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nomics, Sveavägen 65, P.O. Box 6501, SE-11383 Stockholm, Sweden.

†This article is based on chapter 10, part B, of my PhD dissertation, written at the
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1 Introduction

A major goal of evolutionary game theory is to clarify the connection between

the outcome of simple adaptive processes modelling the evolution of behavior

in populations of boundedly rational agents and equilibrium concepts. For

a fairly wide class of dynamics, it has been found that, if a solution con-

verges to a point and if initially all pure strategies are played with positive

probability, then this point is a Nash equilibrium. Similarly, weak dynamic

stability (Lyapunov stability) implies Nash equilibrium behavior (Weibull,

1995). On the other hand, evolutionary dynamics need not lead to Nash

equilibria. For instance, in a version of the child game Rock-Paper-Scissors,

the replicator dynamics does not converge to the unique Nash equilibrium,

but cycles outward towards the boundary of the state space (Zeeman, 1980;

Hofbauer and Sigmund, 1998). Non-convergence to Nash equilibria is a uni-

versal phenomenon: for any dynamics satisfying some minimal adaptivity

and regularity conditions, there are games with a unique Nash equilibrium

and such that, for an open set of initial conditions, the solution does not

converge to the equilibrium but cycles (Hofbauer and Swinkels, unpublished;

Hofbauer and Sigmund, 1998, section 8.6)1,2.

There are several ways to try to find nonetheless a general connection

between evolutionary dynamics and equilibria. A first possibility is to replace

convergence to the set of Nash equilibria by some weaker connection, like

convergence in time-average or simply a connection between strategies that

survive and strategies that are played in equilibrium. The latter works for

games with few strategies: under the single-population replicator dynamics,

for any 3×3 symmetric game and any interior initial condition, all strategies

that do not belong to the support of any Nash equilibrium are eliminated.

This follows from Bomze’s (1983) classification of the replicator dynamics’

phase portraits in 3 × 3 symmetric games. The same result holds for the

best-response dynamics (Viossat, 2005, chapter 9a).

Another possibility is to replace Nash equilibrium by a weaker concept.

The main current candidate would probably be correlated equilibrium. In-

deed, recent articles surveyed by Hart (2005) show that simple adaptive pro-

1This holds for every myopic adjustment dynamics (Swinkels, 1993) whose vector field
depends smoothly on the payoff matrix of the game.

2We are interested here in evolutionary dynamics, but we stress that other types of
adaptive processes more readily lead to approximate Nash equilibrium behavior. See e.g.
Young (2004) and Foster and Young (2006).
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cesses converge to the set of correlated equilibria, at least in a time-average

sense. Though these processes are not evolutionary dynamics, this suggest

that correlated equilibrium might be better related to the outcome of evolu-

tionary dynamics than Nash equilibrium.

Again, in small dimension, some positive results can be obtained. For

instance, in 3 × 3 symmetric games, under the single- or two-population

replicator dynamics and for any interior initial condition, all strategies that

do not belong to the support of any correlated equilibrium are eliminated

(Viossat, 2005, chapter 9b).3 The same result holds for the best-response

dynamics, and for any convex monotonic dynamics, in the sense of Hofbauer

and Weibull (1996).

However, for games with more strategies, even such a weak connection

between correlated equilibrium and the outcome of evolutionary dynamics

cannot be found. Indeed, for the single-population replicator dynamics, there

are 4 × 4 symmetric games for which, for an open set of initial conditions,

all strategies belonging to the support of at least one correlated equilibrium

are eliminated; thus, only strategies that do not take part in any correlated

equilibrium remain (Viossat, 2006). It follows that no kind of time-average

of the replicator dynamics converges to the set of correlated equilibria.

The purpose of this article is to show that elimination of all strategies

used in correlated equilibrium is a robust phenomenon; that is, it does not

only occur for the replicator dynamics and very specific games, but for many

dynamics and for an open set of games.

The games we study are 4×4 symmetric games built by adding a strategy

to an outward-cycling Rock-Paper-Scissors game and assuming some payoff

inequalities. Under the replicator dynamics and the best-response dynamics,

the attractor of the underlying Rock-Paper-Scissors game is asymptotically

stable in the augmented, 4 × 4 game. This is in spite of the fact that, for

an open set of such games, the unique strategy belonging to the support of

a correlated equilibrium is the added, fourth strategy. It follows that, for

the replicator dynamics and the best-response dynamics, there is an open set

of games for which, for an open set of initial conditions, all strategies used

in correlated equilibrium are eliminated. This is also true of (i) a family of

dynamics including the Brown-von Neumann-Nash dynamics; (ii) any mono-

3The reason why this does not follow from the above stated result on Nash equilibrium
is that we now consider two-population dynamics, so that the state space has no longer
dimension 2 but 4.
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tonic or weakly sign-preserving dynamics in which no new strategy arises by

mutation, and whose vector field depends continuously on the payoffs. Our

proofs for these dynamics apply to a smaller open set of games than for the

replicator dynamics and the best-response dynamics.

An issue is that our results might rest on the implicit assumption that

agents play pure strategies.4 To address this issue, we consider the following

model, taken from Hofbauer and Sigmund (1998, section 7.2): there is a basic

strategic situation, modelled by a finite normal form game, called the base

game. The population is divided in a finite number of types of agents, and

each type plays a pure or mixed strategy of the base game. Selection acts

on types. Thus, the true game, i.e., the game in which selection operates, is

the game whose pure strategies are the types and whose payoffs are induced

by the base game payoffs. We assume that every pure strategy of the base

game is played by one type of agent, but that otherwise we do not know

which types of agents are present, nor the number of types. The question is

whether we can nonetheless be sure that, in the true game, all strategies used

in correlated equilibrium are eliminated for an open set of initial conditions,

or whether this depends on the types that are present. We show that, at least

for the replicator dynamics and the best-response dynamics, elimination of

all strategies used in correlated equilibrium is robust in this sense.

The remainder of this article is organized as follows. The games studied

throughout are introduced in section 2. Section 3 and the appendix show

that, under the replicator dynamics, elimination of all pure strategies used

in correlated equilibrium occurs for an open set of games (section 3). The

same result is then shown to hold for the best-response dynamics (section

4), a family of dynamics including the Brown-von Neumann-Nash dynamics

(section 5) and for monotonic or weakly sign-preserving dynamics (section

6). Section 7 studies the robustness of these results when agents can play

mixed strategies. Finally, section 8 concludes.

We first introduce the framework and the notations.

Framework and notations. We study single-population dynamics

in two-player, finite symmetric games. The set of pure strategies is I =

{1, 2, .., N} and SN denotes the simplex of mixed strategies (henceforth, “the

simplex”). Its vertices ei, 1 ≤ i ≤ N , correspond to the pure strategies of the

game. We denote by xi(t) the proportion of the population playing strategy i

4Note that in Hart and Mas-Collel’s (2003) model, agents play mixed strategies.
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at time t and by x(t) = (x1(t), ..., xN(t)) ∈ SN the population profile (or mean

strategy). We study its evolution under dynamics of type ẋ(t) = f(x(t),U),

where U = (uij)1≤i,j≤4 is the payoff matrix of the game. We often skip the

indication of time. For every x in SN , the probability distribution on I × I

induced by x is denoted by x⊗ x.

We assume known the definition of a correlated equilibrium distribution

(Aumann, 1974) and, with a slight abuse of vocabulary, we write throughout

correlated equilibrium for correlated equilibrium distribution. A pure strat-

egy i is used in correlated equilibrium if there exists a correlated equilibrium

µ under which strategy i has positive marginal probability (since the game is

symmetric, whether we restrict attention to symmetric correlated equilibria

or not is irrelevant; see footnote 2 in (Viossat, 2006)). Finally, the pure strat-

egy i is eliminated (for a given solution x(·) of a given dynamics) if xi(t) → 0

as t → +∞.

2 A family of games with a unique correlated

equilibrium

A RPS (Rock-Paper-Scissors) game is a 3× 3 symmetric game a1 b2 c3

c1 a2 b3

b1 c2 a3

 (1)

in which the second strategy (Paper) beats the first (Rock), the third (Scis-

sors) beats the second, and the first beats the third. That is,

bi < ai < ci for i = 1, 2, 3. (2)

For i = 1, 2, 3, let

αi = ai − bi , βi = ci − ai. (3)

Every RPS game has a unique Nash equilibrium: (n̂, n̂), where

n̂ =
1

Σ
(α2α3 + α3β2 + α2β3, α1α3 + α1β3 + β3β1, α1α2 + α2β1 + β1β2), (4)

with Σ > 0 such that n̂ ∈ S3 (see Zeeman, 1980; Gaunersdorfer and Hofbauer,

1995, or Hofbauer and Sigmund, 1998). It was shown in (Viossat, 2006) that

n̂⊗ n̂ is actually the unique correlated equilibrium of the game.
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We say that a RPS game is outward cycling if

3∏
i=1

αi >

3∏
i=1

βi. (5)

In that case, under the replicator dynamics, the unique Nash equilibrium

is dynamically unstable, and for every initial condition different from the

Nash equilibrium, the solution of the replicator dynamics converges to the

boundary of the simplex (Zeeman, 1980).

The games we consider are 4 × 4 symmetric games built by adding a

strategy to an outward cycling RPS game. That is, letting

U =


a1 b2 c3 d1

c1 a2 b3 d2

b1 c2 a3 d3

f1 f2 f3 a4

 (6)

denote the payoff matrix of the row player, and defining αi and βi as in (3)

for i = 1, 2, 3, we assume that αi and βi are positive and that equation (5) is

satisfied.

In addition, we assume that near the vertices e1, e2, e3 of the simplex S4,

strategy 4 earns strictly less than the mean payoff. That is,

fi < ai for i = 1, 2, 3. (7)

In particular, there is a best-response cycle from e1 to e2 to e3 and back to

e1.

We now state our first results. Consider a 4×4 symmetric game satisfying

(2). Let n = (n̂1, n̂2, n̂3, 0) where n̂ = (n̂1, n̂2, n̂3), defined in (4), is the Nash

equilibrium of the underlying RPS game.5

Proposition 1 If d1 = d2 = d3 < a4 and e4 ·Un > n ·Un then the game

has a unique correlated equilibrium: e4 ⊗ e4.

Proof. The proof is a straightforward extension of the proof of proposition

1 in (Viossat, 2006) and so we omit it.

Proposition 2 (Viossat, 2005a, proposition 1) The set of finite games

with a unique correlated equilibrium is open.

5Instead of n, the notation n123 was used in (Viossat, 2006).
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A simple example of a game satisfying conditions (2), (5) and (7), and the

conditions of proposition 1 is:

Example 3

Uα =


0 −1 ε −α

ε 0 −1 −α

−1 ε 0 −α
−1+ε

3
+ α −1+ε

3
+ α −1+ε

3
+ α 0

 (8)

with ε in ]0, 1[, and 0 < α < (1− ε)/3.

It follows from example 3 and propositions 1 and 2 that:

Corollary 2.1 There exists an open set of 4×4 symmetric games satisfying

(2), (5) and (7) and with e4 ⊗ e4 as unique correlated equilibrium.

We can now precise the outline of the article. The next two sections show

that, for any game satisfying (2), (5) and (7), and for an open set of initial

conditions, the replicator dynamics and the best-response dynamics eliminate

strategy 4. Sections (5) and (6) deal with the Brown-von Neumann-Nash

dynamics and with any monotonic or weakly sign-preserving dynamics sat-

isfying some standard regularity conditions; elimination of strategy 4, for an

open set of initial conditions, is shown to occur in any game in a neighborhood

of (8), provided that α is small enough for the Brown-von Neumann-Nash

dynamics, and that ε is small enough for monotonic of weakly sign-preserving

dynamics.

3 Replicator dynamics

The replicator dynamics (Taylor and Jonker, 1978) is given by

ẋi(t) = xi(t) [(Ux(t))i − x(t) ·Ux(t)] .

Its behavior in example 3 was studied in (Viossat, 2006). It was shown that,

under the replicator dynamics and for α small enough, even though strategy

4 is the unique strategy used in correlated equilibrium, this strategy is elim-

inated for an open set of initial conditions. The purpose of this section is to

give a more general proof of this fact and to show that the same result holds

for an open set of games. We first need a definition:
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Definition Let C be a closed subset of S4. The set C is asymptotically stable

if it is:

(a) invariant: x(0) ∈ C ⇒ (∀t ∈ R,x(t) ∈ C)

(b) Lyapunov stable: for every neighborhood N1 of C, there exists a

neighborhood N2 of C such that, for every initial solution x(0) in N2, x(t) ∈
N1 for all t ≥ 0.

(c) locally attracting: there exists a neighborhood N of C such that, for

every initial condition x(0) in N , minc∈C ||x(t)− c|| →t→+∞ 0 (where || · || is

any norm on RI).

Let

Γ = {x ∈ S4, x4 = 0 and x1x2x3 = 0}. (9)

Proposition 4 For every 4× 4 symmetric game (6) satisfying (2), (5) and

(7), the set Γ is asymptotically stable.

Proof. The intuition is that, due to (5), the solution spirals outward as

long as x4 is low, and that, due to (7), if the initial condition is close to Γ,

x4 will never increase substantially and will eventually decrease to 0. The

formal proof consists in checking that the stability criteria for heteroclinic

cycles developed by Hofbauer (1994) are satisfied. As these criteria will be

introduced in section 6, the proof is postponed and given in the appendix.

Together with corollary 2.1, proposition 4 implies that there exists an

open set of 4 × 4 symmetric games for which, from an open set of initial

conditions, the unique strategy used in correlated equilibrium is eliminated.

Note that not all games satisfying (2), (5) and (7) have e4⊗ e4 as unique

correlated equilibrium or even unique Nash equilibrium. Actually, proposi-

tion 4 provides an example of a family of games with a common attractor

but very different sets of Nash equilibria6. The point is that this attractor, Γ,

is bounded away from the set of equilibria and that its asymptotic stability

only depends on the payoffs in its neighbourhood. This explains why the

6For instance, assuming throughout that (2), (5) and (7) are satisfied: if the fi are low
enough, then the Nash equilibrium of the underlying RPS game induces a Nash equilibrium
of (6). If d1 = d2 = d3 > a4 and if the fi are high enough, then there is a unique symmetric
Nash equilibrium, which is a convex combination of e4 and of the Nash equilibrium of
the underlying RPS game, and there is an infinity of asymmetric Nash equilibria [to see
that there is a unique symmetric Nash equilibrium, mimick the proof of proposition 3 in
(Viossat, 2006)]. If di < a4 for all i and if d2 and d3 are low enough (with respect to d1

and f1), then there is a Nash equilibrium in the interior of the edge [e1, e4], etc.
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stability of Γ is in a large part unrelated to the structure of the equilibrium

set.

4 Best-response dynamics

4.1 Main result

The best-response dynamics (Gilboa and Matsui, 1991; Matsui, 1992) is given

by the differential inclusion:

ẋ(t) ∈ BR(x(t))− x(t), (10)

where BR(x) is the set of best responses to x:

BR(x) = {y ∈ SN : y ·Ux = max
z∈SN

z ·Ux}.

A solution x(·) of the best-response dynamics is an absolutely continuous

function satisfying (10) for almost every t. In general, there might be several

solutions starting from the same initial condition. However, for the games

and the initial conditions that we will consider, there is a unique solution

starting from each initial condition.7

Consider a 4 × 4 symmetric game with payoff matrix (6) satisfying (2),

(5) and (7). Let

V (x) := max
1≤i≤3

[
(Ux)i −

∑
1≤i≤4

aixi

]
and W (x) := max(x4, |V (x)|). (11)

The set

ST := {x ∈ S4 : W (x) = 0} (12)

is a triangle, which, following Gaunersdorfer and Hofbauer (1995), we call

the Shapley triangle. Gaunersdorfer and Hofbauer (1995) show that in the

underlying RPS game, this triangle attracts all solutions of (10) except the

one starting and remaining at the Nash equilibrium. Here, we show that in

the full 4× 4 game, this triangle still attracts all solutions from an open set

of initial conditions.

7We focus on forward time and so never study whether a solution is uniquely defined
in backward time.
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Proposition 5 Consider a 4 × 4 symmetric game satisfying (2), (5) and

(7). If strategy 4 is not a best response to x(0) and if strategies 1, 2 and 3

are not all best responses to x(0), then for all t ≥ 0, x(t) is uniquely defined,

and x(t) converges to the Shapley triangle (12) as t → +∞. 8

Proof. We begin with a lemma, which is the continuous time version of the

improvement principle of Monderer and Sela (1997):

Lemma 4.1 (Improvement principle) Let t1 < t2, let b be a best re-

sponse to x(t1) and let b′ ∈ S4. Assume that ẋ = b − x (hence the solution

points towards b) for all t in ]t1, t2[. If b′ is a best response to x(t2) then

b′ ·Ub ≥ b ·Ub, with strict inequality if b′ is not a best response to x(t1).

Proof of lemma 4.1. Between t1 and t2, the solution points towards b.

Therefore, there exists λ in ]0, 1[ such that

x(t2) = λx(t1) + (1− λ)b. (13)

If b′ is a best response to x(t2) then (b′−b)·Ux(t2) ≥ 0 so that, substituting

the right-hand-side of (13) for x(t2), we get:

(1− λ)(b′ − b) ·Ub ≥ λ(b− b′) ·Ux(t1). (14)

Since b is a best response to x(t1), the right hand side of (14) is nonnegative,

and positive if b′ is not a best response to x(t1). The result follows.

Now fix a solution x(·) with initial condition satisfying the conditions of

proposition 5. Using lemma 4.1, it is easy to see that, at least for some time,

the solution x(t) is uniquely defined and has the following behavior: assume

for concreteness that at time t, strategy 1 is the unique best response to

x(t); the solution will then point towards e1 till some time t′ > t when some

other pure strategy becomes a best response. Due to the improvement prin-

ciple (lemma 4.1), this strategy can only be strategy 2. Thus, the solution

must then point towards the edge [e1, e2]. Since strategy 2 strictly dominates

strategy 1 in the game restricted to {1, 2} × {1, 2}, it follows that, immedi-

ately after time T , strategy 2 becomes the unique best response; therefore

8Note that for any game in a neighborhood of game (8), the former condition implies
the latter: if strategy 4 is not a best-response to x ∈ S4, then strategy 1, 2, and 3 are
not all best-responses to x. This is because in game (8), strategy 4 earns a strictly higher
payoff than (1/3, 1/3, 1/3, 0). Proposition 5 applies to much more general games, in which
the first condition need not imply the second.
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the solution will actually point towards e2. The solution keeps pointing to-

wards e2 till some other pure strategy becomes a best response; due to the

improvement principle, this strategy must be strategy 3. The solution then

changes direction, and points towards e3 till 1 becomes a best response again,

and so on.

To show that this behavior continues for ever, it suffices to show that the

times at which the direction of the trajectory changes do not accumulate.

This is the object of the following claim, which will be proved in the end:

Claim 4.2 The time length between two successive times when the direction

of x(t) changes is bounded away from zero.

Now recall the definition of the functions V and W in (11), and let v(t) =

V (x(t)), w(t) = W (x(t)). When x(t) points towards ei (with i ∈ {1, 2, 3}),
we have:

v̇ = (Uẋ)i −
∑

1≤j≤4

ajẋj = (U(ei − x))i −

(
ai −

∑
1≤j≤4

ajxj

)
= −v (15)

and we also have ẋ4 = −x4; therefore ẇ = −w. Since for almost time t, x(t)

points towards e1, e2 or e3, it follows that ẇ(t) = −w(t) holds for almost all

t, hence that w(t) decreases exponentially to 0. Therefore, x(t) converges to

the Shapley triangle.

To complete the proof, we still need to prove claim 4.2:

Proof of claim 4.2: In what follows i ∈ {1, 2, 3} and i+1 is counted modulo

3. Fix an initial condition and let

g(t) := max
1≤i,j≤3

[(Ux(t))i − (Ux(t))j]

denote the maximum difference between the payoffs of strategies in {1,2,3}.
This may be seen as a measure of the distance between x(t) and the set of

points x such that (Ux)1 = (Ux)2 = (Ux)3. Let tki denote the kth time at

which strategy i becomes a best response and choose i such that tki < tki+1.

Let x = x(tki ), g = g(tki ) and x′ = x(tki+1), g′ = g(tki+1). We now compute g′

as a function of g.

Between tki and tki+1, the solution points towards ei. Therefore, there

exists λ in ]0, 1[ such that

x′ = λei + (1− λ)x. (16)
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Furthermore, by definition of tki and tki+1,

(Ux)i−1 = (Ux)i = (Ux)i+1 + g (17)

and

(Ux′)i = (Ux′)i+1 = (Ux′)i−1 + g′. (18)

Using in this order (18), (16) and (17), we get:

0 = (Ux′)i+1 − (Ux′)i = (ei+1 − ei) ·Ux′

= (ei+1 − ei) ·U(λei + (1− λ)x)

= λ(ci − ai)− (1− λ)g

and

g′ = (ei − ei−1) ·Ux′ = (ei − ei−1) ·U(λei + (1− λ)x) = λ(ai − bi).

Solving for g′ we get g′/g = αi/(g + βi) with, as defined in (3), αi = ai − bi

and βi = ci − ai. Iterating this argument, we obtain the return map:

g(tk+1
i ) =

α1α2α3

β1β2β3 + g(tik)(α1α2 + α1β3 + β2β3)
g(tki ).

Since, by (5), α1α2α3 > β1β2β3, it follows that for small g(tki ), we have

g(tk+1
i ) > g(tki ); therefore g(tki ) is bounded away from zero. Now, since

(Ux(t))i − (Ux(t))i+1 decreases from g(tki ) to 0 between tki and tki+1, and

since the speed at which this quantity varies is bounded, it follows that

tki+1 − tki is bounded away from zero too. That is, the time length between

two successive times at which the direction of x(t) changes is bounded away

from zero. This proves claim 4.2 and completes the proof of proposition 5.

Together with corollary 2.1, proposition 5 implies that there exists an

open set of 4×4 symmetric games for which the unique strategy used in cor-

related equilibrium is strategy 4, but, from an open set of initial conditions,

the solution x(·) of (10) is uniquely defined and x4(t) → 0 as t → +∞.

4.2 Remarks

This section is independent of the next sections and may be skipped.
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Remark 1. For every η > 0, we may set the parameters of (6) so that the

set {x ∈ S4 : e4 ∈ BR(x) or {e1, e2, e3} ⊆ BR(x)} has Lebesgue measure

less than η. In this sense, the basin of attraction of the Shapley triangle may

be made arbitrarily large.

Remark 2. When d1 = d2 = d3 the behavior of the best-response dynamics

in the 4×4 game (6) can be precisely related to its behavior in the underlying

RPS game (1), which was fully analyzed by Gaunersdorfer and Hofbauer

(1995). Indeed, for x 6= e4 and i in {1, 2, 3}, let x̂i denote the proportion of

the population playing strategy i relative to the proportion of the population

playing strategy 1, 2 or 3:

x̂i =
xi

x1 + x2 + x3

Let x̂ = (x̂1, x̂2, x̂3) ∈ S3. Since d1 = d2 = d3, it follows that, provided

that 4 is not a best response to x, the strategies i in {1, 2, 3} which are

best responses to x are exactly those which are best responses to x̂ in the

underlying RPS game. This implies that, up to a change of velocity, x̂ follows

the best-response dynamics in the underlying RPS game. More precisely,

straightforward computations show that if 4 is not a best response to x then:

ẋ ∈ BR(x)− x ⇒ (1− x4) ˙̂x ∈ BR(x̂)− x̂.

A similar result holds for the replicator dynamics (Viossat, 2006, lemma 5.1).

Remark 3. The proof of proposition 5 uses condition (7), i.e., fi < ai

for i = 1, 2, 3. Since (Ux)4 −
∑

1≤i≤4 aixi =
∑

1≤i≤3(fi − ai)xi is linear in

x, condition (7) means that (Ux)4 −
∑

1≤i≤4 aixi is negative on the face of

the simplex spanned by e1, e2, e3. If instead of requiring (7), we only require

that (Ux)4 −
∑

1≤i≤4 aixi be negative on the Shapley triangle:

W (x) = 0 ⇒ (Ux)4 −
∑

1≤i≤4

aixi < 0. (19)

then proposition 5 does not hold.9 However, strategy 4 is still eliminated

from an open set of initial conditions:

9For instance, if f1 > a1, f3 < a3 and d1 = d2 = d3 < a4, then from every initial
condition sufficiently close to the mixed strategy x ∈ [e3, e4] to which strategies 1 and 4
are both best responses, including initial conditions to which strategy 1 is the unique best
response, every solution of (10) converges to e4.
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Proposition 6 If (19) holds, then there exists γ > 0 such that from every

initial condition in Nγ := {x ∈ S4 : W (x) < γ}, there is a unique solution to

(10), and it converges to the Shapley triangle.

Proof. If we can find γ > 0 such that in Nγ strategy 4 is never a best

response, then the proof of proposition 5 implies that, as long as x(t) ∈ Nγ,

the solution is unique and W (x(t)) decreases exponentially. The later implies

that Nγ is forward invariant and that W goes to zero, hence the result.

Now, in light of the definition (11) of W , (19) means that on the Shapley

triangle, strategy 4 is never a best response. Therefore, if (19) holds, then

there exists an open neighborhood Ω of the Shapley triangle on which 4 is not

a best response. Since W is positive on the compact set S4\Ω, it follows that

γ := minx∈S4\Ω W (x) is positive. Furthermore, the definition of γ implies

that Nγ ⊆ Ω; hence, in Nγ, strategy 4 is never a best response and the result

follows.

Following Gaunersdorfer and Hofbauer (1995), it is interesting to com-

pare the behavior of the best-response dynamics and of the time-average of

the replicator dynamics. If fi > ai for some i ∈ {1, 2, 3}, then under the

replicator dynamics, the set Γ is not stable10. But

Proposition 7 If (19) holds, then under the replicator dynamics, Γ attracts

an open set of orbits, along which the time-average converges to the Shapley

triangle.

Proof. This follows from proposition 3.1 of Brannath (1994). A sketch of

proof in this particular case is given in (Viossat, 2005b, chapter 10, part B,

second appendix)

5 Brown-von Neumann-Nash dynamics

The Brown-von Neumann-Nash dynamics (henceforth BNN) is given by:

ẋi = ki(x)− xi

∑
j∈I

kj(x) (20)

where

ki(x) := max(0, (Ux)i − x ·Ux) (21)

10Neither asymptotically stable nor Lyapunov stable.

14



is the excess payoff of strategy i over the average payoff. As in the best-

response dynamics, strategies that are initially absent may appear, the pro-

portion of every strategy earning less than average decreases and the rest-

points are exactly the Nash equilibria of the game.11 Furthermore, since

the right-hand side of (20) is Lipschitz continuous, BNN has a unique solu-

tion from each initial condition. We refer to (Hofbauer, 2000; Berger and

Hofbauer, 2006) and references therein for a motivation of and results on

BNN.

Let G0 denote the game (8) with α = 0. Recall that U0 denote its payoff

matrix. The mixed strategy corresponding to the Nash equilibrium of the

underlying RPS game is n =
(

1
3
, 1

3
, 1

3
, 0
)

and it may be shown that the set of

symmetric Nash equilibria of G0 is the segment E0 = [n, e4]. That is, (p,p)

is a Nash equilibrium if and only if p is a convex combination of n and e4.
12

This section is devoted to a proof of the following proposition:

Proposition 8 If C is a closed subset of S4 disjoint from E0, then there

exists a neighborhood of G0 such that, for every game in this neighborhood

and every initial condition in C, x4(t) → 0 as t → +∞.

Propositions 1 and 2 imply that any neighborhood of the game G0 contains

an open set of games for which the unique correlated equilibrium is e4 ⊗
e4. Together with proposition 9, this implies that there exists an open set

of games for which, under BNN, the unique strategy played in correlated

equilibrium is eliminated from an open set of initial conditions.

The essence of the proof of proposition 9 is to show that, for games

close to G0, there is a “tube” surrounding E0 such that: (i) the tube repels

solutions coming from outside; (ii) outside of the tube, strategy 4 earns less

than average, hence x4 decreases. We first show that in G0 the segment E0

is locally repelling.

The function

V0(x) :=
1

2

∑
i∈I

k2
i =

1

2

∑
i∈I

[max (0, (U0x)i − x ·U0x)]2

is continuous, nonnegative and equals 0 exactly on the symmetric Nash equi-

libria, i.e. on E0, so that V0(x) may be seen as a distance from x to E0. Fix

an initial condition and let v0(t) := V0(x(t)).

11The symmetric Nash equilibria, for the single-population version presented here.
12The game G0 has other, asymmetric equilibria, but they will play no role.
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Lemma 5.1 There exists an open neighborhood Neq of E0 such that, under

BNN in the game G0, v̇0(t) > 0 whenever x(t) ∈ Neq\E0.

Proof. It is easily checked that:

n ·U0x = e4 ·U0x ∀x ∈ S4 (22)

(that is, n and e4 always earn the same payoff) and

(x− x′) ·U0e4 = (x− x′) ·U0n = 0 ∀x ∈ S4,∀x′ ∈ S4 (23)

(that is, against e4 [resp. n], all strategies earn the same payoff). Further-

more, as follows from lemma 4.1 in (Viossat, 2006), for every p in E0 and

every x /∈ E0,

(x−p) ·U0x = (x−p) ·U0(x−p) =
1− ε

2

∑
1≤i≤3

(
xi −

1− x4

3

)2

> 0. (24)

Hofbauer (2000) shows that the function v0 satisfies

v̇0 = k̄2 [(q− x) ·U0(q− x)− (q− x) ·U0x] (25)

with x = x(t), k̄ =
∑

i ki and qi = ki/k̄. It follows from equation (23) that

if p ∈ E0, then against p all strategies earn the same payoff. Therefore,

the second term (q − x) · U0x goes to 0 as x approaches E0. Thus, to

prove lemma 5.1, it suffices to show that as x approaches E0, the first term

(q− x) ·U0(q− x) is positive and bounded away from 0. But for x /∈ E0,

min
1≤i≤3

(U0x)i ≤ n ·U0x = (U0x)4 < x ·U0x (26)

(the first inequality holds because n is a convex combination of e1, e2 and

e3, the equality follows from (22) and the strict inequality from (24) applied

to p = e4). It follows from (U0x)4 < x · U0x that k4 = 0 hence q4 = 0;

similarly, it follows from min1≤i≤3(U0x)i < x ·U0x that qi = 0 for some i in

{1, 2, 3}. Together with (24), this implies that for every p in E0,

(q− p) ·U0(q− p) =
1− ε

2

∑
1≤i≤3

(
qi −

1

3

)2

≥ 1− ε

18
.

This completes the proof.
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We now prove proposition 9. Consider first the BNN dynamics in the

game G0. Recall lemma 5.1 and let

0 < δ < min
x∈S4\Neq

V0(x) (27)

(the latter is positive because V0 is positive on S4\E0, hence on S4\Neq, and

because S4\Neq is compact). Note that if V0(x) ≤ δ then x ∈ Neq. Therefore

it follows from lemma 5.1 and δ > 0 that

v0(t) = δ ⇒ v̇0(t) > 0. (28)

Let

Cδ := {x ∈ S4 : V0(x) ≥ δ}.

Since δ > 0, the sets Cδ and E0 are disjoint. Therefore, by (24) applied to

p = e4,

x ∈ Cδ ⇒ (U0x)4 − x ·U0x < 0 (29)

so that x4 decreases strictly as long as x ∈ Cδ and x4 > 0. Since, by (28),

the set Cδ is forward invariant, it follows that for any initial condition in Cδ,

strategy 4 is eliminated.

Now let ∇V0(x) = (∂V0/∂xi)1≤i≤n (x) denote the gradient of V0 at x.

It is easy to see that V0 is C1. Therefore, it follows from (28), v̇0(t) =

∇V0(x(t)) · ẋ(t) and compactness of {x ∈ S4 : V0(x) = δ} that

∃γ > 0, [v0(t) = δ ⇒ v̇0(t) ≥ γ > 0] . (30)

Similarly, since Cδ is compact, it follows from (29) that there exists γ′ > 0

such that

x ∈ Cδ ⇒ (U0x)4 − x ·U0x ≤ −γ′ < 0. (31)

Since ẋ is Lipschitz in the payoff matrix, it follows from (30) that for U

close enough to U0, we still have v0(t) = δ ⇒ v̇0 > 0 under the perturbed

dynamics. Similarly, due to (31), we still have x ∈ Cδ ⇒ (Ux)4−x ·Ux < 0.

Therefore, the above reasoning applies and for every initial condition in Cδ,

strategy 4 is eliminated.

Note that δ can be chosen arbitrarily small (see (27)). Therefore, to

complete the proof of proposition 9, it suffices to show that if C is a compact

set disjoint from E0 then, for δ sufficiently small, C ⊂ Cδ. But since V0 is

positive on S4\E0, and since C is compact and disjoint from E0, it follows
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that there exists δ′ > 0 such that, for all x in C, V0(x) ≥ δ′; hence, for all

δ ≤ δ′, C ⊂ Cδ. This completes the proof.

Hofbauer (2000, section 6) considers a generalization of the BNN dynam-

ics:

ẋi = f(ki)− xi

n∑
j=1

f(kj) (32)

where f : R+ → R+ is a continuous function with f(0) = 0 and f(u) > 0

for u > 0, and where ki is defined as in (21). The results of this section

generalize straightforwardly to any such dynamics:

Proposition 9 Consider a dynamics of type (32). If C is a closed subset

of S4 disjoint from E0, then there exists a neighborhood of G0 such that, for

every game in this neighborhood and every initial condition in C, x4(t) → 0

as t → +∞.

Proof. Replace V0(x) by W0(x) :=
∑

i F (ki(x)), where F is an anti-derivative

of f , and replace ki by f(ki). Let f̄ =
∑

i f(ki), f̃i = f(ki)/f̄ , and f̃ =(
f̃i

)
1≤i≤N

. Finally, let w0(t) = W0(x(t)). As shown by Hofbauer (2000),

ẇ0 = f̄ 2
[
(̃f− x) ·U0(̃f− x)− (̃f− x) ·U0x

]
which is the analogue of (25). Then apply exactly the same proof as for

BNN.

6 Monotonic and weakly sign-preserving dy-

namics

Consider a dynamics of the form

ẋi = xigi(x) (33)

where the C1 functions gi have the property that
∑

i∈I xigi(x) = 0 for all x

in S4, so that the simplex S4 and its boundary faces are invariant.

Such a dynamics is monotonic if the growth rates of the different strategies
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are ranked according to their payoffs13:

gi(x) > gj(x) ⇔ (Ux)i > (Ux)j ∀i ∈ I,∀j ∈ I.

A dynamics of type (33) is weakly sign-preserving (WSP) (Ritzberger and

Weibull, 1995) if whenever a strategy earns below average, its growth rate is

negative:

[(Ux)i < x ·Ux] ⇒ gi(x) < 0.

Finally,14 dynamics of type (33) implicitly depend on the payoff matrix U.

Thus, a more correct writing of (33) would be:

ẋi = xigi(x,U)

where U ∈ RN×N . Such a dynamics depends continuously on the payoff

matrix if, for every i in I, the functions gi are defined for an open set of payoff

matrices and depend continuously on U. A prime example of a dynamics of

type (33) which is monotonic, WSP, and depends continuously on the payoff

matrix is the replicator dynamics.

We now state the result: fix a monotonic or WSP dynamics (33) that

depends continuously on the payoff matrix.

Proposition 10 For every α in ]0, 1/3[, there exists ε > 0 such that for every

game in the neighborhood of (8), the set Γ defined by (9) is asymptotically

stable.

Together with propositions 1 and 2 and example 3, this implies that there

exists an open set of games for which e4 ⊗ e4 is the unique correlated equi-

librium but strategy 4 is eliminated for an open set of initial conditions.

Proof. For every monotonic or WSP dynamics (33), and for every game in

the neighborhood of (8), the set Γ is an heteroclinic cycle. That is, a set

consisting of saddle rest points and of the saddle orbits connecting these rest

points. Thus we may use the asymptotic stability’s criteria for heteroclinic

13This property goes under various names in the literature: relative monotonicity in
(Nachbar, 1990), order-compatibility of pre-dynamics in (Friedman, 1991), monotonicity
in (Samuelson and Zhang, 1992), which we follow, and payoff monotonicity in (Hofbauer
and Weibull, 1996).

14Instead of dynamics of type (33), Ritzberger and Weibull (1995) consider dynamics of
the more general type ẋi = hi(x), that need not leave the faces of the simplex positively
invariant. Thus, we only consider a subclass of their WSP dynamics.
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cycles developed by Hofbauer (1994) (a more accessible reference for this

result is theorem 17.5.1 in (Hofbauer and Sigmund, 1998)). Specifically, as-

sociate with the heteroclinic cycle Γ its so-called characteristic matrix. That

is, the 3 × 4 matrix whose entry in row i and column j is gj(ei) (for i 6= j,

this is the eigenvalue in the direction of ej of the linearization of the vector

field at ei):

1 2 3 4

e1 0 g2(e1) g3(e1) g4(e1)

e2 g1(e2) 0 g3(e2) g4(e2)

e3 g1(e3) g2(e3) 0 g4(e3)

(note that gi(ei) = 0 because ei is a rest point of (33)).

Call C this matrix. If p is a real vector, let p < 0 (resp. p > 0) mean

that all coordinates of p are negative (resp. positive). Hofbauer (1994) shows

that if the following conditions are satisfied:

Γ is asymptotically stable within the boundary of S4
15 (34)

There exists a vector p in R4 such that p > 0 and Cp < 0 (35)

then Γ is asymptotically stable. Therefore, to prove proposition 10, it is

enough to show that for every α in ]0, 1/3[, there exists ε > 0 such that, for

every game in the neighborhood of (8), conditions (34) and (35) are satisfied.

We begin with a lemma. In the remainder of this section, i ∈ {1, 2, 3} and

i− 1 and i + 1 are counted modulo 3.

Lemma 6.1 For every 0 < α < 1/3, there exists ε > 0 such that in the game

(8) and for every i in {1, 2, 3},

g4(ei) < 0 and 0 < gi+1(ei) < −gi−1(ei). (36)

Proof of lemma 6.1 for monotonic dynamics. For ε > 0, at the vertex

ei, the payoff of strategy 4 (resp. i + 1) is strictly smaller (greater) than

the payoff of strategy i. Since the growth rate of strategy i at ei is 0, this

implies by monotonicity g4(ei) < 0 (resp. gi+1(ei) > 0). It remains to show

that gi+1(ei) < −gi−1(ei). For ε = 0, we have: (Uei)i = (Uei)i+1 > (Uei)i−1

so that 0 = gi+1(ei) > gi−1(ei). Therefore gi+1(ei) < −gi−1(ei) and since

the dynamics depends continuously on the payoff matrix, this still holds for

15That is, for each proper face (subsimplex) F of S4, if Γ
⋂

F is nonempty, then it is
asymptotically stable for the dynamics restricted to F .
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small positive ε.

Proof of lemma 6.1 for WSP dynamics. For concreteness, set i = 2. At

e2, strategy 4 earns less than average. Therefore g4(e2) < 0. Now consider

the case ε = 0: at every point x in the (relative) interior of the edge [e1, e2],

strategy 3 earns strictly less than average hence its growth rate is negative.

By continuity at e2 this implies g3(e2) ≤ 0. Since at e2, strategy 1 earns

strictly less than average, it follows that g1(e2) < 0, hence g3(e2) < −g1(e2).

Since the dynamics depends continuously on the payoff matrix, this still holds

for small positive ε.

To establish (36), it suffices to show that g3(e2) is positive for every suf-

ficiently small positive ε. Let ε > 0. If λ > 0 is sufficiently small then,

for all µ > 0 small enough, the unique strategy which earns weakly above

average at x = (λµ, 1 − µ − λµ, µ, 0) is strategy 3, hence gi(x) < 0 for

i 6= 3. Since
∑

1≤i≤4 xigi(x) = 0, it follows that x1g1(x) + x3g3(x) > 0, hence

λµg1(x) + µg3(x) > 0, hence g3(x) > −λg1(x). By letting µ go to zero,

we obtain g3(e2) ≥ −λg1(e2) > 0 (g1(e2) < 0 was proved in the previous

paragraph).

We now prove proposition 10. Fix α and ε as in lemma 6.1. Note that

since the dynamics we consider depends continuously on the payoff matrix,

there exists a neighborhood of the game (8) in which the strict inequalities

(36) still hold. Thus, to prove proposition 10, it suffices to show that (36)

implies (34) and (35). Fix a game for which (36) holds.

Proof that condition (35) holds. It follows from (36) that g4(ei) is nega-

tive for all i in {1, 2, 3}. This implies that (35) holds (fix p1 = p2 = p3 = −1

and take a very high p4).

Proof that condition (34) holds. To prove (34), i.e. asymptotic stability

of Γ on the boundary, we use again characteristic matrices. Let Ĉ denote

the 3 × 3 matrix obtained from C by eliminating the fourth column. This

corresponds to the characteristic matrix of Γ, when viewed as an heteroclinic

cycle of the underlying 3 × 3 RPS game. In this RPS game, the set Γ

is trivially asymptotically stable on the relative boundary of S3 (Γ is the

relative boundary!). Furthermore, for p̂ = (1/3, 1/3, 1/3) > 0, the second

inequation in (36) implies that Ĉp̂ < 0. Therefore, it follows from theorem 1
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of Hofbauer (1994) that, in the 4× 4 initial game, Γ is asymptotically stable

on the face spanned by e1, e2, e3. Asymptotic stability on the face spanned

by ei, ei+1, e4 is easy. This concludes the proof.

7 Robustness to the addition of mixed strate-

gies as new pure strategies

We showed that for many dynamics, there exists an open set of symmetric

4 × 4 games for which, from an open set of initial conditions, the unique

strategy used in correlated equilibrium is eliminated. Since we might not

want to rule out the possibility that individuals use mixed strategies, and that

mixed strategies be heritable, it is important to check whether our results

change if we explicitly introduce mixed strategies as new pure strategies of

the game. As explained in the introduction, the paradigm is the following:

there is an underlying normal-form game, called the base game, and a finite

number of types of agents. Each type plays a pure or mixed strategy of

the base game. We assume that each pure strategy of the base game is

played (as a pure strategy) by at least one type of agent, but otherwise

we make no assumptions on the agents’ types. The question is whether

we can nonetheless be sure that, for an open set of initial conditions, all

strategies used in correlated equilibrium are eliminated. This section shows

that the answer is positive, at least for the best-response dynamics and for

the replicator dynamics. We first need some notations and vocabulary.

Let G be a finite game with strategy set I = {1, ..., N} and payoff matrix

U. A finite game G′ is said to be built on G by adding mixed strategies as

new pure strategies if:

First, letting I ′ = {1, ..., N, N + 1, ..., N ′} be the set of pure strategies of

G′ and U′ its payoff matrix, we may associate to each pure strategy i in I ′ a

mixed strategy pi in SN in such a way that:

∀i ∈ I ′,∀j ∈ I ′, e′i ·U′e′j = pi ·Upj (37)

where e′i is the unit vector in SN ′ corresponding to the pure strategy i.

Second, if 1 ≤ i ≤ N , the pure strategy i in the game G′ corresponds to

the pure strategy i in the base game G:

1 ≤ i ≤ N ⇒ pi = ei. (38)
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If µ′ = (µ(k, l))1≤k,l≤N ′ is a probability distribution over I ′ × I ′, then it

induces the probability distribution µ on I × I given by:

µ(i, j) =
∑

1≤k,l≤N ′

µ′(k, l)pk
i p

l
j ∀(i, j) ∈ I × I.

It follows from a version of the revelation principle (see Myerson, 1994) that,

if G′ is built on G by adding mixed strategies as new pure strategies, then

for any correlated equilibrium µ′ of G′, the induced probability distribution

on I × I is a correlated equilibrium of G. Thus, if G is a 4 × 4 symmetric

game with e4 ⊗ e4 as unique correlated equilibrium, then µ′ is a correlated

equilibrium of G′ if and only if, for every k, l in I ′ such that µ′(k, l) is positive,

pk = pl = e4. Thus, the unique strategy of G used in correlated equilibria

of G′ is strategy 4. We show below that:

Proposition 11 For the replicator dynamics and for the best-response dy-

namics, there exists an open set of 4× 4 symmetric games such that, for any

game G in this set:

(i) e4 ⊗ e4 is the unique correlated equilibrium of G

(ii) For any game G′ built on G by adding mixed strategies as new pure

strategies and for an open set of initial conditions, every pure strategy k in

I ′ such that pk
4 > 0 is eliminated.

(the open set of initial conditions in property (ii) is a subset of SN ′ , the

simplex of mixed strategies of G′, and may depend on G′)16,17

For the best-response dynamics, proposition 11 follows from an easy and

very general result: for any finite game and in a sense made precise in the

next section, adding mixed strategies as new pure strategies does not modify

the behavior of the best-response dynamics.

16Our insistence on elimination of strategies k with pk
4 > 0, and not only of strategies

k with pk = e4, stems from the following consideration: an observer who could only see
which actions are taken by the agents, but not which pure or mixed strategies these actions
come from, could not be sure that strategies k with pk = e4 have been eliminated unless
he never observes action 4. This requires that all types of agents whose associated mixed
strategy puts positive probability on action 4 be eliminated.

17An observer cannot determine the current population profile in SN ′ from the actions of
the agents, but only the point in SN induced by the population profile in SN ′ . So ideally,
we would like to show that there is an open subset of SN such that, for any interior
initial condition in SN ′ inducing a point in this subset, all strategies used in correlated
equilibrium are eliminated. As should be clear from the next section, this is easy for
the best-response dynamics, but we do not know whether this holds for the replicator
dynamics.
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7.1 Proof for the best-response dynamics

Let G be a finite game and let G′ be a finite game built on G by adding

mixed strategies of G as new pure strategies. We want to relate the behavior

of the best-response dynamics in the game G′ to its behavior in the base

game G. For this purpose, associate to each mixed strategy x′ in SN ′ the

induced mixed strategy x in SN defined by:

x :=
N ′∑
k=1

x′kp
k. (39)

Let x′(·) be a solution of the best-response dynamics in G′ and x(·) the

induced mapping from R+ to SN .

Proposition 12 x(·) is a solution of the best-response dynamics in G.

Proof. For almost all t ≥ 0, there exists a vector b′ ∈ BR(x′(t)) such that

ẋ′(t) = b′ − x′(t). Let b :=
∑

k∈I′ b′kp
k ∈ SN . It follows from (39) that:

ẋ(t) =
N ′∑
k=1

ẋ′kp
k =

N ′∑
k=1

(b′k − x′k)p
k = b− x(t). (40)

Furthermore, since b′ is a best response to x′(t) it follows from (37) and (38)

that b is a best response to x(t) (otherwise, letting i ∈ {1, ..., N} be a best

response to x, we have: b′ ·U′x′ = b ·Ux < ei ·Ux = e′i ·U′x′, hence b′ is

not a best response to x′, a contradiction). Together with (40), this implies

that, for almost all t, ẋ ∈ BR(x)− x. The result follows.

Assume that G is a 4 × 4 symmetric game satisfying conditions (2), (5)

and (7) and let x′(0) be an initial condition in G′ to which strategy 4 is not

a best response and to which strategies 1, 2 and 3 are not all best responses.

Note that there is an open set of such initial conditions. It follows from

propositions 12 and 5 that x4(t) =
∑N ′

k=1 x′k(t)p
k
4 → 0 as t → +∞. This

implies that, for every k in I ′ with pk
4 > 0, x′k(t) → 0. Together with

corollary 2.1, this proves proposition 11 for the best-response dynamics.

7.2 Proof for the replicator dynamics

Recall that G0 denote the game of example 3 with α = 0 and U0 its payoff

matrix. Note that in a game built on G0 by adding mixed strategies as new
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pure strategies, the heteroclinic cycle Γ′ : e′1 → e′2 → e′3 → e′1 need not be

asymptotically stable. Indeed (letting i ∈ {1, 2, 3} and counting i + 1 mod-

ulo 3), some of the added mixed strategies might be better responses to ei

than ei (e.g. (1 − λ)ei+1 + λe4, with λ small); this leads to instability near

ei. Nevertheless, we will show that every game close enough to G0 satisfies

property (ii) of proposition 11. Since, as already mentioned, every neighbor-

hood of G4 contains an open set of games with e4 ⊗ e4 as unique correlated

equilibrium, this implies that, for the replicator dynamics, elimination of all

strategies used in correlated equilibrium is indeed robust to the addition of

mixed strategies as new pure strategies, in the sense of proposition 11.

Before formally proving that games close to G0 satisfy (ii), we provide the

intuition: for a game G close to G0, the set Γ defined in (9) is an attractor,

close to which strategy 4 earns less than average. Now consider a game G′

built on G by adding mixed strategies as new pure strategies, and a solution

of the replicator dynamics in G′: (a) as long as the share of strategies k ≥ 4

remains low, the solution remains close to the base-game attractor; (b) as long

as the solution is close to the base-game attractor, strategy 4 earns less than

average and its share decreases; (c) as long as the share of strategy 4 does not

increase, the share of strategies k ≥ 5 remains low, moreover, if the share of

strategy x4 decreases, so does, on average over time, the share of each added

mixed strategy in which strategy 4 is played with positive probability. The

latter follows from a basic property of the replicator dynamics18 and requires

that the share of the added strategies k ≥ 5 be initially low with respect to

the minimal share of the strategies played in the base-game attractor (1, 2

and 3). Putting (a), (b) and (c) together gives the result. Now to the details:

As in section 5, let E0 denote the convex hull of n = (1/3, 1/3, 1/3, 0)

and e4. For x in S4\{e4}, let

V (x) := 3
(x1x2x3)

1/3

x1 + x2 + x3

.

The function V takes its maximal value 1 on E0\{e4} and its minimal value

0 on the set {x ∈ S4\{e4} : x1x2x3 = 0}. Fix δ in ]0, 1[. If V (x) ≤ δ then

x /∈ E0, hence it follows from (26) that, at x, strategy 4 earns strictly less

than average. Together with a compactness argument, this implies that there

18Namely, the fact that the replicator dynamics is convex monotonic in the sense of
Hofbauer and Weibull (1996); loosely said, this amounts to not giving an advantage to
mixed strategies over pure ones.
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exists γ1 > 0 such that:

V (x) ≤ δ ⇒ [(U0x)4 − x ·U0x ≤ −γ1] . (41)

Furthermore, it is shown in (Viossat, 2006) that in G0, under the replicator

dynamics, the function V (x) decreases strictly along interior trajectories (ex-

cept those starting in E0). More precisely, for every interior initial condition

x(0) /∈ E0 and every t ∈ R, the function v0(t) := V (x(t)) satisfies v̇0(t) < 0.

Together with the compactness of {x ∈ S4\{e4}, V (x) = δ}, this implies that

there exists γ2 > 0 such that

v0(t) = δ ⇒ v̇0(t) ≤ −γ2. (42)

Fix a 4 × 4 matrix U and a solution x(·) of the replicator dynamics with

payoff matrix U, with x(0) 6= e4. Let v(t) := V (x(t)). Thus, the difference

between v0 and v is that the solution x(·) intervening in the definition of v

is a solution of the replicator dynamics for the payoff matrix U and not for

U0. Since (Ux)4− x ·Ux and ẋ are Lipschitz in U, it follows from (41) and

(42) that there exists γ > 0 such that, if ||U−U0|| < γ:

V (x) ≤ δ ⇒ [(Ux)4 − x ·Ux ≤ −γ] (43)

and

v(t) = δ ⇒ v̇(t) ≤ −γ. (44)

Fix a game G with payoff matrix U such that ||U −U0|| < γ. Let G′ be a

game built on G by adding mixed strategies of G as new pure strategies, and

let U′ be its payoff matrix. For x′ in SN ′ such that x′1 + x′2 + x′3 > 0, let

V ′(x′) := 3
(x′1x

′
2x
′
3)

1/3

x′1 + x′2 + x′3
.

Consider a solution x′(·) of the replicator dynamics in G′ (with
∑

1≤i≤3 x′i(0) >

0) and let v′(t) = V ′(x′(t)). On the face of SN ′ spanned by the strategies of

the original game:

{x ∈ SN ′ :
∑

1≤i≤4

x′i = 1},

the replicator dynamics behaves just as in the base-game. Therefore, (43)

and (44) imply trivially that:[∑
1≤i≤4

x′i = 1 and V ′(x) ≤ δ

]
⇒ [(U′x′)4 − x′ ·U′x′ ≤ −γ] (45)
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and [∑
1≤i≤4

x′i = 1 and v′(t) = δ

]
⇒ v̇′(t) ≤ −γ. (46)

Now define x̄′ ∈ SN ′ as the projection of x on the face of SN ′ spanned by the

strategies of the original game. That is,

x̄′i =
x′i∑

1≤j≤4 x′j
if 1 ≤ i ≤ 4, and x̄′i = 0 otherwise.

Note that V ′(x′) = V (x). Furthermore, a simple computation shows that

max
1≤i≤N ′

|x′i − x̄′i| ≤ N ′ max
5≤k≤N ′

x′k.

Therefore, since (U′x′)4 − x′ · U′x′ and the vector field ẋ′ are Lipschitz in

x′, it follows from (45) and (46) that there exist positive constants η and γ′

such that[
max

5≤k≤N ′
x′k ≤ η and V ′(x′) ≤ δ

]
⇒ (U′x′)4 − x′ ·U′x′ ≤ −γ′ (47)

and [
max

5≤k≤N ′
x′k ≤ η and v′(t) = δ

]
⇒ v̇′(t) ≤ −γ′. (48)

Fix y′ ∈ SN ′ such that∑
1≤i≤4

y′i = 1, V (y′) < δ and C := min
1≤i≤3

y′i > 0.

There exists an open neighborhood Ω of y in SN ′ such that

∀x′ ∈ Ω,

[
min
1≤i≤3

x′i > C/2, max
5≤k≤N ′

x′k < Cη/2, and V ′(x′) < δ

]
.

Consider an interior solution x′(·) of the replicator dynamics in G′ with initial

condition in Ω. Recall that pk denote the mixed strategy of G associated

with the pure strategy k of G′. To prove proposition 11 for the replicator

dynamics, it suffices to show that:

Proposition 13 For all k in {4, ..., N ′} such that pk
4 > 0, x′k(t) →t→+∞ 0.

Proof. We begin with two lemmas:
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Lemma 7.1 Let T > 0 and k ∈ {5, ..., N ′}. If x′4(T ) ≤ x′4(0) then x′k(T ) <

η.

Proof. By construction of G′, strategy k ∈ I ′ earns the same payoff as the

mixed strategy
∑

1≤i≤4 pk
i e
′
i:

(U′x′)k =
∑

1≤i≤4

pk
i (U

′x′)i ∀x′ ∈ S ′N .

Therefore, it follows from the definition of the replicator dynamics that:

ẋ′k
x′k

=
∑

1≤i≤4

pk
i

ẋ′i
x′i

.

Integrating between 0 and T and taking the exponential of both members

leads to:

x′k(T ) = x′k(0)
∏

1≤i≤4

(
x′i(T )

x′i(0)

)pk
i

. (49)

Noting that for 1 ≤ i ≤ 3, we have x′i(T ) ≤ 1 and 1 ≤ 1/x′i(0) ≤ 2/C, we

get: ∏
1≤i≤3

(
x′i(T )

x′i(0)

)pk
i

≤
∏

1≤i≤3

(
2

C

)pk
i

=

(
2

C

)1−pk
4

≤ 2

C
. (50)

Since furthermore x′k(0) < Cη/2, we obtain from (49) and (50):

x′k(T ) <
Cη

2

2

C

(
x′4(T )

x′4(0)

)pk
4

= η

(
x′4(T )

x′4(0)

)pk
4

. (51)

The result follows.

Lemma 7.2 For all t > 0, maxk∈{5,...,N ′} x′k(t) < η and v′(t) < δ.

Proof. Otherwise there is a first time T > 0 such that maxk∈{5,...,N ′} x′k(T ) =

η or v′(T ) = δ (or both). It follows from (47) and the definition of the

replicator dynamics that if 0 ≤ t ≤ T then ẋ′4(t) ≤ −γ′ < 0. Therefore

x′4(T ) ≤ x′4(0). By lemma 7.1, this implies that maxk∈{5,...,N ′} x′k(T ) < η.

Therefore, v′(T ) = δ. Due to (48), this implies that v̇′(T ) < 0. Therefore,

there exists a time T1 with 0 < T1 < T such that v′(T1) > δ, hence a time T2

with 0 < T2 < T1 < T such v′(T2) = δ, contradicting the minimality of T .
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We now conclude: it follows from lemma 7.2, equation (47) and the defi-

nition of the replicator dynamics that for all t ≥ 0, x′4(t) ≤ exp(−γ′t)x′4(0).

By (51) this implies that for every k in {5, ..., N ′},

∀t ≥ 0, xk(t) < η exp(−γ′pk
4t).

Therefore, if pk
4 > 0 then x′k(t) → 0 as t → +∞.

8 Discussion

We showed that elimination of all strategies used in correlated equilibrium

is a robust phenomenon, in that it occurs for many dynamics, an open set of

games and an open set of initial conditions. Furthermore, at least for some of

the leading dynamics, the results are robust to the addition of mixed strate-

gies as new pure strategies. It is relatively easy to prove some other forms

of robustness, e.g. robustness to discretization or perturbation of the vector

field (Viossat, 2005, chapter 10a). Furthermore, under the replicator dynam-

ics, the best-response dynamics or the Brown-von Neumann-Nash dynamics,

for appropriate values of the payoffs in game (8), the basin of attraction of the

Nash equilibrium can be made arbitrarily small, and the minimal distance

from the attractor on the face x4 = 0 to the basin of attraction of the Nash

equilibrium much larger than the minimal distance from the Nash equilib-

rium to the basin of attraction of the attractor on the face x4 = 0. It follows

that this attractor would be stochastically stable in a model à la Kandori,

Mailath and Rob (1993).19,20 These results show a sharp difference between

evolutionary dynamics and “adaptive heuristics” such as no-regret dynamics

(Hart and Mas-Collel, 2003; Hart, 2005) or hypothesis testing (Young, 2004,

chapter 8).

Some limitations of our results should however be stressed. First, our

results hold only for single-population dynamics. Of course, they imply that

19The (unperturbed) dynamics used by Kandori, Mailath and Rob (1993) is a discrete-
time version of the best-response dynamics, but it could easily be replaced by a discrete-
time version of another dynamics.

20For BNN, it is not known whether in a RPS game, there is a unique limit cycle or
if there are several; but there is an asymptotically stable annulus (Berger and Hofbauer,
2006). So for BNN, what we mean by “attractor on the face x4 = 0 is this asymptotically
stable annulus.
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for some games and some interior initial conditions, two-population dynam-

ics eliminate all strategies used in correlated equilibrium21; but maybe not

for an open set of games nor for an open set of initial conditions.

Second, the monotonic and weakly sign-preserving dynamics of section 6

are non-innovative: strategies initially absent do not appear. This has the

effect that, even when focusing on interior initial conditions, the growth of

the share of the population playing strategy i is limited by the current value

of this share. This is appropriate if we assume that agents have to meet

an agent playing strategy i to become aware of the possibility of playing

strategy i; but in general, as discussed by e.g. Swinkels (1993, p.459), this

seems more appropriate in biology than in economics. While our results

hold also for some important innovative dynamics, such as the best-response

dynamics and a family of dynamics including the Brown-von Neumann-Nash

dynamics, more general results would be welcome.

Third, in the games we considered, the unique correlated equilibrium

is a strict Nash equilibrium, and is thus asymptotically stable under most

reasonable dynamics, including all those we studied. Thus, even though

the unique strategy used in correlated equilibrium is eliminated for many

initial conditions, there is still an important connection between correlated

equilibrium and the outcome of evolutionary dynamics.

For Nash equilibrium, these three limitations can be overcome, at least

partially: there are wide classes of multi-population innovative dynamics for

which there exists an open set of games such that, for an open set of ini-

tial conditions, all strategies belonging to the support of at least one Nash

equilibrium are eliminated (Viossat, 2005, chapter 11). Moreover, for the

single-population replicator dynamics or the single-population best-response

dynamics, there are games for which, for almost all initial conditions, all

strategies used in Nash equilibrium are eliminated (Viossat, 2005, chapter

12). Whether these results extend to correlated equilibrium is an open ques-

tion.

21This is because for symmetric two-player games with symmetric initial conditions,
two-population dynamics reduce to single-population dynamics, at least for the replicator
dynamics, the best-response dynamics and the Brown-von-Neumann Nash dynamics.

30



A Proof of proposition 4

We provide two proofs, as they provide different insights. The first one,

in the spirit of section 6, consists in checking that the sufficient conditions

for asymptotic stability of heteroclinic cycles given by Hofbauer (1994) are

satisfied. The second proof, in the spirit of the proof of proposition 4 in

(Viossat, 2006) exhibits an average Lyapunov function.22 In both proofs,

i ∈ {1, 2, 3} and i + 1 and i− 1 are counted modulo 3.

Proof 1. We use the tools introduced at the beginning of the proof of

proposition 10 (up to lemma 6.1). The heteroclinic cycle Γ is asymptotically

stable on the boundary of S4: asymptotic stability on the face spanned by

e1, e2, e3 follows from (5), as shown by Zeeman (1980); asymptotic stability

on the face spanned by ei, ei+1, e4 is easy. Furthermore, under the replicator

dynamics, the characteristic matrix C of Γ has the sign structure:

1 2 3 4

e1 0 − + −
e2 + 0 − −
e3 − + 0 −

.

It follows that there exists a vector p in R4 such that p > 0 and Cp < 0

(fix p1 = p2 = p3 = 1 and take a very high p4). By theorem 1 of Hofbauer

(1994), this implies that Γ is asymptotically stable.

Proof 2 (sketch). Applying lemma 7 from Zeeman (1980) in the spirit

of (Hofbauer and Sigmund, 1998, proof of theorem 7.7.2), we may assume

without loss of generality that there exists a positive constant c such that

bi − ai+1 = c for i = 1, 2, 3. Let p ∈ S3 denote the Nash equilibrium of the

underlying RPS game and let V (x) =
∏

1≤i≤3 x̂pi

i (where x̂i = xi/(1 − x4)).

The function V̇ /V extends to a continuous function on S4 which is strictly

negative on Γ (more precisely, if x4 = 0, then V̇ = −cV
∑

1≤i≤3(xi − pi)
2;

see Hofbauer and Sigmund, 1998, proof of theorem 7.7.2). This implies that

V decreases exponentially in the neighborhood of Γ. The only difference

with the proof of proposition 4 in (Viossat, 2006) is then that W (x) =

max(x4, V (x)) is no longer a local Lyapunov function (because x4 need not

decrease everywhere in the neighbourhood of Γ) but only a local average

22Our first proof relies on theorem 1 of Hofbauer (1994), which itself relies on the
construction of an (average) Lyapunov function; however this average Lyapunov function
is not explicit.
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Lyapunov function (it decreases in average over an approximate cycle). We

only give the heuristic argument: there exists a neighbourhood Ni of ei in

which strategy 4 earns strictly less than the mean payoff, so that x4 decreases.

As long as x(t) is close enough to Γ, V (x(t)) decreases and the solution

describes a cycling movement from N1 to N2 to N3 and back to N1. During

this (approximate) cycle, most of the time23 is spent in the Ni, so that x4

decreases over the cycle. This allows to show that for every δ > 0, there

exists δ′ > 0 such that if W (x(0)) ≤ δ′ then W (x(t)) ≤ δ for all t ≥ 0 and

W (x(t)) → 0 as t → +∞.
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