up with distinct

output levels, then the conditional transfer

t∗ = max

½
0,
αβ − 1
1 + α

¾
· yL (10)

(see equation (4)) is given from the rich to the poor. We next analyze how this equilibrium

depends on the parameters of the model, in particular, on the climate and the common

degree of altruism.15

15It seems natural to us to model the strategic interaction as a two-stage game. However, the results are
essentially the same if instead the players would simultaneously choose both efforts and transfer functions
(transfers conditional upon outputs). The subgame perfect equilibrium effort levels and transfer functions,
given in Lemma 1 and Proposition 1, would also form a Nash equilibrium of the simultaneous-move game.
Moreover, every Nash equilibrium in the latter game, in which efforts are positive, constitutes a subgame
perfect equilibrium of the two-stage game.
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4 Comparative statics

Consider two identical individuals with Cobb-Douglas preferences. We saw in proposition 1

that the equilibrium effort-cum-probability p∗ then is a function of the three parameters α,

β and γ. We also saw, in equation (10), that the conditional transfer in equilibrium, t∗, is a

function of the three parameters α, β and yL. With a slight abuse of notation we will write

s∗ = (p∗, t∗), or, more explicitly:16

s∗(α, β, γ, yL) = (p∗(α, β, γ), t∗(α, β, yL)). (11)

The quantities we will focus on in the subsequent analysis are: the equilibrium effort-cum-

probability p∗(α, β, γ), the equilibrium expected income y∗
¡
α, β, γ, yL

¢
, and the equilibrium

expected material utility u∗
¡
α, β, γ, yL

¢
, where

y∗
¡
α, β, γ, yL

¢
= [(β − 1) p∗ (α, β, γ) + 1] yL (12)

u∗
¡
α, β, γ, yL

¢
= ln yL + γ ln [1− p∗(α, β, γ)] + p∗(α, β, γ)2 lnβ (13)

+p∗(α, β, γ) [1− p∗(α, β, γ)] ln

∙
β −max

½
0,
αβ − 1
1 + α

¾¸
+p∗(α, β, γ) [1− p∗(α, β, γ)] ln

∙
1 +max

½
0,
αβ − 1
1 + α

¾¸
.

Certain comparative-statics results fall out immediately. In particular, an increase in

the low output, yL does not affect effort but increases both the expected income and the

expected material utility. Moreover, an increase in the utility of leisure, γ, reduces effort

(when positive) and hence the expected income.17

4.1 The effect of altruism

As for the common degree of altruism, α, we begin by pointing out that there is a simple

and clear answer to the following question: For a given climate, yL and yH , and disutility of

16A pair s∗ = (p∗, t∗) is, strictly speaking, not a strategy in the game G, since it only specifies the
conditional transfer, not the full transfer function. However, such a pair uniquely determines a strategy in
G.

17It does not appear meaningful to analyze the comparative-static effect on material utility of such a
parameter change.
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effort, γ, what common degree of altruism, α, leads to the highest expected material utility

in equilibrium? The answer is: full altruism.

Proposition 2 argmaxα∈[0,1] u∗(α, β, γ, yL) = {1}.

This result, which is proved in the appendix, is not surprising. When both individuals are

fully altruistic, each individual fully internalizes the external effect of his or her own behavior

on the other’s material utility. Hence, their incentives are then perfectly aligned, with each

individual acting like a utilitarian welfare maximizer. For other degrees of altruism, however,

their incentives are imperfectly aligned and there is room for both free-riding and empathy.

This result can be used to further conclude that equilibrium is Pareto-efficient (in terms

of the individuals’ altruistic preferences) if and only if both individuals are fully altruistic:

Corollary 1 Suppose that the two individuals have identical Cobb-Douglas preferences (2)
with altruism α ∈ [0, 1]. The unique subgame perfect equilibrium is Pareto efficient if and

only if α = 1.

Proof: Given the symmetry of the unique equilibrium outcome, this is Pareto efficient

if and only if it maximizes the sum of both individuals’ expected welfare levels, as defined in

equation (1). If each individual chooses the effort-cum-probability p and gives the transfer

t when rich and the other is poor, the mentioned sum is S(p, t) = 2(1 + α)W (p, t), where

W (p, t) is defined in the proof of proposition 2. For any value of α, this is strictly increasing

in W (p, t). But, by proposition 2, in an equilibrium of game G the expected material utility

u∗ coincides with the maximum value of W (p, t) if and only if α = 1. End of proof.

It may come as a surprise that the outcome is inefficient even in the absence of altruism,

α = 0. In the absence of this externality, why does not the strife of selfish individuals lead

to a Pareto-efficient outcome? The answer is that both individuals’ utility can be increased

by having them make the same effort as in equilibrium, but have the rich give a transfer

to the poor when they end up with distinct outcomes. For a sufficiently small such “forced

transfer”, their expected material utility increases. This follows from the concavity of the

material utility from consumption (here the logarithm function).18

We next analyze the effect of altruism on effort, income and material utility.

18To see this, differentiate W (p, t) in quation (31) with respect to t at t = 0.
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4.1.1 On effort

We saw previously that increasing altruism has two counter-acting effects on an individual’s

effort; what we called the free-rider effect and the empathy effect. What is the net equilibrium

effect on efforts and transfers when moving from a society with less altruistic individuals to

a society with more altruistic individuals? Numerical examples suggest that, for a given

climate, an increase in the common level of altruism may result in an increase or a decrease

of the equilibrium effort-cum-probability. For instance, in the climate yL = 7 and β = 2:

while selfish individuals choose effort-cum-probability .28, fully altruistic individuals choose

effort-cum-probability .32. By contrast, in the harsher climate yL = 1 and β = 10 a similar

change in the common degree of altruism leads to a decrease in the effort-cum-probability

from .78 to .72. Clearly then, in general, the equilibrium effort is not monotonic in altruism.

We show in the appendix that p∗ is decreasing in α at α = α̂ and increasing in α at α = 1,

and we illustrate the dependence on α by means of numerical examples.

Proposition 3 Suppose that both individuals are equally altruistic. If their common degree
of altruism, α, equals α̂ = 1/β, then p∗ (α+∆α) < p (α) for ∆α > 0 sufficiently small. If

instead α = 1, then p∗ (α−∆α) < p (α) for ∆α > 0 sufficiently small.

0.0 0.2 0.4 0.6 0.8 1.0
0.55

0.60

0.65

0.70

0.75

0.80

alpha

p0, p*

Figure 1: p0 and p∗ for (α, β, γ, yL) = (α, 5, 1
2
, yL).

Figure 1 shows the equilibrium effort-cum-probability p∗ as a function of the common

degree of altruism α, for β = 5 and γ = 1/2. When altruism is weak (α ≤ α̂ = .2), the

individuals expect no transfers from each other, and therefore choose the autarky effort

p0 ' .69. As α increases beyond α̂, each individual expects to receive a transfer should

he be unlucky and the other individual lucky. This gives rise to the free-rider effect; an

increase in the other individual’s altruism reduces the marginal expected material utility
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return from increasing one’s own effort. However, there is also the empathy effect, namely,

that an increase in own altruism, beyond α̂ increases the marginal expected psychic utility

return from increasing one’s own effort. We see in Figure 1 that when altruism is moderate,

the free-rider effect dominates – an increase in α then decreases the equilibrium effort–

while when altruism is strong the empathy effect becomes relatively more important at the

margin–increasing α then increases the equilibrium effort. This result is in stark contrast

with models with one-sided altruism, i.e., where only one individual cares about the other

one: then the equilibrium effort of the selfish individual decreases in the altruism level of the

other individual, since then only the free-rider effect is present.

In Figure 1 effort is highest for low levels of altruism: in this case the free-rider effect

always outweighs the empathy effect.19 This need not be the case, however. Figure 2 shows

an example where the equilibrium effort level is highest for high levels of altruism (β = 2

and γ = 1/2).

0.0 0.2 0.4 0.6 0.8 1.0
0.20

0.25

0.30

0.35

0.40

alpha

p0, p*

Figure 2: p0 and p∗ for (α, β, γ, yL) = (α, 2, 1
2
, yL).

While the preceding discussion and examples focus on interior solutions, we conclude by

examining an example when in autarky the individuals exert no effort; p0 = 0. Then the free-

rider effect evidently has no bite. As a result, the equilibrium effort may only increase when

the common degree of altruism increases. See Figure 3, which shows how the equilibrium

effort depends on altruism, for β = 2 and γ = 0.75.

19In the figure the lowest equilibrium level of effort is positive. In the Cobb-Douglas specification it can
be shown generally that if the autarky equilibrium effort is positive (i.e., if p∗ > 0 for α < bα), then the
equilibrium effort is also positive for α ≥ bα.
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Figure 3: p0 and p∗ for (α, β, γ, yL) = (α, 2, 3
4
, yL).

4.1.2 On expected income

In this two-person economy the expected income, as defined in (12), depends not only directly
on the climatic conditions, by way of better output for given efforts, but also on the incentives

to provide effort that they generate. Since the expected income is a positive affine function

of the equilibrium effort p∗(α, β, γ) (see equation (12)), it follows that the expected per

capita equilibrium income typically is a non-monotonic function of the degree of altruism α

in society.

4.1.3 On expected material utility

Figures 4 and 5 show the expected material utility as a function of altruism, for two differ-

ent climates. Figure 4 represents the harsher climate, and 5 the more favorable and more

forgiving one. In both climates the expected material utility is monotonically increasing in

the common degree of altruism as long as it is sufficiently strong for mutual insurance to

occur. We do not have a general analytical result, beyond proposition 2, concerning how the

expected material utility in equilibrium varies with the common degree of altruism.

4.2 The effect of climate

Here we study how the equilibrium depends on the climate, as represented by yH and yL,

or, equivalently, by β and yL. We will say that a climate gets more favorable if the baseline

output yL increases and the high output yH does not decrease, and more forgiving if β =

yH/yL decreases. We saw in expression (9), that the equilibrium probability p∗ is a function

of α, β and γ. In particular, given these parameter values, it is independent of yL, the base-
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Figure 4: u∗ for (α, β, γ, yL) = (α, 10, 1
2
, 1).
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Figure 5: u∗ for (α, β, γ, yL) = (α, 2, 1
2
, 5).

line output level. Hence, it does not depend on whether or not a climate is favorable per se,

only on how forgiving it is. Moreover, it is easily verified that the equilibrium probability p∗

is non-increasing in γ; as the disutility of effort increases, the equilibrium level of p∗ decreases

(when positive). Likewise, based on Proposition 1 one can verify that p∗ is non-decreasing

in β; as climate becomes “less forgiving,” p∗ increases (when positive). Formally:

Proposition 4 Under the hypothesis of proposition 1: if αβ ≤ 1 and F (0) > 0, then the

unique equilibrium effort-cum-probability p∗ is a function of α, β and γ, strictly increasing

in β and strictly decreasing in γ.

Proof : To show that p∗ is strictly increasing in β, we note that, with some abuse of

notation: ∂
∂β
F (p) = 1+α

1+β
(2− p) > 0. End of proof.
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We illustrate this result, and study the effect of climate on income and material util-

ity, in the two extreme cases of purely selfish individuals and fully altruistic individuals,

respectively.

4.2.1 On selfish individuals

In the case of two selfish individuals, α = 0, each individual chooses effort-cum-probability

p0, defined in equation (8). Figure 6 shows the graph of p0 as a function of β, for γ = 1 (lowest

1 2 3 4 5
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0.6

0.8

1.0

beta

p0

Figure 6: p0 for γ = 1, γ = 1/2, and γ = 1/4.

curve), 1/2 (middle curve) and 1/4 (highest curve). Each individual’s expected income is

y∗
¡
0, β, γ, yL

¢
, which equals yL if p0 = 0, i.e., if lnβ ≤ γ, and

y∗
¡
0, β, γ, yL

¢
=

∙
1 +

µ
1− γ

lnβ

¶
(β − 1)

¸
· yL

otherwise. In sum: the equilibrium effort, p0, is strictly increasing in β, for all β sufficiently

large (β > eγ). While the equilibrium effort is independent of the base-line output level yL,

the expected income is increasing in this parameter.

What happens if we move to a more favorable and forgiving climate: will the detrimental

effect on effort be stronger or weaker than the positive effect on base-line output?

Figure 7 shows three isoquants for the expected equilibrium income (for γ = 1/2), the

relevant region being the triangle above the diagonal. We see that the expected equilibrium

income may be higher or lower in a more favorable and forgiving climate. Hence, if climate

A is a less favorable and less forgiving than climate B, then selfish individuals exert more

effort in climate A, and they may earn a higher or a lower expected income in climate B.
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Figure 7: Isoquants y0 = 1, y0 = 3, and y0 = 5 for (α, β, γ, yL) = (0, β, 1
2
, yL).

Although a more favorable climate has an ambiguous effect on the expected income, the

expected material utility increases. In sum:

Proposition 5 Suppose that α = 0 and lnβ > γ. The equilibrium effort-cum-probability is

then positive. The expected income may be higher or lower in more favorable and forgiving

climates. The expected material utility, however, is higher in more favorable climates, even

if these are less forgiving.

Proof : It remains to prove the last claim. This is immediate when lnβ ≤ γ, since then

p0 = 0 and hence c = yL with probability one. For lnβ > γ:

u∗(0, β, γ, yL) =
γ

lnβ
ln yL +

µ
1− γ

lnβ

¶
ln yH + γ ln

µ
γ

lnβ

¶
= ln yH + γ ln

µ
γ

ln yH − ln yL
¶
− γ,

an increasing function of yL and yH . (To see the latter claim, write x = ln yH and note that

the derivative of u∗ with respect to x is 1− γ/ lnβ > 0.). End of proof.

4.2.2 On fully altruistic individuals

Consider the opposite extreme case of fully altruistic individuals: α = 1. With concave

utility from consumption, this implies that they always share the total output equally. More

exactly, the conditional transfer, from the rich individual to the poor, is t =
¡
yH − yL

¢
/2,

resulting in consumption

ȳ =
yH + yL

2
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whenever one individual is rich and the other poor. From the above proposition, we obtain

that the unique Nash equilibrium probability p∗, when positive– that is, when 2 ln [(1 + β) /2] >

γ – is defined by

p∗ =
2 ln

³
(1+β)3

8β

´
−
r
4
³
ln
³
(1+β)3

8β

´´2
− 8 ln

³
(1+β)2

4β

´ ¡
2 ln

¡
1+β
2

¢
− γ

¢
4 ln

³
(1+β)2

4β

´ . (14)

Figure 8 shows p∗ as a function of β, for γ = 1 (lowest curve), 1/2 (middle curve) and 1/4
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Figure 8: p∗ for (α, β, γ, yL) = (1, β, 1, yl) (bottom curve), (α, β, γ, yL) = (1, β, 1
2
, yl), and

(α, β, γ, yL) = (1, β, 1
4
, yl) (top curve).

(highest curve). Just as in the case of purely selfish individuals, the expected income also

to full altruists may be higher or lower in a more favorable and forgiving climate, as the

following numerical example shows. In the climate yL = 1 and β = 10 the equilibrium effort

with fully altruistic individuals is p1 ' .72 and the expected income is close to 7.5. Now

if the climate changes to the more favorable and forgiving climate yL = 5 and β = 2 the

equilibrium effort decreases to p1 ' .32, and the expected income to around 6.6. By contrast,

if the climate instead becomes yL = 7 and β = 2, which is also more favorable and forgiving

than the original one, then the equilibrium effort decreases to p1 ' .32 as well (since β = 2

in both cases), but the expected income increases to about 9.24. As with selfish individuals

we find:

Proposition 6 Suppose that both individuals are fully altruistic, α = 1. The equilibrium

effort-cum-probability is positive when 2 ln [(1 + β) /2] > γ. The expected income may be

higher or lower in more favorable and forgiving climates. The expected material utility,

however, is higher in more favorable climates, even if these are less forgiving.
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Proof: It remains to prove the last claim. We saw in the proof of proposition 2 that the
equilibrium coincides with the Benthamite social optimum when α = 1. It is evident that

the Benthamite optimum is non-decreasing in yL and non-decreasing in yH , since the social

planner could have suggested the same (p, t) if these parameters were raised. Hence, the

same holds for the (unique) equilibrium. Moreover, we have already noted, by inspection of

equation (13), that the expected material utility is strictly increasing in yL. Since p∗ > 0

when 2 ln [(1 + β) /2] exceeds γ, it is easily verified that then the expected material utility

is strictly increasing also in yH . End of proof.

4.2.3 On somewhat altruistic individuals

Figures 9 and 10 illustrate the ambiguous effect of climate on the expected income for all

levels of altruism. Figure 9 displays the expected per capita equilibrium income as a function
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Figure 9: y∗ for (α, β, γ, yL) = (α, 10, 1
2
, 1) (thin line), and for (α, β, γ, yL) = (α, 5, 1

2
, 2)

(thick line).

of altruism, for two different climates. The thin line corresponds to a harsh climate: the

base-line output is small (yL = 1), and the potential relative return to effort is high (β = 10).

The thick line represents a more favorable and more forgiving climate (yL = 5 and β = 2).

The low output is higher in the more favorable than in the harsh climate, and the high

outputs are the same. But because the return to effort is smaller in the more favorable

climate, also the equilibrium effort is then smaller. Here the effect is so strong that the

expected per capita income is larger in the harsh climate, despite the larger maximal output

in the more favorable climate. This need not be the case, however. For instance, if in the

more favorable climate the low output is yL = 7 instead, then the expected per capita income

is higher in the more favorable climate, as shown in Figure 10.
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4.3 Income taxation

Suppose that all income were taxed at a fixed rate τ ∈ [0, 1], but transfers were not taxable,
and suppose that the accrued tax revenue were spent on some public good that does not

interact with private consumption and effort. What would the effect of such taxation be on

the equilibrium outcome, in a given climate and for a given degree of altruism? The answer

can be obtained directly from the above analysis, by way of replacing the two output levels,

yL and yH , by (1− τ) yH and (1− τ) yL, respectively, while keeping all other parameters

fixed. In particular, β would be unaffected–a flat income tax rate is equivalent with a

less favorable but equally harsh climate. From the preceding analysis we conclude that, with

Cobb-Douglas preferences, effort would not be affected by a proportional income tax. Hence,

the expected disposable income would simply shrink by the factor 1− τ .

By contrast, effort would decrease if a progressive income tax were introduced–a higher

tax rate for the high output than for the low–since this would be equivalent with a decrease

in β. In this case, it is as if climate would become less favorable but more forgiving.

4.4 Institutional quality

Countries not only differ in climate (and tax systems) but also with respect to the quality of

their institutions. Of particular relevance for the present context is the protection of private

property. Our model is easily extended to incorporate a crude representation of this aspect

as follows. Suppose that “rich” individuals are exposed to the risk of being “robbed” (by

a third party). More exactly, let (1 − δ) ∈ [0, 1] be the probability that an individual who
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has obtained the high output level, yH , is robbed before any potential transfer has been

given, and suppose that the amount robbed is yH − yL. Hence, robbery brings down a rich

individual’s wealth to that of a poor individual, from yH to yL. Poor individuals are not

robbed and no robbing occurs after interpersonal transfers have been made. We interpret

the parameter δ as a measure of institutional quality, with δ = 0 representing the lowest

possible institutional quality (minimal protection of private property) and δ = 1 the highest

possible (maximal protection of private property).

This extension is formally straight-forward in the special case of Cobb-Douglas material

utility. For any effort xi ≥ 0 that an individual i makes, the probability for the high output
level yH is now pi = δ (1− e−xi), where δ = 1 is the special case analyzed in the two preceding

sections. Hence, for an individual with disutility γ of effort, the material utility function

becomes

u(ci, pi) = ln ci + γ ln(1− pi/δ),

where pi ∈ [0, δ) is the resulting probability of possessing the high output, with due account
for the probability of robbery.20

Hence, the formal analysis of conditional transfers is unaffected, while the determination

of equilibrium probabilities do change. More precisely, equations (6) and (8) generalize to

p∗i = max

½
0, δ − γ

Hi (pj)

¾
and p0 = max

½
0, δ − γ

lnβ

¾
,

and the function F in proposition 1 becomes

F (p) = α lnα+ (1 + α) ln
1 + β

1 + α
− (1 + α)

µ
ln
1 + β

1 + α
+ ln

α+ α/β

1 + α

¶
p− γ

δ − p
.

It follows that, ceteris paribus, the equilibrium effort is lower in a society with lower

institutional quality. If we compare a society with strong family ties (high α) but low

institutional quality (low δ) – the case in many developing countries – with one with weak

family ties (low α) but high institutional quality (high δ) – the case in some of the most

advanced economies – the preceding analysis implies that, for moderately strong family ties

(α not too close to 1), the equilibrium effort would be higher in the second society, even if

the two countries had identical climates. However, if the family ties in the first society are

very strong (α close to 1) and the institutional quality not too low (δ not too far below 1),

then the equilibrium effort may be higher in the first society than in the second.

20To see this, note that e−xi = 1− pi/δ and hence the utility from effort, −γxi, equals γ ln (1− pi/δ).

28



5 Coerced altruism

The model developed and analyzed above presumes voluntary transfers, given because of

altruism. It seems empirically relevant to study a closely related, but distinct case, namely,

when transfers are given more because of family and cultural expectations than by an “inner

motive.” As suggested in some of the quotes in the introduction (notably from Max Weber),

such a tension between, on the one hand, the individual’s desires and, on the other hand,

the surrounding society’s expectations and social norms, may be an important explanatory

factor behind economic growth and development in parts of the world. An individual who

lives in a society where he or she is expected to share his or her income with other family

members, sometimes even with such relatively distant family members as first or second

cousins, may rationally expect to have to transfer so much that the motive for making effort

in the first place is diluted. The same phenomenon occurs in partnerships between selfish

individuals who share output according to some prescribed but not formally sanctioned rule.

In order to shed some light on this phenomenon, we analyze the following variant of the

model in section 2: In the second stage, individuals give transfers according to a (socially)

prescribed rule, which is for the rich to give a transfer to the poor just as an altruistic

rich person would do. In other words, both individuals are forced to behave in the second

period of the game as if they had more altruistic preferences than they actually have. This

modification amounts to replacing the gameG by the following game: In the first period each

individual simultaneously chooses an effort-cum-probability for high output. Each individual

then correctly anticipates the ensuing transfers in the different states in the second period.

These transfers are defined by the pair of conditional equilibrium transfer functions in lemma

1, when applied to a common high degree of altruism, which we denote α̃ > 0. Both

individuals’ true degree of altruism, however, is α ≤ α̃.21

Denote by Π̃i (p) the expected welfare of individual i as evaluated in period 1. Then

Π̃i (p) = pipj[u(y
H , pi) + αu(yH , pj)] (15)

+ (1− pi)(1− pj)[u(y
L, pi) + αu(yL, pj)]

+ pi(1− pj)
£
u(yH − τ̃ i (y) , pi) + αu(yL + τ̃ i (y) , pj)

¤
+ pj(1− pi)

£
u(yL + τ̃ i (y

0) , pi) + αu(yH − τ̃ i (y
0) , pj)

¤
,

where τ̃ is the pair of conditional equilibrium transfer functions in lemma 1 that would apply

21For identical individuals, the game G̃ is a generalization of the game Ĝ, with the latter being the special
case α = α̃.
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if both individuals’ degree of altruism had been α̃, and the states y and y0 are the same as

in equation (5). This defines a two-player simultaneous-move game G̃.

We analyze this game in the special case of (a) Cobb-Douglas utility, (b) selfish indi-

viduals, α = 0, and (c) α̃yH > yL, where condition (c) asserts that a “rich” individual

is coerced to give a positive transfer to a “poor” individual. Under these conditions, the

transfer function τ̃ satisfies

τ̃ i (y) =
α̃yH − yL

1 + α̃

whenever y is such that yi > yj, while τ̃ i (y) = 0 in all other states y.22 We thus have

Π̃i (p) = γ ln (1− pi) + pipj ln y
H + (1− pi)(1− pj) ln y

L (16)

+ pi(1− pj) ln

µ
yH + yL

1 + α̃

¶
+ pj(1− pi) ln

Ã
α̃
¡
yH + yL

¢
1 + α̃

!
.

This expression shows that only the free-rider effect is present here: as α̃ increases, the

marginal benefit of making effort decreases, since the donor’s consumption decreases whereas

the recipient’s consumption increases. Moreover, the external effect on the other individual

is not internalized at all, since α = 0. Individual i’s best reply p̃i to any probability pj that

the other individual may choose is

p̃i = max

(
0, 1− γ

H̃i (pj)

)
(17)

(for i = 1, 2 and j 6= i), where

H̃i (pj) = lnβ + (1− pj) ln

µ
1 + 1/β

1 + α̃

¶
− pj ln

µ
α̃(1 + β)

1 + α̃

¶
.

Hence, when positive, p̃i is strictly decreasing and concave in pj. A necessary first-order

condition for an interior and symmetric Nash equilibrium is F̃ (p) = 0, where

F̃ (p) = ln
1 + β

1 + α̃
− p ln

"
α̃

β

µ
1 + β

1 + α̃

¶2#
− γ

1− p
.

Proposition 7 Suppose that the two individuals have identical Cobb-Douglas preferences
(2), that they are selfish (α = 0), but are coerced to give transfers as if their altruism level

22A more subtle social norm, also possible to analyze, is when transfers are expected only if the recipient
has made a (sufficient) effort to sustain him- or herself.
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were α̃, where α̃β > 1. Then the associated game, G̃, has a unique Nash equilibrium. This

equilibrium is symmetric, p1 = p2 = p̃∗, and p̃∗ = max{0, p̃}, where p̃ = {p ∈ [0, 1) : F̃ (p) =
0}.

This proposition is proved in the appendix. Since here only the free-rider effect is present,

the following result comes as no surprise:

Proposition 8 Suppose that α̃β > 1. If the level of coerced altruism α̃ is increased, while

individuals remain selfish, then the equilibrium effort-cum-probability decreases.

Proof: Differentiation of the equilibrium equation F̃ (p) = 0 with respect to α̃ gives

dp̃

dα̃
= − α̃+ p̃(1− α̃)

α̃(1 + α̃)
h
ln
³
α̃
β

¡
1+β
1+α̃

¢2´
+ γ

(1−p̃)2

i (18)

From the proof to proposition 7 we recall that ln
³
α̃
β

¡
1+β
1+α̃

¢2´ ≥ 0 iff (β − α̃)(α̃β − 1) ≥ 0,
and hence dp̃/dα̃ < 0 when α̃β > 1. End of proof.

This proposition implies that there is a trade-off between risk-sharing–by way of co-

erced altruism–and the incentive to provide effort. Is the expected benefit of risk-sharing

sufficiently large to outweigh the cost of having the incentives to provide effort? Relatedly,

can the optimal level of coerced altruism be sufficiently high for mutual insurance to occur?

In order to find this out, we note that equation (16) implies that the expected material

utility in equilibrium is, with a slight abuse of notation,

Π̃ = γ ln (1− p̃) + p̃2 ln yH + (1− p̃)2 ln yL + p̃ (1− p̃)

∙
ln α̃− 2 ln 1 + α̃

yH + yL

¸
. (19)

Figure 11 shows this equilibrium expected material utility as a function of the level of coerced

altruism α̃, when preferences are Cobb-Douglas, yL = 1, γ = 1/2, and β = 5. This figure

suggests that in this example the level of coerced altruism that maximizes the expected

material utility is approximately 1/2: in a society without formal insurance markets, a

social norm of coerced altruism may be a substitute (see next section).

6 Insurance

Consider an economy consisting of a large number of identical individuals engaged in pair-

wise interactions of the form analyzed in sections 2 and 3. We saw in sections 4 and 5
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Figure 11: Expected material utility under coerced altruism for (α, α̃, β, γ, yL) =
(0, α̃, 5, 1

2
, 1).

that strong altruism, voluntary or socially coerced, can act as a form of insurance within

interacting pairs. Suppose, instead, that individuals are selfish but can buy insurance. If

insurance companies cannot observe effort, only output, can private insurance companies

operate in this moral-hazard environment, and can the presence of an insurance market lead

to a Pareto improvement? How does such formal insurance compare with informal insurance

by way of coerced altruism? How do individuals fare, in terms of their material utility, in

comparison with a situation in which they would be fully altruistic? We here analyze these

questions.23

6.1 Formal insurance of selfish individuals

Consider a large population of selfish individuals engaged in pair-wise interactions of the form

described in section 3.1. By the law of large numbers, the fraction of individuals who end up

with the low output is approximately 1− p∗, where p∗ is the unique equilibrium probability

for low output in each pair. Can private insurance companies operate in this environment,

and can this lead to a Pareto improvement? How does formal insurance compare with coerced

altruism?

Consider insurance policies (π, σ), where the insurance premium is πyL and the coverage

of the loss to an individual who obtains the low output instead of the high is σ
¡
yH − yL

¢
.

23We do not analyze, however, formal insurance when individuals are altruistic. In such situations, there
is an additional moral-hazard problem that could be significant, namely, that individuals may strategically
choose to under-insure in the hope of being helped out by others, if the latter cannot commit not to help
uninsured individuals in dire straits (c.f. Lindbeck and Weibull, 1988).
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We require an insurance policy (π, σ) to satisfy π, σ ≥ 0, π < β and π < 1 + σ (β − 1), so
that an insured individual’s consumption always is positive.

In the extreme case of σ = 1 there is full coverage, i.e., an insured individual’s consump-

tion would then be the same whether his or her output is high or low. Clearly this would

eliminate all incentive to exert effort. For lower coverage, however, individuals may still have

some incentive to exert effort. We suppose that individuals’ efforts are non-verifiable to the

insurer, while the obtained output levels are verifiable. The only interesting case is when

individuals in autarky exert positive effort. We therefore focus on the case when lnβ > γ.

In the presence of such an insurance policy (π, σ), each individual in effect faces a binary

choice: either to not buy the insurance and make the optimal autarky effort p0 = 1−γ/ lnβ >

0, or else to buy the insurance and make the optimal autarky effort when yH is replaced by

yH − πyL and yL is replaced by yL − πyL + σ
¡
yH − yL

¢
,

p∗ = max

½
0, 1− γ

lnβ∗

¾
, (20)

where

β∗ =
β − π

(β − 1)σ + 1− π
≥ 1.

The expected profit to the insurer, per insured individual, is

Π = πyL − σ
¡
yH − yL

¢
(1− p∗),

where Π = 0 if and only if the insurance policy is actuarially fair. Using (20), we re-write

the profitability condition Π ≥ 0 as

π

(β − 1)σ +max

⎧⎨⎩0, 1− γ

ln
h

β−π
(β−1)σ+1−π

i
⎫⎬⎭ ≥ 1 (21)

For given parameters γ and β, this condition defines an upper bound, σ̄ (π) ≤ 1, on the

coverage σ for each premium π ∈ [0, 1]. More exactly, (21) holds for all σ ≤ σ̄ (π).24

Suppose, first, that lnβ∗ < γ. Then each insured individual finds it optimal to exert no

effort, p∗ = 0. In this case, the insurance plays no role: no-one buys it if it gives a profit,

and all individuals are indifferent between buying and not buying an actuarially fair policy

24The left-hand side is continuous and decreasing in σ, from +∞ when σ = 0. Hence, the inequality is
met on a closed interval of the form [0, b] .

33



since they anyhow receive the income yL for sure.

Secondly, suppose that lnβ∗ > γ. Then each insured individual finds it optimal to exert

the effort p∗ = 1− γ/ lnβ∗. In this case, the profitability condition (21) boils down to

π

(β − 1)σ ln
∙

β − π

(β − 1)σ + 1− π

¸
≥ γ (22)

Will anyone buy the insurance in this second case? By definition, each individual then finds

it optimal to buy the insurance if and only if the expected utility from doing so and taking the

effort resulting in p∗ is no less than the expected utility from not buying the insurance and

taking the effort resulting in p0. After some algebraic manipulation, we find that insurance

is optimal to buy, assuming lnβ∗ > γ, if and only ifµ
β − π

β

¶1/γ
lnβ ≥ ln

∙
β − π

(β − 1)σ + 1− π

¸
. (23)

We have established:

Proposition 9 Suppose that lnβ > γ. There exists a profitable insurance policy (π, σ) that

individuals buy, and under which all individuals make positive effort if and only if (22), (23)

and

ln

∙
β − π

(β − 1)σ + 1− π

¸
> γ. (24)

We illustrate the three constraints in Figure 12, with the premium rate π on the horizontal

axis and the coverage rate σ on the vertical, for γ = 1/2, and β = 5. For these parameter

values, constraint (24) is not binding. Insurance polices (π, σ) ≥ 0 below the initially steeper
curve satisfy the profitability condition (22) and policies above the initially flatter curve

satisfy the buying condition (23).25

6.2 Comparing with informal insurance by way of altruism

We now turn to an investigation of whether informal insurance, achieved by means of vol-

untary or socially coerced transfers between pairs of individuals (say, siblings), is a better or

worse alternative to formal insurance as analyzed above. A limitation of informal insurance,

involving only two individuals, is that no transfers occur from the state of nature in which

25We note that all individuals’ consumption is positive in all states of nature if π < max {5, 1 + 4σ}.
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Figure 12: Profitability and buying constraints for formal insurance.

both individuals are rich to the state of nature in which both are poor. By contrast, with a

formal insurance market covering a large population (which we assume here), such transfers

are possible. However, a comparison between formal and informal insurance also needs to

take into account the effect on effort, which differ across such schemes.

6.2.1 Selfish individuals with access to formal insurance

Assume that all individuals are selfish (α = 0) and have access to an actuarially fair insurance

policy, i.e., π = σ(1− p∗)(β − 1). The optimal actuarially fair policy, that is, the one that
yields the highest expected material utility, has a coverage rate σ∗ that solves

max
σ∈[0,1]

(1− p∗) ln(1 + σp∗(β − 1)) + p∗ ln(β − σ(1− p∗)(β − 1)) + γ ln(1− p∗), (25)

subject to the defining equation for the equilibrium probability of high output, given the

insurance policy in question,

(1− p∗) ln

µ
β − σ(1− p∗)(β − 1)
1 + σp∗(β − 1)

¶
= γ. (26)

Using Mathematica to solve this optimization problem, we obtain, for β = 5 and γ = 1/2,

the coverage σ∗ ' .323317. This implies p∗ ' 0.48865 and an expected material utility of

about 0.63223.26

26Note that all three conditions stated in Proposition 9 are satisfied since the equilibrium effort is positive
(p∗ > 0), the solution is interior (σ∗ > 0), and the insurance policy yields zero expected profit.
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6.2.2 Fully altruistic individuals without access to formal insurance

We saw that, conditional on there being no formal insurance market, the expected material

utility is maximized when individuals are fully altruistic towards each other (α = 1): such

individuals fully internalize the effect of their own effort choice on the other individual, and

total output is always divided equally within a pair. We here provide a numerical example

where informal insurance by way of full altruism yields a higher expected material utility

than any formal insurance can achieve.

Suppose that yL = 1, γ = 1/2, and β = 5. In the absence of formal insurance, the

equilibrium probability of high output is p∗ ' 0.65,and the expected material utility is ap-
proximately 0.655, which exceeds the expected material utility under the optimal actuarially

fair insurance policy for selfish individuals. With formal insurance but fully altruistic indi-

viduals, a poor individual always receives a transfer from the insurance company. However,

due to moral hazard, the optimal insurance coverage for selfish individuals is quite low; a

poor individual consumes significantly less than a rich one (1.632 compared to 4.339). With

full altruism but no formal insurance, conditional on being poor there is a probability .35 of

not receiving any transfer, but with probability .65 the other’s output is high and the poor

individual ends up with the same consumption as the rich one.

6.2.3 Selfish individuals under coerced altruism but without access to formal
insurance

We saw before that coerced altruism may be advantageous ex ante, in spite of its adverse

effect on effort. Here we develop a numerical example where formal insurance is better

than coerced altruism (for selfish individuals), despite the even lower effort under formal

insurance. Thus, assume again that yL = 1, β = 5, and γ = 1/2. The lower line in Figure

13 reproduces the expected material utility as a function of the degree of coerced altruism

α̃, as shown previously in Figure 11. For α̃ ≤ 1/β = 0.2 there is no transfer between the
individuals, who therefore choose the autarky effort p∗ = 1 − 0.5/ ln 5 ' .689, so that the

expected material utility is

(1− .5

ln 5
) ln 5 + .5 ln(

.5

ln 5
) ' 0.525. (27)

As α̃ increases beyond 1/β the expected material utility increases: here the marginal ben-

efit of coerced altruism (mutual insurance) outweighs its marginal cost (decreased effort).

However, at some point the marginal benefit becomes smaller than the marginal cost, and
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Figure 13: Expected material utility under coerced altruism (α, α̃, β, γ, yL) = (0, α̃, 5, 1
2
, 1)

(bottom line) and with optimal formal insurance for (α, β, γ, yL) = (0, 5, 1
2
, 1) (top line).

the expected material utility decreases as the degree of coerced altruism is further increased.

The figure also shows that the expected material utility under coerced altruism is below

0.63223 (represented by the horizontal line in the figure), the expected material utility under

optimal formal insurance (as found above).

6.2.4 In sum

In the above numerical example, the ranking–from best to worst in terms of expected

material utility–is as follows: first, informal insurance by way of full altruism, second,

actuarially fair insurance, third, informal insurance by way of coerced altruism, and finally, no

access to formal or informal insurance. Effort is lowest in a society with selfish individuals and

formal insurance, highest in a society with selfish individuals with no insurance possibility.

Moreover, effort is lower among selfish individuals under coerced altruism than among fully

altruistic individuals without formal insurance possibilities.

7 Evolutionary robustness of altruism

We saw (in proposition 2) that, in the absence of formal insurance and informal insurance by

way of coerced altruism, the maximal degree of altruism, α = 1, results in higher expected

material utility than any lower degree of altruism (including α = 0), irrespective of climate.

In this sense, full altruism is good. We have also seen (in section 5) that socially coerced

altruism may result in low expected material utility. What altruistic behaviors, if any, are

robust to evolutionary selection forces, biological and social? How do these forces interact,
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if at all, with climate? Can migration from one society and climate to another destabilize

altruistic or selfish behaviors in the recipient society? These are huge and difficult questions,

and we here only show how our model can shed some new light on a few aspects of these

questions.

Evidently altruists are vulnerable to “exploitation” by selfish individuals; not only do

rich altruists help poor selfish individuals, altruists may even exert extra work effort in order

to be able to later help others, while selfish individuals exert just enough effort to sustain

themselves, even counting on being helped out by altruists if need be. If selfish “mutants”

would enter a homogeneous population of altruistic individuals, the “mutants” would thus

seem to thrive in terms of material utility, granted the “incumbent” altruists would behave

just as altruistically towards the mutants as they do against other altruists. This would be

the case, for instance, if altruists do not know when they meet a mutant, but act as if the

other individual were just as altruistic as themselves. It would not necessarily be the case,

however, if the altruists would recognize selfish mutants and behave selfishly against them.

In such encounters, our numerical examples above suggest that the mutants may not fare so

well in comparison with the incumbents if the latter are sufficiently altruistic to each other.

What about a large population of selfish individuals? Can it be “invaded” by a small number

of altruistic mutants?

To obtain some insights into these and related questions, we first specify a few distinct

population scenarios, then apply our model to pair-wise interactions within these. In each

scenario, imagine a homogeneous “incumbent” or “native” population of individuals, all

with the same degree of altruism α, in a given climate. This population is exposed to a

small-scale “invasion” of “mutants”, that is, individuals who differ only in their degree of

altruism, which we denote α0 6= α. Each individual, incumbent or mutant, may encounter

an incumbent or a mutant, where the incumbents constitute an overwhelming majority. We

consider the following alternative scenarios in such pair-wise encounters:

Scenario 1 (naïve individuals): Here each individual believes that the other indi-

vidual is of his or her own kind, and behaves accordingly; that is, an incumbent

expects the other to behave like an incumbent and a mutant expects the other

to behave like a mutant, irrespective of whether the other individual actually is

an incumbent or a mutant.

Scenario 2 (observant individuals): Here each individual correctly assesses whether

the other individual is an incumbent or a mutant, and acts accordingly.

Scenario 3 (observant and discriminatory individuals): Here each individual cor-
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rectly assesses whether the other individual is an incumbent or a mutant, and

acts accordingly when meeting his or her own kind. However, when an incum-

bent meets a mutant, then both individuals behave selfishly. We will refer to this

behavior as discriminatory altruism.

In each of these scenarios, we will say that the incumbents’ behavior is evolutionarily

robust against the mutants’ behavior, if (i) an incumbent does at least as well against an

incumbent as a mutant does against an incumbent, and (ii) a mutant who does equally

well against incumbents as these do against themselves does strictly worse against another

mutant than incumbents do.27 It remains to provide a criterion for “doing well.” We take

the expected material utility as the criterion.

If the incumbents’ behavior is robust against a certain mutant behavior in this sense, then

the mutants will fare less well, on average, than incumbents under uniform random matching

in a population, granted the mutants make up a sufficiently small population fraction, since

then the probability of meeting a mutant, for incumbents and mutants alike, is very small

and hence the mutants do strictly worse than incumbents by continuity. This conclusion does

not hold, of course, under selective matching, that is, when mutants interact mostly with

each other. However, if mutants interact exclusively with other mutants, and incumbents

exclusively with incumbents, then the analysis in section 4.1.3 applies: then mutants fare

less well than incumbents if and only if, in equilibrium, the expected material utility to a

pair of incumbents is lower than that to a pair of mutants. Under intermediate selective

matching, the expected utilities will be convex combinations of those under uniform random

matching and exclusively selective matching. Most of the subsequent analysis will be focused

on situations in which α and α0 are restricted to be either zero, one half or one.

Denote by s(α, α0) the unique equilibrium strategy in game G for a player with altruism α

facing a player with altruism α0 (see section 3). When material utility is additively separable,

as we here assume, a strategy consists of an effort-cum-probability p, and a transfer function

τ that maps output pairs to transfers. In equilibrium, positive transfers occur only if the

outputs differ: this conditional transfer was denoted by t in section 3.1. By a slight abuse of

notation, write p (α, α0) for the equilibrium effort-cum-probability of a player with altruism α

when playing against a player with altruism α0, and let t(α) denote the equilibrium transfer

from a player with altruism α in states where this player is rich and the other poor (this

transfer is independent of the other player’s degree of altruism).

27This definition of robustness is nothing but an adaptation of the game-theoretic concept of evolutionary
stability (see Maynard Smith (1982) or Weibull (1995)).
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Consider now scenarios 1 and 2. If an individual i has altruism αi, for i = 1, 2, and

believes that the other has altruism α0j, where j 6= i, then the expected material utility to

individual i is

V (αi, α
0
j, αj, α

0
i) = p

¡
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In scenario 3, the expected material utility to an incumbent is V (α, α, α, α) when matched

with another incumbent, while it is V (0, 0, 0, 0) when matched with a mutant, and likewise

for mutants.

7.1 Robustness against behavioral mutations

Can a population of fully altruistic individuals resist an invasion by a small number of selfish

individuals? Is the reverse true?

7.1.1 Scenario 1

In the first scenario that was laid out above, each individual believes that the other individual

has the same degree of altruism as himself, i.e., αi = α0j, i, j = 1, 2. Applying the definition

introduced above, selfishness is evolutionarily robust if

V (0, 0, 0, 0) > V (1, 1, 0, 0). (29)

It is straight-forward to show that (29) holds whenever material utility is additively separable

in effort and consumption (see the proof of the proposition below). This is intuitive: the

altruist would give a transfer if his output were larger, but would not receive one if his

output happened to be smaller. Moreover, here a selfish individual is almost certainly right

in believing that his opponent is also selfish–and conditional on this he chooses the effort

that maximizes his expected material utility.

Conversely, intuition might suggest that a population consisting of full altruists would

not resist a small invasion by selfish individuals, since a selfish individual playing against

an altruist may receive a transfer but would not give one. However, this argument fails to

recognize the role played by the choice of effort. If the selfish individual chooses a higher
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effort level than the altruist, p(0, 0) > p(1, 1), then he is less likely to enjoy the benefit of

receiving a transfer than if he were an altruist. Calculations show that this drawback of being

selfish may outweigh the benefits, i.e., that V (1, 1, 1, 1) > V (0, 0, 1, 1) sometimes holds, in

which case full altruism is evolutionarily robust.

The following proposition is proved in the appendix.

Proposition 10 In Scenario 1, selfishness is robust against full altruism, for any additively
separable material utility function u. Full altruism is not robust against selfishness if p(1, 1) ≥
p(0, 0). There exist parameter values for which full altruism is robust against selfishness.

Numerical examples using Cobb-Douglas preferences suggest that β has to be above a

certain threshold for altruism to be evolutionarily robust, and that this threshold value

increases as γ increases. Figure 14 shows the threshold value for β (on the vertical axis) as a

function of γ (on the horizontal axis). The intuition is that the benefit from playing against
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Figure 14: Evolutionary robustness of full altruism when players are randomly matched.

an altruist increases as β increases (since the transfer increases), and, moreover, the effort of a

selfish individual increases. Hence, the larger β is, the less likely is a selfish individual to reap

the (larger) benefits from meeting an altruist. By contrast, an altruist always reaps those

benefits and, when being an incumbent, chooses the approximately optimal effort level. For

β sufficiently large, the mutant selfish individual fares less well than an incumbent altruist

when meeting an incumbent altruist.

7.1.2 Scenario 2

Suppose instead that each individual observes the other’s degree of altruism. Then selfishness

is evolutionarily robust if V (0, 0, 0, 0) > V (1, 0, 0, 1), and full altruism is evolutionarily robust
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if V (1, 1, 1, 1) > V (0, 1, 1, 0). In this scenario, an altruistic mutant does better against a

selfish incumbent, as compared with scenario 1. However, selfishness is still robust, since a

selfish individual maximizes his expected material utility whereas an altruist in general does

not maximize his or her own expected material utility, because of his or her concern for the

other. A selfish individual makes less effort in anticipation of the altruist’s help if need be.

Hence, full altruism is no longer evolutionarily robust. The following proposition is proved

in the appendix.

Proposition 11 In Scenario 2, selfishness is evolutionarily robust whereas full altruism is

not.

7.1.3 Scenario 3

Finally, consider observant and discriminatory individuals. By assumption, such individuals

behave selfishly whenever the other individual has a different degree of altruism. Thus, if

the incumbents are selfish, then any mutant would obtain the same expected material utility

as an incumbent when matched with an incumbent. Moreover, fully altruistic individuals do

very well against each other, so selfishness is not robust against full altruism. By contrast, a

population consisting of discriminatory and fully altruistic individuals would be robust to a

small invasion of selfish mutants, since the incumbents would then behave selfishly against

the mutants, and, by proposition 2, V (1, 1, 1, 1) > V (0, 0, 0, 0). This proves

Proposition 12 In Scenario 3, selfishness is not evolutionarily robust whereas full altruism
is.

7.1.4 Selective matching

In the preceding analysis we assumed that players were randomly matched with equal prob-

ability for all potential matches. If instead matching were completely selective, so that

mutants were always paired with each other and incumbents with each other, then only full

altruism would be robust, since V (1, 1, 1, 1) > V (0, 0, 0, 0). Fully altruistic individuals then

have an advantage over selfish individuals in that they provide mutual insurance to each

other.
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7.2 Kinship altruism

Here we follow Bergstrom’s (1995, 2003) analysis of interactions between siblings, where

altruism is inherited from parents to children. More specifically, the degree of altruism of

an offspring depends on both parents’ degrees of altruism in the following way: an offspring

is equally likely to inherit the degree of altruism from the father or the mother.28 Thus, if

both parents have degree of altruism α, then both siblings also have altruism α. But if the

parents’ degrees of altruism differ, say the father’s is α whereas the mother’s is α0, then with

probability 1/4 both siblings have degree of altruism α, with probability 1/4 both siblings

have degree of altruism α0, and with probability 1/2 they have different degrees of altruism.

In pair-wise interactions between such siblings we ask whether a population where all siblings

have the same degree of altruism α towards each other would resist an “invasion” of a small

number of mutant siblings who have a different degree of altruism.

Consider, thus, a homogeneous population where the initial degree of altruism is α. We

can think of a sequence of generations in this population as follows. At the beginning of each

time period, the individuals who survived to the age of reproduction mate randomly. Each

matched pair then has exactly two offspring. Finally, each pair of siblings play the game

G exactly once. An individual’s payoff in this game can be thought of as a proxy for that

individual’s probability of surviving until the age of reproduction (the next time period).

Now assume that a mutation occurs, and that a proportion ε > 0 of the individuals who are

about to reproduce carry the mutant degree of altruism α0. Random mating takes place, and

reproduction occurs. Whether or not the mutant degree of altruism is able to invade this

population depends on how well a child carrying the mutant degree of altruism does compared

to a child carrying the incumbent degree of altruism (since among the offspring approximately

the proportion ε carry the mutation). If the latter obtains a greater expected material utility

than the former, we will say that the incumbent degree of altruism is evolutionarily robust

against the mutant (under random mating but sibling interaction).

For any given pair of parents the degrees of altruism of their children are not statistically

independent as we saw above. This needs to be taken into account when computing the

28If transmission were genetic, this would correspond to the sexual haploid reproduction case, where each
parent carries one copy of the gene, and the child inherits either the father’s or the mother’s gene. The
human species uses sexual diploid reproduction: then each individual has two sets of genetic information,
or chromosomes; one set is inherited from the father, and the other from the mother. Whether a gene is
expressed or not depends on whether it is recessive (two copies are needed for the gene to be expressed), or
dominant (one copy is sufficient for the gene to be expressed). Bergstrom’s (2003) analysis of games between
relatives shows that the condition for a population carrying the same gene to resist the invasion by a mutant
gene in the haploid case, is the same as the condition for a population carrying the same recessive gene to
resist the invasion by a dominant mutant gene in the diploid case.
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expected material utility of a child. We limit our attention to Scenario 1 above, namely, an

individual with degree of altruism α believes that his or her sibling has the same degree of

altruism.29 Then the condition for the incumbent degree of altruism α to resist the invasion

by a mutant degree of altruism α0 is D(α, α0) > 0, where

D(α, α0) = V (α, α, α, α)−
∙
1

2
V (α0, α0, α0, α0) +

1

2
V (α0, α0, α, α)

¸
and V is the expected material utility defined in (28). The intuition behind this condition

is as follows. The first term, V (α, α, α, α), approximates the expected material utility to a

child with the incumbent degree of altruism α. For if the proportion of mutant carriers in

the parent generation, ε > 0, is close to zero, then with near certainty both parents of this

child carry α, implying that the child’s sibling also does. The term in the square brackets

approximates the expected material utility to a child carrying the mutant degree of altruism

α0. For if ε is close to zero, then with near certainty any such child has one parent carrying

the mutant degree of altruism, and one parent carrying the incumbent degree of altruism α.

Therefore, with probability 1/2 this child’s sibling would carry the mutant degree of altruism

α0, and with the complementary probability the sibling would carry the incumbent degree

of altruism α.

In particular, a population of individuals who are fully altruistic towards their siblings

(and they are only matched with siblings here), would resist a small-scale invasion by in-

dividuals who are fully selfish if D(1, 0) > 0, and the condition for the reverse to be true

is D(0, 1) > 0. Figure 15 displays the threshold value for β above which a population of

altruistic individuals would resist an invasion of selfish mutants, when preferences are Cobb-

Douglas. The numerical examples using Cobb-Douglas preferences suggest that altruism

between siblings resist the invasion by selfish mutants whenever a selfish mutant’s effort is

strictly positive. When this effort is zero, however, either an altruist’s effort is also zero, in

which case D(1, 0) = 0, or it is positive, in which case D(1, 0) < 0.

Figure 16 shows when selfishness between siblings would resist the invasion by altruistic

mutants with Cobb-Douglas preferences. Two distinct sets of parameter pairs (β, γ) satisfy

this requirement: either γ is small and β is large (the upper left corner), or β is very small

(at the bottom in the graph). Selfishness among siblings resists the invasion by altruists

only if β is small enough, or when it is large enough. For small values of β, it seems that a

strong driving force behind the resistance of selfishness is that a selfish individual provides

little or no effort. The intuition for why selfishness would resist the invasion by altruists

29We are aware that scenario 2 might be more realistic, but scenario 1 is the easiest case to analyze.
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Figure 15: Resistance of full altruism among siblings.
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Figure 16: Resistance of selfishness among siblings.

for (β, γ)-pairs above the top curve in Figure 16 is as follows. For these parameter values

output variability is high. An altruist would stand to lose much by sharing some of his

output, when high, with the other, and by not receiving anything from a selfish sibling,

when his own output is low: V (1, 1, 0, 0) is small relative to V (0, 0, 0, 0). For sufficiently

large β, this loss is sufficiently large to outweigh the benefit that mutual altruism confers on

altruistic siblings.

7.3 Comparing altruism among randomlymatched individuals with

altruism between siblings

Our analysis suggests that when the interaction takes place between individuals with sta-

tistically independent degrees of altruism, as in subsections 7.1.1-7.1.3, evolutionary forces

tend to select for selfishness, unless altruistic individuals are quite altruistic, and sophis-
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ticated enough to avoid being exploited by selfish individuals (scenario 3). By the same

token, if selfish individuals are not sophisticated enough to exploit altruists when meeting

them (scenario 1), full altruism is evolutionarily robust in sufficiently unforgiving climates

(large β). By contrast, when the interaction takes place between siblings, as in subsection

7.2, evolutionary forces tend to select for altruism and against selfishness (here only scenario

1 is considered). Since siblings’ degrees of altruism are positively correlated, an altruist is

more likely to meet another altruist than a selfish child is, implying that altruism among

siblings resists mutations to selfishness in a wider parametric range of environments than

under random matching (compare Figures 14 and 15). Likewise, selfishness among siblings

is more vulnerable to altruistic mutations than selfishness among randomly matched individ-

uals. Nonetheless, selfishness between siblings resists altruistic mutations when β is large,

i.e., when an altruist would suffer a large loss from interacting with a selfish individual. By

contrast, selfishness among randomly matched individuals is always evolutionarily robust–

at least when all individuals naïvely believe that their opponent has the same degree of

altruism as themselves, as we assume in the present comparison.
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Figure 17: Resistance of full altruism among siblings, and of selfishness among randomly
matched players.

Consider, finally, a society in which each individual either is involved only in random

pairwise interactions with non-relatives, or interact only with his sibling. The area between

the two curves in Figure 17 is the set of values for (β, γ) for which (naïve) altruism among

randomly matched individuals is not evolutionarily robust, while (naïve) altruism among

siblings is robust and (naïve) selfishness among siblings is not. We can also identify environ-

ments in which both (naïve) altruism among randomly matched indiividuals and selfishness

among siblings are evolutionarily robust. This is the case for (β, γ)-pairs above the curve in

Figure 18.
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Figure 18: Evolutionary robustness of full altruism among randomly matched players, and
resistance of selfishness among siblings.

8 Conclusion

This study was motivated by the observation that intrafamily transfers are more significant in

some parts of the world than in others, and that this may have been so for several centuries.

Our objective was twofold. First, we wanted to study how, in a pre-industrial society without

formal insurance, the informal insurance that may be provided through the family affects

various economic outcomes, such as effort, income, and material welfare. In particular, we

sought to better understand how the exogenously given environment, such as the climate,

interacts with these effects. Second, we relied on this analysis to explore the possibility that

evolutionary forces may lead to different levels of intrafamily altruism in different climates.

This thought-experiment may shed some light on why family ties may have been weaker in

some parts of the world than in others, and thus why there may have been differences in

formal institutions.

We analyzed a two-player game in which the players choose effort, affecting the probability

of receiving a high output level, and, conditional on the outputs of both players, a transfer

from one to the other. We found that the informal insurance provided by the family is not

necessarily detrimental to effort: in our basic model an altruistic individual has an additional

incentive (as compared with a selfish individual) to make effort because he or she wants to

have enough output to share with the other, in case the other receives a low output level, and

this additional incentive may outweigh the incentive to free-ride on the other individual’s

altruism, that is, of being helped out by the other in case own output is low. Thus, in a

given climate, effort may be higher in families with very strong family ties than in families

with weak family ties. We also saw that altruism has a positive effect on effort in forgiving
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climates (environments with a low marginal return to effort): an increase in altruism may

induce individuals to provide more effort if initially effort is low (because the return to

effort is low) and hence the marginal disutility of effort is low. However, individuals may

not always fully enjoy helping others: under (socially) coerced altruism, only the free-rider

effect is present and therefore efforts fall as the extent of informal (but coerced) insurance

increases.

These insights also shed light on the effects of altruism on material welfare. With coerced

altruism, the usual trade-off between insurance and incentive appears: coerced altruism is

beneficial because it provides some insurance against adverse shocks, but it comes at a cost

because it reduces effort. Hence, if a family could choose the level of coerced altruism, in

order to maximize the expected material utility of its members, then it should choose a

positive level but not completely eliminate their exposure to risk. By contrast, if the family

members would help each other voluntarily, i.e., if they would be driven by true altruism

towards each other, then full altruism, whereby total output is always shared equally, would

be optimal. This conclusion is valid even in environments where full altruism leads to lower

effort than full selfishness, as is the case in unforgiving climates.

In the evolutionary analysis we asked whether full altruism would stand a chance against

selfishness from an evolutionary perspective, and whether this depends on climate. We dis-

tinguished between two settings: one where the players’ degrees of altruism are statistically

independent, as under random matching in a large population, and another, where the play-

ers’ degrees of altruism are correlated, as between siblings. In the first setting, we found

that a population of fully altruistic individuals would resist the invasion by selfish individ-

uals if altruists were discriminatory in the sense of behaving selfishly when matched with a

selfish individual. Full altruism would also be evolutionarily robust in the same setting, if

all individuals were naïve in the sense of assuming that the other individual had the same

degree of altruism as themselves, granted the climate was sufficiently unforgiving. Naïve

selfish individuals would then make large efforts since they would not expect to be helped.

In the second setting, where the individuals are siblings, full altruism resists the invasion

by selfishness for a wider range of climates than under random matching, even if individuals

are not discriminatory. The reason is that in this setting an altruist is more likely to interact

with another altruist. Due to this effect, reminiscent of group selection, selfishness among

siblings tends to be selected against: with probability one-half a mutant altruist confers

benefits on another altruist. However, numerical simulations showed that selfishness among

siblings would be evolutionarily robust in very unforgiving climates: a naïve altruist would

then suffer such a large loss from interaction with a selfish sibling, which happens with
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probability one-half, that this would outweigh the benefit from interacting with an altruistic

sibling, which also happens with probability one-half. This is consistent with observations

made by historians such as Macfarlane (1978, 1992), and by Max Weber (1951), that in pre-

industrial times individualism in the form of weak family ties seemed to be more prevalent

in northwestern Europe, where the climate is arguably less forgiving, than elsewhere.

Our main analysis was conducted for individuals in a pre-industrial society without access

to formal insurance markets. However, we extended the framework to include a perfectly

competitive insurance market. We found that such formal insurance, in a society of selfish

individuals, while having a negative effect on effort, just as coerced altruism has, but would,

according to our numerical simulations, still be better than coerced altruism. The reason is

that formal insurance pools the risks of a larger number of people while informal insurance

only operates within small groups, here pairs, and hence gives no coverage if both individ-

uals in the group obtain the low output. Interestingly, despite its limited risk-pooling, our

numerical simulations show that full altruism may be even better than a competitive formal

insurance market, thanks to the individuals’ internalization of the external effects of their

effort choice. Whether these results would hold more generally is an open question.

Our analysis could be extended to study whether a strong degree of altruism between

individuals may lead to insurance market failure. Will altruistic individuals choose not to

buy insurance, in the hope of being helped out by other altruistic individuals? We note that

this potential cause for market failure adds to the more well-known source, moral hazard,

studied here (among selfish individuals). Public insurance, or social security, could then be

welfare-enhancing (c.f. Lindbeck and Weibull (1988)). If this is so, will the benefit of social

security be more pronounced in more or less favorable and/or forgiving climates, in less or

more altruistic populations?

Today, the income of an individual in an developed economy no longer depends to a

significant degree upon the climate, as it did and still does in pre-industrial societies. Perhaps

it would be fair to assume that an individual’s baseline output (baseline disposable income)

is higher in a more developed economy, while the marginal return to effort may be higher or

lower, for a given climate. In a developed economy with low income taxes and little welfare,

the baseline output level may not be much higher than in a less developed economy but

the marginal return to effort would arguably be much higher. By contrast, in a developed

economy with high income taxes and a significant welfare system, the base-line output level

may be much higher than in a less developed economy, while the marginal return to effort

may not be so much higher, or even lower, than in the less developed economy. We hope that

our analysis can be helpful for comparisons of this sort, also with regard to migration, and
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to a deeper understanding of links between altruism, climate and economic development.

9 Appendix

9.1 Proof of Proposition 1

Note that

F (p) ≡ ∂Πi (p1, p2)

∂pi

¯̄̄̄
p1=p2=p

If α ∈ [1/β, 1] a common strictly positive equilibrium effort p necessarily satisfies F (p) = 0,
which after some algebraic manipulation yields the following polynomial equation in p:∙
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= 0.

For α ∈ [1/β, 1], the largest of the two roots to this equation exceeds 1. To see this, let A,
B, and C be the coefficients in equation (30), when written in the form Ap2 −Bp+C = 0.

The two roots are

p =
B −
√
B2 − 4AC
2A

and q =
B +
√
B2 − 4AC
2A

,

where B2− 4AC ≥ 0 for all α ∈ [0, 1], β ≥ 1 and γ ≥ 0 such that αβ ≥ 1. Note that A ≥ 0
iff (β−α)(αβ− 1) ≥ 0 and B2− 4AC > (2A−B)2 iff A (A−B + C) < 0 iff A−B+C < 0

iff γ/ (1 + α) ≥ 0. It follows that q ≥ p. It remains to prove that q > 1 when αβ > 1 and

γ > 0. For this purpose, note that q > 1 iff
√
B2 − 4AC > 2A−B iff B2−4AC > (2A−B)2

iff A (A−B + C) < 0, an inequality that holds if α ∈ [0, 1], β ≥ 1, αβ > 1 and γ > 0.

Finally, we note that p > 0 iff F (0) > 0 iff

γ < lnβ + ln

µ
α(1 + β)

1 + α

¶α

+ ln

µ
1 + β

β(1 + α)

¶
.

End of proof.
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9.2 Proof of Proposition 2

We proceed in two steps. First, we characterize the socially optimal probability p and

transfer t, to be given by the rich to the poor, under a Benthamite social welfare function.

Secondly, we characterize the equilibrium probability p and transfer t, and verify that these

two characterizations coincide if and only if α = 1.

Consider a hypothetical social planner who chooses a probability p and transfer t so as

to maximize the sum of the expected material utilities to each individual,

W (p, t) = p2 ln yH + (1− p)2 ln yL + p(1− p)[ln(yH − t) + ln(yL + t)] + γ ln(1− p). (31)

The necessary first-order condition for an interior solution for p is

γ

1− p
= 2p ln yH − 2(1− p) ln yL + (1− 2p)[ln(yH − t) + ln(yL + t)],

which may be rewritten as

γ

1− p
= lnβ + ln

Ã
(yL + t)

¡
yH − t

¢
yLyH

!
− 2p ln

Ã
(yL + t)

¡
yH − t

¢
yLyH

!
. (32)

A symmetric interior Nash equilibrium p∗ of the game Ĝ necessarily satisfies:

γ
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= lnβ + α ln
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!
− (1 + α)p ln
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¢
yLyH

!
. (33)

We see that (33) is identical with (32) iff α = 1. Moreover, for any value of p, the value

of t that maximizesW (p, t) is such that both individuals end up with the same consumption

in all states. In particular, yH − t = yL+ t, or, equivalently, t =
¡
yH − yL

¢
/2. But the same

relationship holds in equilibrium of a transfer subgame G(y) where y1 6= y2 (with identical

individuals) iff α = 1. End of proof.

9.3 Proof of Proposition 3

First assume that α ∈ (α̂, 1). Then the unique equilibrium effort-cum-probability p∗ is

differentiable with respect to α, and straightforward calculations show that

∂p∗(α, β, γ)

∂α
=
1

K

∙
(1− p∗) ln

µ
yL + t∗

yL

¶
+ p∗ ln

µ
yH

yH − t∗

¶
− 1− α2

yL + t∗
· ∂t

∗(α, β, yL)

∂α

¸
,
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where, by (10), ∂
∂α
t∗(α, β, yL) > 0 when positive, and

K =
γ

(1− p∗)2
+ (1 + α) ln

µ
(yL + t∗)(yH − t∗)

yLyH

¶
> 0. (34)

As α ↓ α̂ (at which point p∗ is not differentiable), the first two terms within the square

brackets tend to zero, so that the last term determines the sign, whereas the opposite is true

when α ↑ 1. Indeed, this property holds whenever utility is separable in consumption and
effort. End of proof.

9.4 Proof of Proposition 7

This proof is similar to the proof of proposition 1. Note that F̃ (p) = 0 iff

ln

Ã
α̃

β

µ
1 + β

1 + α̃

¶2!
· p2 − ln

Ã
α̃

β

µ
1 + β

1 + α̃

¶3!
· p+ ln

µ
1 + β

1 + α̃

¶
− γ = 0. (35)

For α̃ ∈ [1/β, 1], the largest of the two roots to equation (35) exceeds 1. To see this, let A,
B, and C be the coefficients in equation (35), when written in the form Ap2 −Bp+C = 0.

The two roots are

p =
B −
√
B2 − 4AC
2A

and q =
B +
√
B2 − 4AC
2A

,

where B2− 4AC ≥ 0 for all α̃ ∈ [0, 1], β ≥ 1 and γ ≥ 0 such that α̃β ≥ 1. Note that A ≥ 0
iff (β− α̃)(α̃β− 1) ≥ 0 and B2− 4AC ≥ (2A−B)2 iff A (A−B + C) ≤ 0 iff A−B+C ≤ 0
iff γ ≥ 0. It follows that q ≥ p. It remains to prove that q > 1 when α̃β > 1 and γ > 0.

For this purpose, note that q > 1 iff
√
B2 − 4AC > 2A − B iff B2 − 4AC > (2A − B)2 iff

A (A−B + C) < 0, an inequality that holds if α̃ ∈ [0, 1], β ≥ 1, α̃β > 1 and γ > 0. Finally,

we note that p > 0 iff γ < ln (1 + β)− ln (1 + α̃). End of proof.

9.5 Proof of Proposition 10

Selfishness is robust against altruism if

V (0, 0, 0, 0) ≥ V (1, 1, 0, 0). (36)
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Writing u(c, p) = h(c)− k(p) we note that V (0, 0, 0, 0)− V (1, 1, 0, 0) may be written

£
p(0, 0)h

¡
yH
¢
+ (1− p(0, 0))h

¡
yL
¢
− k(p(0, 0))

¤
−
£
p(1, 1)h

¡
yH
¢
+ (1− p(1, 1))h

¡
yL
¢
− k(p(1, 1))

¤
+ p(1, 1) (1− p(0, 0))

£
h
¡
yH
¢
− h

¡
yH − t(1)

¢¤
.

The difference between the first two terms within square brackets is non-negative since the

autarky effort p(0, 0) maximizes ph
¡
yH
¢
+ (1− p)h

¡
yL
¢
− k(p). The last term is non-

negative. The expression equals zero if and only if p(1, 1) = p(0, 0) = 0.

Altruism is robust against selfishness if V (1, 1, 1, 1) ≥ V (0, 0, 1, 1). Write the difference

V (0, 0, 1, 1)− V (1, 1, 1, 1) as

£
p(0, 0)h

¡
yH
¢
+ (1− p(0, 0))h

¡
yL
¢
− k(p(0, 0))

¤
−
£
p(1, 1)h

¡
yH
¢
+ (1− p(1, 1))h

¡
yL
¢
− k(p(1, 1))

¤
+ p(1, 1) (1− p(1, 1))

£
h
¡
yH
¢
− h

¡
yH − t(1)

¢¤
+ p(1, 1) (p(1, 1)− p(0, 0))

£
h
¡
yL + t(1

¢
− h

¡
yL
¢¤
.

We recognize the difference between the first two terms within square brackets from the

previous expression: this difference is non-negative. The next term is also non-negative.

The last term is non-negative if p(1, 1) ≥ p(0, 0). The last statement of the proposition is

supported by numerical examples. End of proof.

9.6 Proof of Proposition 11

We begin by proving that selfishness is evolutionarily robust. First, conditional on facing a

selfish player who chooses effort p(0, 0), a selfish player maximizes his expected material util-

ity, whereas an altruist also takes into account the material utility of the opponent and there-

fore fails to maximize his own expected material utility: hence V (0, 0, 0, 0) > V (1, 0, 0, 0).

Second, ceteris paribus the expected material utility of an altruistic player, conditional on

his or her effort-cum-probability being positive, is increasing in his or her opponent’s effort-

cum-probability. Now, we know from Section 3.2 that a player’s effort level decreases as the

opponent’s degree of altruism increases (as long as that entails a larger transfer). In partic-

ular, equations (6) and (7) imply p(0, 0) > p(0, 1). As a result, V (1, 0, 0, 0) > V (1, 0, 0, 1).

Taken together, these two inequalities imply V (0, 0, 0, 0) > V (1, 0, 0, 1).

We can use similar arguments to show that full altruism is not evolutionarily robust.
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First, conditional on facing a player choosing p(1, 0), a selfish player maximizes his ex-

pected material utility, whereas an altruist, by taking into account the material utility

of the opponent, fails to maximize his or her own expected material utility: therefore

V (0, 1, 1, 0) > V (1, 1, 1, 0). Second, ceteris paribus the expected material utility of an al-

truistic player, conditional on his or her effort-cum-probability being positive, is increasing

in his or her opponent’s effort-cum-probability. Again, we can use (6) and (7) to note that

p(1, 0) > p(1, 1). As a result, V (1, 1, 1, 0) > V (1, 1, 1, 1). Taken together these two inequali-

ties imply V (1, 1, 1, 1) < V (0, 1, 1, 0). End of proof.
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